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SOMMAIRE

Dans ce mémoire, nous entendons par algèbre toute K-algèbre de dimension finie sur

un corps algébriquement clos K. Si A est une K-algèbre, on entend par A-module tout

A-module à gauche de type fini, sauf indication contraire.

Tout d’abord, nous introduisons les notions nécessaires et les définitions des catégories des

modules. Ensuite, nous démontrons certains concepts de la théorie des représentations

des algèbres et des théorèmes de structure sur les algèbres de Nakayama, sur les modules

projectifs et injectifs, afin de prouver le théorème qui stipule que le cube radical de la

catégorie de module avec certaines conditions est nul pour les algèbres de Nakayama.
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ABSTRACT

In this thesis, we mean by algebra any K-algebra of finite dimension over an algebraically

closed field K. If A is a K-algebra, we mean by A-module any left A-module of finite

type, unless otherwise specified.

First, we introduce the necessary notions and the definitions of the category of modules.

Then, we prove certain concepts of the theory of representations of algebras and the

structure theorems on Nakayama algebras and projective and injective modules, in order

to prove the theorem which states that the radical cube of the category of module with

some conditions is zero for Nakayama algebras.
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INTRODUCTION

Let A be a finite dimensional K-algebra over an algebraically closed field K ; and mod

A the category of finitely generated left A-modules. It is well known that A is of finite

representation type if and only if the radical of mod A is nilpotent. Also, by the Harada-

Sai lemma, the radical of modA is nilpotent with a nilpotency index bounded by 2b − 1,
where b is the maximal dimension of indecomposable A-modules ; see [4].

In this thesis, we would like to prove that, when A =KQ/I is a Nakayama algebra, where

Q is a finite connected quiver and I is an admissible ideal of kQ. Then rad3(modA) = 0
if and only if one of the following cases occurs :

(1) Q = A⃗n with 1 ≤ n ≤ 3 and I = 0.

(2) Q = Ãn with n ≥ 1 and I is generated by all paths of length two in Q.

(3) Q = A⃗n with n ≥ 3 and I is generated by all paths of length two in Q.

To reach this goal, we need to understand some important definitions and lemmas about

the radical of the module categories, representations of algebras, theory of Auslander-

Reiten and Nakayama algebras.

So, we will start the first chapter by introducing some notions on algebras and modules.

The second chapter will be devoted to quivers and algebras. Then, chapter three consists

of Auslander-Reiten theory and all important lemmas about almost split morphisms and

irreducible morphisms.
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In the last chapter, we need to understand the Nakayama algebras and the lemmas which

we need to solve our main result. Finally, we will see the main result and proof.
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CHAPTER 1

Algebras and Modules

The content presented in this chapter is taken from [3]. Throughout this thesis, K denotes

an algebraically closed field. We shall consider only finite dimensional K-algebras.

1.1 Algebras

Throughout this thesis, we need to study categories of modules over algebras. It is natural

to start the first section with algebras.

Definition 1.1.1. Let A be a K-algebra. We define the opposite algebra Aop to have the

same elements as A, but the multiplication ∗ in Aop is defined as follows : a ∗ b = ba, for

all a, b ∈ A.

Definition 1.1.2. The algebra A is said to be finite dimensional if its dimension as a

K-vector space is finite.

Definition 1.1.3. Let A be a finite dimensional K-algebra. A K-vector subspace I of A

is a right ideal (or left ideal) of A if ia ∈ I (or ai ∈ I, respectively) for all i ∈ I and a ∈ A.

3



A two-sided ideal of A is a K-vector subspace I of A which is a right ideal and left ideal

of A.

Definition 1.1.4. Let A be a finite dimensional K-algebra. The intersection of all maxi-

mal left ideals of A is called the (Jacobson) radical of A, written as rad A.

Lemma 1.1.5. ([8], I.3.1) Let A be a finite dimensional K-algebra. Then rad A is the

intersection of all maximal right ideals of A, which is also a two-sided ideal of A.

Moreover,

radA = {a ∈ A ∣ 1 − xa is left invertible, for all x ∈ A}
= {a ∈ A ∣ 1 − ax is right invertible, for all x ∈ A}.

Definition 1.1.6. A finite dimensional K-algebra A is said to be local if A has a unique

maximal left ideal.

Lemma 1.1.7. ([3], I.4.6) Let A be a finite dimensional K-algebra. The following state-

ments are equivalent.

(1) A is a local algebra.

(2) A has a unique maximal right ideal.

(3) rad A consists of all noninvertible elements of A.

(4) The set of all invertible elements of A is a two-sided ideal of A.

(5) For any a ∈ A, one of the elements a or 1 − a is invertible.

(6) A/rad A is a division algebra.

Definition 1.1.8. Let A be a finite dimensional K-algebra. An element x ∈ A is said to

be nilpotent if there exists m ∈ N such that xm = 0.
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Lemma 1.1.9. Let A be a finite dimensional K-algebra. If a ∈ A is nilpotent, then 1 − a
is invertible.

Proof. If an = 0, then (1 − a)(1 + a +⋯ + an−1) = 1 − an = 1. Thus, 1 − a is invertible.

Definition 1.1.10. Let A be a finite dimensional K-algebra. An element e ∈ A is called

idempotent if e2 = e. Two idempotents e, e′ ∈ A are called orthogonal if ee′ = e′e = 0. The

idempotent e is said to be primitive if e cannot be written as a sum e = e′ + e′′, where

e′, e′′ are nonzero orthogonal idempotents of A.

Definition 1.1.11. Let A be a finite dimensional K-algebra. A set {e1, . . . , en} of idem-

potents of A is called a complete set of orthogonal primitive idempotents if the ei are

pairwise orthogonal primitives idempotents of A such that 1 = e1 +⋯ + en.

Proposition 1.1.12. ([6], 2.27) Let A be a finite dimensional K-algebra with an idem-

potent e. The following statements hold.

(1) eAe = {eae ∣ a ∈ A} is an algebra with e being the identity.

(2) We have an anti-isomorphism of algebras as follows ∶

ϕ ∶ EndA(Ae) → eAe ∶ f ↦ f(e).

Corollary 1.1.13. ([6], 2.3) Let A be a finite dimensional K-algebra. Then,

ϕA ∶ HomA(AA,AA) → A ∶ f → f(1)

is an anti-isomorphism of algebras.

5



1.2 Linear Categories

In this section, we present an introduction to general categories.

Definition 1.2.1. A category is a triple C = (Ob C,Hom C, ○), where Ob C is called the

class of objects, Hom C is called the class of morphisms, and ○ is called the composition

of morphisms, satisfying the following conditions.

(1) To each pair of objects X,Y , we associate a set HomC(X,Y ) of morphisms from

X to Y with the following properties∶

(a) for each object X, there exists an element idX ∈ HomC(X,X), called the

identity morphism on X;

(b) the intersection of HomC(X,Y ) and HomC(Z,U) is empty ; in case (X,Y ) /=
(Z,U).

(2) The composition ○ is only partially defined for objects X,Y,Z as follows∶

○ ∶ HomC(Y,Z) ×HomC(X,Y ) → HomC(X,Z) ∶ (g, f) ↦ g ○ f

with the following two properties :

(a) h ○ (g ○ f) = ((h ○ g) ○ f , for all morphisms f ∈ HomC(X,Y ), g ∈ HomC(Y,Z),
h ∈ HomC(Z,U); and

(b) f ○ 1X = f and 1X ○ g = g, for all objects X,Y,Z and morphisms f ∈ HomC(X,Y )
and g ∈ HomC(Z,X).

Definition 1.2.2. Let C be a category. A morphism f ∶M → N in C is called

(1) a section if there exists a morphism g ∶ N →M such that gf = idM .

(2) a retraction if there exists a morphism g ∶ N →M such that fg = idN .
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Lemma 1.2.3. Let C be a category with morphisms f ∶M → N and g ∶ N → L.

(1) If f, g are sections, then gf is a section.

(2) If f, g are retractions, then gf is a retraction.

Proof. (1) Suppose that there exist f ′ ∶ N →M and g′ ∶ L → N such that f ′f = idM and

g′g = idN . Then, (f ′g′)(gf) = f ′f = idM . So gf is a section.

(2) Suppose that there exist f ′ ∶ N →M and g′ ∶ L→ N such that ff ′ = idN and gg′ = idL.

Then, (gf)(f ′g′) = gg′f = idL. So gf is a retraction.

Definition 1.2.4. A category C is called K-linear if

(1) for all objects X,Y , the set HomC(X,Y ) is a K-vector space ;

(2) the composition of morphisms is K-bilinear, that is, for all morphisms

f1, f2 ∈ HomC(X,Y ), g1, g2 ∈ HomC(Y,Z) and all scalars λ1, λ2, µ1, µ2 ∈K, we have

g ○ (λ1f1 + λ2f2) = λ1(g ○ f1) + λ2(g ○ f2)

(µ1g1 + µ2g2) ○ f = µ1(g1 ○ f) + µ2(g2 ○ f)

(3) every finite family of objects of C admits a product and co-product in C.

Definition 1.2.5. Let C be a K-linear category and f ∶M → N a morphism in C.

(1) A kernel of f , denoted by Ker(f), is a pair (U,u), where U is an object of C and

u ∶ U →M is a morphism such that :

(a) fu = 0.

(b) If u′ ∶ U ′ → M is a morphism such that fu′ = 0, then there exists a unique

morphism g ∶ U ′ → U such that u′ = ug.

(2) A cokernel of f , denoted by Coker(f), is a pair (V, v), where V is an object of C
and v ∶ N → V is a morphism such that :

7



(a) vf = 0.

(b) If v′ ∶ N → V ′ is a morphism such that v′f = 0, then there exists a unique

morphism h ∶ V → V ′ such that v′ = hv.

Definition 1.2.6. Let C be a K-linear category. A class I of morphisms of C is called a

two-sided ideal in C if I has the following properties :

(1) for any X,Y ∈ Ob C, the set I(X,Y ) of morphisms f ∶ X → Y in I is a K-vector

subspace of HomC(X,Y );

(2) if f ∈ I and g is a morphism in C that is left-composable with f , then g ○ f ∈ I ;

(3) if f ∈ I and h is a morphism in C that is right-composable with f ,then f ○ h ∈ I.

Definition 1.2.7. Let C be a linear category. The radical of C is a two-sided ideal radC

in C, defined by the following formula

radC(X,Y ) = {h ∈ HomC(X,Y ) ∶ idX − g ○ h is invertible for any g ∈ HomC(Y,X)}

for any objects X,Y of C.

Lemma 1.2.8. Let C be a linear category with f ∈ radC(M,N).

(1) If M is not zero, then f is not a section.

(2) If N is not zero, then f is not retraction.

Proof. (1) Suppose that M is not zero. If f is a section, then there exists f ′ ∶ N → M

such that f ′f = idM . Then, 0 = idM − f ′f , which is invertible. This is impossible as M is

not zero. So f is not a section.

(2) Suppose that N is not zero. If f is a retraction, then there exists f ′ ∶ N → M such

that ff ′ = idN . Then, 0 = idN − ff ′, which is invertible. This is impossible as N is not

zero. So f is not a retraction.
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1.3 Category of Modules

To understand the radical of a module category better, we start this section with module

categories.

Definition 1.3.1. Let A be a finite dimensional K-algebra. The category of left A-

modules is a category whose objects are left modules and whose morphisms are all module

homomorphisms between left A-modules. So, we can say that the category mod A of all

finitely generated left A-modules is a K-linear category.

Lemma 1.3.2. Let A be a finite dimensional K-algebra with f ∶M → N a morphism in

mod A. If dim(M) = dim(N), then f is an isomorphism if and only if f is a monomor-

phism if and only if f is an epimorphism.

Proof. It is well known that dim(M) = dim(Kerf) + dim(Imf). Assume that

dim(M) = dim(N).

If f is an epimorphism, then dim(M) = dim(N) + dim(Kerf), and so, dim(Kerf) = 0.
Then f is a monomorphism, and hence, an isomorphism.

If f is a monomorphism, then dim(Kerf) = 0. Therefore, dim(N) = dim(M) = dim(Imf).
Then, f is an epimorphism, and hence, an isomorphism.

Definition 1.3.3. Let A be a finite dimensional K-algebra. A non-zero module M in

mod A is said to be indecomposable if M =M1 ⊕M2 implies that M1 = 0 or M2 = 0.

Definition 1.3.4. An algebra A is called representation-finite if its module category

admits only finitely many isoclasses of indecomposable objects. It is called representation-

infinite if it is not representation-finite.
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Lemma 1.3.5. ([8], I. 8.7)

Let A be a K-algebra, e ∈ A an idempotent, and M be a module in mod A. Then the K-

linear map θ ∶ HomA(Ae,M) → eM, defined by θ(ϕ) = ϕ(e) = eϕ(e) for ϕ ∈ HomA(Ae,M),
is an isomorphism of left eAe-modules.

Lemma 1.3.6. ([3], I. 4.7) Let A be a finite dimensional K-algebra. A module M in

modA is indecomposable if and only if End(M) is local.

Proposition 1.3.7. ([1], VII. 6.13) Let A be a finite dimensional K-algebra with M a

non-zero module in mod A. Then, M ≅M1⊕ . . .⊕Mn, where each Mi is indecomposable.

Moreover, if M ≅ N1⊕ . . .⊕Nm with each Nj indecomposable, then m = n and there exists

a permutation σ on {1, . . . , n} such that Mi ≅ Nσ(i), for any 1 ≤ i ≤ n.

Definition 1.3.8. Let A be a finite dimensional K-algebra. A non-zero module S in mod

A is called simple if any submodule of S is either zero or S.

Proposition 1.3.9. Let A be a finite dimensional K-algebra and M a nonzero module

in mod A. The following conditions are equivalent.

(1) M is simple.

(2) Every morphism f ∶M → L in modA is zero or a monomorphism.

(3) Every morphism g ∶ L→M in modA is zero or an epimorphism.

Proof. (1) implies (2). Suppose that M is simple. Let f ∶ M → L be a morphism. Since

M is simple and Ker(f) ⊆M , then Ker(f) = 0 or Ker(f) =M .

If Ker(f) = 0, then f is a monomorphism.

If Ker(f) =M , then f(x) = 0L for any x ∈M . So f is zero.

10



(2) implies (3). Suppose that every A-linear map f ∶M → L is zero or a monomorphism.

Let g ∶ L→M be an A-linear map. Consider the canonical projection p ∶M →M/Im(g).
If p is zero, then M/Im(g) = 0. So M = Im(g). Then g is an epimorphism. Otherwise, p

is a monomorphism. So Im(g) = Ker(p) = 0. So g is zero.

(3) implies (1). Suppose that every A-linear map g ∶ L →M is zero or an epimorphism.

Let N be a submodule of M . Consider the inclusion map j ∶ N → M . If j is zero, then

N = 0. Otherwise, j is surjective. So M = Im(j) = N . Then M is simple.

Corollary 1.3.10. ([8], I. 5.1) Let A be a finite dimensional K-algebra. If S is a simple

module in modA, then EndA(S) is a division algebra.

Definition 1.3.11. Let A be a finite dimensional K-algebra with M a nonzero module

in mod A. A chain

0 =M0 ⊂M1 ⊂ ⋯ ⊂Mm =M

of submodules of M is called composition series of M if Mi+1/Mi is simple, for

i = {0,1, . . . ,m − 1}.

Theorem 1.3.12. ([3], I.3) If A is a finite dimensional K-algebra. Let

0 =M0 ⊂M1 ⊂ ⋯ ⊂Mm =M
and

0 = N0 ⊂ N1 ⊂ ⋯ ⊂ Nn =M

be two composition series of a module M in mod A. Then m = n, and there exists a

permutation σ of {1, . . . ,m} such that Mj+1/Mj ≅ Nσ(j)+1/Nσ(j), for any

j ∈ {0,1, . . . ,m − 1}.

Note that, if a module M in mod A has a composition series, then any finite increasing

series of submodules of M can be refined to a composition series.
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1.4 Semi-simple Modules and Semi-simple Algebras

The main objective of this section is to introduce the notions of semi-simple modules and

semi-simple algebras.

Definition 1.4.1. Let A be a finite dimensional K-algebra. A non-zero module M in

mod A is called semi-simple if it is a sum of simple submodules.

Lemma 1.4.2. ([6], 2.32) Let A be a K-algebra with M a module in mod A. If M is

semi-simple, then M = S1 ⊕⋯⊕ Sn where Si is simple.

Definition 1.4.3. Let A be a finite dimensional K-algebra. We say that A is semi-simple

if the left A-module AA is semi-simple.

Proposition 1.4.4. ([3], I.3) Let A be a finite dimensional K-algebra. The following

conditions are equivalent.

(1) A is semi-simple.

(2) Every right A-module is semisimple.

(3) Every left A-module is semisimple.

(4) radA = 0.

Proposition 1.4.5. ([1], VII.4.4) Let A be a finite dimensional K-algebra. Then,

Ā = A/rad(A) is a semi-simple K-algebra.

1.5 Radical of Modules

In this section, we see the definitions of radical of module, top and socle. Hence, we state

some important lemmas about them.
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Definition 1.5.1. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A. A submodule L of M is maximal if L ≠ M and if L′ is submodule of M such

that L ⊆ L′ ⊆M , then L′ = L or L′ =M .

Definition 1.5.2. Let A be a finite dimensional K-algebra with M a module in mod A.

We define the radical of M , denoted by rad M , to be zero if M = 0, and otherwise, to be

the intersection of all maximal submodules of M .

Proposition 1.5.3. ([1], VII. 1.4) Let A be a K-algebra with M a module in mod A. If

M =M1 ⊕⋯⊕Ms, then rad M = rad M1 ⊕⋯⊕ rad Ms.

Lemma 1.5.4. Let A be a finite dimensional K-algebra and M a module in mod A. If

M is semi-simple, then rad M = 0.

Proof. If M is semi-simple, then by Lemma 1.4.2, M =M1⊕⋯⊕Mt, where Mi are simple

modules. Then, by Proposition 1.5.3, rad M = rad M1 ⊕⋯⊕ rad Mt. Since 0 is the only

maximal submodule of Mi, rad Mi = 0. So rad M = 0.

Lemma 1.5.5. ([6], 2.6.7) Let A be a K-algebra. If f ∶ M → N is a morphism in mod

A, then f(rad(M)) ⊆ rad(N).

Proposition 1.5.6. Let A be a finite dimensional K-algebra and M a module in mod

A. Then, rad M = (radA)M .

Proof. Let x ∈M . Then, fx ∶ A →M ∶ a ↦ ax is an A-linear map. Then, by Proposition

1.5.5, (rad(A))x = fx(rad(A)) ⊆ radM . So rad(A)M ⊆ radM . Then, M̄ = M/rad(A)M
is a module over Ā = A/rad(A). By Proposition 1.4.5, Ā is semi-simple.

Let x ∈M with x /∈ rad(A)M . Then x̄ is a non-zero element in M̄ . By Proposition 1.6.9,

M̄ is a semi-simple Ā-module. Also, M̄ is a semi-simple A-module. Thus, there exists

13



map f ∶ M̄ → S, where S is simple, such that f(x̄) ≠ 0. Let p ∶M → M̄ be the canonical

projection. Then, (fp)(x) = f(x̄) ≠ 0. That is, x ∉ Ker(fp).

Then, x ∉ rad M . So, rad M ⊆ (radA)M .

Lemma 1.5.7. ([3], I.3.8) Let M be a module in mod A. If L is a maximal submodule

of M such that M/L is semisimple, then rad M ⊆ L.

Proposition 1.5.8. ([8], I.5.16) Let A be a finite dimensional K-algebra, B = A/radA,

e a nonzero idempotent of A and ē = e + rad A the associated idempotent of B. The

following conditions are equivalent.

(1) Ae is an indecomposable left A-module.

(2) radAe is a unique maximal left A-submodule of Ae.

(3) Bē is a simple left B-module.

Definition 1.5.9. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A. We assign to M two semisimple A-modules

top(M) =M/radM

called the top of M , and

soc(M) = ∑S∈Λ
S

where Λ is the set of all simple submodules of M , called the socle of M .

Definition 1.5.10. A left A-submodule X of a module M in mod A is said to be essential

if X ∩ Y ≠ 0 for any non-zero left A-submodule Y of M .

Lemma 1.5.11. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A. Then, soc(M) = {x ∈M ∣ (radA) ⋅ x = 0}.

14



Proof. Write T = {x ∈M ∣ (radA) ⋅ x = 0}, which is clearly a submodule of M . We know

that soc(M) is semi-simple and by Proposition 1.9.7, rad(socM) = 0. Also by Proposition

1.5.6, we have (radA)(socM) = 0. So it means that soc(M) ⊆ T .

Let x ∈ T be nonzero. We consider S = Ax. Then rad(S) = (radA)(Ax) = ((radA)A) ⋅x =
rad(A) ⋅ x = 0. So S is semi-simple by Proposition 1.4.4. This means that S ⊆ socM .

Therefore, T ⊆ soc(M). Hence, soc(M) = T .

Lemma 1.5.12. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A.

(1) If topM is simple, then M is indecomposable.

(2) If socM is simple, then M is indecomposable.

Proof. (1) Assume that M =M1⊕M2 such that, Mi ≠ 0 for any i ∈ {1,2}. Then, we have

topM ≅ topM1⊕topM2. Since Mi is finite dimensional, radMi ≠Mi. Then, Mi/radMi ≠ 0.
So topM is not simple, a contradiction.

(2) Assume that M = M1 ⊕M2 such that, Mi ≠ 0 for any i ∈ {1,2}. Since, socM is the

sum of simple submodule of M , socM ∩Mi ≠ 0 is essential for any i ∈ {1,2}. Then, we

have 0 ≠ (socM ∩Mi) ⊆ socM and socM ⊆Mi for any i ∈ {1,2}. Hence, socM ⊆M1 ∩M2,

a contradiction.

1.6 Projective and Injective Modules

Now, we introduce the notions of projective and injective modules.

Definition 1.6.1. Let A be a finite dimensional K-algebra. An A-module P in modA is

said to be projective if for any epimorphism u ∶M → N the induced map HomA(P,u) is
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surjective, or for any epimorphism u ∶M → N and any morphism f ∶ P → N , there exists

a morphism f ′ ∶ P →M such that f = uf ′.

Lemma 1.6.2. Let A be a K-algebra. If P is a projective module in mod A, then every

epimorphism f ∶X → P is a retraction.

Proof. Suppose that P is projective module. Let f ∶X → P be an epimorphism. Consider

idP ∶ P → P . So, by the definition of projective modules, there exists v ∶ P →X such that

fv = idP . So f is a retraction.

Proposition 1.6.3. ([8], I. 8.2)

Let A be a finite dimensional K-algebra with M =M1 ⊕⋯⊕Mn , where Mi are modules

in modA. Then M is projective if and only if Mi is projective, for i ∈ {1, . . . , n}.

Proposition 1.6.4. Let A be a K-algebra. Then AA is projective.

Proof. Let f ∶ M → N be an epimorphism. If g ∶ A → N is A-linear, then x = g(1) ∈ N .

As f is epimorphism, x = f(y) for y ∈M . We claim that the following map h is A-linear.

h ∶ A→M ∶ a↦ ay

Indeed, for any α,β ∈ A, and a1, a2 ∈ A, we have

h(αa1 + βa2) = (αa1 + βa2)y = αa1y + βa2y = αh(a1) + βh(a2).

Moreover, for any a ∈ A, g(a) − fh(a) = g(a) − f(ay) = ag(1) − af(y) = ax− ax = 0. Then,

g = fh. So A is projective.

Corollary 1.6.5. ([6], 2.22) Let A be a finite dimensional K-algebra. If e is an idempotent

in A, then A = Ae⊕A(1 − e). In particular, Ae is projective.
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Proposition 1.6.6. ([8], I.8.2) Let A be a finite dimensional K-algebra and e1, . . . , en a

set of primitive orthogonal idempotents of A with 1A = e1 +⋯ + en. Then,

(1) A = Ae1 ⊕ ⋯ ⊕ Aen is a decomposition of A into a direct sum of indecomposable

projective left A-modules.

(2) Every nonzero projective module P in mod A is a direct sum P = P1 ⊕ ⋯ ⊕ Pm,

where each module Pj, j ∈ {1, . . . ,m}, is isomorphic to a eiA with i ∈ {1, . . . , n}.

Definition 1.6.7. An A-module I is said to be injective if, for any monomorphism

v ∶ M → N , the induced map HomA(v, I) ∶ HomA(N, I) → HomA(M,I) is injective, or

equivalently, for any monomorphism v ∶ M → N and any morphism g ∶ M → I, there

exists a morphism g′ ∶ N → I such that g = g′v.

Lemma 1.6.8. Let A be a K-algebra. If I is an injective A-module, then any monomor-

phism g ∶ I →X is a section.

Proof. Suppose that I is an injective module. Let g ∶ I →X be a monomorphism. Consider

idI ∶ I → I, by the definition of injective, there exists v ∶ X → I, such that vg = idI . So g

is a section.

Proposition 1.6.9. ([1], V.7.1) Let A be a finite dimensional K-algebra. The following

conditions are equivalent.

(1) A is semi-simple.

(2) Any module in modA is semi-simple.

(3) Any module in modA is projective.

(4) Any module in modA is injective.
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Corollary 1.6.10. Let A be a finite dimensional K-algebra. If A is semi-simple, then

A = P1 ⊕⋯⊕ Pn, where Pi is simple and projective.

Proof. If AA is semi-simple, by Lemma 1.4.2, AA = P1⊕ . . .⊕Pn, where Pi is simple. Since

AA is projective by Proposition 1.6.4, each Pi is projective by Lemma 1.6.3.

1.7 Projective Cover and Injective Envelope

In this section, we introduce the concepts of projective covers and injective envelopes.

Definition 1.7.1. Let A be a finite dimensional K-algebra. A submodule L of a module

M in modA is called superfluous if for every submodule X of M the equality L+X =M
implies X =M .

Definition 1.7.2. Let A be a finite dimensional K-algebra. An epimorphism f ∶M → N

in mod A is said to be minimal if Kerf is superfluous in M . A morphism f ∶ P →M in

mod A is called a projective cover of M if P is a projective module and f is a minimal

epimorphism.

Theorem 1.7.3. ([8], I.8.4) Let A be a finite dimensional K-algebra. For any nonzero

module M in mod A, there exists a projective cover

h ∶ P (M) →M.

Moreover, the induced homomorphism top(h) ∶ top(P (M)) → top(M) of semisimple

modules in mod A is an isomorphism.

Definition 1.7.4. A monomorphism g ∶ L → M in mod A is called minimal if every

nonzero submodule X of M has a nonzero intersection with Img. A monomorphism
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g ∶ L→ I in mod A is called an injective envelope of L if I is an injective module and g

is a minimal monomorphism.

Theorem 1.7.5. ([8], I.8.18) Let A be a finite dimensional K-algebra. For any nonzero

module M in mod A, there exists an injective envelope

u ∶M → E(M)

such that the induced homomorphism soc(u) ∶ soc(M) → soc(E(M)) is an isomorphism.

Proposition 1.7.6. ([1], VIII.2.1, 2.4) Let A be a finite dimensional K-algebra with M

a module in modA.

(1) An epimorphism f ∶ P → M in modA is a projective cover of M if and only if P

is projective with Ker(f) ⊆ radP .

(2) A monomorphism g ∶ M → I in modA is an injective enveloppe of M if and only

if I is injective with SocI ⊆ Im(g).

1.8 Exact Sequences of Modules

Before studying almost split sequences in chapter 3, we need a few notions in this section.

Definition 1.8.1. Let A be a finite dimensional algebra. A sequence

⋯ Ð→Xn−1
hn−1ÐÐ→Xn

hnÐ→Xn+1 Ð→ ⋯

of morphisms in mod A is called exact at Xn if Kerhn = Imhn−1 for any n. In particular,

an exact sequence

0→ L
fÐ→M

gÐ→ N → 0

is called a short exact sequence.
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Lemma 1.8.2. Let A be a finite dimensional algebra. A sequence 0 → L
fÐ→M

gÐ→ N → 0

in mod A is a short exact sequence if f is a monomorphism, g is an epimorphism and

Imf = Kerg.

Lemma 1.8.3. ([1], II.3.6) Consider a commutative diagram with exact rows of A-

modules and linear maps.

L M N 0

0 L′ M ′ N ′

u

f

v

g h

u′ v′

There is an exact sequence Kerf
u1Ð→ Kerg

v1Ð→ Kerh
σÐ→ Cokerf

u2Ð→ Cokerg
v2Ð→ Cokerh

where u1, v1 are deduced by Ker and u2, v2 are deduced by Coker. In addition,

(1) If u is a monomorphism, then u1 is a monomorphism.

(2) If v′ is an epimorphism, then v2 is an epimorphism.

Definition 1.8.4. Let A be a finite dimensional K-algebra. Two short exact sequences

in mod A, 0 → L
fÐ→M

gÐ→ N → 0 and 0 → L′
f ′Ð→M ′

g′Ð→ N ′ → 0 are said to be isomorphic

if there is a commutative diagram

0 L M N 0

0 L′ M ′ N ′ 0

f

u

g

v w

f ′ g′

in mod A, where u, v,w are isomorphisms. We note that v is an isomorphism if u and w

are isomorphisms.

Definition 1.8.5. A short exact sequence 0 → X
fÐ→ Y

gÐ→ Z → 0 in mod A is said to

split, where f ′ is the canonical injection, g′ is the canonical projection and if there exists

a morphism h ∶ Y →X ⊕Z such that the diagram commutes.
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0 X Y Z 0

0 X X ⊕Z Z 0

f

idX

g

h idZ

f ′ g′

Proposition 1.8.6. ([6], 2.1.7)

Let A be a finite dimensional algebra with 0 → L
fÐ→M

gÐ→ N → 0 a short exact sequence

in mod A. The following statement are equivalent.

(1) The short exact sequence splits.

(2) f is a section.

(3) g is a retracction.

1.9 Radical of the Module Category

In this section, we have some results about the radical rad(mod A) of mod A. A map

in rad(mod A) will be called a radical map. The following result gives us a link between

the indecomposable A-modules and rad(mod A).

Proposition 1.9.1. ([6], 2.7) Let A be a finite dimensional K-algebra, and let f ∶M → N

be a morphism in mod A.

(1) If M is indecomposable, then f ∈ rad(M,N) if and only if f is not a section.

(2) If N is indecomposable, then f ∈ rad(M,N) if and only if f is not a retraction.

(3) If M and N are indecomposable, then f ∈ rad(M,N) if and only if f is not an

isomorphism.

Corollary 1.9.2. Let A be a K-algebra with S a simple module in modA.
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(1) If S is projective, then rad(M,S) = 0, for any A-module M .

(2) If S is injective, then rad(S,N) = 0, for any A-module N .

Proof. (1) Let f ∈ rad(M,S). Suppose that f is not zero. Since S is simple, by Proposition

1.3.9(3), f is an epimorphism. Since S is projective, f is a retraction, which contradicts

Proposition 1.9.1 (2). So rad(M,S) = 0.

(2) Let g ∈ rad(S,M). Suppose that g is not zero. Since S is simple, by Proposition

1.3.9(2), g is a monomorphism. Since S is injective, g is a section, which contradicts

Proposition 1.9.1(1). So rad(S,M) = 0.

Lemma 1.9.3. ([8], III.1.4) Let X and Y be indecomposable modules in modA. Then,

the following statements hold.

(1) radA(X,Y ) is the subspace of HomA(X,Y ) formed by all nonisomorphisms.

(2) radA(X,Y ) = HomA(X,Y ) if X ≇ Y .

Proposition 1.9.4. Let A be a K-algebra and f ∈ HomA(A,A). Then f is in rad(A,A)
if and only if f(1) ∈ rad(A).

Proof. By Corollary 1.1.13, an endomorphism f ∶ A→ A of K-algebras is right invertible

if and only if f(1) is left invertible.

Necessity. Suppose that f ∈ rad(AA,AA). Consider f(1) ∈ A. For any x ∈ A, by Corollary

1.1.13, there exists g ∈ HomA(A,A) such that g(1) = x. Since f ∈ rad(AA,AA), idA − fg
is right invertible. Thus, (idA − fg)(1) is left invertible.

Now, 1−xf(1) = 1− g(1)f(1) = 1− f(g(1) ⋅ 1) = idA(1) − (fg)(1), which is left invertible.

So f(1) ∈ rad(A).

Sufficiency. Suppose that f(1) ∈ rad(A). For any g ∈ HomA(A,A), we have g(1) ∈ A.

Then (idA − fg)(1) = idA(1) − f(g(1) ⋅ 1) = 1 − g(1)f(1), which is left invertible. Then,

idA − fg is right invertible. So, f ∈ rad(AA,AA).
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Proposition 1.9.5. ([5], 1.15)

Let A be a finite dimensional K-algebra. Then rad A is the unique nilpotent ideal of A

such that A/radA is semi-simple.

Proposition 1.9.6. ([6], 2.8) Let A be a finite dimensional K-algebra. If radn(mod

A) = 0 for some n ≥ 1, then radn(A) = 0.

Proposition 1.9.7. Let A be a finite dimensional K-algebra. Then, rad(mod A) = 0 if

and only if A is semi-simple.

Proof. Necessity. If rad(mod A) = 0, by Proposition 1.9.6, rad(A) = 0. Then A is semi-

simple.

Sufficiency. Suppose that A is semi-simple. Let M,N be two non-zero A-modules. Then,

by Proposition 1.6.9, M = S1 ⊕ . . .⊕St, where Si are simple and injective modules. Then

by Corollary 1.9.2, rad(M,N) =
t

⊕
i=1

rad(Si,N) = 0.

1.10 Standard Duality

Now, we introduce the principle of duality, which will be a powerful tool in the proofs.

Let A be a finite dimensional K-algebra. Recall that mod A stands for the category of fi-

nite dimensional left A-modules. We denote by mod Aop the category of finite dimensional

right A-modules. We define the functor

D ∶modA→modAop

by assigning to each module M in mod A the dual K-vector space

M∗ = HomK(M,K)
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endowed with the right A-module structure given by the formula (φa)(m) = φ(am) for

φ ∈ HomK(M,K), a ∈ A and m ∈M , and to each A-linear morphism h ∶M → N the dual

K-linear morphism

D(h) = HomK(h,K) ∶D(N) →D(M) ∶ φ→ φh,

which is a morphim of right A-modules. It is well known that D is a duality of categories,

called the standard K-duality. The quasi-inverse of the duality D is also denoted by

D ∶modAop →modA

and is defined by assigning to each right A-module Y the dual K-vector space

D(Y ) = Y ∗ = HomK(Y,K) endowed with the left A-module structure given by the

formula (aφ)(y) = φ(ya) for φ ∈ HomK(Y,K), a ∈ A and y ∈ Y . It is easy to verify

that the evaluation map ev ∶ M → M∗∗, given by the formula ev(m)(φ) = φ(m) for

m ∈ M and φ ∈ D(M), defines natural equivalences of functors 1modA ≅ D ○ D and

1modAop ≅D ○D.

Proposition 1.10.1. ([8], I.8.16) Let A be a finite dimensional K-algebra and D the

standard duality between mod A and modAop.

(1) A module E in mod A is injective if and only if the module D(E) in modAop is

projective.

(2) A module P in mod A is projective if and only if the module D(P ) in modAop is

injective.

(3) A module M in mod A is indecomposable if and only if D(M) is indecomposable.

(4) A module S in mod A is simple if and only if the module D(S) in modAop is

simple.

(5) A module M in mod A is semisimple if and only if the module D(M) in modAop

is semisimple.
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(6) For every nonzero module M in mod A, we have D(topM) ≅ soc(D(M)) and

D(socM) ≅ top(D(M)).

Proposition 1.10.2. ([6], 2.9) Let A be a finite dimensional K-algebra. For any n ≥ 1,
radn(mod A)= 0 if and only if radn(mod Aop)= 0.

Proposition 1.10.3. Let A be a finite dimensional of K-algebra. Then A is semi-simple

if and only if Aop is semi-simple.

Proof. By Proposition 1.9.7, A is semi-simple if and only if rad(modA) = 0 if and only if

rad(modAop) = 0 if and only if Aop is semi-simple.

Definition 1.10.4. Let A be a finite dimensional K-algebra with a complete set of or-

thogonal primitive idempotents {e1,⋯, en}. We say that A is basic if Aei ≇ Aej, for all

i ≠ j.

Proposition 1.10.5. ([8], I. 8.2, 5.17, 8.19) Let A be a basic finite dimensional K-

algebra with a complete set of orthogonal primitive idempotents {e1,⋯, en}. Put Pi = Aei,
Si = Pi/radPi and Ii =D(eiA), for i = 1, . . . , n.

(1) {P1, . . . , Pn} is a complete set of representatives of the isomorphism classes of in-

decomposable projective modules in modA.

(2) {S1, . . . , Sn} is a complete set of representatives of the isomorphism classes of simple

modules in modA.

(3) {I1, . . . , In} is a complete set of representatives of the isomorphism classes of inde-

composable injective modules in modA.
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CHAPTER 2

Quivers and Algebras

We introduce the basic concept of quivers and path algebras which we need to prove the

main theorem. The definitions and results are taken from [3, 6, 2, 7].

2.1 Quivers

A quiver is a graphical object in which one can encode much of the structural information

of an algebra. So, in this section, we see the definition of quiver and path.

Definition 2.1.1. A quiver is a quadruple Q = (Q0,Q1, s, t), where Q0 is the set of

vertices, Q1 is the set of arrows, and s, t ∶ Q1 → Q0 are maps, which associate to each

arrow α ∈ Q1 its source s(α) and target t(α), respectively. Moreover, an arrow α is

written as α ∶ s(α) → t(α).

A quiver Q is said to be finite if Q0 and Q1 are finite sets. Throughout this thesis, all

quivers are finite.

Example 2.1.2. The following graph is an example of a quiver :
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1 2 3α β
γ

where Q0 = {1,2,3} and Q1 = {α,β, γ}. Then, we have s(α) = 1, t(α) = s(β) = 2, s(γ) =
t(β) = t(γ) = 3.

Definition 2.1.3. Let Q = (Q0,Q1, s, t) be a quiver and a, b ∈ Q0. A path of length l ⩾ 1
with source a and target b is a sequence

(b∣αl,⋯, α2, α1∣a)

where αk ∈ Q1 such that s(α1) = a, s(αk+1) = t(αk) for 1 ≤ k < l, and t(αl) = b. Such a

path will be written as αl⋯α2α1 and may be visualized as follows

a = a0
α1Ð→ a1 → ⋯

αlÐ→ al = b,

where α1 is called the initial arrow, and αl the terminal arrow. Moreover, with each

vertex a ∈ Q0, one associates a path = (a∣∣a) of length 0, called the trivial path at a and

denoted by εa. Given any l ≥ 0, the set of all paths of length l in Q is denoted by Ql.

Definition 2.1.4. A path of length l ⩾ 1 is called an oriented cycle when its source and

target coincide. A quiver is called acyclic if it contains no oriented cycles.

2.2 Algebras Given by a Quiver

The usual composition of paths in a quiver can be used to define an algebraic structure.

In this section, we see the definition of path algebra and propositions that we need.

Definition 2.2.1. Let Q be a quiver. The path algebra KQ of Q over K is the K-algebra

whose underlying K-vector space has as basis the set of all paths (b∣αl,⋯, α1∣a) of length
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l ⩾ 0 in Q and such that the product of two basis vectors (b∣αl,⋯, α1∣a) and (d∣αk,⋯, β1∣c)
of KQ is defined by

(b∣αl,⋯, α1∣a)(d∣αk,⋯, β1∣c) = δbc(d∣αk,⋯, β1, αl,⋯, α1∣a)

where δbc denotes the Kronecker delta. In other words, the product of two paths α1⋯αl

and β1⋯βk is equal to zero if t(αl) ≠ s(β1) and is equal to the concatenation α1⋯αlβ1⋯βk

if t(αl) = s(β1).

Example 2.2.2. Consider the following quiver :

●2

●3 ●1

●4

α

β

γ

Then, a K-basis of KQ is {ε1, ε2, ε3, ε4, α, β, γ}. Also, there is a K-algebra isomorphism

KQ ≅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k 0 0 0
k k 0 0
k 0 k 0
k 0 0 k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Lemma 2.2.3. ([3], II.1.5) Let Q be a finite quiver. The element 1 = ∑ εa for any a ∈ Q0

is the identity of KQ and the set {εa ∣ a ∈ Q0} of all the trivial paths εa = (a∣∣a) is a

complete set of primitive orthogonal idempotents for KQ.

Definition 2.2.4. Let Q be a finite quiver. The two-sided ideal of the path algebra KQ

generated by the arrows of Q is called the arrow ideal of KQ and is denoted by RQ. Note

that RQ, as a K-vector space, has a direct sum decomposition

RQ =KQ1 ⊕KQ2 ⊕⋯⊕KQl ⊕⋯,
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where kQl denotes the K-vector space with Ql as a basis. Moreover, one denotes by Rm
Q

the two-sided ideal of KQ generated by Qm. The underlying K-vector space of Rm
Q is a

direct sum

Rm
Q = ⊕

l≥m

KQl.

So Rm
Q , as a K-vector space, is generated by the paths of length ≥m in Q.

Definition 2.2.5. Let Q be a finite quiver and RQ be the arrow ideal of the path algebra

KQ. A two-sided ideal I of KQ is said to be admissible if there exists m ≥ 2 such that

Rm
Q ⊆ I ⊆ R2

Q.

In this case, the pair (Q, I) is said to be a bound quiver and the quotient algebra KQ/I
is said to be the algebra of the bound quiver (Q, I), or simply, a bound quiver algebra.

Proposition 2.2.6. Let Q be a finite quiver.

(1) If I is an admissible ideal of kQ, then A =KQ/I is finite dimensional.

(2) The zero ideal of KQ is admissible if and only if Q is acyclic.

Proof. (1) Let I be an admissible ideal of KQ, then there exists m ≥ 2 such that Rm ⊆ I,
where R is the arrow ideal RQ of KQ.

Then, there exists an epimorphism KQ/Rm → KQ/I. Thus, it is enough to prove that

KQ/Rm is finite dimensional. The residual classes of the paths of length less than m form

a basis of KQ/Rm as a K-vector space. Because there are only finitely many such paths,

our statement follows.

(2) The zero ideal is admissible if and only if there exists m ≥ 2 such that Rm
Q = 0, so any

product of m arrows in KQ is zero. This is the case if and only if Q is acyclic.

Proposition 2.2.7. ([6], 3.2.7) Let Q be a quiver of n vertices and RQ the arrow ideal of

KQ. Then, KQ/RQ ≅Kn, the product of n copies of K, which is a semi-simple algebra.
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Let A =KQ/I, where Q is a quiver and I is an admissible ideal of KQ. For any ρ ∈ kQ,

we write ρ̄ = ρ + I. In particular, we write ea = ϵa + I, where ϵa is the trivial path at a.

Proposition 2.2.8. Let A = KQ/I, where Q is a finite quiver and I is an admissible

ideal of KQ.

(1) rad(A) = RQ/I = {∑i λip̄i ∣ λi ∈K;pi are non-trivial paths in Q} .

(2) {ea ∣ a ∈ Q0} is a complete set of orthogonal primitive idempotents of A.

(3) Pa = Aea is an indecomposable projective module in mod A.

(4) Ia =D(eaA) is an indecomposable injective module in modA, where D is the stan-

dard duality from mod Aop onto mod A.

Proof. (1) Since I is admissible ideal of KQ, there exists m ≥ 2 such that Rm ⊆ I.

Consequently, (R/I)m = 0. So R/I is a nilpotent ideal of KQ/I. By Proposition 2.2.7,

(KQ/I)(R/I) ≅ KQ/R is isomorphic to a direct product of K. Then, by Proposition

1.9.5, rad(A) = R/I.

(2) We have the canonical homomorphism KQ → KQ/I, where ea is the image of εa.

By Lemma 2.2.3, the given set is a complete set of orthogonal idempotents. We need to

show that ea is primitive, that is, the only idempotents of ea(KQ/I)ea are 0 and ea. We

can write any idempotent e of ea(KQ/I)ea in this form e = λεa +w + I, where λ ∈K and

w is a linear combination of cycles through a of length ≥ 1. e2 = e gives

(λ2 − λ)εa + (2λ − 1)w +w2 ∈ I.

Since RQ is the arrow ideal of KQ and I ⊆ R2
Q, we must have λ2 − λ = 0. So λ = 0 or

λ = 1. If λ = 0, then e = w + I, where w is idempotent modulo I. Also, Rm
Q ⊆ I for some

m ≥ 2, so we have wm ∈ I. Thus, w is also nilpotent modulo I. Consequently, w ∈ I and

e are zero. If λ = 1, then ea − e = −w + I is an idempotent in ea(KQ/I)ea. So, w is again

idempotent modulo I. Like before, it is also nilpotent modulo I. So, it must belong to I

and consequently, ea = e.
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(3) Let u = λea+
n

∑
i=1

γi(αi+I) in eaAea where αi are oriented cycles from a to a, λ and γi are

in K. Then, (
n

∑
i=1

γi(αi+I))m =
l

∑
i=1

µiβi+I where βi are oriented cycles from a to a of length

at least m. Thus, βi ∈ Rm ⊆ I. Thus, (
l

∑
i=1

γi(αi + I))m = 0+ I. If λ = 0, then u is nilpotent.

So by the lemma 1.1.9, ea − u is invertible. If λ ≠ 0, let u′ = u
λ = ea +

n

∑
i=1

γi
λ
(αi + I).

So,
n

∑
i=1

γi
λ
(αi + I) is nilpotent, and by lemma 1.1.9, u′ is invertible. This implies that

u = λu′ is invertible. Therefore, by proposition 1.1.7, the algebra eaAea is local. Also by

proposition 1.1.12, End(Aea) ≅ (eaAea)op. Since eaAea is local, End(Aea) is also local

and then, by Proposition 1.3.6, Aea is indecomposable. Moreover, as ea is an idempotent,

by lemma 1.6.5, Pa = Aea is projective.

(4) By Propositions 1.10.5(3) and 2.2.8(3), Ia is an indecomposable injective module.

Lemma 2.2.9. Let A = kQ/I, where Q is a finite quiver and I is an admissible ideal of

KQ. If α ∶ a→ b is an arrow in Q, then we have a radical A-linear map

P [ᾱ] ∶ Pb → Pa ∶ v ↦ vᾱ.

Proof. First, ᾱ = ᾱea = ebᾱ. Given v ∈ Pb, we have vᾱ = (vᾱ)ea ∈ radPa. Thus, P [ᾱ] defines

a map from Pb to Pa, whose image is contained in radPa. In particular, P [ᾱ] is not an

epimorphism. Moreover, for any u ∈ A, we have P [ᾱ](uv) = (uv)ᾱ = u(vᾱ) = uP [α](v).
So P [ᾱ] is a morphism in modA. Since Pa and Pb are indecomposable, by Proposition

1.8.1, P [ᾱ] ∈ rad(Pb, Pa).
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2.3 Monomial Algebras

In this section, we consider monomial algebras to calculate the indecomposable projective

and injective modules with a point a ∈ Q0. Also, we will see the properties of radical and

socle with an admissible monomial ideal.

Definition 2.3.1. A two-sided ideal I in KQ is called monomial if it is generated as

a two-sided ideal by a set {ρ1, . . . , ρr} of paths of length at least two in Q. In this case,

A/I is called a monomial algebra. Moreover, a path in Q is called non-zero if p /∈ I, or

equivalently, p̄ is non-zero in A/I.

Lemma 2.3.2. Let Q be a finite quiver and I be a monomial ideal of kQ. If u = ∑i λiζi ∈ I,
where λ1, . . . , λr ∈K∗ and ζ1, . . . , ζr are pairwise different paths in Q, then ζ1, . . . , ζr ∈ I.

Proof. By the hypothesis, I =< ρ1, . . . , ρr >, where ρ1, . . . , ρr are paths of length at least

two in Q. Let u = ∑i λiζi ∈ I, where λ1, . . . , λr ∈ K∗ and ζ1, . . . , ζr are pairwise different

paths in Q. Then, ∑i λiζi = ∑j µjpjξjqj, where µj ∈ K and pj, qj are paths in Q and

ξj ∈ {ρ1, . . . , ρr} such that the pjξjqj are pairwise different. Recall that the paths are

linearly independent in kQ. So, for each i, we have ζi = pjξjqj for some j. Since ξj ∈ I, we

have ζi ∈ I for any i.

Lemma 2.3.3. Let A = kQ/I, where Q is a finite quiver and I is an admissible monomial

ideal. If ρ, ζ are non-zero paths in Q, then ρ̄ = ζ̄ if and only if ρ = ζ.

Proof. The sufficiency is evident. Let ρ, ζ be non-zero paths in Q such that ρ̄ = ζ̄. Then,

ρ − ζ ∈ I. If ρ ≠ ζ, then ρ, ζ ∈ I by Lemma 2.3.2. This contradicts our assumption. So,

ρ = ζ.

Proposition 2.3.4. Let A = KQ/I where Q is a quiver and I is admissible monomial

ideal of KQ. For any point a in Q0, put Pa = Aea. Then,
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(1) Pa has as a K-basis the set of classes modulo I of non-zero paths starting with a.

(2) radPa has as a K-basis the set of classes modulo I of non-zero non-trivial paths

starting with a.

(3) Sa = Pa/radPa is simple.

Proof. (1) Since I is admissible and monomial, I =< ρ1, . . . , ρs >, where ρ1, . . . , ρs are

paths of length at least two in Q. Moreover, there exists an integer m ≥ 2 such that

Rm ⊆ I. In particular, every path of length at least m lies in I. So the non-zero paths are

of length < m. Since Q is finite, the number of non-zero paths is finite. Let p1, p2, . . . , pt

be the pairwise different non-zero paths starting with a, where p1 = ϵa. By Lemma 2.3.2,

p1 + I, p2 + I, . . . , pt + I are linearly independent.

Let u = vea ∈ Pa, where v ∈ A. Write v =
t

∑
i=1

λi(pi + I)+∑
j

µj(qj + I), where λi, µj ∈K, and

qj are non-zero paths not starting with a. Then

u = vea =
t

∑
i=1

λi(pi + I)ea +∑
i

µj(qj + I)ea = ∑
i

λi(pi + I) + (0 + I) =
t

∑
i=1

λi(pi + I).

So Pa has a K-basis {p1 + I, . . . , pt + I}.

(2) Let {p2, . . . , pt} be the set of non-trivial paths starting with a.

As seen above, p2 + I, . . . , pt + I are linearly independent.

On the other hand, radPa = (radA)(Aea) = (radA)ea. Let u ∈ radPa. Then u = vea with

v ∈ radA. By Lemma 2.2.8(1), rad(A) = RQ/I. Thus, v =
t

∑
i=2

λi(pi + I) + ∑
j

µj(qj + I),

where λi, µj ∈K, and the qj are non-trivial non-zero paths not stating with a. Then

u = vea =
t

∑
i=2

λi(pi + I)ea +∑
i

µj(qj + I)ea =
t

∑
i=2

λi(pi + I) + (0 + I) =
t

∑
i=2

λi(pi + I).

So {p2 + I,⋯, pt + I} is a K-basis of radPa.

(3) By Statement (2), ea ∉ radPa. Thus, ea ≠ 0. Let u + radPa ∈ Pa/radPa, where u ∈ Pa.

By Statement (2), u = µea +∑i λi(pi + I), where λi, µ ∈K and the pi are non-trivial path
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starting with a. By Statement (2), u − µea ∈ radPa. Hence, {ea + radPa} is a K-basis of

Sa. In particular, the dimension of Sa is 1. So Sa is a simple module.

Fix a point a in Q0. Let QI(−, a) denote the set of non-zero paths ending at a in Q.

Put P o
a = eaA ∈ modAop and Ia = HomK(eaA,K) = D(P o

a ) ∈ modA. By the dual of

Proposition 2.3.4, P o
a is an indecomposable projective module in modAop, which has as a

K-basis {ρ̄ ∣ ρ ∈ QI(−, a)}. For each ρ ∈ QI(−, a), we denote by ρ̄∗ the K-linear function

from eaA to K such, for any η ∈ QI(−, a), that ρ̄∗(η̄) = 1 if η = ρ and ρ̄∗(η̄) = 0 if ρ ≠ η.

Proposition 2.3.5. Let A = KQ/I, where Q is a finite quiver and I is an admissible

monomial ideal of KQ. For each vertex a ∈ Q, the indecomposable injective module Ia

has as a K-basis {ρ̄∗ ∣ ρ ∈ QI(−, a)}, called the dual basis of {ρ̄ ∣ ρ ∈ QI(−, a)}.

Proof. Write QI(−, a) = {ρ1, . . . , ρn}. Let f ∶ eaA → K and put λi = f(ρ̄i) ∈ K. We

claim that f = ∑n
i=1 λiρ̄∗i . For any u = ∑n

j=1 µj ρ̄j ∈ eaA, where µj ∈ K, then we have

f(u) = ∑n
j=1 µjf(ρ̄j) = ∑n

j=1 µjλj. On the other hand, we have

(
n

∑
i=1

λiρ
∗
i )(u) =

n

∑
i,j=1

λiρ̄
∗
i (µj ρ̄j) =

n

∑
i,j=1

λiµj ρ̄
∗
i (ρ̄j) =

n

∑
j=1

λjµj ρ̄
∗
j (ρ̄j) =

n

∑
j=1

λjµj.

So f = ∑n
i=1 λiρ̄∗i . It remains to show that ρ̄∗1, . . . , ρ̄

∗
n are linearly independent. Assume

that
n

∑
i=1

λiρ̄
∗
i = 0, where λi ∈ K. Then, (

n

∑
i=1

λiρ̄
∗
i )(u) =

n

∑
i=1

λiρ̄
∗
i (u) = 0, for any u ∈ eaA.

Taking u = ρ̄j, we have

0 =
n

∑
i=1

λiρ̄
∗
i (ρ̄j) = λj ρ̄

∗
j (ρ̄j) +∑

i≠j

λiρ̄
∗
i (ρ̄j) = λj ⋅ 1 +∑

i≠j

λi ⋅ 0 = λj, for j = 1, . . . , n.

So ρ̄∗1, . . . , ρ̄
∗
i are linearly independent. Hence, {ρ̄∗1, . . . , ρ̄∗n} is a K-basis of Ia.

Lemma 2.3.6. Let A =KQ, where Q is a finite quiver and I is an admissible monomial

ideal of KQ. Consider the indecomposable injective module Ia for some a ∈ Q0.

(1) If η ∈ QI(−, a), then η̄ ⋅ η̄∗ = e∗a.
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(2) If η is a non-trivial path in Q, then η̄ ⋅ e∗a = 0.

Proof. (1) Let η ∈ QI(−, a). Then, (η̄ ⋅ η̄∗)(ea) = η̄∗(ea ⋅ η̄) = η̄∗(η̄) = 1. Consider a non-

trivial path ζ ∈ QI(−, a). Then, (η̄ ⋅ η̄∗)(ζ̄) = η̄∗(ζ̄ ⋅ η̄). If ζ, η are not composable, then

ζ̄ ⋅ η̄ = 0, and hence, (η̄ ⋅ η̄∗)(ζ̄) = 0. Otherwise, ζη is a path whose length is greater

than the length of η. In particular, ζη ≠ η. By Lemma 2.3.3, ζη ≠ η̄. Therefore, we have

(η̄ ⋅ η̄∗)(ζ̄) = η̄∗(ζ̄ ⋅ η̄) = η̄∗(ζη) = 0. So η̄ ⋅ η̄∗ = e∗a.

(2) Let η be a non-trivial path in Q. Given any ρ ∈ QI(−, a), by definition, we have

(η̄ ⋅ e∗a)(ρ̄) = e∗a(ρ̄ ⋅ η̄). Now, either ρη = 0 or ρη is a non-trivial path in QI(−, a). In either

case, e∗a(ρ̄ ⋅ η̄) = 0. Therefore, η̄ ⋅ e∗a = 0.

Lemma 2.3.7. Let A = KQ, where Q is a finite quiver and I an admissible monomial

ideal of KQ. For any a ∈ Q0, socIa =K < e∗a >≅ Sa.

Proof. We write QI(−, a) = {εa, ρ1, . . . , ρt}, where ρ1, . . . , ρt are non-trivial paths. By

Proposition 2.3.5, Ia has a K-basis {e∗a, ρ̄∗1, . . . , ρ̄∗t }. For any f ∈ Ia, by Lemma 1.5.11,

f ∈ socIa if and only if (radA) ⋅ f = 0. By Lemma 2.3.6(2), η̄ ⋅ e∗a = 0, for any non-trivial

η in Q. That is, (radA) ⋅ e∗a = 0. Hence, K < e∗a >⊆ socIa. For the other inclusion, assume

that f ∈ socIa. We can write f = λae∗a +∑t
i=1 λiρ̄i∗, where λa, λi ∈ K. For any j such that

1 ≤ j ≤ t, by Lemma 2.3.6(2), we have

0 = (ρ̄j ⋅ f)(ea)
= λa(ρ̄j ⋅ e∗a)(ea) +∑t

i=1 λi(ρ̄j ρ̄i∗)(ea)
= λae∗a(ea ⋅ ρj) +∑t

i=1 λi(ρ̄i∗)(ρj)
= λae∗a(ρj) + λj ρ̄∗j (ρj)
= λj.

So it means that f = λae∗a ∈K < e∗a >. Then socIa ⊆K < e∗a >. Therefore, socIa =K < e∗a >,
which is a simple module. Finally, by Lemma 2.3.6(1), ea ⋅ e∗a = e∗a /= 0. Thus, ea ⋅ socIa ≠ 0.
So socIa ≅ Sa.
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Let α ∶ a→ b be an arrow in Q. Then we have a right A-linear map

P o[α] ∶ eaA→ ebA ∶ v ↦ ᾱv.

Applying D = HomK(−, k), we obtain a left A-linear map I[α] = D(P o[α]) ∶ Ib → Ia. If

f ∈ Ib = HomK(ebA,K), then I[α](f) =D(P o[α])(f) = f ○P o[α]. Therefore, for v ∈ eaA,

we obtain

I[α](f)(v) = (f ○ P o[α])(v) = f(P o[α])(v)) = f(ᾱv).

This A-linear map is explicitly described in the following statement.

Lemma 2.3.8. Let A =KQ/I, where Q is a finite quiver and I is an admissible monomial

ideal of KQ. Given an arrow α ∶ a → b in Q, the A-linear map I[ᾱ] ∶ Ib → Ia is a radical

map. Moreover, for any ρ ∈ QI(−, b), we have

I[ᾱ](ρ̄∗) = { η̄∗, if ρ = αη, for some η ∈ QI(−, a);
0, if α is not the terminal arrow of ρ.

Proof. Let ρ ∈ QI(−, b). Assume first that ρ = αη, for some η ∈ QI(−, a). We claim that

I[ᾱ](ρ̄∗) = η̄∗. By using the multiplication mentioned above, we have

I[ᾱ](ρ̄∗)(η̄) = ρ̄∗(ᾱ ⋅ η̄) = ρ̄∗(ρ̄) = 1.

If ζ ∈ QI(−, a) with ζ ≠ η, then α ⋅ ζ ≠ α ⋅ η = ρ. Since I is monomial, αζ ≠ ρ̄. Therefore,

I[ᾱ](ρ̄∗)(ζ̄) = ρ̄∗(ᾱ ⋅ ζ̄) = ρ̄∗(αζ) = 0.

This shows that I[ᾱ](ρ̄∗) = η̄∗.

Assume now that α is not a terminal arrow of ρ. For any ζ ∈ QI(−, a), we have α ⋅ ζ ≠ ρ.
Since I is monomial, αζ ≠ ρ̄. So

I[ᾱ](ρ̄∗)(ζ̄) = ρ̄∗(ᾱ ⋅ ζ̄) = ρ̄∗(αζ) = 0

So I[ᾱ](ρ̄∗) = 0.
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2.4 Representations of a Quiver

As we have seen in previous sections, quivers provide a convenient way to visualise finite

dimensional algebras. In this section, we explain how to use quivers to visualise modules.

Definition 2.4.1. Let Q be a finite quiver. A K-linear representation, or simply, a

representation, M of Q is defined by the following data ∶

(1) With each vertex a in Q0 is associated a K-vector space M(a).

(2) With each arrow α ∶ a→ b in Q1 is associated a K-linear map

M(α) ∶M(a) →M(b).

Let M,N be representations of Q. A representation morphism f ∶ M → N consists of

a family of K-linear maps fa ∶ M(a) → N(a), with a ∈ Q0, such that for each arrow

α ∶ a→ b, the following diagram is commutative ∶

M(a) M(b)

N(a) N(b).

M(α)

fa fb

N(α)

A representation M of Q is called finite dimensional if M(a) is finite dimensional, for

every a ∈ Q0. The category of finite dimensional k-linear representations of Q will denoted

by rep(Q).

Example 2.4.2. Let Q be the quiver

1

3 4.

2

α

γ

β

37



We have the following representation

K

K2 K.

K

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Let A =KQ, where Q is a finite acyclic quiver. Given a module M in mod A, we associate

a representation M̂ in rep(Q) as follows. For a ∈ Q0 we put M̂(a) = eaM ; and for α ∶ a→ b

in Q1, we define a K-linear map

M̂(α) ∶ M̂(a) → M̂(b) ∶ u↦ α ⋅ u.

In this way, we obtain the following result.

Proposition 2.4.3. ([3], III.1.6) Let A = KQ, where Q is a finite acyclic quiver. There

exists an equivalence of K-linear categories

F ∶modA
≅Ð→ rep(Q) ∶M ↦ M̂.

In the sequel, for the simplicity of the notation, we shall identify a module M in mod A

with the representation M̂ in rep(Q).

Lemma 2.4.4. ([3], III.2.4) Let A =KQ, where Q is a finite acyclic quiver. For a ∈ Q0,

the indecomposable projective module Pa can be identified with the representation

Pa = {Pa(x), Pa(α)}x∈Q0;α∶x→y∈Q1, where Pa(x) is the K-vector space having Q(a, x) as a

basis, and Pa(α) ∶ Pa(x) → Pa(y) is the left multiplication by α.

Lemma 2.4.5. ([3], III.2.6) Let A =KQ, where Q is a finite acyclic quiver. For a ∈ Q0,

the indecomposable injective module Ia can be identified with the representation
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Ia = {Ia(x), Ia(α)}x∈Q0;α∈Q1, where Ia(x) =D(eaAex) is the K-vector space having Q(x, a)
as a basis, and Ia(α) =D(P o

a (α)) ∶D(eaAex) →D(eaAey) for each arrow α ∶ x→ y.

Proposition 2.4.6. ([3], III.2) Let A =KQ, where Q is a finite acyclic quiver.

For each vertex a ∈ Q0, the simple module Sa at a is identified with the representation

Sa = (Sa(b), Sa(α))b∈Q0;α∈Q1, where

Sa(b) = {
K, if b = a;
0, if b ≠ a,

and Sa(α) = 0, for any α ∈ Q1.

Lemma 2.4.7. ([3], III.2.2) Let Q be a finite acyclic quiver. If M is a finite dimensional

representation of Q, then radM is the representation with (radM)(a) = ∑β∈Q1(−,a) Im(M(β))

for every a ∈ Q0, and (radM)(α) ∶ (radM)(a) → (radM)(b) is obtained by restricting the

K-linear map M(α) ∶M(a) →M(b) for every arrow α ∶ a→ b.

Example 2.4.8. Let A be the path algebra of the following linearly oriented quiver

a
α // b

β // // c .

Then

(1) radPa ≅ Pb and radPb ≅ Pc ≅ Sc.

(2) Ic/socIc ≅ Ib and Ib/socIb ≅ Ia ≅ Sa.

(3) Pa ≅ Ic.

Proof. We know that A = K < εa, εb, εc, α, β, βα > . By using the Propositions 2.4.4 and

2.4.3, we have the indecomposable projective modules as follows :

Pa = Aεa =K < εa, α, βα >
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By Proposition 2.4.3, Pa is represented by the following K-linear representation :

Pa ∶ K < εa > α⋅ // K < α > β⋅ // K < βα >,

where α⋅ and β⋅ denote the left multiplications by α and β respectively. Then, we have

the following isomorphism of representations :

K < εa > K < α > K < βα >

K K K,

α⋅

f1

β⋅

f2 f3

id id

where f1, f2 and f3 are the K-linear isomorphisms such that f1(εa) = f2(α) = f3(βα) = 1.

By Proposition 2.3.4, radPa =K < α,βα >, which is represented by the following K-linear

representation :

radPa ∶ 0 // K < α > β⋅ // K < βα > .

Using proposition 2.4.3, we obtain an isomorphism of representations :

radPa ∶ 0 K < α > K < βα >

0 K K

0

β⋅

f2 f3

id

Similarly, Pb = Aεb =K < εb, β >, which is represented as follows :

Pb ∶ 0 // K < εb >
β⋅ // K < β > .

Moreover, we have an isomorphism of representations :

0 K < εb > K < β >

0 K K

f1

β⋅

f2 f3

id
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where f1, f2 and f3 are the K-linear isomorphisms such that f1 = 0 and f2(εb) = f3(β) = 1.
So, we see that radPa ≅ Pb.

By Proposition 2.3.4, radPb = K < β > and is represented by the following K-linear

representation :

radPb ∶ 0 // 0 // K < β > .

By Proposition 2.4.3, we obtain an isomorphism of representations :

radPb ∶ 0 0 K < β >

0 0 K

0 f2 f3

Also, Pc = Aεc =K < εc > and is represented by the following K-linear representation :

Pc ∶ 0 // 0 // K < εc > .

Then, we have an isomorphism of representations :

0 0 K < εc >

0 0 K

f1

0

f2 f3

where f1, f2 and f3 are the K-linear isomorphisms such that f1 = f2 = 0 and f3(εc) = 1.
We have radPc = 0.

Indeed, by Proposition 2.4.6, the simple module is Sa = Pa/radPa. Since we show the

calculation for Pa and radPa, we have Sa =K < εa > Sc =K < εc > .

By Proposition 2.4.3, Sa is represented by the following K-linear representation :

Sa ∶ K < εa > // 0 // 0.
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Then, we have the following isomorphism of representations :

Sa ∶ K < εa > 0 0

K 0 0.

≅

Similarly, Sb =K < εb >, which is represented by the following K-linear representation :

Sb ∶ 0 // K < εb > // 0.

Thus, we have the following isomorphism of representations :

Sb ∶ 0 K < εb > 0

0 K 0.

≅

Also, Sc =K < εc > and is represented by the following K-linear representation :

Sc ∶ 0 // 0 // K < εc > .

So, we have the following isomorphism of representations :

Sc ∶ 0 0 K < εc >

0 0 K.

≅

In conclusion, we have radPb ≅ Pc ≅ Sc.

To obtain the indecomposable injective left modules, we first have the indecomposable

projective right A-modules as follows.

P o
a = εaA =K < εa >;P o

b = εbA =K < εb, α >;P o
c = εcA =K < εc, β, βα > .

So by using the Lemma 2.4.5, Ia = D(εaA) = K < ε∗a >, which is identified with the

following K-linear representation :

Ia ∶ K < ε∗a > 0 0.
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Then, we have an isomorphism of representations as follows :

Ia ∶ K < ε∗a > 0 0

K 0 0,

≅

where the first vertical isomorphism sends λε∗a to λ, for all λ ∈ k. Also, Ia ≅ Sa and by

using the lemma 2.3.7, we have socIa ≅ Sa and Ia/socIa ≅ 0.

Similarly, Ib = D(εbA) = K < ε∗b , α
∗ >, which is represented by the following K-linear

representation :

Ib ∶ K < α > K < ε∗b > 0.

Then, we have an isomorphism of representations as follows :

K < α∗ > K < ε∗b > 0

K K 0

≅ ≅

By lemma 1.5.11, we have socIb ≅ Sb and Ib/socIb ≅ Ia.

Also, Ic = D(εcA) = K < ε∗c , β∗, (βα)∗ >, which is represented by the following K-linear

representation :

Ic ∶ K < (βα)∗ > K < β∗ > K < ε∗c > .

Then, we have an isomorphism of representations as follows :

K < (βα)∗ > K < β∗ > K < ε∗c >

K K K

≅ ≅ ≅

Now, we see Ic ≅ Pa and by lemma 1.5.11, we have socIc ≅ Sc and Ic/socIc ≅ Ib.
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CHAPTER 3

Auslander-Reiten Theory

In the previous chapter, we saw some quiver theory techniques for visualizing finite di-

mensional algebras and their modules. However, to actually compute the indecomposable

modules and the morphisms between them, we will present in this chapter other useful

tools of the Auslander-Reiten Theory. In particular, the existence of almost split se-

quences and irreducible morphisms in mod A. Throughout this chapter, A is a finite

dimensional K-algebra, and the A-modules and the morphisms are in mod A.

3.1 Almost Split Morphisms

The concept of almost split morphisms is playing an important part to understand the

result of our thesis.

Definition 3.1.1. Let A be a finite dimensional K-algebra. A morphism f ∶M → N in

mod A is said to be

(1) left split if any morphism g ∶M →X factors through f .
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(2) right split if any morphism h ∶ Y → N factors through f .

Lemma 3.1.2. Let A be a finite dimensional K-algebra. A morphism f ∶M → N in mod

A is left split or right split if and only it is a section or a retraction, respectively.

Proof. Suppose that f is left split. Consider idM ∶M →M , there exists h ∶ N →M such

that idM = hf . Then f is section. Now, suppose that f is section.

Then, there exists h ∶ N → M such that hf = idM . Let g ∶ M → X be a morphism. We

have g = g ○ idM = (gh)f , with gh ∶ N →X. Hence, f is left split.

Now suppose that f is right split. Consider idN ∶ N → N , there exists h ∶ N →M such that

idN = fh. Then f is retraction. Suppose that f is retraction. Then, there exists h ∶ N →M

such that fh = idN . Let g ∶ Y → N be a morphism. We have g = idN ○ g = f(hg), with

hg ∶ Y →M . Hence, f is right split.

Definition 3.1.3. Let A be a finite dimensional K-algebra.

(1) A morphism f ∶ L → M ∈ modA is said to be left almost split if the following

conditions are satisfied.

(a) f is not section.

(b) For every non-section morphism u ∶ L→ U in mod A, there exists a morphism

u′ ∶M → U such that u = u′f , that is, the diagram

L M

U

f

u u′

commutes.

(2) A morphism g ∶ M → N ∈ modA is said to be right almost split if the following

conditions are satisfied.

45



(a) g is not retraction.

(b) For every non-retraction morphism v ∶ V → N , there exists a morphism

v′ ∶ V →M such that v = gv′, that is, the diagram

M N

V

g

v′ v

commutes.

Lemma 3.1.4. Let A be a finite dimensional K-algebra.

(1) If f ∶ L→M is a left almost split morphism in mod A, then L is indecomposable.

(2) If g ∶M → N is a right almost split morphism in mod A, then N is indecomposable.

Proof. (1) Assume that L = L1 ⊕ L2, with both L1 and L2 non-zero and let p1 ∶ L → L1

and p2 ∶ L → L2 be the canonical projections. Then Kerp1 = L2 ≠ 0 and Kerp2 = L1 ≠ 0
imply that p1 and p2 are not sections. Since f is a left almost split morphism in mod A,

there exists homomorphisms u1 ∶M → L1 and u2 ∶M → L2 in mod A such that p1 = u1f

and p2 = u2f . Consider the homomorphism

u = [u1

u2
] ∶M → L1 ⊕L2 = L.

Then, we have (uf)(x) = u(f(x)) = (u1(f(x))), u2(f(x))) = (p1(x), p2(x)) = x = idL(x),
for each x ∈ L. Hence, uf = idL and f is a section in mod A, which contradicts the fact

that f is a left almost split morphism in mod A.

The proof of (2) is dual.

Definition 3.1.5. Let A be a finite dimensional K-algebra.

(1) A morphism f ∶ L → M in mod A is said to be left minimal if every morphism

h ∈ EndA(M) with hf = f is an isomorphism.
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(2) A morphism g ∶ M → N in mod A is said to be right minimal if every morphism

h ∈ EndA(M) with gh = g is an isomorphism.

Definition 3.1.6. Let A be a finite dimensional K-algebra.

(1) A morphism f ∶ L → M in mod A is called minimal left almost split if it is both

left minimal and left almost split.

(2) A morphism g ∶M → N in mod A is called minimal right almost split if it is both

right minimal and right almost split.

Lemma 3.1.7. Let A be a finite dimensional K-algebra with X,Y two modules in mod

A. The following statements hold.

(1) The zero morphism 0 ∶ X → Y is minimal left almost split if and only if X is a

simple injective module and Y = 0.

(2) The zero morphism 0 ∶ X → Y is minimal right almost split if and only if X = 0
and Y is a simple projective module.

Proof. (1) Assume that 0X,Y ∶X → Y is a minimal left almost split morphism in mod A.

Since 0Y ∶ Y → Y is such that 0X,Y = 0Y ○ 0X,Y , by the left minimality of 0X,Y , the zero

morphism 0Y is an isomorphism, or equivalently, Y = 0. Furthermore, since 0X,Y is not a

section, X is non-zero. If X is not a simple module, then it has a proper submodule L.

Then the canonical projection v ∶X →X/L is non-zero. Not being a monomorphism, v is

not a section. Thus, v = v′ ○0X,Y for some morphism v′ ∶ Y → V , so v = 0, a contradiction.

So, X is simple. The injective envelope u ∶X → E(X) of X is a non-zero monomorphism.

So u cannot factor through 0X,Y . Hence, u is a section. By Proposition 1.10.5, E(X) is

an indecomposable injective A-module. Hence, u is an isomorphism, and consequently,

X is a simple injective module.

Conversely, assume that X is a simple injective module. In particular, 0 ∶ X → 0 is not

a section. If g ∶ X → N is a non-section morphism in mod A then, by Lemma 1.9.1(1)
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g ∈ rad(X,N). Then, by Corollary 1.9.2(2), g = 0. In particular, g factors through 0. That

is, 0 ∶X → Y is minimal left almost split.

(2) Assume that 0X,Y ∶ X → Y is a minimal right almost split morphism in mod A.

Since 0X ∶ X → X is such that 0X,Y = 0X,Y 0X , by the right minimality of 0X,Y , the zero

morphism 0X is an isomorphism, or equivalently, X = 0. Furthermore, since 0X,Y is not a

retraction, Y is non-zero. If Y is not a simple module, then it has a proper submodule L.

Then the canonical injection u ∶ Y /L→ Y is non-zero. Not being an epimorphism, u is not

a retraction. Thus, u = 0X,Y u′ for some morphism u′ ∶ V → X, so u = 0, a contradiction.

So, Y is simple. The projective cover h ∶ P (Y ) → Y of Y is a non-zero epimorphism. So

h cannot factor through 0X,Y . Hence, h is a retraction. By Proposition 1.10.5, P (Y ) is

an indecomposable projective A-module. Hence, h is an isomorphism, and consequently,

Y is a simple projective module.

Conversely, assume that Y is a simple projective module. In particular, 0 ∶ 0 → Y is not

a retraction. If g′ ∶ M → Y is a non-retraction morphism in mod A, then, by Lemma

1.9.1(2), g ∈ rad(M,Y ). Then, by corollary, 1.9.2(1) g′ = 0. In particular, g′ factors

through 0. That is, 0 ∶X → Y is minimal right almost split.

Lemma 3.1.8. Let A be a finite dimensional K-algebra with P an indecomposable pro-

jective module in mod A. Then the inclusion map i ∶ radP → P is minimal right almost

split.

Proof. Since P is indecomposable projective, by Propositions 1.5.8 and 1.6.6, radP is the

unique maximal submodule of P . Since i ∶ radP → P is not an epimorphism, it is not a

retraction. Let v ∶ V → P be a non-retraction morphism in mod A. By Lemma 1.6.2, v

is not an epimorphism. Hence Im(v) is a proper submodule of P , and so Im(v) ⊆ radP .

Therefore, we obtain v = iv′, where v′ ∶ V → radP is the co-restriction of v to radP . This

shows that i is a right almost split morphism in mod A. If ih = i, for some h ∈ EndA(radP ),
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then h = idradP . Hence i ∶ radP → P is also right minimal. Therefore, i is a minimal right

almost split morphism in mod A.

Lemma 3.1.9. Let A be a finite dimensional K-algebra with I an indecomposable in-

jective module in mod A. Then the canonical projection p ∶ I → I/socI is minimal left

almost split.

Proof. Suppose that I is an indecomposable injective module in mod A. Let h ∶ I → L be

a morphism, which is not section. Since h is not injective, Kerh is not zero. Since socI is

essential in I, Kerh⋂ socI is not zero. But socI is simple and then, socI ⊆ Kerh. Then,

h(socI) = 0 and h is factorized by I/socI. Hence, there exists u ∶ I/socI → L such that

h = up.

3.2 Irreducible Morphisms

In this section, we see the relation between radical square and irreducible morphisms,

and some useful lemmas which bring us closer to prove the main result.

Definition 3.2.1. A homomorphism f ∶X → Y in mod A is said to be irreducible if

(1) f is neither a section nor a retraction ;

(2) if f = f1f2, either f1 is a retraction or f2 is a section

X Y

Z

f

f2 f1

Also, this notion is self-dual, that is f ∶ X → Y is irreducible in mod A if and only if

Df ∶DY →DX is irreducible in modAop.
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Lemma 3.2.2. Let f ∶ X → Y be an irreducible morphism . Then, f is a proper mono-

morphism or f is a proper epimorphism.

Proof. Let f = jp be canonical factorization of f

X Y

Imf

f

p j

where p is the co-restriction and j is the inclusion map. Since f is irreducible, we conclude

that either p is a section or j is a retraction. Moreover, f is not an isomorphism in mod A.

Assume that f is not a proper epimorphism. Then j ∶ Imf → Y is not a retraction in mod

A, because otherwise Imf = Y and f is a proper epimorphism. Therefore, p ∶ X → Imf

is a section in mod A, hence an isomorphism. This implies that f ∶ X → Y is a proper

monomorphism.

Lemma 3.2.3. Let f ∶X → Y be an irreducible morphism in modA.

(1) If X and Y are projective modules, then f is monomorphism.

(2) If X and Y are injective modules, then f is epimorphism.

Proof. (1) Assume that f is not monomorphism. By Lemma 3.2.2, f is an epimorphism,

and hence, by lemma 1.6.2 a retraction. This contradicts the definition of an irreducible

morphism.

(2) Assume that f is not an epimorphism. By Lemma 3.2.2, f is monomorphism, and

hence, by lemma 1.6.8 a section. This contradicts the definition of an irreducible mor-

phism.

Lemma 3.2.4. Let f ∶ X → Y be a morphism in mod A. If X or Y is indecomposable,

and f is irreducible, then f is radical.
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Proof. Assume that X is indecomposable, and f ∶ X → Y is irreducible. Then f is not

section. Because of lemma 1.9.1, it is radical. The proof is similar if Y is indecomposable.

Lemma 3.2.5. Let X,Y be indecomposable modules in mod A. A morphism f ∶ X → Y

is irreducible if and only if f ∈ radA(X,Y )/rad2
A(X,Y ).

Proof. Assume that f is irreducible. Then, f is not an isomorphism, because f is neither

a section nor a retraction. Applying lemma 1.9.1(3), f ∈ radA(X,Y ). If f ∈ rad2
A(X,Y ),

then f can be written as f = gh, where h ∈ radA(X,Z) and g ∈ radA(Z,Y ) for some

Z ∈ modA. Since X,Y are indecomposable, h is not a section and g is not a retraction.

Thus, f is not irreducible. a contradiction. Therefore, f ∉ rad2
A(X,Y ).

Conversely, assume that f ∈ radA(X,Y )/rad2
A(X,Y ). Since X,Y are indecomposable, f

is neither a section nor a retraction and not an isomorphism by lemma 1.2.8(3).

Suppose that f = gh, for some morphisms h ∶ X → Z and g ∶ Z → Y . Then Z is non-

zero. Decomposing Z into indecomposable summands as Z =
t

⊕
i=1

Zi, also we can write

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1

⋅
⋅
ht

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∶ X →
t

⊕
i=1

Zi and g = [g1 . . . gt] ∶
t

⊕
i=1

Zi → Y so that f =
t

∑
i=1

gihi. Because

f ∉ rad2
A(X,Y ), there exists i ∈ {1, . . . , t} such that hi ∉ radA(X,Z) or there exists

j ∈ {1, . . . , t} such that gj ∉ radA(Z,Y ). By lemma 1.9.3, we obtain that either hi ∶X → Zi

for some i ∈ {1, . . . , t}, or gj ∶ Zj → Y for some j ∈ {1, . . . , t} is an isomorphism. Hence

either h is a section or g is a retraction in modA. Therefore, f ∶X → Y is irreducible.

Lemma 3.2.6. Let f ∶X → Y be a non-zero morphism in mod A.

(1) If f is minimal right almost split, then f is irreducible.

(2) If f is minimal left almost split, then f is irreducible.
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Proof. (1) Suppose that f is minimal right almost split. Then, f is not a retraction

and by Lemma 3.1.4(2), Y is indecomposable. Then by Proposition 1.9.1(2), we have

f ∈ rad(X,Y ). In particular, by lemma 1.2.8(1), f is not a section. Suppose that f = f1f2
with f1 ∶ Z → Y and f2 ∶ X → Z are morphisms in mod A. If f1 is not a retraction, since

f is right almost split, there exists f ′ ∶ Z → X such that f1 = ff ′1. So f = f1f2 = ff ′1f2.
Since f is right minimal, f ′1f2 is an automorphism. Hence, f2 is a section. Consequently,

f is irreducible.

(2) Suppose that f is left minimal almost split. Then, f is not a section and by Lemma

3.1.4(1), X is indecomposable. Then by Proposition 1.9.1(1), we have f ∈ rad(X,Y ).
In particular, by lemma 1.2.8(2), f is not a retraction. Suppose that f = f1f2 with

f1 ∶ Z → Y , f2 ∶ X → Z for Z ∈ modA. If f2 is not a section, since f is a left almost

split, there exists f ′2 ∶ Y → Z such that f2 = f ′2f . So f = f1f2 = f1f ′2f . Since f is left

minimal, then f1f ′2 is an automorphism. Hence, f1 is a retraction. Consequently, f is

irreducible.

Proposition 3.2.7. ([2], IV.1.10)

(1) Let f ∶ M → N be a minimal left almost split morphism in mod A. A non-zero

morphism g ∶ M → X is irreducible if and only if g = hf where h ∶ N → X is a

retraction.

(2) Let f ∶ M → N be a minimal right almost split morphism in mod A. A non-zero

morphism g ∶ X → N is irreducible if and only if g = fh where h ∶ X → M is a

section.

Corollary 3.2.8. ([6], 4.13)

(1) Let f ∶ M → N be a minimal left almost split morphism. Then, there exists an

irreducible morphism g ∶ M → L if and only if L is a non-zero direct summand of

N .
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(2) Let f ∶ M → N be a minimal right almost split morphism. Then, there exists an

irreducible morphism g ∶ L → N if and only if L is a non-zero direct summand of

M .

Proposition 3.2.9. ([3], IV.5.6)

Let A be a finite dimensional K-algebra. If A is of finite representation type, then any

nonzero nonisomorphism between indecomposable modules in mod A is a sum of compo-

sites of irreducible morphisms.

As a consequence of the above result, we have the following statement, which is important

for the proof of our main result.

Proposition 3.2.10. Let A be a finite dimensional K-algebra of finite representation

type and n a positive integer. If the composite of every chain of n irreducible morphisms

between indecomposable modules is zero, then radn(mod A) = 0.

Proof. Suppose that every chain of n irreducible morphisms between indecomposable

modules has a zero composition. Assume that radn(mod A) ≠ 0. Then there exists a

non-zero morphism f ∈ radn(M,N), where M,N are indecomposable modules in mod A.

By definition, f = ∑s
i=1 fin○⋯○fi1, where the fij are radical maps between indecomposable

modules. Since f ≠ 0, one of the fin○⋯○fi1 is non-zero. We can assume that f1n○⋯○f11 ≠ 0.
Put g = gn ○ ⋯ ○ g1, where gj = f1j, for j = 1, . . . , n. Then g ≠ 0.

By Proposition 3.2.9, gj = ∑sj
ij=1

gij ,j, where sj ≥ 1 and gij ,j is a composite of irreducible

morphisms between indecomposable modules, for j = 1, . . . , n. This yields

g = gn ○ ⋯ ○ g1 =
sn

∑
in=1

⋯
s1

∑
i1=1

gin,n ○ ⋯ ○ gi1,1 ≠ 0.

Thus, we may assume that g1,n○⋯○g1,1 ≠ 0. Now, g1j is the composite of tj (≥ 1) irreducible

morphisms between indecomposable modules, for j = 1, . . . , n. Thus, g1,n○⋯○g1,1 is a non-
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zero composite of t1+⋯tn(≥ n) irreducible morphisms between indecomposable modules.

Since t1 +⋯tn ≥ n, we obtain a desired contradiction.

3.3 Almost Split Sequences

The main aim of this section is to prove the propositions of the Auslander-Reiten theorem

and almost split sequences in the module category of finite dimensional algebras, and

explain their characterizations.

Lemma 3.3.1. ([3], IV.1.7) Let 0→ L
fÐ→M

gÐ→ N → 0 be a non-split short exact sequence

in mod A.

(1) The homomorphism f ∶ L→M is irreducible if and only if, for every homomorphism

v ∶ V → N , there exists v1 ∶ V →M such that v = gv1 or v2 ∶M → V such that g = vv2.

(2) The homomorphism g ∶ M → N is irreducible if and only if, for every homomor-

phism u ∶ L → U , there exists u1 ∶ M → U such that u = u1f or u2 ∶ U → M such

that f = u2u.

Corollary 3.3.2. (1) If f ∶ L→M is an irreducible monomorphism, then N = Cokerf
is indecomposable.

(2) If g ∶M → N is an irreducible epimorphism, then L = Kerg is indecomposable.

Proof. (1) Let g ∶M → N be the cokernel of f . Then, we have a short exact sequence

0 // L
f //M

g // N // 0.

Assume that N = N1 ⊕N2 with N1 and N2 nonzero. Let qi ∶ Ni → N be the canonical

injections and N → Ni the canonical projections, for i = 1,2. Since N1,N2 are non-zero,

q1 and q2 are not isomorphism. If there exists a morphism ui ∶M → Ni such that g = qiui
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for some 1 ≤ i ≤ 2, because g is an epimorphism, qi is also an epimorphism, and hence, qi

an isomorphism, a contradiction. Then, by Lemma 3.3.1, there exists a homomorphism

vi ∶ Ni → M such that gvi = qi, for i = 1,2. Then v = vipi ∶ M → N is such that gv = 1N .

So g is a retraction. By Proposition 1.8.6, f is a section. This contradicts the fact that f

is irreducible. One can prove (2) in a dual fashion.

Definition 3.3.3. A short exact sequence in mod A

0 // L
f //M

g // N // 0

is called an almost split sequence (or an Auslander-Reiten sequence) if f is a minimal

left almost split morphism and g is a minimal right almost split morphism.

Proposition 3.3.4. ([3], IV.1.13) Consider a short exact sequence

0 // L
f //M

g // N // 0

in mod A. The following conditions are equivalent.

(1) The given sequence is an almost split sequence.

(2) L is indecomposable, and g is right almost split.

(3) N is indecomposable, and f is left almost split.

(4) The map f is minimal left almost split.

(5) The map g is minimal right almost split.

(6) The maps f and g are irreducible.

Definition 3.3.5. Let A be a finite dimensional K-algebra with M an indecomposable

module in mod A. Let

P1
p1 // P0

p0 ////M // 0
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be an exact sequence in modA such that p0 ∶ P0 → M and p1 ∶ P1 → Kerp0 are projec-

tive covers. Applying the contravariant functor (−)t = HomA(−,A), we obtain an exact

sequence

0 //M t
pt0 // P t

0

pt1 //// Coker(pt1) // 0

in modAop. We denote Coker(pt1) by TrM and call it the transpose of M .

Definition 3.3.6. The Auslander-Reiten translation is defined to be the compositions of

D with Tr. We set τ =DTr and τ−1 = TrD.

Proposition 3.3.7. ([3]. IV.2.10) Let M and N be indecomposable modules in mod A.

(1) The module τM is zero if and only if M is projective.

(2) The module τ−1N is zero if and only if N is injective.

(3) If M is a non-projective module, then τM is indecomposable non-injective and

τ−1τM ≅M .

(4) If N is a non-injective module, then τ−1N is indecomposable non-projective and

ττ−1N ≅ N .

(5) If M,N are non-projective, then M ≅ N if and only if τM ≅ τN .

(6) If M,N are non-injective, then M ≅ N if and only if τ−1M ≅ τ−1N .

Proposition 3.3.8. ([3]. IV.3.1)

(1) For any indecomposable non-projective module M ∈ modA, there exists an almost

split sequence 0→ τM → E →M → 0 in mod A.

(2) For any indecomposable non-injective module N ∈ modA, there exists an almost

split sequence 0→ N → F → τ−1N → 0 in mod A.

Corollary 3.3.9. Let M be an indecomposable module in mod A.
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(1) There exists a minimal right almost split morphism g ∶ N →M .

(2) There exists a minimal left almost split morphism f ∶M → N .

Proof. (1) If M is not projective then, by Proposition 3.3.8(1), there exists an almost

split sequence 0 → τM → N →M → 0. In particular, there exists a minimal right almost

split morphism g ∶ N → M . If M is projective then, by Lemma 3.1.8(1), the inclusion

map i ∶ radM →M is a minimal right almost split morphism.

(2) If M is not injective then, by Proposition 3.3.8(2), there exists an almost split sequence

0→M → N → τ−1M → 0. In particular, there exists a minimal left almost split morphism

f ∶M → N . If M is injective then, the canonical projection p ∶M →M/socM is a minimal

left almost split morphism, by Lemma 3.1.9(1).

Lemma 3.3.10. ([2], II.2.24) Let A be a finite dimensional K-algebra with M an inde-

composable module in mod A.

(1) There exists an irreducible morphism f ∶ X → M if and only if there exists a

morphism h ∶ Y →M such that [f h] ∶X ⊕ Y →M is minimal right almost split.

(2) There exists an irreducible morphism g ∶ M → X if and only if there exists a

morphism h ∶M → Y such that [g
h
] ∶M →X ⊕ Y is minimal left almost split.

Corollary 3.3.11. Let A be a finite dimensional K-algebra with f ∶M → N an irreducible

morphism in mod A.

(1) If M is indecomposable and f is not a minimal left almost morphism, then there

exists an irreducible morphism g ∶ M → L, where L is indecomposable such that

[f
g
] ∶M → N ⊕L is irreducible.

(2) If N is indecomposable and f is not a minimal right almost morphism, then there

exists an irreducible morphism g ∶ L → N , where L is indecomposable, such that

[f g] ∶M ⊕L→ N is irreducible.
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Proof. (1) Suppose that M is indecomposable and f is not a minimal left almost mor-

phism. Then, by Lemma 3.3.10(2), there exists a nonzero morphism h ∶ M → Y such

that [f
h
] ∶M → N ⊕ Y is minimal left almost split. Since Y ≠ 0, we can decompose h as

h = [ g
h′
] ∶M → L⊕Y ′, where L is indecomposable. So, we have a minimal left almost split

map
⎡⎢⎢⎢⎢⎢⎣

f
g
h′

⎤⎥⎥⎥⎥⎥⎦
∶M → N⊕L⊕Y ′. So, by lemma 3.3.10(2), both g ∶M → L and [f

g
] ∶M → N⊕L

are irreducible. The proof for (2) is dual.

The following two results say that the components of an irreducible morphism are irre-

ducible.

Lemma 3.3.12. Let f = [f1
f2
] ∶ X → Y1 ⊕ Y2 be an irreducible morphism in mod A, with

X indecomposable and Y1, Y2 nonzero. Then, f1, f2 are irreducible.

Proof. By Corollary 3.3.9(2), there exists a minimal left almost split g ∶ X → Y . By

Proposition 3.2.7(1), f = hg, where h ∶ Y → Y1 ⊕ Y2 is a retraction. Let pi ∶ Y1 ⊕ Y2 → Yi

be the canonical projection, for i = 1,2. Then fi = pif = (pih)g. Since pi is a retraction,

by Lemma 1.2.3(2), pih is retraction. So, by Proposition 3.2.7(1), fi is irreducible.

Lemma 3.3.13. Let f = [f1 f2] ∶ X1 ⊕X2 → Y be an irreducible morphism in mod A,

with Y indecomposable and X1, X2 nonzero. Then, f1, f2 are irreducible.

Proof. By Corollary 3.3.9(1), there exists a minimal right almost split g ∶ Y → X. By

Proposition 3.2.7(2), f = gh, where h ∶ X1 ⊕X2 → Xi is a section. Let ui ∶ Xi → X1 ⊕X2

be the inclusion map, for i = 1,2. Then fi = fui = g(hui). Since ui is a section, by Lemma

1.2.3(1), hui is a section. So, by Proposition 3.2.7(2), fi is irreducible.

Lemma 3.3.14. Let A be a finite dimensional K-algebra, and let M,N,L be indecom-

posable modules in mod A with N /≅ L.
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(1) If f ∶M → N and g ∶M → L are irreducible, then so is [f
g
] ∶M → N ⊕L.

(2) If f ∶ N →M and g ∶ L→M are irreduicble morphisms, then so is [f g] ∶ N ⊕L→
M .

Proof. Let f ∶ M → N and g ∶ M → L be irreducible morphisms. If f is left minimal

almost split, then g = hf , where h ∶ N → L. Since f is irreducible, h is a retraction.

Since N and L are indecomposable, h is an isomorphism, a contradiction. Thus, f is not

minimal left almost split. So, we have a commutative diagram

M N ⊕N1 ⊕⋯⊕Nr

L

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f

f1

⋮

fr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

g v

where the upper morphism is minimal left almost split and

v = [h h1 ⋯ hr] ∶ N ⊕N1 ⊕⋯⊕Nr → L

with r ≥ 1 and the Ni are indecomposable. Since N /≅ L, we see that h is not an iso-

morphism, that is, h ∈ rad(N,L). If none of the hi with 1 ≤ i ≤ r is an isomorphism,

then

g = [h h1 ⋯ hr]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f
f1
⋮
fr

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= hf + h1f1 +⋯ + hrfr ∉ rad2(M,L),

a contradiction to Lemma 3.2.5. Thus, we may assume that h1 is an isomorphism.
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Consider another commutative diagram

M N ⊕N1 ⊕⋯⊕Nr

M N ⊕L

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f

f1

⋮

fr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1M w

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f

g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where

w = [1N 0 ⋯ 0
h h1 ⋯ hr

] ∶ N ⊕N1 ⊕⋯⊕Nr → N ⊕L

Since h = h1h−11 h, we see that

w

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1N 0
−h−11 h h−11

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [1N 0 ⋯ 0
h h1 ⋯ hr

]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1N 0
−h−11 h h−11

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [1N 0
0 1L

] .

That is, w is a retraction. By Proposition 3.2.7, [f
g
] ∶ M → N ⊕ L is irreducible. The

proof for (2) is dual.

Proposition 3.3.15. Let A be a finite dimensional K-algebra.

(1) Let M be an indecomposable non-projective module in mod A. There exists an

irreducible morphism f ∶X →M if and only if there exists an irreducible morphism

f ′ ∶ τM →X.

(2) Let N be an indecomposable non-injective module in mod A. There exists an ir-

reducible morphism g ∶ N → Y if and only if there exists an irreducible morphism

g′ ∶ Y → τ−1N .
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Proof. (1) Assume that f ∶ X → M is irreducible. By Lemma 3.3.10(1), there exists a

morphism h ∶ Y →M such that [f h] ∶ X ⊕ Y →M is right minimal almost split. Note

that [f h] is an epimorphism, because M is not projective. Put L = Ker [f h]. By

Proposition 3.3.4, the short exact sequence

0→ L

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f ′

h′

⎤
⎥
⎥
⎥
⎥
⎥
⎦ÐÐ→X ⊕ Y

[f h]
ÐÐÐÐ→M → 0

is almost split. So, f ′ ∶ L→X is irreducible and there exists an isomorphism g ∶ τM → L.

Consequently, f ′g ∶ τM → X is an irreducible morphism. We can prove the necessity of

(1) by a dual fashion. Moreover, since τ−1τN ≅ N and τ−1τM ≅ M , the statement (2)

follows from the statement (1).

Corollary 3.3.16. Let A be a finite dimensional K-algebra.

(1) Let S be a simple projective module in mod A. If f ∶ S →M is irreducible, then M

is projective and S is not injective.

(2) Let S be a simple injective module in mod A. If g ∶M → S is irreducible, then M

is injective and S is not projective.

Proof. (1) Assume that f ∶ S →M is irreducible. By Corollary 1.9.2(2), S is not injective.

Let N be an indecomposable summand of M . By lemma 3.3.13, there exist an irreduicble

morphism f ′ ∶ S → N . If N is not projective then, by Proposition 3.3.15, there exists

an irreducible morphism τM → S, and this contradicts Corollary 1.9.2(1). Thus, N is

projective. And consequently, M is projective. We can prove (2) in a dual fashion.

Lemma 3.3.17. Let f ∶X → Y be an irreducible morphism. If Y is indecomposable and

non-projective, then there exists an almost split sequence

0→ τY

⎛
⎜
⎝

g
g′
⎞
⎟
⎠

ÐÐ→X ⊕X ′
(f,f ′)ÐÐÐ→ Y → 0.
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Proof. Suppose that f ∶X → Y is irreducible. By Lemma 3.3.10, there exists a morphism

f ′ ∶ X ′ → Y such that (f, f ′) ∶ X ⊕X ′ → Y is minimal right almost split, which is an

epimorphism because Y is not projective. By Proposition 3.3.4, there exists an almost

split sequence

0→ N

⎛
⎜
⎝

g
g′
⎞
⎟
⎠

ÐÐ→X ⊕X ′
(f,f ′)ÐÐÐ→ Y → 0.

So, there exist an isomorphism h ∶ τY → N .

3.4 Auslander-Reiten Quiver

If M,N are indecomposable modules in mod A, a morphism f ∶ M → N is irreducible

if and only if it belongs to radA(M,N)/rad2
A(M,N) by lemma 3.2.5. Thus, the quotient

vector space radA(M,N)/rad2
A(M,N) can be considered as a measure for the set of

irreducible morphisms from M to N .

Definition 3.4.1. Let M and N be indecomposable in mod A. The space of irreducible

morphisms is the K-vector space

IrrA(M,N) = radA(M,N)
rad2

A(M,N).

Definition 3.4.2. Let A be a finite dimensional K-algebra, where K is an algebraically

closed field. The Auslander-Reiten quiver Γ(mod A) of mod A is a translation quiver

defined as follows.

(1) The vertices of Γ(mod A) are the isomorphism classes [M], where M ranges over

the indecomposable modules in mod A;

(2) Given two vertices [M] and [N], the number of arrows from [M] to [N] is equal

to the K-dimension of Irr(M,N).
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(3) The translation τ is defined so that τ[M] = [DTrM], for any indecomposable non-

projective module M in mod A.

In the sequel, for the sake of simplicity, we shall identify an indecomposable module M

in mod A with the corresponding vertex [M] in Γ(mod A).

Lemma 3.4.3. ([2], IV.1.3) Let A be a finite dimensional K-algebra with M = ⊕t
i=1M

mi
i

a module in modA, where mi > 0 and the Mi are indecomposable and pairwise non-

isomorphic.

(1) If f ∶ L → M is a minimal left almost morphism, then dimKIrrA(L,Mi) = mi, for

i = 1, . . . , t

(2) If g ∶M → N is a minimal right almost morphism, then dimKIrrA(Mi,N) =mi, for

i = 1, . . . , t

Lemma 3.4.4. ([2], IV.1.5) Let A be a finite dimensional K-algebra with M,N inde-

composable modules in mod A. If dimKHomA(M,N) ≤ 1, then there exists no irreducible

morphism f ∶M → N ⊕N or g ∶M ⊕M → N.

Lemma 3.4.5. Let A be a finite dimensional K-algebra with M → N an arrow in Γ(mod

A). The following statements hold.

(1) M ≇ N .

(2) If N is not projective, then there exists an arrow τN →M .

(3) If M is not injective, then there exists an arrow N → τ−1M .

Proof. By definition of Auslander Reiten quiver, there exists an irreducible morphism

f ∶M → N . In particular, f is not an isomorphism.

(1) By Lemma 3.2.2, f is an epimorphism or a monomorphism. Suppose that M ≅ N . In

particular, dim(M) = dim(N). By Lemma 1.3.2, f is an isomorphism, a contradiction.
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(2) Assume that N is not projective. By Lemma 3.3.15(1), there exists an irreduicble

morphism g ∶ τN →M . Hence, we have an arrow τN →M in Γ(mod A).

(3) Assume that M is not injective. By Lemma 3.3.15(2), there exists an irreduicble

morphism g ∶ N → τ−1M . Hence, we have an arrow N → τ−1M in Γ(mod A).
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CHAPTER 4

Radical Nilpotence of the Module

Category over a Nakayama Algebra

Now that we have almost all prerequisites, we demonstrate in this chapter the main result

of our research. We start by describing Nakayama algebras and their properties which

are important for our final result.

4.1 Nakayama Algebras

We let A denote a finite dimensional K-algebra and all A-modules are, unless otherwise

specified, finite dimensional left A-modules.

Definition 4.1.1. For a module M in mod A, since rad A is nilpotent, there exists a

minimal positive integer m such that radmM = 0. The integer m is called the Loewy length

of M and is denoted by ℓℓ(M). In this case, we obtain a decreasing chain

M ⊃ radM ⊃ ⋯ ⊃ radm−1M ⊃ radmM = 0
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of submodules of M , called the radical series of M , where radiM = (radiA)M , for all

i = 1, . . . ,m.

It is clear that ℓℓ(M) ≤ dimKM , for every module M in mod A.

Definition 4.1.2. A non-zero module M in mod A is called uniserial if it admits a

unique composition series.

Clearly, every simple module S in mod A is uniserial with a unique composition series

0 ⊂ S. Note, however, that there exist uniserial modules which are not simple. Also, if M

is uniserial, every submodule and quotient of M is uniserial.

Lemma 4.1.3. ([3], V. 2.2) A module M in mod A is uniserial if and only if its radical

series is a composition series.

Lemma 4.1.4. Let A be a finite dimensional K-algebra with M a uniserial module in

modA. The top and the socle of M are simple. In particular, M is indecomposable.

Proof. Since M is uniserial, let 0 ⊂ A1⋯ ⊂ An =M be the Jordan Hölder filtration of M .

Now, let N be a simple submodule of M . Then, consider the Jordan Hölder filtration of

M/N , say 0 ⊂ M1/N⋯ ⊂ M/N . This would give us a Jordan Hölder filtration of M as

0 ⊂ N ⊂ M1⋯ ⊂ M . Since M has a unique decomposition, N = A1. Therefore, M has a

unique simple module and hence, socM is simple.

Moreover, let N = radM be a unique maximal submodule of M . Then we consider the

Jordan Hölder filtration of M/N , say 0 ⊂ M1/N⋯ ⊂ M/N . Since M is uniserial, the

radical series is a composition series. Then, each composition factor is simple. Hence,

topM is simple. Also, by Lemma 1.5.12, M is indecomposable.
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Definition 4.1.5. A finite dimensional K-algebra A is called a Nakayama algebra if all

indecomposable projective modules and all indecomposable injective modules in mod A

are uniserial.

Proposition 4.1.6. ([8], I. 10.6) Let A be a finite dimensional K-algebra. If A is a

Nakayama algebra, then every indecomposable module in mod A is uniserial.

4.2 Nakayama Algebras Given By a Bound Quiver

In this section, we study Nakayama algebras given by a bound quiver and their indecom-

posable projective modules and indecomposable injective modules. For this purpose, for

any integer n ≥ 1, we consider a quiver

A⃗n ∶ 1 2 3 ⋯ n − 1 n

and a quiver Ãn as follows :

1

2

3

i

n − 1

n

Proposition 4.2.1. ([8], I. 10.3) Let A = kQ/I, where Q is a finite connected quiver and
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I is an admissible ideal of kQ. Then A is a Nakayama algebra if and only if Q = A⃗n or

Ãn, for some n ≥ 1. In this case, I is a monomial ideal of kQ.

Proposition 4.2.2. Let A = KQ/I be a connected Nakayama algebra, and let p be a

maximal path in QI(a,−), for some a ∈ Q0.

(1) If p = εa, then Pa = Sa.

(2) If p is of the form a = a0
α1Ð→ a1 Ð→ ⋯ → ar−1

αrÐ→ ar, where r ≥ 1 and α1, . . . , αr are

arrows, then Pa has a K-basis {ea, ᾱ1, α2α1,⋯, αr⋯α1}.

Proof. By Proposition 2.3.4, Pa has as a K-basis the set of classes modulo I of paths in

QI(a,−). Since Q = A⃗n or Ãn by Proposition 4.2.1, there exists at most one arrow in Q

starting in any given vertex.

(1) By Proposition 2.3.4 (3), Sa = Pa/radPa. If p = εa, then QI(a,−) = {εa}. So by

proposition 2.3.4 (2), radPa = 0, and hence, Pa = Sa.

(2) Let p be of the form a = a0
α1Ð→ a1 Ð→ ⋯

αrÐ→ ar, where r ≥ 1. It amounts to prove that

QI(a,−) = {εa, α1, . . . , αr⋯α1} ∶=P.

Indeed, since αr⋯α1 is a non-zero path, εa, α1, . . . , αr⋯α1 are all non-zero paths. Thus,

P ⊆ QI(a,−).

Conversely, let q be a path of length s in QI(a,−). We want to use induction on s to

show that q ∈P. If s = 0, then q = εa ∈P. Assume that s = 1. That is, q = β1, an arrow

in QI(a,−). Since α1 is an arrow starting in a, by the above stated property, β1 = α1. In

particular, q ∈ {εa, α1, α2α1, . . . , αr⋯α1}. Suppose that s > 1 and any path of length s − 1
in QI(a,−) lies in P. Write q = βsβs−1 . . . β1, where the βi are arrows. Then, βs−1 . . . β1

is a path of s − 1 in QI(a,−). Since αs−1 . . . α1 is the only path of s − 1 in P, by the

induction hypothesis, βs−1 . . . β1 = αs−1 . . . α1. In particular, s − 1 ≤ r and βs is an arrow

starting in as−1. Again by the above stated property, βs = αs. That is, q = αs⋯α1 ∈ P.

By induction, QI(a,−) ⊆P. Thus, QI(a,−) = {εa, α1, . . . , αr⋯α1}.
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Proposition 4.2.3. Let A =KQ/I be a connected Nakayama algebra. Let q be a maximal

path in QI(−, a), for some a ∈ Q0.

(1) If q = εa, then Ia =K < e∗a >≅ Sa.

(2) If q is of the form bs
βsÐ→ bs−1 → ⋯ → b1

β1Ð→ b0 = a, where s ≥ 1 and β1, . . . , βs are

arrows, then Ia has as a K-basis {e∗a, β̄∗1 , . . . ,β1⋯βs
∗}.

Proof. By Proposition 2.3.5, Ia has as a K-basis {ρ̄∗ ∣ ρ ∈ QI(−, a)}, the dual basis of the

K-basis {ρ̄ ∣ ρ ∈ QI(−, a)} of eaA. Since Q = A⃗n or Ãn by Proposition 4.2.1, there exists

at most one arrow in Q ending in any given vertex.

(1) If q = εa, then QI(−, a) = {εa}. Thus, Ia =K < e∗a >. By Lemma 2.3.7, Ia ≅ Sa.

(2) Let q be of the form bs
βsÐ→ bs−1 → ⋯ → b1

β1Ð→ b0 = a, where s ≥ 1. It amounts to show

that QI(−, a) = {εa, β1, β1β2, . . . , β1⋯β1} ∶= P. Since β1⋯βs is a non-zero path, εa, β1,

. . . , β1⋯βs are all non-zero paths. Thus, P ⊆ QI(−, a).

Conversely, let p be a path of length r in QI(−, a). We want to use induction on r to show

that p ∈P. If r = 0, then p = εa ∈P. If r = 1, then p = η1, an arrow in QI(−, a). Since β1 is

an arrow ending in a, by the above stated property, η1 = β1 ∈P. Suppose that r > 1 and

any path of length r−1 in QI(−, a) lies in P. Write p = η1η2 . . . ηr, where the ηi are arrows.

Since η1 . . . ηr−1 is a path of r−1 in QI(−, a) and β1 . . . βr−1 is the only path of r−1 in P,

by the induction hypothesis, η1 . . . ηr−1 = β1 . . . βr−1. In particular, r − 1 ≤ s and ηr is an

arrow starting in br−1. By the above stated property, ηr = βr. Thus, p = η1 . . . ηr−1ηr ∈P.

By induction, QI(−, a) ⊆P. Thus, QI(−, a) = {εa, β1, . . . , β1⋯βs}.

4.3 Main Statement

Let A be a connected Nakayama algebra given by a bound quiver. Our main result is to

state the necessary and sufficient conditions for rad3(modA) to vanish. We start with the
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necessary conditions.

Lemma 4.3.1. Let A = KQ/I be a connected Nakayama algebra. If rad3(modA) = 0,

then one of the following cases occurs∶

(1) Q = A⃗n and I = 0, where 1 ≤ n ≤ 3.

(2) Q = A⃗n and I is generated by all the paths of length two in Q, where n ≥ 3.

(3) Q = Ãn and I is generated by all the paths of length two in Q, where n ≥ 1.

Proof. By Proposition 4.2.1, Q = Ãn or A⃗n, for some n ≥ 1. Suppose that rad3(modA) = 0.

If rad(modA) = 0, then A is simple, that is, Q = A⃗1 with I = 0. Thus, the case (1) occurs.

If rad(modA) ≠ 0 but rad2(modA) = 0, then Q = A⃗2 and I = 0 ; see ([6], 5.1.7). Thus, the

case (1) occurs.

Suppose that rad2(modA) ≠ 0. Then Q = A⃗n with n ≥ 3 ; see ([6], 5.1.7) or Q = Ãn with

n ≥ 1. By Proposition 1.9.6, rad3(A) = 0.

Assume that rad2(A) = 0. By Proposition 2.2.8, any path of length two lies in I. So, I is

generated by all the paths of length two. Thus, the case (2) or (3) occurs.

Assume now that rad2(A) ≠ 0. Then, Q contains a path a
α // b

β //// c such that βα /∈ I.
By lemma 2.2.9, we have a sequence of radical morphisms

Pc

P [β̄]ÐÐ→ Pb

P [ᾱ]ÐÐ→ Pa

between indecomposable projective modules in mod A. Since

(P [ᾱ] ○ P [β̄])(ec) = P [ᾱ](P [β̄](ec)) = ecβ̄ᾱ = β̄ᾱ ≠ 0,

we see that P [ᾱ] ○ P [β̄] ≠ 0. Since rad3(modA) = 0, neither P [β̄] nor P [ᾱ] lies in

rad2(modA). By Lemma 3.2.5, P [ᾱ] and P [β̄] are irreducible. By Lemma 3.2.2, P [ᾱ]
and P [β̄] are monomorphisms, and so is P [ᾱ] ○P [β̄]. In particular, by Lemma 1.3.2, the

vertices a, b, c are pairwise distinct.
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Assume that Q contains an arrow γ ∶ c → d. Then, γ̄ ∈ Pc . As P [ᾱ] ○ P [β̄] is a mono-

morphism, (P [ᾱ] ○ P [β̄])(γ̄) /= 0, that is, γ̄β̄ᾱ /= 0. By Proposition 2.2.8, rad3(A) /= 0, a

contradiction. Thus, Q contains no arrow starting in c.

Dually, by Lemma 2.3.8, we have a sequence of radical morphisms

Ic
I[β̄]ÐÐ→ Ib

I[ᾱ]ÐÐ→ Ia

between indecomposable injective modules in modA. Since βα /∈ I, by Proposition 4.2.3,

e∗c , β̄
∗,βα

∗
lie in a K-basis of Ic. Moreover, by Lemma 2.3.8, we obtain

(I[ᾱ] ○ I[β̄])(e∗c) = I[ᾱ](I[β̄](e∗c)) = I[ᾱ](0) = 0;

(I[ᾱ] ○ I[β̄])(β̄∗) = I[ᾱ](I[β̄](β̄∗)) = I[ᾱ](e∗b ) = 0;

(I[ᾱ] ○ I[β̄])(βα∗) = I[ᾱ](I[β̄](βα∗) = I[ᾱ](ᾱ∗) = e∗a.

In particular, I[ᾱ] ○ I[β̄] ≠ 0. Since rad3(modA) = 0, neither I[β̄] nor I[ᾱ] lies in

rad2(modA). By Lemma 3.2.5, I[β̄] and I[ᾱ] are irreducible. Since Ia, Ib are injective,

by Lemma 3.2.3(2), I[β̄] and I[ᾱ] are epimorphisms, and so is I[ᾱ] ○ I[β̄].

Assume that Q contains an arrow δ ∶ d → a in Q. Then, δ̄∗ ∈ Ia. Since rad3(A) = 0, we

have βαδ = 0. Therefore, βα is a maximal path in QI(−, c). By Lemma 4.2.3, Ic has a

K-basis {e∗c , β̄∗, βα
∗}. Since I[ᾱ] ○ I[β̄] is an epimorphism,

δ̄∗ = (I[ᾱ] ○ I[β̄])(λ0 ⋅ e∗c + λ1 ⋅ β̄∗ + λ2 ⋅ βα
∗),

where λ0, λ1, λ2 ∈ K. In view of the calculation stated above, we see that λ2e∗a = δ̄∗, a

contradiction. Thus, Q contains no arrow ending in a. Being Ãn or A⃗n, the quiver Q

consists of the path a
α // b

β //// c . Since βα ∉ I, we see that I = 0. That is, Case (1)

occurs.

Next, we shall show that the conditions stated in Lemma 4.3.1 are also sufficient for

rad3(mod A) to vanish.

71



Lemma 4.3.2. Let A =KA⃗3. Then rad3(modA) = 0.

Proof. We may assume that A⃗3 is the quiver a
α // b

β // c . As seen in Example 2.4.8,

we obtain Pa ≅ Ic ; Pb ≅ radPa ; Pc ≅ radPb ≅ Sc ; Ia ≅ Sa, Ib/Sb ≅ Ia and Ic/Sc ≅ Ib.

First, we claim that the Auslander-Reiten quiver Γ(mod A) of mod A is as follows ∶

Pa

Pb Ib

Pc Sb Ia,

f3f2

g1

f4f1
g2

where f1, f2 are minimal right almost split monomorphisms, and f3, f4 are minimal left

almost split epimorphisms.

Since Pc is simple projective, by Proposition 3.1.8, the minimal right almost split mor-

phism for Pc is the zero morphism 0→ Pc. Because of Proposition 3.3.10(2), there exists

no irreducible map f ∶ N → Pc. So, there exists no arrow in Γ(modA) ending with Pc.

Now because Pc ≅ radPb, by Lemma 3.1.8, there exists a minimal right almost split map

f1 ∶ Pc → Pb. Since Pc is indecomposable, Γ(modA) has only one arrow Pc → Pb ending

with Pb.

Suppose that f1 is not a minimal left almost split morphism. By Corollary 3.3.11(1),

there exists an irreducible map (f1, f)T ∶ Pc → Pb ⊕M , where M is indecomposable. In

particular, f ∶ Pc → M is irreducible. By Corollary 3.3.16, M is projective. By Lemma

3.3.10, Pc is isomorphic to a direct summand of radM . Since radPa ≅ Pb and radPc = 0, we

see that M = Pb. On the other hand, by Lemma 1.3.5, HomA(Pc, Pb) ≅ ecAeb = k < β̄ >,
which is of dimension one, a contradiction to Lemma 3.4.4. So f1 is the minimal left

almost split morphism for Pc. On the other hand, since topPb ≅ Sb and Pc ≅ radPb, we
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have a short exact sequence

(1) 0 // Pc
f1 // Pb

g1 // Sb
// 0.

Since f1 is a minimal left almost split morphism, by proposition 3.3.4, this is an almost

split sequence. In particular, g1 ∶ Pb → Sb is a minimal right almost split map. So, Γ(mod

A) has only one arrow Pc → Pb starting with Pc and only one arrow Pb → Sb ending with

Sb.

Furthermore, since radPa ≅ Pb, there exists a minimal right almost split monomorphism

f2 ∶ Pb → Pa. Since Pb is indecomposable, Γ(mod A) has only one arrow Pb → Pa ending

with Pa.

Since Pa /≅ Sa, by lemma 3.3.14(1), the map

(f2
g1
) ∶ Pb → Pa ⊕ Sa

is irreducible. Suppose that it is not minimal left almost split. By Corollary 3.3.11, there

is an irreducible morphism g ∶ Pb →X is irreducible with X indecomposable such that

⎛
⎜
⎝

f2
g1
g

⎞
⎟
⎠
∶ Pb → Pa ⊕ Sb ⊕X

is irreducible. If X is projective, then Pb is a direct summand of radX. In particular,

X /≅ Pb. And since Pc is simple projective, by Proposition 3.1.8, X /≅ Pc. Therefore,

X ≅ Pa. This yields an irreducible morphism

(f2
g
) ∶ Pb → Pa ⊕ Pa.

However, by Lemma 1.3.5, HomA(Pb, Pa) ≅ ebAea = k < ᾱ >, which is of dimension one,

a contradiction to Lemma 3.4.4. So, X is not projective. By Proposition 3.4.5(2), there

is an arrow τX → Pb. Since Pc → Pb is the only arrow ending with Pb, we have τX ≅ Pc,
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and consequence, X ≅ τ−Pc = Sb. So, we have an irreducible morphism

(g1
g
) ∶ Pb → Sb ⊕ Sb.

However, by Lemma 1.3.5, HomA(Pb, Sb) ≅ ebSb = Sb, which is of dimension one, a contra-

diction to Lemma 3.4.4. So

(f2
g1
) ∶ Pb → Pa ⊕ Sb

is a minimal left almost split monomorphism. By proposition 3.3.4, there is an almost

split sequence

(2) 0 // Pb

⎛
⎜
⎝

f2
g1

⎞
⎟
⎠
// Pa ⊕ Sb

(f3,g2)// Y // 0.

In particular, by lemma 3.3.13, f3 ∶ Pa → Y is an irreducible morphism. Now Pa ≅ Ic

and Ic/Sc ≅ Ib. So, by Lemma 3.1.9, there is a minimal left almost split epimorphism

h ∶ Pa → Ib. Since Ib is indecomposable, Y ≅ Ib. And we may assume that Y = Ib and

f3 = h. In particular, So, Pa → Ib is the only arrow in Γ(mod A) starting with Pa.

Now, consider the irreducible map g2 ∶ Sb → Ib. Since Sb = socIb with Ib/Sb ≅ Ia, we have

a short exact sequence

(3) 0 // Sb
g2 // Ib

f4 // Ia // 0,

where f4 ∶ Ib → Ia is the canonical projection. By lemma 3.1.9, f4 is a minimal left almost

epimorphism. In particular, f4 is an irreducible morphism. Since g2 is also irreducible,

by Lemma 3.3.4, this is an almost split sequence. Finally, since Ia is a simple injective

module, by lemma 3.1.7, there is no arrow starting with Ia. This establishes our claim.

Now we show that any path of three irreducible morphisms between indecomposable

modules stated the above Auslander-Reiten quiver has a zero composite. Indeed, in view

of the almost split sequence (2), we have f3f2 = −g2g1 = 0. Then, f3f2f1 = −g2g1f1 = 0.

74



Since f3f2 = −g2g1 = 0, and in the view of the almost split sequence (3), we have f4f3f2 =
−f4g2g1 = 0. By proposition 3.2.10, we have rad3(modA) = 0.

In the following lemmas, we check the relations between dimension of any indecomposable

modules with respect to the nilpotency of radical square in Nakayama algebra.

Lemma 4.3.3. Let A = KQ/I be a Nakayama algebra with rad2A = 0. Consider an

indecomposable module M in mod A.

(1) The dimension of M is equal to one or two.

(2) If dimK(M) = 2, then M is projective and injective.

Proof. By Proposition 4.1.6, M is uniserial. Since rad2M = 0, we see that ℓℓ(M) ≤ 2.

If ℓℓ(M) = 1, by Lemma 4.1.3, we have a radical series M ⊃ 0, which is the composition

series for M . Therefore, M is simple, and dimK(M) = 1.

If ℓℓ(M) = 2, then we have a radical series M ⊃ radM ⊃ 0, which is a composition series

of M . In particular, M/radM and radM are simple.

Therefore, dimK(M) = dimK(rad(M)) + dimK(M/rad(M)) = 2. This proves Statement

(1).

Suppose that dimK(M) = 2. Let f ∶ P →M be a projective cover of M . Then, by Theorem

1.7.3, P /radP ≅M/radM . Being uniserial, by Lemma 4.1.3, M has a simple top, so does

P . By Lemma 1.5.12(1), P is indecomposable. By Statement (1), dimK(P ) ≤ 2. Since

f is an epimorphism, dim(P ) ≥ dim(M) = 2. Therefore, dimK(P ) = 2 = dim(M). By

Lemma 1.3.2, f is an isomorphism. So M is projective. Now, let g ∶M → I be an injective

envelope of M .

Then, by theorem 1.7.5, soc(M) ≅ soc(I). Since M is uniserial, by Lemma 4.1.3, M has a

simple socle, and so does I. By Lemma 1.5.12(2), I is indecomposable. By Statement (1),

dim(I) ≤ 2. Since g is a monomorphism, dim(I) ≥ dim(M) = 2. So, dim(I) = 2 = dim(M).
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By Lemma 1.3.2, g is isomorphism. Hence, M is injective. Therefore, M is projective and

injective.

Lemma 4.3.4. Let A =KQ/I be a Nakayama algebra with rad2A = 0. Consider a simple

module S in mod A.

(1) If S is not projective with a projective cover P , then dim(P ) = 2.

(2) If S is not injective with an injective envelope I, then dim(I) = 2.

Proof. By Lemma 4.3.3(1), dim(S) = 1.

(1) Let S be non-projective with a projective cover g ∶ P → S. In particular, S is the

simple top of P . By Lemma 1.5.12(1), P is indecomposable. By Lemma 4.3.3, dim(P ) ≤ 2.
If dim(P ) = 1 = dim(S) then, by Lemma 1.3.2, g is an isomorphism, and then, S is

projective, a contradiction. So, dim(P ) = 2.

(2) Let S be non-injective with an injective envelope f ∶ S → I. In particular, S is the

simple socle of I. By Lemma 1.5.12(2), I is indecomposable. By Lemma 4.3.3, dim(I) ≤ 2.
Since f is monomorphism, dim(I) ≥ dim(S) = 1. If dim(I) = 1 then, by Lemma 1.3.2, f

is an isomorphism. Then, S is injective, a contradiction. So, dim(I) = 2.

In the following, there are a few lemmas that help us to prove the sufficiency part of our

main result.

Lemma 4.3.5. Let A =KQ/I be a Nakayama algebra with rad2A = 0. Consider a simple

module S in mod A.

(1) If S is not projective with a projective cover g ∶ P → S, then there exists an almost

split sequence

0 // τS
f // P

g // S // 0,

where f is minimal right almost split and g is minimal left almost split.
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(2) If S is not injective with an injective envelope f ∶ S → I, then there exists an almost

split sequence

0 // S
f // I

g // τ−S // 0,

where f is minimal right almost split and g is minimal left almost split.

Proof. (1) Assume that S is not projective with a projective cover g ∶ P → S. Then, we

have a non-split short exact sequence

0 // rad(P ) f // P
g // S // 0.

Since P is indecomposable projective. By Lemma 3.1.8, f is minimal right almost split. In

particular, f is irreducible. Moreover, by Lemma 4.3.4, dim(P ) = 2. So, dim(rad(P )) = 1.
Hence, rad(P ) is a simple submodule of P . Being uniserial, by lemma 4.1.4, P has a

simple socle. Thus, rad(P ) = soc(P ), and hence, S is isomorphic to the socle-factor of P .

Moreover, by Lemma 4.3.3, P is injective. Therefore, by 3.1.9, g is minimal left almost

split. In particular, g is also irreducible. By Lemma 3.3.4, the above sequence is an almost

split sequence.

(2) Assume that S is non-injective with an injective envelope f ∶ S → I. By lemma 2.3.7,

S ≅ soc(I). Thus, we have a non-split short exact sequence

0 // S
f // I

g // I/S // 0.

Since I is indecomposable injective, by Lemma 3.1.9, g is minimal left almost split. In

particular, g is irreducible. Moreover, by Lemma 4.3.4, dim(I) = 2. So, dim(I/S) = 1,

and thus, I/S is simple. As we know, I/S is simple if and only if S ⊆ I is a maximal

submodule. So, S is a maximal submodule of I. Hence, rad(I) ⊆ S. On the other hand,

being uniserial, I has a simple top. By lemma 1.5.7, rad(I) is also a maximal submodule

of I. This gives rise to S = rad(I). Moreover, by Lemma 4.3.3, I is projective. By Lemma

3.1.8, f is minimal right almost split. In particular, f is also irreducible. By Lemma 3.3.4,

the above sequence is an almost split sequence.
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Lemma 4.3.6. Let A = KQ/I be a Nakayama algebra with rad2A = 0. Consider a

sequence M
fÐ→ N

gÐ→ L of two irreducible maps between indecomposable modules in mod

A. If f is a monomorphism or g is an epimorphism, then, gf = 0.

Proof. Assume that g is an epimorphism. Then, 1 ≤ dim(L) < dim(N). By lemma 4.3.3,

dim(N) ≤ 2. Therefore, dim(N) = 2 and L is simple. By lemma 3.3.2(1), there exists a

non-split short exact sequence

0 // U
h // N

g // L // 0,

where U = Ker(g). By corollary 3.3.16(2), L is not projective, and by lemma 4.3.5(1),

there exists an almost split sequence

0 // τL
u // P

v // L // 0,

where u is minimal right almost split, v is minimal left almost split, and dim(P ) = 2.

Since g is not a retraction and v is right almost split, g = vv′ for some map v′ ∶ N → P .

Then, vv′h = gh = 0. Since u = Ker(v), there exists a map u′ ∶ U → τL such that v′h = uu′.
Therefore, we have a commutative diagram as follows :

0 // U

u′

��

h // N
g //

v′

��

L // 0

0 // τL
u // P

v // L // 0.

Since g is irreducible, v′ is a section. In particular, v′ is a monomorphism. Since dim(P ) =
2 = dim(N), by Lemma 1.3.2, v′ is an isomorphism. By lemma 1.8.3, we have two exact

sequences 0 → Ker(u′) → Ker(v′) and Ker(idL) → Coker(u′) → Coker(v′). Since v′ is an

isomorphism, Ker(v′) = 0 and Coker(v′) = 0. Similarly, Ker(idL) = 0 and Coker(idL) = 0.
This yields two exact sequences 0→ Ker(u′) → 0 and 0→ Coker(u′) → 0. So, Ker(u′) = 0
and Coker(u′) = 0. That is, u′ is an isomorphism. As a consequence, we have an almost

split sequence

0 // U
h // N

g // L // 0,
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where h is minimal right almost split. Being irreducible, f ∶M → N is not a retraction.

Thus, there exists a map q ∶M → U such that f = h ○ q. Therefore, gf = ghq = 0.

Suppose now that f is a monomorphism. Then, 1 ≤ dim(M) < dim(N). By Lemma 4.3.3,

dim(N) ≤ 2. Therefore, dim(N) = 2 and M is simple. Then, by lemma 3.3.2(1), there

exists a non-split short exact sequence

0 //M
f // N

h // V // 0,

where V = Coker(f). By corollary 3.3.16(1), M is not injective, and by lemma 4.3.5(2),

there exists an almost split sequence

0 //M
u // I

v // τ−1M // 0,

where u is minimal right almost split, v is minimal left almost split, and dim(I) = 2.

Since f is not a section and u is left almost split, f = u′u for some map u′ ∶ I → N . Then,

hu′u = hf = 0. Since v = Coker(u), there exists a map v′ ∶ τ−M → V such that hu′ = v′v.
Therefore, we have a commutative diagram as follows :

0 //M
u // I

v //

u′

��

τ−M

v′

��

// 0

0 //M
f // N

h // V // 0.

Since f is irreducible, u′ is a retraction. In particular, u′ is an epimorphism.

Since dim(I) = 2 = dim(N), by Lemma 1.3.2, u′ is an isomorphism.

By the Snake Lemma, we have two exact sequences

Ker(u′) → Ker(v′) → Coker(idM)

and

Coker(u′) → Coker(v′) → Coker(idM).

Since u′ is an isomorphism, Ker(u′) = 0 and Coker(u′) = 0. Similarly, Ker(idM) = 0 and

Coker(idM) = 0. This yields two exact sequences 0→ Ker(v′) → 0 and 0→ Coker(v′) → 0.
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So, Ker(v′) = 0 and Coker(v′) = 0. That is, v′ is an isomorphism. As a consequence, we

have an almost split sequence

0 //M
f // N

h // V // 0,

where h is minimal left almost split. Since g is irreducible, there exists a map t ∶ V → L

such that g = t ○ h. Therefore, gf = thf = 0.

Proposition 4.3.7. Let A = KQ/I be a Nakayama algebra with rad2A = 0. Then

rad3(modA) = 0.

Proof. Let X1
f1Ð→X2

f2Ð→X3
f3Ð→X4 be a sequence of three irreducible morphisms between

indecomposable modules. Then each fi is either a monomorphism or an epimorphism.

Moreover, by Lemma 4.3.3(1), dim(Xi) ≤ 2 for any 1 ≤ i ≤ 4.

If dim(X1) = 1, then X1 is simple. So, f1 is a monomorphism. So, by Lemma 4.3.6,

f2f1 = 0. Then, f3f2f1 = 0.

Assume dim(X1) = 2. If f1 is a monomorphism, then dim(X2) > dim(X1) = 2, a contradic-

tion. So, f1 is an epimorphism. Then dim(X2) < dim(X1) = 2. So, X2 is simple. Thus, f2

is a monomorphism. So, by Lemma 4.3.6, f3f2 = 0, and hence, f3f2f1 = 0. By Proposition

3.2.10, rad3(modA) = 0.

Now, we are ready to state the main result of this thesis.

Theorem 4.3.8. Let A = KQ/I be a Nakayama algebra, where Q is a finite connected

quiver and I is an admissible ideal of kQ. Then rad3(modA) = 0 if and only if one of the

following cases occurs.

(1) Q = A⃗n with 1 ≤ n ≤ 3 and I = 0.

(2) Q = Ãn with n ≥ 1 and I is generated by all paths of length two in Q.

(3) Q = A⃗n with n ≥ 3 and I is generated by all paths of length two in Q.
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Proof. The necessity of the theorem holds by Lemma 4.3.1. It remains to show the suffi-

ciency. Suppose that the case (2) or (3) occurs. By proposition 4.2.1, A is a Nakayama al-

gebra, and by proposition 1.9.6, rad2(A) = 0. Thus, by Proposition 4.3.7, rad3(modA) = 0.

Now, we suppose that Q = A⃗n with 1 ≤ n ≤ 3 and I = 0. If n = 1, then A is simple.

By Proposition 1.9.7, rad(modA) = 0. In particular, rad3(modA) = 0. If n = 2, then

rad2(mod)A = 0 ; see ([6], 5.2.4). So, rad3(modA) = 0. If n = 3 then, by Lemma 4.3.2,

rad3(modA) = 0.
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CONCLUSION

In this thesis, after introducing the concept of radical in a K-linear category, we saw in

chapter 1, for a finite dimensional K-algebra A, rad(mod A) is zero if and only if A is

semi-simple.

Also, in the remaining chapters, we presented the concepts of the theory of representation

of algebras and the structure of Nakayama algebras on projective and injective modules.

Then, all concepts of four chapters helped us to show that in Nakayama algebras with a

module category, radical cube is zero if and only if Q is type of Q = A⃗n with 1 ≤ n ≤ 3 and

I = 0, Q = Ãn with n ≥ 1 and I is generated by all paths of length two in Q and Q = A⃗n

with n ≥ 3 and I is generated by all paths of length two in Q.
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