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SOMMAIRE

Dans ce mémoire, nous entendons par algébre toute K-algébre de dimension finie sur
un corps algébriquement clos K. Si A est une K-algébre, on entend par A-module tout

A-module & gauche de type fini, sauf indication contraire.

Tout d’abord, nous introduisons les notions nécessaires et les définitions des catégories des
modules. Ensuite, nous démontrons certains concepts de la théorie des représentations
des algebres et des théorémes de structure sur les algebres de Nakayama, sur les modules
projectifs et injectifs, afin de prouver le théoréme qui stipule que le cube radical de la

catégorie de module avec certaines conditions est nul pour les algebres de Nakayama.

11



ABSTRACT

In this thesis, we mean by algebra any K-algebra of finite dimension over an algebraically
closed field K. If A is a K-algebra, we mean by A-module any left A-module of finite

type, unless otherwise specified.

First, we introduce the necessary notions and the definitions of the category of modules.
Then, we prove certain concepts of the theory of representations of algebras and the
structure theorems on Nakayama algebras and projective and injective modules, in order
to prove the theorem which states that the radical cube of the category of module with

some conditions is zero for Nakayama algebras.
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INTRODUCTION

Let A be a finite dimensional K-algebra over an algebraically closed field K ; and mod
A the category of finitely generated left A-modules. It is well known that A is of finite
representation type if and only if the radical of mod A is nilpotent. Also, by the Harada-
Sai lemma, the radical of modA is nilpotent with a nilpotency index bounded by 20 -1,

where b is the maximal dimension of indecomposable A-modules; see [4].

In this thesis, we would like to prove that, when A = K@Q/I is a Nakayama algebra, where
Q is a finite connected quiver and I is an admissible ideal of Q. Then rad®*(modA) =0

if and only if one of the following cases occurs :
(1) Q=A, with1<n<3andI=0.
(2) Q= A, with n>1 and I is generated by all paths of length two in Q.
(3) Q= A, with n >3 and I is generated by all paths of length two in Q.
To reach this goal, we need to understand some important definitions and lemmas about

the radical of the module categories, representations of algebras, theory of Auslander-

Reiten and Nakayama algebras.

So, we will start the first chapter by introducing some notions on algebras and modules.
The second chapter will be devoted to quivers and algebras. Then, chapter three consists
of Auslander-Reiten theory and all important lemmas about almost split morphisms and

irreducible morphisms.



In the last chapter, we need to understand the Nakayama algebras and the lemmas which

we need to solve our main result. Finally, we will see the main result and proof.



CHAPTER 1

Algebras and Modules

The content presented in this chapter is taken from [3]. Throughout this thesis, K denotes

an algebraically closed field. We shall consider only finite dimensional K-algebras.

1.1 Algebras

Throughout this thesis, we need to study categories of modules over algebras. It is natural

to start the first section with algebras.

Definition 1.1.1. Let A be a K-algebra. We define the opposite algebra A° to have the
same elements as A, but the multiplication = in A is defined as follows : a * b= ba, for

all a,be A.

Definition 1.1.2. The algebra A is said to be finite dimensional if its dimension as a

K -vector space is finite.

Definition 1.1.3. Let A be a finite dimensional K-algebra. A K -vector subspace I of A
is a right ideal (or left ideal) of A ifia € I (or ai € I, respectively) for allie I and a € A.
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A two-sided ideal of A is a K-vector subspace I of A which is a right ideal and left ideal
of A.

Definition 1.1.4. Let A be a finite dimensional K -algebra. The intersection of all mazi-

mal left ideals of A is called the (Jacobson) radical of A, written as rad A.

Lemma 1.1.5. ([8], 1.3.1) Let A be a finite dimensional K -algebra. Then rad A is the
intersection of all maximal right ideals of A, which is also a two-sided ideal of A.

Moreover,

radA = {a€A|1-=za is left invertible, for all x € A}
= {a€ A|1-ax is right invertible, for all x € A}.

Definition 1.1.6. A finite dimensional K -algebra A is said to be local if A has a unique

mazimal left ideal.

Lemma 1.1.7. ([3|, 1.4.6) Let A be a finite dimensional K-algebra. The following state-
ments are equivalent.

(1) A is a local algebra.

(2) A has a unique maximal right ideal.

(3) rad A consists of all noninvertible elements of A.

(4) The set of all invertible elements of A is a two-sided ideal of A.
(5) For any a € A, one of the elements a or 1 —a is invertible.

(6) A/rad A is a division algebra.

Definition 1.1.8. Let A be a finite dimensional K-algebra. An element x € A is said to

be nilpotent if there exists m € N such that x™ = 0.



Lemma 1.1.9. Let A be a finite dimensional K-algebra. If a € A is nilpotent, then 1-a

1s invertible.

Proof. If a® =0, then (1-a)(1+a+--+a"')=1-a"=1. Thus, 1 -a is invertible. [

Definition 1.1.10. Let A be a finite dimensional K-algebra. An element e € A is called
idempotent if €2 = e. Two idempotents e,e’ € A are called orthogonal if ee’ = e’e =0. The
idempotent e is said to be primitive if e cannot be written as a sum e = e’ + ", where

e’ e’ are nonzero orthogonal idempotents of A.

Definition 1.1.11. Let A be a finite dimensional K -algebra. A set {eq,... e,} of idem-
potents of A is called a complete set of orthogonal primitive idempotents if the e; are

pairwise orthogonal primitives idempotents of A such that 1 =eq + -+ ¢e,.

Proposition 1.1.12. ([6], 2.27) Let A be a finite dimensional K -algebra with an idem-

potent e. The following statements hold.
(1) eAe ={eae|ac A} is an algebra with e being the identity.

(2) We have an anti-isomorphism of algebras as follows:

¢:Endy(Ae) » ede: [~ f(e).

Corollary 1.1.13. ([6], 2.3) Let A be a finite dimensional K -algebra. Then,

¢4 :Homa(aA, 4A) > A: f— f(1)

s an anti-isomorphism of algebras.



1.2 Linear Categories

In this section, we present an introduction to general categories.

Definition 1.2.1. A category is a triple C = (ObC,HomC, o), where ObC is called the
class of objects, HomC is called the class of morphisms, and o is called the composition

of morphisms, satisfying the following conditions.

(1) To each pair of objects X,Y , we associate a set Home(X,Y') of morphisms from

X toY with the following properties:
(a) for each object X, there exists an element idx € Home (X, X), called the
identity morphism on X;
(b) the intersection of Home(X,Y) and Home(Z,U) is empty; in case (X,Y) #
(Z,U0).

(2) The composition o is only partially defined for objects X,Y,Z as follows:
o:Home(Y, Z) x Home(X,Y) - Home (X, Z2) : (g, f) = go f

with the following two properties :
(a) ho(go f) = ((hog)of. for all morphisms [ < Home(X,Y), g € Home(Y, Z),
h € Home(Z,U); and
(b) folx=f and 1xog =g, for all objects X,Y,Z and morphisms f € Hom¢(X,Y")
and g € Home(Z, X).

Definition 1.2.2. Let C be a category. A morphism f: M — N in C is called
(1) a section if there exists a morphism g: N — M such that gf =idy;.

(2) a retraction if there exists a morphism g: N — M such that fg=idy.



Lemma 1.2.3. Let C be a category with morphisms f: M - N and g: N — L.

(1) If f,g are sections, then gf is a section.

(2) If f,g are retractions, then gf is a retraction.
Proof. (1) Suppose that there exist f': N - M and ¢': L > N such that f’f =idy and
g'g=1idy. Then, (f'g')(gf)=f'f =idy. So gf is a section.

(2) Suppose that there exist f': N - M and ¢’ : L - N such that ff’ =idy and gg' = idy.
Then, (gf)(f'g") = 99’ f =idr. So gf is a retraction. O

Definition 1.2.4. A category C is called K -linear if
(1) for all objects XY, the set Home(X,Y') is a K-vector space;

(2) the composition of morphisms is K-bilinear, that is, for all morphisms
f1, f2€e Home(X,Y), 91,92 € Home (Y, Z) and all scalars Ay, A, pi1, 2 € K, we have
go(Aufi+Azfa) =Ai(goe f1) + Xa(g o f2)
(191 + pi2ga) o f = pa(gro f) + pa(gz2 0 f)

(3) every finite family of objects of C admits a product and co-product in C.

Definition 1.2.5. Let C be a K-linear category and f: M — N a morphism in C.

(1) A kernel of f, denoted by Ker(f), is a pair (U,u), where U is an object of C and
u:U — M 1s a morphism such that :
(a) fu=0.
(b) If u' : U" - M is a morphism such that fu' =0, then there exists a unique
morphism g:U" - U such that v’ = ug.

(2) A cokernel of f, denoted by Coker(f), is a pair (V,v), where V is an object of C

and v: N =V is a morphism such that :
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(a) vf=0.
(b) If v' = N - V' is a morphism such that v'f = 0, then there exists a unique
morphism h:V — V' such that v' = hv.

Definition 1.2.6. Let C be a K-linear category. A class I of morphisms of C is called a
two-sided ideal in C if Z has the following properties :

(1) for any X,Y € ObC, the set Z(X,Y) of morphisms f: X =Y in T is a K-vector
subspace of Home(X,Y);

(2) if feZ and g is a morphism in C that is left-composable with f, then go f eI ;

(3) if f€Z and h is a morphism in C that is right-composable with f,then foheZ.

Definition 1.2.7. Let C be a linear category. The radical of C is a two-sided ideal rade
in C, defined by the following formula

rade(X,Y) = {h e Home(X,Y) :idx — g o h is invertible for any g € Home(Y, X)}

for any objects X,Y of C.

Lemma 1.2.8. Let C be a linear category with f €rade(M,N).
(1) If M is not zero, then f is not a section.
(2) If N is not zero, then f is not retraction.

Proof. (1) Suppose that M is not zero. If f is a section, then there exists f': N - M
such that f’f =idy,. Then, 0 =14dy, — f'f, which is invertible. This is impossible as M is

not zero. So f is not a section.

(2) Suppose that N is not zero. If f is a retraction, then there exists f': N — M such
that ff’ =idy. Then, 0 = idy — ff’, which is invertible. This is impossible as N is not

zero. So f is not a retraction. n



1.3 Category of Modules

To understand the radical of a module category better, we start this section with module

categories.

Definition 1.3.1. Let A be a finite dimensional K-algebra. The category of left A-
modules is a category whose objects are left modules and whose morphisms are all module
homomorphisms between left A-modules. So, we can say that the category mod A of all

finitely generated left A-modules is a K-linear category.

Lemma 1.3.2. Let A be a finite dimensional K-algebra with f: M — N a morphism in
mod A. If dim(M) = dim(N), then f is an isomorphism if and only if f is a monomor-

phism if and only if f is an epimorphism.

Proof. Tt is well known that dim(M) = dim(Kerf) + dim(Imf). Assume that

dim(M) = dim(N).

If f is an epimorphism, then dim(M) = dim(N) + dim(Kerf), and so, dim(Kerf) = 0.
Then f is a monomorphism, and hence, an isomorphism.

If f is a monomorphism, then dim(Kerf) = 0. Therefore, dim(N) = dim(M) = dim(Imf).

Then, f is an epimorphism, and hence, an isomorphism. O

Definition 1.3.3. Let A be a finite dimensional K-algebra. A non-zero module M in
mod A s said to be indecomposable if M = My @ My implies that My =0 or My =0.

Definition 1.3.4. An algebra A is called representation-finite if its module category
admits only finitely many isoclasses of indecomposable objects. It is called representation-

infinite if it is not representation-finite.



Lemma 1.3.5. ([8], L. 8.7)

Let A be a K-algebra, e € A an idempotent, and M be a module in mod A. Then the K-
linear map 0 : Hom 4 (Ae, M) — eM, defined by 0(¢) = ¢p(e) = ep(e) for ¢ e Homy(Ae, M),

s an isomorphism of left e Ae-modules.

Lemma 1.3.6. (3], I. 4.7) Let A be a finite dimensional K-algebra. A module M in
mod A is indecomposable if and only if End(M) is local.

Proposition 1.3.7. (|1], VIL. 6.13) Let A be a finite dimensional K -algebra with M a
non-zero module in mod A. Then, M =2 M, ®...® M, where each M; is indecomposable.
Moreover, if M 2 N1 @...®& N, with each N; indecomposable, then m =n and there exists

a permutation o on {1,...,n} such that M; = Ny, for any 1 <i<n.

Definition 1.3.8. Let A be a finite dimensional K-algebra. A non-zero module S in mod

A is called simple if any submodule of S is either zero or S.

Proposition 1.3.9. Let A be a finite dimensional K-algebra and M a nonzero module

in mod A. The following conditions are equivalent.
(1) M is simple.
(2) Every morphism f: M — L in mod A is zero or a monomorphism.

(3) Ewvery morphism g: L — M in mod A is zero or an epimorphism.

Proof. (1) implies (2). Suppose that M is simple. Let f: M — L be a morphism. Since
M is simple and Ker(f) ¢ M, then Ker(f) =0 or Ker(f) = M.

If Ker(f) =0, then f is a monomorphism.
If Ker(f) =M, then f(x) =0, for any x € M. So f is zero.
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(2) implies (3). Suppose that every A-linear map f: M — L is zero or a monomorphism.
Let g: L - M be an A-linear map. Consider the canonical projection p: M — M /Im(g).
If p is zero, then M /Im(g) =0. So M =1Im(g). Then g is an epimorphism. Otherwise, p

is a monomorphism. So Im(g) = Ker(p) = 0. So ¢ is zero.

(3) implies (1). Suppose that every A-linear map ¢ : L - M is zero or an epimorphism.
Let N be a submodule of M. Consider the inclusion map j : N - M. If j is zero, then
N =0. Otherwise, j is surjective. So M =Im(j) = N. Then M is simple. ]

Corollary 1.3.10. (8], I. 5.1) Let A be a finite dimensional K -algebra. If S is a simple

module in mod A, then End4(S) is a division algebra.

Definition 1.3.11. Let A be a finite dimensional K-algebra with M a nonzero module
in mod A. A chain
O:MOCMlc"'CMm:M

of submodules of M is called composition series of M if M1/ M; is simple, for

i={0,1,...,m-1}.

Theorem 1.3.12. ([3], 1.3) If A is a finite dimensional K-algebra. Let

OZMOCMlc...CMm:M

and
0=NycNyc--cN,=M

be two composition series of a module M in mod A. Then m = n, and there exists a

permutation o of {1,...,m} such that M./ M; = Ny(jye1/Noy, for any
je{0,1,...,m-1}.

Note that, if a module M in mod A has a composition series, then any finite increasing
series of submodules of M can be refined to a composition series.
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1.4 Semi-simple Modules and Semi-simple Algebras

The main objective of this section is to introduce the notions of semi-simple modules and

semi-simple algebras.
Definition 1.4.1. Let A be a finite dimensional K-algebra. A non-zero module M in

mod A s called semi-simple if it is a sum of simple submodules.

Lemma 1.4.2. (6], 2.32) Let A be a K-algebra with M a module in mod A. If M is

semi-simple, then M = S; & --- @& S,, where S; is simple.

Definition 1.4.3. Let A be a finite dimensional K -algebra. We say that A is semi-simple
if the left A-module oA is semi-simple.

Proposition 1.4.4. ([3], 1.3) Let A be a finite dimensional K-algebra. The following

conditions are equivalent.
(1) A is semi-simple.
(2) Every right A-module is semisimple.
(3) Every left A-module is semisimple.
(4) radA =0.

Proposition 1.4.5. ([1], VIL.4.4) Let A be a finite dimensional K-algebra. Then,

A = Ajrad(A) is a semi-simple K -algebra.

1.5 Radical of Modules

In this section, we see the definitions of radical of module, top and socle. Hence, we state

some important lemmas about them.
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Definition 1.5.1. Let A be a finite dimensional K-algebra and M a nonzero module in
mod A. A submodule L of M is maximal if L # M and if L' is submodule of M such
that LS L' c M, then L' =L or L' = M.

Definition 1.5.2. Let A be a finite dimensional K-algebra with M a module in mod A.
We define the radical of M, denoted by rad M, to be zero if M =0, and otherwise, to be

the intersection of all mazximal submodules of M.

Proposition 1.5.3. (|1], VII. 1.4) Let A be a K-algebra with M a module in mod A. If
M=M,®--&M,, then rad M =rad M; @ ---®rad M,.

Lemma 1.5.4. Let A be a finite dimensional K-algebra and M a module in mod A. If

M s semi-simple, then rad M = 0.

Proof. 1f M is semi-simple, then by Lemma 1.4.2, M = M; &---@® M;, where M, are simple
modules. Then, by Proposition 1.5.3, rad M =rad M; @ --- @ rad M;. Since 0 is the only
maximal submodule of M;, rad M; =0. So rad M = 0. O

Lemma 1.5.5. (|6], 2.6.7) Let A be a K-algebra. If f: M — N is a morphism in mod
A, then f(rad(M)) crad(N).

Proposition 1.5.6. Let A be a finite dimensional K-algebra and M a module in mod

A. Then, rad M = (radA)M.

Proof. Let x € M. Then, f,: A— M :a~ ax is an A-linear map. Then, by Proposition
1.5.5, (rad(A))x = f.(rad(A)) c radM. So rad(A)M c radM. Then, M = M [rad(A)M
is a module over A = A/rad(A). By Proposition 1.4.5, A is semi-simple.

Let 2 € M with 2 ¢ rad(A)M. Then 7 is a non-zero element in M. By Proposition 1.6.9,

M is a semi-simple A-module. Also, M is a semi-simple A-module. Thus, there exists

13



map f: M — S, where S is simple, such that f(z) # 0. Let p: M — M be the canonical
projection. Then, (fp)(z) = f(z) # 0. That is, x ¢ Ker(fp).

Then, x ¢ rad M. So, rad M ¢ (radA)M. O

Lemma 1.5.7. (|3], [.3.8) Let M be a module in mod A. If L is a mazimal submodule
of M such that M /L is semisimple, then rad M ¢ L.

Proposition 1.5.8. ([8], 1.5.16) Let A be a finite dimensional K-algebra, B = AjradA,
e a nonzero idempotent of A and € = e + rad A the associated idempotent of B. The

following conditions are equivalent.
(1) Ae is an indecomposable left A-module.
(2) radAe is a unique maximal left A-submodule of Ae.

(3) Be is a simple left B-module.

Definition 1.5.9. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A. We assign to M two semisimple A-modules
top(M) = M [radM

called the top of M, and
soc(M) = ZSEAS

where A is the set of all simple submodules of M, called the socle of M.

Definition 1.5.10. A left A-submodule X of a module M in mod A is said to be essential
if XnY #0 for any non-zero left A-submodule Y of M.

Lemma 1.5.11. Let A be a finite dimensional K-algebra and M a nonzero module in
mod A. Then, soc(M) ={x e M | (radA)-x =0}.
14



Proof. Write T' = {x € M | (radA) - = = 0}, which is clearly a submodule of M. We know
that soc(M) is semi-simple and by Proposition 1.9.7, rad(socM) = 0. Also by Proposition
1.5.6, we have (radA)(socM) = 0. So it means that soc(M) cT.

Let x € T be nonzero. We consider S = Az. Then rad(S) = (radA)(Az) = ((radA)A) -z =
rad(A) -z = 0. So S is semi-simple by Proposition 1.4.4. This means that S ¢ socM.
Therefore, T' ¢ soc(M). Hence, soc(M) =T. O

Lemma 1.5.12. Let A be a finite dimensional K-algebra and M a nonzero module in

mod A.
(1) If topM is simple, then M is indecomposable.
(2) If socM is simple, then M is indecomposable.
Proof. (1) Assume that M = M; @ M, such that, M, # 0 for any i € {1,2}. Then, we have

topM = topM; @topMs. Since M; is finite dimensional, radM; # M;. Then, M;/radM; # 0.

So topM is not simple, a contradiction.

(2) Assume that M = M; & M, such that, M; # 0 for any i € {1,2}. Since, socM is the
sum of simple submodule of M, socM n M; # 0 is essential for any i € {1,2}. Then, we
have 0 # (socM n M;) € socM and socM ¢ M; for any i € {1,2}. Hence, socM ¢ M; n Mo,

a contradiction. O

1.6 Projective and Injective Modules

Now, we introduce the notions of projective and injective modules.

Definition 1.6.1. Let A be a finite dimensional K -algebra. An A-module P in mod A is

said to be projective if for any epimorphism u: M — N the induced map Hom (P, u) is

15



surjective, or for any epimorphism u: M — N and any morphism f: P - N, there exists

a morphism f': P — M such that f =uf".

Lemma 1.6.2. Let A be a K-algebra. If P is a projective module in mod A, then every

epimorphism f: X — P is a retraction.

Proof. Suppose that P is projective module. Let f: X — P be an epimorphism. Consider
idp : P - P. So, by the definition of projective modules, there exists v : P - X such that

fv=1idp. So f is a retraction. m

Proposition 1.6.3. ([8], I. 8.2)

Let A be a finite dimensional K -algebra with M = M, & --- & M,, , where M; are modules
in mod A. Then M is projective if and only if M; is projective, for i€ {1,... ,n}.

Proposition 1.6.4. Let A be a K-algebra. Then 4 A is projective.

Proof. Let f: M — N be an epimorphism. If g : A > N is A-linear, then z = g(1) € N.
As f is epimorphism, = = f(y) for y € M. We claim that the following map h is A-linear.

h:A—-M:a~ ay
Indeed, for any «, 8 € A, and ay,as € A, we have
h(aay + fag) = (aay + fag)y = aary + fasy = ah(ay) + fh(as).

Moreover, for any a € A, g(a) - fh(a) = g(a) - f(ay) = ag(1) —af(y) = ax — ax = 0. Then,
g = fh. So A is projective. B

Corollary 1.6.5. (6], 2.22) Let A be a finite dimensional K -algebra. If e is an idempotent
in A, then A= Ae® A(1-e). In particular, Ae is projective.
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Proposition 1.6.6. ([8], 1.8.2) Let A be a finite dimensional K -algebra and ey, ... e, a

set of primitive orthogonal idempotents of A with 14 =e1+---+e,. Then,

(1) A= Ae; @@ Ae, is a decomposition of A into a direct sum of indecomposable

projective left A-modules.

(2) Every nonzero projective module P in mod A is a direct sum P = P, & - & Py,

where each module P;, j € {1,...,m}, is isomorphic to a e;A with i € {1,...,n}.

Definition 1.6.7. An A-module I is said to be injective if, for any monomorphism

v:M — N, the induced map Homy(v, 1) : Homu(N,I) - Homs (M, 1) is injective, or
equivalently, for any monomorphism v : M — N and any morphism g : M — I, there

exists a morphism g': N - I such that g = g'v.

Lemma 1.6.8. Let A be a K-algebra. If I is an injective A-module, then any monomor-

phism g: I - X 1is a section.

Proof. Suppose that [ is an injective module. Let g : [ - X be a monomorphism. Consider
tdy : I — I, by the definition of injective, there exists v : X — I, such that vg =id;. So g

is a section. ]

Proposition 1.6.9. ([1], V.7.1) Let A be a finite dimensional K -algebra. The following

conditions are equivalent.
(1) A is semi-simple.
(2) Any module in mod A is semi-simple.
(3) Any module in mod A is projective.

(4) Any module in mod A is injective.
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Corollary 1.6.10. Let A be a finite dimensional K-algebra. If A is semi-simple, then

A=P & @ P,, where P; is simple and projective.

Proof. If 4A is semi-simple, by Lemma 1.4.2, 4A= P, ®...® P,, where P, is simple. Since

4A is projective by Proposition 1.6.4, each P; is projective by Lemma 1.6.3. ]

1.7 Projective Cover and Injective Envelope

In this section, we introduce the concepts of projective covers and injective envelopes.

Definition 1.7.1. Let A be a finite dimensional K-algebra. A submodule L of a module
M in mod A is called superfluous if for every submodule X of M the equality L+ X = M
mmplies X = M.

Definition 1.7.2. Let A be a finite dimensional K -algebra. An epimorphism f: M — N
in mod A is said to be minimal if Kerf is superfluous in M. A morphism f: P — M in
mod A is called a projective cover of M if P is a projective module and f is a minimal

epimorphism.
Theorem 1.7.3. ([8], 1.8.4) Let A be a finite dimensional K-algebra. For any nonzero
module M in mod A, there exists a projective cover
h:P(M) - M.
Moreover, the induced homomorphism top(h) : top(P(M)) — top(M) of semisimple

modules in mod A is an isomorphism.

Definition 1.7.4. A monomorphism g : L - M in mod A is called minimal if every

nonzero submodule X of M has a nonzero intersection with Img. A monomorphism
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g:L— 1T 1 mod A is called an injective envelope of L if I is an injective module and g

s a minimal monomorphism.

Theorem 1.7.5. ([8], .8.18) Let A be a finite dimensional K-algebra. For any nonzero

module M in mod A, there exists an injective envelope
w: M — E(M)

such that the induced homomorphism soc(u) : soc(M) — soc(E(M)) is an isomorphism.

Proposition 1.7.6. ([1], VIII.2.1, 2.4) Let A be a finite dimensional K -algebra with M

a module in mod A.

(1) An epimorphism f: P — M in mod A is a projective cover of M if and only if P
is projective with Ker(f) c radP.

(2) A monomorphism g: M — I in mod A is an injective enveloppe of M if and only
if 1 is injective with Socl ¢ Im(g).

1.8 Exact Sequences of Modules

Before studying almost split sequences in chapter 3, we need a few notions in this section.

Definition 1.8.1. Let A be a finite dimensional algebra. A sequence

hnfl hn
iand n—l_)Xn_)XnJrl_)"'

of morphisms in mod A is called exact at X,, if Kerh, = Imh,,_1 for any n. In particular,
an exact sequence

0-LLME NS0
18 called a short exact sequence.
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Lemma 1.8.2. Let A be a finite dimensional algebra. A sequence O - L ERY VRS YR 0
in mod A is a short exact sequence if f is a monomorphism, g is an epimorphism and

Imf = Kerg.

Lemma 1.8.3. (|1], I1.3.6) Consider a commutative diagram with ezact rows of A-

modules and linear maps.

=~
S
~
<
~
=
~
e}

A

0 s I s My N

~

There is an exact sequence Kerf —> Kerg — Kerh % Cokerf —> Cokerg —> Cokerh

where uy, vy are deduced by Ker and uq, vy are deduced by Coker. In addition,
(1) If u is a monomorphism, then uy is a monomorphism.

(2) Ifv' is an epimorphism, then vy is an epimorphism.

Definition 1.8.4. Let A be a finite dimensional K-algebra. Two short exact sequences
in mod A, 0—>Li>Mi>N—>O andO—>L’i>M’g—>N’—>O are said to be isomorphic

if there is a commutative diagram

[a=)
~
t~
~
@
~
=
~
e}

lw

0 s M —2 5 N7 s 0

~
h
~

in mod A, where u,v,w are isomorphisms. We note that v is an isomorphism if u and w

are 1somorphisms.

Definition 1.8.5. A short exact sequence 0 - X Ly %z 0 in mod A is said to
split, where f' is the canonical injection, g’ is the canonical projection and if there exists

a morphism h:Y — X & Z such that the diagram commutes.
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0 s X —1L sy 9 Ly ' 0
’del lh l’tdz
il g
0 s X s Xo s A s 0

Proposition 1.8.6. (6], 2.1.7)

Let A be a finite dimensional algebra with 0 — L LML NS 0 a short exact sequence

in mod A. The following statement are equivalent.
(1) The short exact sequence splits.
(2) f is a section.

(3) g is a retracction.

1.9 Radical of the Module Category

In this section, we have some results about the radical rad(mod A) of mod A. A map
in rad(mod A) will be called a radical map. The following result gives us a link between

the indecomposable A-modules and rad(mod A).

Proposition 1.9.1. ([6], 2.7) Let A be a finite dimensional K -algebra, and let f: M — N

be a morphism in mod A.
(1) If M is indecomposable, then f erad(M,N) if and only if f is not a section.
(2) If N is indecomposable, then f erad(M,N) if and only if f is not a retraction.

(3) If M and N are indecomposable, then f € rad(M,N) if and only if f is not an

1somorphism.

Corollary 1.9.2. Let A be a K-algebra with S a simple module in mod A.
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(1) If S is projective, then rad(M,S) =0, for any A-module M.
(2) If S is injective, then rad(S,N) =0, for any A-module N.
Proof. (1) Let f erad(M,S). Suppose that f is not zero. Since S is simple, by Proposition

1.3.9(3), f is an epimorphism. Since S is projective, f is a retraction, which contradicts

Proposition 1.9.1 (2). So rad(MM, S) = 0.

(2) Let g € rad(S, M). Suppose that g is not zero. Since S is simple, by Proposition
1.3.9(2), ¢ is a monomorphism. Since S is injective, g is a section, which contradicts

Proposition 1.9.1(1). So rad(S, M) = 0. O

Lemma 1.9.3. ([8|, II1.1.4) Let X and Y be indecomposable modules in mod A. Then,
the following statements hold.

(1) rada(X,Y") is the subspace of Hom4(X,Y") formed by all nonisomorphisms.

(2) rads(X,Y) = Homa(X,Y) if X 2Y.

Proposition 1.9.4. Let A be a K-algebra and f € Homa(A, A). Then f is in rad(A, A)
if and only if f(1) erad(A).

Proof. By Corollary 1.1.13, an endomorphism f: A - A of K-algebras is right invertible
if and only if f(1) is left invertible.

Necessity. Suppose that f erad(4A4, 4A). Consider f(1) € A. For any z € A, by Corollary
1.1.13, there exists g € Hom4(A, A) such that g(1) = z. Since f e rad(44, 4A), ids — fg
is right invertible. Thus, (id4 — fg)(1) is left invertible.

Now, 1-zf(1)=1-g(1)f(1)=1-f(g(1)-1) =ida(1) = (fg)(1), which is left invertible.
So f(1) erad(A).

Sufficiency. Suppose that f(1) € rad(A). For any g € Hom4(A, A), we have g(1) € A.
Then (ida - fg)(1) =ida(1) — f(g(1)-1) =1 -¢g(1)f(1), which is left invertible. Then,
id4 — fg is right invertible. So, f e rad(4A, 4A). ]
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Proposition 1.9.5. ([5], 1.15)

Let A be a finite dimensional K-algebra. Then rad A s the unique nilpotent ideal of A
such that AfradA is semi-simple.

Proposition 1.9.6. ([6], 2.8) Let A be a finite dimensional K-algebra. If rad"(mod
A) =0 for somen >1, then rad"(A) = 0.

Proposition 1.9.7. Let A be a finite dimensional K-algebra. Then, rad(mod A) =0 if
and only if A is semi-simple.
Proof. Necessity. If rad(mod A) = 0, by Proposition 1.9.6, rad(A) = 0. Then A is semi-

simple.

Sufficiency. Suppose that A is semi-simple. Let M, N be two non-zero A-modules. Then,

by Proposition 1.6.9, M = S;®...® S;, where S; are simple and injective modules. Then
t

by Corollary 1.9.2, rad(M, N) = @rad(S;, N) = 0. O

i=1

1.10 Standard Duality

Now, we introduce the principle of duality, which will be a powerful tool in the proofs.

Let A be a finite dimensional K-algebra. Recall that mod A stands for the category of fi-
nite dimensional left A-modules. We denote by mod A°P the category of finite dimensional

right A-modules. We define the functor
D :modA — modA°P

by assigning to each module M in mod A the dual K-vector space
M* =Homg (M, K)
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endowed with the right A-module structure given by the formula (pa)(m) = ¢(am) for
p € Homg (M, K), a€ A and m € M, and to each A-linear morphism h: M — N the dual

K-linear morphism
D(h) =Hompg(h,K): D(N) - D(M): ¢ — ¢h,

which is a morphim of right A-modules. It is well known that D is a duality of categories,

called the standard K -duality. The quasi-inverse of the duality D is also denoted by
D : modA°® - modA

and is defined by assigning to each right A-module Y the dual K-vector space

D(Y) = Y* = Homg(Y, K) endowed with the left A-module structure given by the
formula (ap)(y) = ¢(ya) for ¢ € Homg (Y, K), a € A and y € Y. It is easy to verify
that the evaluation map ev : M — M**  given by the formula ev(m)(¢) = ¢(m) for
m € M and ¢ € D(M), defines natural equivalences of functors ly,qa 2 D o D and

lmodaor 2 Do D.

Proposition 1.10.1. ([8], [.8.16) Let A be a finite dimensional K-algebra and D the

standard duality between mod A and mod A% .

(1) A module E in mod A is injective if and only if the module D(E) in modA° is
projective.

(2) A module P in mod A is projective if and only if the module D(P) in modA°P is
mjective.

(3) A module M in mod A is indecomposable if and only if D(M) is indecomposable.

(4) A module S in mod A is simple if and only if the module D(S) in modA°P is
simple.

(5) A module M in mod A is semisimple if and only if the module D(M) in modA°P

18 semistmple.
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(6) For every nonzero module M in mod A, we have D(topM) = soc(D(M)) and
D(socM) = top(D(M)).

Proposition 1.10.2. (6], 2.9) Let A be a finite dimensional K-algebra. For any n > 1,
rad”(mod A)= 0 if and only if rad" (mod A°P)= 0.

Proposition 1.10.3. Let A be a finite dimensional of K -algebra. Then A is semi-simple

if and only if A°P is semi-simple.

Proof. By Proposition 1.9.7, A is semi-simple if and only if rad(modA) = 0 if and only if
rad(modA°P) = 0 if and only if A°P is semi-simple. ]

Definition 1.10.4. Let A be a finite dimensional K-algebra with a complete set of or-
thogonal primitive idempotents {e1,---,e,}. We say that A is basic if Ae; £ Ae;, for all

1#].

Proposition 1.10.5. ([8], I. 8.2, 5.17, 8.19) Let A be a basic finite dimensional K-
algebra with a complete set of orthogonal primitive idempotents {ey,--+,e,}. Put P; = Ae;,

S; = P;JradP; and I; = D(e;A), fori=1,... n.

(1) {P1,...,P,} is a complete set of representatives of the isomorphism classes of in-

decomposable projective modules in mod A.

(2) {S1,...,S.} is a complete set of representatives of the isomorphism classes of simple

modules in mod A.

(3) {61,...,1,} is a complete set of representatives of the isomorphism classes of inde-

composable injective modules in mod A.
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CHAPTER 2

Quivers and Algebras

We introduce the basic concept of quivers and path algebras which we need to prove the

main theorem. The definitions and results are taken from [3, 6, 2, 7].

2.1 Quivers

A quiver is a graphical object in which one can encode much of the structural information

of an algebra. So, in this section, we see the definition of quiver and path.

Definition 2.1.1. A quiver is a quadruple Q = (Qo,Q1,$,t), where Qq is the set of
vertices, ()1 is the set of arrows, and s,t: Q1 - Qo are maps, which associate to each
arrow « € @y its source s(a) and target t(«), respectively. Moreover, an arrow o is

written as a: s(a) - t(a).

A quiver @ is said to be finite if Qg and () are finite sets. Throughout this thesis, all
quivers are finite.

Example 2.1.2. The following graph is an example of a quiver :
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1—252-"43 Qv
where Qo = {1,2,3} and Q1 = {«,B,7}. Then, we have s(a) = 1,t(a) = s(5) = 2,s(7) =

t(B) =t(y) = 3.

Definition 2.1.3. Let Q = (Qq,Q1, s,t) be a quiver and a,b € Qq. A path of length [ > 1

with source a and target b is a sequence
(b|Oél, e, Qlg, Oél|(l)

where ay € Q1 such that s(ay) = a, s(ags1) = t(ag) for 1 <k <1, and t(ay) = b. Such a

path will be written as ay---asc; and may be visualized as follows
aq Q
a=ay— ay —>--—a;=b,

where ay 1s called the initial arrow, and o the terminal arrow. Moreover, with each
vertez a € Qgy, one associates a path = (a|la) of length 0, called the trivial path at a and

denoted by ,. Given any [ > 0, the set of all paths of length | in Q) is denoted by Q).

Definition 2.1.4. A path of length | > 1 is called an oriented cycle when its source and

target coincide. A quiver is called acyclic if it contains no oriented cycles.

2.2 Algebras Given by a Quiver

The usual composition of paths in a quiver can be used to define an algebraic structure.

In this section, we see the definition of path algebra and propositions that we need.

Definition 2.2.1. Let () be a quiver. The path algebra KQ of Q) over K is the K-algebra

whose underlying K -vector space has as basis the set of all paths (blay, -, ai]a) of length
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120 in Q and such that the product of two basis vectors (blay, -, ayla) and (d|ay, -+, Bi|c)
of KQ is defined by

(Blow, -+, anfa) (dlan, -+, Brle) = dve(dlan, -+, B1, 0, -+, cnla)

where Op. denotes the Kronecker delta. In other words, the product of two paths c---q

and By-+-Py is equal to zero if t(oy) # s(B1) and is equal to the concatenation ay---cy By

if t(ay) = s(51).

Example 2.2.2. Consider the following quiver :

Y

.3%.1

A

oy

)

Then, a K-basis of KQ is {e1,¢e2,€3,64,, B,7}. Also, there is a K-algebra isomorphism

112

KQ

I
o O O
o OO
> O O O

Lemma 2.2.3. (|3], I1.1.5) Let Q be a finite quiver. The element 1 =Y &, for any a € Qq
is the identity of KQ and the set {e, | a € Qo} of all the trivial paths €, = (al|a) is a

complete set of primitive orthogonal idempotents for KQ).

Definition 2.2.4. Let ) be a finite quiver. The two-sided ideal of the path algebra KQ
generated by the arrows of Q) is called the arrow ideal of KQ and is denoted by Rg. Note

that Rg, as a K-vector space, has a direct sum decomposition

Ro=KQ19KQ:0-—-®KQ &,
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where kQ, denotes the K-vector space with Q; as a basis. Moreover, one denotes by Ry
the two-sided ideal of KQ generated by Qn,. The underlying K-vector space of Ry is a

direct sum

R% =D KQ.

I>m

So Ry, as a K-vector space, is generated by the paths of length > m in Q.

Definition 2.2.5. Let ) be a finite quiver and R¢ be the arrow ideal of the path algebra
KQ. A two-sided ideal I of KQ is said to be admissible if there exists m > 2 such that

RTQ”QIQR%.

In this case, the pair (Q,I) is said to be a bound quiver and the quotient algebra KQ/I
is said to be the algebra of the bound quiver (Q, 1), or simply, a bound quiver algebra.

Proposition 2.2.6. Let () be a finite quiver.

(1) If I is an admissible ideal of kQ, then A= KQ/I is finite dimensional.

(2) The zero ideal of KQ is admissible if and only if Q is acyclic.
Proof. (1) Let I be an admissible ideal of K@), then there exists m > 2 such that R™ c I,
where R is the arrow ideal Rg of KQ.
Then, there exists an epimorphism K@Q/R™ — K@Q/I. Thus, it is enough to prove that
KQ/R™ is finite dimensional. The residual classes of the paths of length less than m form

a basis of KQ/R™ as a K-vector space. Because there are only finitely many such paths,

our statement follows.

(2) The zero ideal is admissible if and only if there exists m > 2 such that R =0, so any
product of m arrows in K() is zero. This is the case if and only if @) is acyclic. O
Proposition 2.2.7. ([6], 3.2.7) Let Q be a quiver of n vertices and Rg the arrow ideal of
K@. Then, KQ[Rg = K™, the product of n copies of K, which is a semi-simple algebra.
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Let A= KQ/I, where @ is a quiver and [ is an admissible ideal of K Q. For any p € kQ),

we write p = p+ I. In particular, we write e, = €, + I, where ¢, is the trivial path at a.

Proposition 2.2.8. Let A = KQ/I, where Q is a finite quiver and I is an admissible
ideal of KQ.
1) rad(A) = Rg/I ={X; \iDi | i € K;p; are non-trivial paths in Q} .

(
(2) {ea|acQo} is a complete set of orthogonal primitive idempotents of A.
(3) P, = Ae, is an indecomposable projective module in mod A.

(

4) I, = D(e,A) is an indecomposable injective module in mod A, where D is the stan-

dard duality from mod A°P onto mod A.

Proof. (1) Since I is admissible ideal of K@), there exists m > 2 such that R™ c [.
Consequently, (R/I)™ = 0. So R/I is a nilpotent ideal of K@Q/I. By Proposition 2.2.7,
(KQ/I)(R/I) 2~ KQ/R is isomorphic to a direct product of K. Then, by Proposition

1.9.5, rad(A) = R/I.

(2) We have the canonical homomorphism K@ — KQ/I, where e, is the image of &,.
By Lemma 2.2.3, the given set is a complete set of orthogonal idempotents. We need to
show that e, is primitive, that is, the only idempotents of e,(KQ/I)e, are 0 and e,. We
can write any idempotent e of e,(KQ/I)e, in this form e = A\e, + w + I, where A € K and

w is a linear combination of cycles through a of length > 1. €2 = e gives
(A= Nea+ (A -1Dw+w? e 1.

Since R is the arrow ideal of K@ and I ¢ R?, we must have A2 =X = 0. So A =0 or
A=1.If A=0, then e = w + I, where w is idempotent modulo I. Also, Ry clI for some
m > 2, so we have w™ € I. Thus, w is also nilpotent modulo I. Consequently, w € I and
e are zero. If A =1, then e, —e = —w + I is an idempotent in e,(KQ/I)e,. So, w is again
idempotent modulo I. Like before, it is also nilpotent modulo . So, it must belong to 1

and consequently, e, = e.

30



n

(3) Let u = )\ea+z vi(a;+1) in e, Ae, where a; are oriented cycles from a to a, A and ~; are
i1

n l
in K. Then, (Z vila;+1))™ = Z wiB;+1 where B; are oriented cycles from a to a of length
i=1 i=1

l
at least m. Thus, 8; € R™ c I. Thus, (Z ~i(a;+1))™ =0+ 1. If A =0, then u is nilpotent.

i=1
So by the lemma 1.1.9, e, —u is invertible. If A # 0, let v’ = { = ¢, + Z %(ai +1).
i=1
So, Z%(ai + I) is nilpotent, and by lemma 1.1.9, u/ is invertible. This implies that
i=1
u = Au' is invertible. Therefore, by proposition 1.1.7, the algebra e, Ae, is local. Also by
proposition 1.1.12, End(Ae,) = (e,Ae,)P. Since e, Ae, is local, End(Ae,) is also local

and then, by Proposition 1.3.6, Ae, is indecomposable. Moreover, as ¢, is an idempotent,

by lemma 1.6.5, P, = Ae, is projective.

(4) By Propositions 1.10.5(3) and 2.2.8(3), I, is an indecomposable injective module.

Lemma 2.2.9. Let A=FkQ/I, where Q is a finite quiver and I is an admissible ideal of

KQ. If a:a — b is an arrow in QQ, then we have a radical A-linear map

Pla]: P, - P,: v+~ va.

Proof. First, a = ae, = eya. Given v € B, we have va = (vav)e, € radP,. Thus, P[a] defines
a map from P, to P,, whose image is contained in radP,. In particular, P[&] is not an
epimorphism. Moreover, for any u € A, we have P[a](uv) = (uwv)a = u(va) = uP[a](v).
So P[a] is a morphism in mod A. Since P, and P, are indecomposable, by Proposition

1.8.1, P[a] erad(P, P,). O
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2.3 Monomial Algebras

In this section, we consider monomial algebras to calculate the indecomposable projective
and injective modules with a point a € Q)y. Also, we will see the properties of radical and

socle with an admissible monomial ideal.

Definition 2.3.1. A two-sided ideal I in KQ is called monomial if it is generated as
a two-sided ideal by a set {p1,...,pr} of paths of length at least two in Q. In this case,
A[I is called a monomial algebra. Moreover, a path in Q) is called non-zero if p ¢ I, or

equivalently, p is non-zero in AJI.

Lemma 2.3.2. Let () be a finite quiver and I be a monomaial ideal of kQ. If u =%, \i(; € I,
where Ai,...,\. € K* and (y,...,( are pairwise different paths in @), then (q,...,( € 1.

Proof. By the hypothesis, I =< pq,...,p, >, where py,...,p, are paths of length at least
two in Q. Let u = 3, \;(; € I, where \q,..., A\, € K* and (3,...,(, are pairwise different
paths in Q. Then, ¥, \i(; = ¥, 11;p;6;4;, where p; € K and pj,q; are paths in @ and
& € {p1,...,pr} such that the p;&;q; are pairwise different. Recall that the paths are
linearly independent in kQ). So, for each i, we have (; = p;{;q; for some j. Since {; € I, we

have (; € I for any 1. ]

Lemma 2.3.3. Let A =kQ/I, where Q is a finite quiver and I is an admissible monomial

ideal. If p,C are non-zero paths in Q, then p=C if and only if p=C.

Proof. The sufficiency is evident. Let p, be non-zero paths in @ such that p = . Then,
p—Cel. If p#(, then p,( € I by Lemma 2.3.2. This contradicts our assumption. So,

p=C. O

Proposition 2.3.4. Let A = KQ/I where Q is a quiver and I is admissible monomial
ideal of KQ. For any point a in g, put P, = Ae,. Then,
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(1) P, has as a K-basis the set of classes modulo I of non-zero paths starting with a.

(2) radP, has as a K-basis the set of classes modulo I of non-zero non-trivial paths

starting with a.
(3) S, = P,/radP, is simple.

Proof. (1) Since [ is admissible and monomial, I =< py,...,ps >, where py,...,p, are
paths of length at least two in (). Moreover, there exists an integer m > 2 such that
R™ c . In particular, every path of length at least m lies in /. So the non-zero paths are
of length < m. Since @ is finite, the number of non-zero paths is finite. Let p1,po, ..., p;
be the pairwise different non-zero paths starting with a, where p; = ¢,. By Lemma 2.3.2,

pr+1,po+1,...,p;+ 1 are linearly independent.

Let u = ve, € P,, where v e A. Write v = Z)\ (pi+1)+ Z,u] ;+1), where \;, p1; € K, and
i=1
q; are non-zero paths not starting with a. Then

t ¢
uzveazZ)\i(pi+[)ea+zuj(qj+1)ea=Z)\i(pi+l)+(0+l):Z)\i(pi+1).
i=1 i i i=1
So P, has a K-basis {p1+1I,...,p;+I}.

(2) Let {p2,...,p:} be the set of non-trivial paths starting with a.

As seen above, ps +1,...,p; + I are linearly independent.

On the other hand, radP, = (radA)(Ae,) = (radA)e,. Let u e radP,. Then u = ve, with
v € radA. By Lemma 2.2.8(1), rad(A) = Rg/I. Thus, v = Z)\ (pi+1) Z,uj(qj +1),

where \;, u; € K, and the g; are non-trivial non-zero paths not stating Wlth a. Then
t t t
u=veq =y N(pi+1)ea+ D pi(qi+1)eq =2 N(pi+ 1)+ (0+1)=> N(pi +I).
i=2 i i=2 i=2
So {p2+1,--,ps+ 1} is a K-basis of radP,.

(3) By Statement (2), e, ¢ radP,. Thus, e, # 0. Let u + radP, € P,/radP,, where u € P,.
By Statement (2), u = ue, + ¥; \i(p; + 1), where \;, n € K and the p; are non-trivial path
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starting with a. By Statement (2), u — ue, € radP,. Hence, {e, + radP,} is a K-basis of

S,. In particular, the dimension of S, is 1. So S, is a simple module. m

Fix a point a in Qy. Let Q;(-,a) denote the set of non-zero paths ending at a in Q.
Put P° = e,A € modA° and I, = Homg (e, A, K) = D(P°) € modA. By the dual of
Proposition 2.3.4, P? is an indecomposable projective module in modA°P, which has as a
K-basis {p|peQi(—,a)}. For each p € Q;(-,a), we denote by p* the K-linear function
from e, A to K such, for any g€ Q;(-,a), that p*(7) =1 if n=p and p*(7) =0 if p 7.

Proposition 2.3.5. Let A = KQ/I, where Q is a finite quiver and I is an admissible
monomial ideal of KQ. For each vertex a € (), the indecomposable injective module I,

has as a K-basis {p* | pe Qr(—,a)}, called the dual basis of {p|peQr(—,a)}.

Proof. Write Q;(-,a) = {p1,-..,pn}. Let [ :e,A - K and put \; = f(p;) € K. We
claim that f = ¥, A\jp;. For any u = Y0, pp; € e A, where p; € K, then we have
fQu)=3"% 0w f(p;) = X1 ;. On the other hand, we have

(ZMJ(U)— Z Xipy (p5p;) = Z Xitt;py (p;) = Z%u;p] (p;) = Z&ug

i,5=1 4,5=1
So f =Y \ip;. It remains to show that Prs o, pE are linearly independent. Assume
that Z)\Zpl = 0, where \; € K. Then, (Z Xip; ) (u) = Z)\lpl (u) =0, for any u € e, A.

i=1
Taking u = p;, we have

0:ZAlﬁ:(ﬁJ):)\Jﬁ;(ﬁj)—i_z)\lp;(ﬁﬂ):)\]1+Z)\’O:>\J’ forjzl,...,n.

1=1 i#] 1#]

So py,...,p; are linearly independent. Hence, {p7,...,p:} is a K-basis of I,. ]

Lemma 2.3.6. Let A= KQ, where Q) is a finite quiver and I is an admissible monomial

ideal of KQ. Consider the indecomposable injective module 1, for some a € Q.
(1) If neQr(-,a), then 7-7* =e.
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(2) If n is a non-trivial path in Q, then 7-e: =0.

Proof. (1) Let n € Q;(-,a). Then, (7-7*)(es) = 7*(eq - 77) = 7*(77) = 1. Consider a non-
trivial path ¢ € Q;(-,a). Then, (7-7*)({) = 7*({ - 7). If {,n are not composable, then
(-7 =0, and hence, (77-7*)(¢) = 0. Otherwise, (1 is a path whose length is greater
than the length of 7. In particular, ¢n # 1. By Lemma 2.3.3, (n # 7. Therefore, we have

(-7*)(C) = 7*(C-77) =77 (Cn) = 0. So 77-77* = €.

(2) Let n be a non-trivial path in Q. Given any p € Q;(-,a), by definition, we have
(7-e2)(p) =e:(p-1). Now, either pn =0 or pn is a non-trivial path in Q;(-,a). In either
case, e:(p-7) = 0. Therefore, 77- ¢} = 0. O

Lemma 2.3.7. Let A = KQ, where QQ is a finite quiver and I an admissible monomial

tdeal of KQ. For any a € (g, socl, = K <e} >2 S,.

Proof. We write Q;(-,a) = {€4,p1,---,p:}, where pyi,...,p; are non-trivial paths. By
Proposition 2.3.5, I, has a K-basis {e},p7,...,p;}. For any f € [,, by Lemma 1.5.11,
f esocl, if and only if (radA)- f = 0. By Lemma 2.3.6(2), 77- e = 0, for any non-trivial
n in Q. That is, (radA) - e = 0. Hence, K < e >c socl,. For the other inclusion, assume
that f e socl,. We can write f = \.el + Zle Aipi*, where \,, \; € K. For any j such that
1<j<t, by Lemma 2.3.6(2), we have
0= (P

= Aa(pj-€i)(€a) + Tici Ai(pjpi") (€a)

= Aa€s(eaps) + Liea Xi(pi*)(p5)

= Aaes(pj) + N5 (ps)

= )\J
So it means that f = A\,e} € K <e’ >. Then socl, ¢ K <e} >. Therefore, socl, = K <e} >,

which is a simple module. Finally, by Lemma 2.3.6(1), e, e} = e # 0. Thus, e, -socl, # 0.
So socl, = S,. O
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Let a:a — b be an arrow in (). Then we have a right A-linear map
Pola]:e,A— epA:v > av.

Applying D = Homg (-, k), we obtain a left A-linear map I[a] = D(P°[a]) : [ - I,. If
f eI, =Homg (e, A, K), then I[a](f) = D(P°[a])(f) = f o P°[a]. Therefore, for v € e, A,
we obtain

Ia](f)(v) = (f e P°la])(v) = f(P°[a])(v)) = f(av).
This A-linear map is explicitly described in the following statement.

Lemma 2.3.8. Let A= KQ/I, where Q is a finite quiver and I is an admissible monomial
ideal of KQ. Given an arrow «:a — b in Q, the A-linear map I[a]: I, — I, is a radical

map. Moreover, for any p € Qr(-,b), we have

[[07](7*)2 7_7*7 ifp:an7 fO?” Somente(_7a);
p 0, if o is not the terminal arrow of p.

Proof. Let p € Qr(—,b). Assume first that p = an, for some 1 € Q;(—,a). We claim that

I[a](p*) = 7*. By using the multiplication mentioned above, we have
a](p*)(7) = p*(a-n) = p*(p) = 1.

If (e Q;(~,a) with ¢ #n, then a-( # a-1) = p. Since I is monomial, aC # p. Therefore,
I[al(p*)(€) = p*(@-¢) = p*(aC) = 0.

This shows that I[a](p*) = 77*.

Assume now that « is not a terminal arrow of p. For any ( € Q;(-,a), we have a-( # p.

Since I is monomial, a¢ # p. So
[a)(p")(¢) = p*(@-¢) = p*(a¢) = 0

So I[a](7*) = 0. O

Qi
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2.4 Representations of a Quiver

As we have seen in previous sections, quivers provide a convenient way to visualise finite

dimensional algebras. In this section, we explain how to use quivers to visualise modules.
Definition 2.4.1. Let Q be a finite quiver. A K-linear representation, or simply, a
representation, M of Q) is defined by the following data :

(1) With each vertex a in Qo is associated a K -vector space M(a).

(2) With each arrow a:a — b in @y is associated a K -linear map

M(«): M(a) - M(D).

Let M, N be representations of (). A representation morphism f : M — N consists of
a family of K-linear maps f, : M(a) - N(a), with a € Qqo, such that for each arrow

a:a—b, the following diagram is commutative :

M(a) 2% prp)

| I

N(a) 2% N(b).

A representation M of Q is called finite dimensional if M(a) is finite dimensional, for

every a € QQg. The category of finite dimensional k-linear representations of (Q will denoted

by rep(Q).
Example 2.4.2. Let (Q be the quiver
.

2
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We have the following representation

K\HK2<—K.

gl

Let A = K@, where @ is a finite acyclic quiver. Given a module M in mod A, we associate
a representation M in rep(Q) as follows. For a € Qo we put M(a) =e,M;andfora:a —b

in ()1, we define a K-linear map

M () : M(a) — M) :ura-u.

In this way, we obtain the following result.

Proposition 2.4.3. (]3], I11.1.6) Let A= KQ, where Q is a finite acyclic quiver. There

exists an equivalence of K-linear categories

F:modAirep(Q):MHM.

In the sequel, for the simplicity of the notation, we shall identify a module M in mod A
with the representation M in rep(Q).

Lemma 2.4.4. ([3], [11.2.4) Let A = KQ, where Q is a finite acyclic quiver. For a € Q,
the indecomposable projective module P, can be identified with the representation

P, ={P.(2), Pa(®) }2eQo:aiz—ye,» Where Py(x) is the K-vector space having Q(a,x) as a
basis, and P,(«) : P,(x) - P,(y) is the left multiplication by o.

Lemma 2.4.5. ([3], [11.2.6) Let A = KQ, where Q is a finite acyclic quiver. For a € Q,

the indecomposable injective module I, can be identified with the representation
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I, ={I1.(2), 1.() }2e0p:ac0, » Where 1,(x) = D(e,Aey) is the K -vector space having Q(z,a)
as a basis, and I,(a) = D(P2(«)) : D(eq,Ae,) - D(e,Aey) for each arrow a:x — y.

Proposition 2.4.6. (|3], I11.2) Let A= KQ, where Q is a finite acyclic quiver.
For each vertex a € QQy, the simple module S, at a is identified with the representation

Sa = (Sa(b)asa(a))ber;ate, where

K, ifb=q
S“(b)‘{o, if b+ a,

and S,(a) =0, for any a € Q.

Lemma 2.4.7. ([3|, [11.2.2) Let Q be a finite acyclic quiver. If M is a finite dimensional
representation of QQ, then radM is the representation with (radM)(a) = ¥ geq, (-.a) Im(M(53))
for every a € Qq, and (radM)(«) : (radM)(a) - (radM)(b) is obtained by restricting the
K-linear map M(«): M(a) — M(b) for every arrow o :a — b.

Example 2.4.8. Let A be the path algebra of the following linearly oriented quiver

«
a—=b——sc.

Then
(1) radP, 2 P, andradP, 2 P. 2 S..
(2) I.[/socl.z I, and Iy[/socl, 2 1, =S,.

(3) P~ 1.

Proof. We know that A = K < e,4,¢&p, 6., @, 3, Ba > . By using the Propositions 2.4.4 and

2.4.3, we have the indecomposable projective modules as follows :

P,=Ae, =K <ey,a,Ba>
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By Proposition 2.4.3, P, is represented by the following K-linear representation :
P,: K<sa>L>K<a>i>K<Ba>,
where a- and - denote the left multiplications by a and [ respectively. Then, we have

the following isomorphism of representations :

K<€Q>L>K<a>L>K<5a>

TR R

K d_ K d_ K

Y

where f1, fo and f3 are the K-linear isomorphisms such that fi(e,) = fa(a) = f3(Sa) = 1.

By Proposition 2.3.4, rad P, = K < «, fa >, which is represented by the following K-linear

representation :

radP, : 0—>K<a>i>K<ﬁoz>.

Using proposition 2.4.3, we obtain an isomorphism of representations :

B

rad P, : 0 — K<a> — K<Ba>
0 fZl fsl
0 y K 4K

Similarly, P, = Ae, = K < &, 8 >, which is represented as follows :
Py O—>K<5b>i>K<ﬁ>.
Moreover, we have an isomorphism of representations :
0 — 3 K<ep> —2 3 K<B>

| el

0 >




where fi1, fo and f3 are the K-linear isomorphisms such that f; =0 and fy(g,) = f3(8) = 1.
So, we see that radP, =~ P,.

By Proposition 2.3.4, radP, = K < [ > and is represented by the following K-linear

representation :

rad P, : 0—0——K<B>.
By Proposition 2.4.3, we obtain an isomorphism of representations :

rade :

y K <>

0 > 0
I
0 > 0

>y K

Also, P. = Ae. = K <¢e. > and is represented by the following K-linear representation :

P.: 0—0——K<e.>.

Then, we have an isomorphism of representations :

0
y K <e.>

0 > 0
fll fQ\L f3l/
0 > 0

> K

where fi, fo and f3 are the K-linear isomorphisms such that f; = fo =0 and f3(e.) = 1.
We have rad P, = 0.

Indeed, by Proposition 2.4.6, the simple module is S, = P,/radP,. Since we show the

calculation for P, and radP,, we have S, = K <e,> S.=K <¢e.>.

By Proposition 2.4.3, S, is represented by the following K-linear representation :

Syt K<ey>—0——=0.
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Then, we have the following isomorphism of representations :

S, : K<e,> > 0 > 0
K > 0 > 0.

Similarly, S, = K < &5, >, which is represented by the following K-linear representation :
Sy : 0——=K<g,>——0.

Thus, we have the following isomorphism of representations :

Sp 0 —— K<g>——0
0 s K > 0.

Also, S, = K <e.> and is represented by the following K-linear representation :
Se: 0—=0—>K<e.>.

So, we have the following isomorphism of representations :

S, : > K <e.>

00— 0
Ll
00— 0 > K.

In conclusion, we have radP, =~ P. = S..

To obtain the indecomposable injective left modules, we first have the indecomposable

projective right A-modules as follows.
Pl=c,A=K<eg, > P =cpA=K <ep,a> P’ =c, A=K <e.,[,Ba>.

So by using the Lemma 2.4.5, I, = D(¢,A) = K < ¢ >, which is identified with the

following K-linear representation :




Then, we have an isomorphism of representations as follows :

> 0 > 0
> 0 > 0

)

I,: K<el>

]

K

where the first vertical isomorphism sends Ae} to A, for all A € k. Also, I, 2 S, and by

using the lemma 2.3.7, we have socl, = S, and I,/socl, 0.

Similarly, I, = D(eyA) = K < &,a* >, which is represented by the following K-linear
representation :

I K<a> — K<gp> —— 0.

Then, we have an isomorphism of representations as follows :

K<a*> — K<ef>—— 0

A

K

By lemma 1.5.11, we have socl, = S, and I,/socl, 2 I,,.

Also, I. = D(e.A) = K <, 5*,(Ba)* >, which is represented by the following K-linear

representation :

I.: K<(fa)yr>—— K<p*> —> K<ei>.

Then, we have an isomorphism of representations as follows :

K<(fa)y> — K<p*> — K<e>

K > K > K

Now, we see I. = P, and by lemma 1.5.11, we have socl. = S. and I./socl, = I,.
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CHAPTER 3

Auslander-Reiten Theory

In the previous chapter, we saw some quiver theory techniques for visualizing finite di-
mensional algebras and their modules. However, to actually compute the indecomposable
modules and the morphisms between them, we will present in this chapter other useful
tools of the Auslander-Reiten Theory. In particular, the existence of almost split se-
quences and irreducible morphisms in mod A. Throughout this chapter, A is a finite

dimensional K-algebra, and the A-modules and the morphisms are in mod A.

3.1 Almost Split Morphisms

The concept of almost split morphisms is playing an important part to understand the

result of our thesis.

Definition 3.1.1. Let A be a finite dimensional K-algebra. A morphism f: M — N in
mod A is said to be

(1) left split iof any morphism g: M — X factors through f.
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(2) right split if any morphism h:Y — N factors through f.

Lemma 3.1.2. Let A be a finite dimensional K-algebra. A morphism f: M — N in mod

A is left split or right split if and only it is a section or a retraction, respectively.

Proof. Suppose that f is left split. Consider idy, : M - M, there exists h: N - M such
that idy; = hf. Then f is section. Now, suppose that f is section.
Then, there exists h: N - M such that hf = idy;. Let g: M — X be a morphism. We
have g = goidy; = (gh) f, with gh: N - X. Hence, [ is left split.

Now suppose that f is right split. Consider idy : N - N, there exists h: N - M such that
tdy = fh. Then f is retraction. Suppose that f is retraction. Then, there exists h: N - M
such that fh =idy. Let g : Y - N be a morphism. We have g = idy o g = f(hg), with
hg:Y — M. Hence, f is right split. O

Definition 3.1.3. Let A be a finite dimensional K -algebra.

(1) A morphism f: L - M € modA is said to be left almost split if the following

conditions are satisfied.
(a) f is not section.

(b) For every non-section morphism u: L — U in mod A, there exists a morphism

u' M — U such that u=u'f, that is, the diagram

commutes.

(2) A morphism g : M - N € modA is said to be right almost split if the following

conditions are satisfied.
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(a) g is not retraction.

(b) For every non-retraction morphism v:V — N, there exists a morphism

v’V > M such that v = gv’, that is, the diagram

commutes.

Lemma 3.1.4. Let A be a finite dimensional K -algebra.
(1) If f: L - M is a left almost split morphism in mod A, then L is indecomposable.
(2) If g: M - N is a right almost split morphism in mod A, then N is indecomposable.

Proof. (1) Assume that L = Ly & Lo, with both L; and Ly non-zero and let py : L — L4
and py : L - Ly be the canonical projections. Then Kerp; = Ly # 0 and Kerpy, = Ly # 0
imply that p; and p, are not sections. Since f is a left almost split morphism in mod A,
there exists homomorphisms u; : M - Ly and us : M — Ly in mod A such that p; = uy f

and p, = uy f. Consider the homomorphism

U2

u:[ulleeLl@LQ:L.

Then, we have (uf)(z) = u(f(2)) = (u1(f(2))),u2(f(2))) = (p1(x), p2(x)) = & = idL(z),
for each x € L. Hence, uf =id; and f is a section in mod A, which contradicts the fact

that f is a left almost split morphism in mod A.

The proof of (2) is dual. O

Definition 3.1.5. Let A be a finite dimensional K -algebra.

(1) A morphism f: L - M in mod A is said to be left minimal if every morphism

h € Enda(M) with hf = f is an isomorphism.
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(2) A morphism g: M — N in mod A is said to be right minimal if every morphism
h € EndA(M) with gh = g is an isomorphism.

Definition 3.1.6. Let A be a finite dimensional K -algebra.

(1) A morphism f: L - M in mod A is called minimal left almost split if it is both

left minimal and left almost split.

(2) A morphism g: M — N in mod A is called minimal right almost split if it is both

right minimal and right almost split.

Lemma 3.1.7. Let A be a finite dimensional K-algebra with X,Y two modules in mod
A. The following statements hold.

(1) The zero morphism 0 : X - Y is minimal left almost split if and only if X is a

simple injective module and Y = 0.

(2) The zero morphism 0 : X — Y is minimal right almost split if and only if X =0
and Y s a simple projective module.

Proof. (1) Assume that Oxy : X - Y is a minimal left almost split morphism in mod A.
Since Oy : Y - Y is such that Oxy = Oy o Oxy, by the left minimality of Oxy, the zero
morphism Oy is an isomorphism, or equivalently, ¥ = 0. Furthermore, since Oy y is not a
section, X is non-zero. If X is not a simple module, then it has a proper submodule L.
Then the canonical projection v : X - X/L is non-zero. Not being a monomorphism, v is
not a section. Thus, v = v’ 00x y for some morphism v': Y - V', so v = 0, a contradiction.
So, X is simple. The injective envelope u: X — F(X) of X is a non-zero monomorphism.
So u cannot factor through Oxy. Hence, u is a section. By Proposition 1.10.5, E(X) is
an indecomposable injective A-module. Hence, u is an isomorphism, and consequently,

X is a simple injective module.

Conversely, assume that X is a simple injective module. In particular, 0 : X — 0 is not

a section. If g : X - N is a non-section morphism in mod A then, by Lemma 1.9.1(1)
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g erad(X, N). Then, by Corollary 1.9.2(2), g = 0. In particular, g factors through 0. That

is, 0: X - Y is minimal left almost split.

(2) Assume that Oxy : X - Y is a minimal right almost split morphism in mod A.
Since Ox : X — X is such that Oxy = Oxy0Ox, by the right minimality of Oxy, the zero
morphism Ox is an isomorphism, or equivalently, X = 0. Furthermore, since Ox y is not a
retraction, Y is non-zero. If Y is not a simple module, then it has a proper submodule L.
Then the canonical injection v : Y/L — Y is non-zero. Not being an epimorphism, u is not
a retraction. Thus, u = Ox yu’ for some morphism «': V' - X, so u = 0, a contradiction.
So, Y is simple. The projective cover h: P(Y) - Y of Y is a non-zero epimorphism. So
h cannot factor through Oxy. Hence, h is a retraction. By Proposition 1.10.5, P(Y") is
an indecomposable projective A-module. Hence, h is an isomorphism, and consequently,

Y is a simple projective module.

Conversely, assume that Y is a simple projective module. In particular, 0: 0 - Y is not
a retraction. If ¢’ : M — Y is a non-retraction morphism in mod A, then, by Lemma
1.9.1(2), g € rad(M,Y). Then, by corollary, 1.9.2(1) ¢’ = 0. In particular, g’ factors
through 0. That is, 0 : X — Y is minimal right almost split. O

Lemma 3.1.8. Let A be a finite dimensional K-algebra with P an indecomposable pro-
jective module in mod A. Then the inclusion map i :radP — P is minimal right almost

split.

Proof. Since P is indecomposable projective, by Propositions 1.5.8 and 1.6.6, rad P is the
unique maximal submodule of P. Since i : radP - P is not an epimorphism, it is not a
retraction. Let v : V — P be a non-retraction morphism in mod A. By Lemma 1.6.2, v
is not an epimorphism. Hence Im(v) is a proper submodule of P, and so Im(v) ¢ radP.
Therefore, we obtain v = iv’, where v’ : V' — radP is the co-restriction of v to radP. This

shows that 7 is a right almost split morphism in mod A. If ih = i, for some h € End 4(rad P),
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then h =id,.qp. Hence 7 : rad P - P is also right minimal. Therefore, 7 is a minimal right

almost split morphism in mod A. O]

Lemma 3.1.9. Let A be a finite dimensional K-algebra with I an indecomposable in-
jective module in mod A. Then the canonical projection p : I — I[socl is minimal left

almost split.

Proof. Suppose that I is an indecomposable injective module in mod A. Let h: I — L be
a morphism, which is not section. Since h is not injective, Kerh is not zero. Since soc/ is
essential in I, Kerh (M soc/ is not zero. But soc/ is simple and then, socl ¢ Kerh. Then,
h(socl) = 0 and h is factorized by I/socl. Hence, there exists u : I/soc] — L such that
h = up. O

3.2 Irreducible Morphisms

In this section, we see the relation between radical square and irreducible morphisms,

and some useful lemmas which bring us closer to prove the main result.

Definition 3.2.1. A homomorphism f: X —Y in mod A is said to be irreducible if
(1) f is neither a section nor a retraction;

(2) if f = fifs, either fi is a retraction or fy is a section

X f .Y
N
A

Also, this notion is self-dual, that is f : X - Y is irreducible in mod A if and only if
Df:DY - DX is irreducible in modAP.
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Lemma 3.2.2. Let f: X - Y be an irreducible morphism . Then, f is a proper mono-

morphism or f is a proper epimorphism.

Proof. Let f = jp be canonical factorization of f
X ! >
Imf

where p is the co-restriction and j is the inclusion map. Since f is irreducible, we conclude

Y

that either p is a section or j is a retraction. Moreover, f is not an isomorphism in mod A.
Assume that f is not a proper epimorphism. Then j : Imf - Y is not a retraction in mod
A, because otherwise Imf =Y and f is a proper epimorphism. Therefore, p : X - Imf
is a section in mod A, hence an isomorphism. This implies that f: X — Y is a proper

monomorphism. O

Lemma 3.2.3. Let f: X =Y be an irreducible morphism in mod A.
(1) If X and Y are projective modules, then f is monomorphism.
(2) If X and Y are injective modules, then f is epimorphism.
Proof. (1) Assume that f is not monomorphism. By Lemma 3.2.2, f is an epimorphism,

and hence, by lemma 1.6.2 a retraction. This contradicts the definition of an irreducible

morphism.

(2) Assume that f is not an epimorphism. By Lemma 3.2.2, f is monomorphism, and
hence, by lemma 1.6.8 a section. This contradicts the definition of an irreducible mor-

phism. O

Lemma 3.2.4. Let f: X - Y be a morphism in mod A. If X orY is indecomposable,

and f is irreducible, then f is radical.
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Proof. Assume that X is indecomposable, and f : X - Y is irreducible. Then f is not
section. Because of lemma 1.9.1, it is radical. The proof is similar if Y is indecomposable.

]

Lemma 3.2.5. Let XY be indecomposable modules in mod A. A morphism f: X =Y
is irreducible if and only if f € rad4(X,Y)\rad%(X,Y).

Proof. Assume that f is irreducible. Then, f is not an isomorphism, because f is neither
a section nor a retraction. Applying lemma 1.9.1(3), f e rad(X,Y). If f e rad%(X,Y),
then f can be written as f = gh, where h € rad4(X,Z) and g € rada(Z,Y") for some
Z € modA. Since X,Y are indecomposable, h is not a section and ¢ is not a retraction.

Thus, f is not irreducible. a contradiction. Therefore, f ¢ rad%(X,Y).

Conversely, assume that f € rad4(X,Y)\rad%(X,Y). Since X,Y are indecomposable, f

is neither a section nor a retraction and not an isomorphism by lemma 1.2.8(3).

Suppose that f = gh, for some morphisms h: X - Z and g : Z - Y. Then Z is non-
t
zero. Decomposing Z into indecomposable summands as Z = @ Z;, also we can write
i=1
hy
. ¢ ¢ t
h = . X - @Zi and g = [91 gt] : @Zi - Y so that f = Zgihi. Because
i=1

=1 i=1
hy

f ¢ rad%(X,Y), there exists i € {1,...,t} such that h; ¢ rads(X,Z) or there exists
je{l,...,t} such that g; ¢ rada(Z,Y"). By lemma 1.9.3, we obtain that either h; : X - Z;
for some ¢ € {1,...,t}, or g; : Z; - Y for some j € {1,...,t} is an isomorphism. Hence

either h is a section or g is a retraction in modA. Therefore, f : X - Y is irreducible. [

Lemma 3.2.6. Let f: X =Y be a non-zero morphism in mod A.
(1) If f is minimal right almost split, then f is irreducible.

(2) If [ is minimal left almost split, then f is irreducible.
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Proof. (1) Suppose that f is minimal right almost split. Then, f is not a retraction
and by Lemma 3.1.4(2), Y is indecomposable. Then by Proposition 1.9.1(2), we have
ferad(X,Y). In particular, by lemma 1.2.8(1), f is not a section. Suppose that f = fi fo
with f1: Z - Y and f; : X - Z are morphisms in mod A. If f; is not a retraction, since
f is right almost split, there exists f’: Z — X such that fi = ff]. So f = fife = ffifa.
Since f is right minimal, f]fs is an automorphism. Hence, f5 is a section. Consequently,

f is irreducible.

(2) Suppose that f is left minimal almost split. Then, f is not a section and by Lemma
3.1.4(1), X is indecomposable. Then by Proposition 1.9.1(1), we have f e rad(X,Y).

In particular, by lemma 1.2.8(2), f is not a retraction. Suppose that f = fif, with
fi:Z->Y, fo: X » Z for Z e modA. If f5 is not a section, since f is a left almost
split, there exists fi : Y — Z such that fy = fif. So f = fife = fifsf. Since f is left
minimal, then f;f] is an automorphism. Hence, f; is a retraction. Consequently, f is

irreducible. [

Proposition 3.2.7. (|2], IV.1.10)

(1) Let f: M — N be a minimal left almost split morphism in mod A. A non-zero
morphism g : M — X is irreducible if and only if g = hf where h : N - X is a
retraction.

(2) Let f: M — N be a minimal right almost split morphism in mod A. A non-zero
morphism g : X — N s irreducible if and only if g = fh where h : X - M is a

section.

Corollary 3.2.8. (|6], 4.13)

(1) Let f: M - N be a minimal left almost split morphism. Then, there exists an
wrreducible morphism g : M — L if and only if L is a non-zero direct summand of

N.
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(2) Let f: M — N be a minimal right almost split morphism. Then, there exists an
wrreducible morphism g : L — N if and only if L is a non-zero direct summand of

M.

Proposition 3.2.9. ([3], IV.5.6)

Let A be a finite dimensional K-algebra. If A is of finite representation type, then any
nonzero nonisomorphism between indecomposable modules in mod A is a sum of compo-

sites of 1rreducible morphisms.

As a consequence of the above result, we have the following statement, which is important

for the proof of our main result.

Proposition 3.2.10. Let A be a finite dimensional K-algebra of finite representation
type and n a positive integer. If the composite of every chain of n irreducible morphisms

between indecomposable modules is zero, then rad™(mod A) = 0.

Proof. Suppose that every chain of n irreducible morphisms between indecomposable
modules has a zero composition. Assume that rad”(mod A) # 0. Then there exists a
non-zero morphism f € rad"(M, N), where M, N are indecomposable modules in mod A.
By definition, f = Y.;_; fino--o fi1, where the f;; are radical maps between indecomposable
modules. Since f # 0, one of the f;,0---0 f;1 is non-zero. We can assume that fq,0---0f;; # 0.

Put g = g, 0+~ 0 g1, where g; = f1;, for 5=1,...,n. Then g # 0.

By Proposition 3.2.9, g, = Zf;zl gi;.j» where s; > 1 and g;, ; is a composite of irreducible

morphisms between indecomposable modules, for j =1,...,n. This yields

Sn S1
g=gnorogi= 3, ) Ginn© 0 gina #0.
in=1 41=1

Thus, we may assume that g; ,0---0gy 1 # 0. Now, gy; is the composite of ¢; (> 1) irreducible

morphisms between indecomposable modules, for j =1,...,n. Thus, g; ,o---0g11 is a non-
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zero composite of t1 +---t,,(> n) irreducible morphisms between indecomposable modules.

Since t1 +---t,, > n, we obtain a desired contradiction. O

3.3 Almost Split Sequences

The main aim of this section is to prove the propositions of the Auslander-Reiten theorem
and almost split sequences in the module category of finite dimensional algebras, and

explain their characterizations.

Lemma 3.3.1. ([3],IV.1.7) Let0 - L LMENS0bea non-split short exact sequence

i mod A.

(1) The homomorphism f: L — M is irreducible if and only if, for every homomorphism

v:V > N, there exists vy : V - M such that v = gv; orve : M -V such that g = vv,.

(2) The homomorphism g : M — N s irreducible if and only if, for every homomor-
phism u : L - U, there exists uy : M — U such that uw = ui f or us : U - M such
that f = uou.

Corollary 3.3.2. (1) If f: L - M is an irreducible monomorphism, then N = Coker f

18 1ndecomposable.
(2) If g: M — N is an irreducible epimorphism, then L = Kerg is indecomposable.
Proof. (1) Let g: M — N be the cokernel of f. Then, we have a short exact sequence

f

0 L M- N 0.

Assume that N = N; @ Ny with N; and N nonzero. Let ¢; : N; > N be the canonical
injections and N — N; the canonical projections, for ¢ = 1,2. Since Ny, Ny are non-zero,

¢1 and ¢y are not isomorphism. If there exists a morphism u; : M - N; such that g = q;u;
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for some 1 <7 <2, because g is an epimorphism, ¢; is also an epimorphism, and hence, g;
an isomorphism, a contradiction. Then, by Lemma 3.3.1, there exists a homomorphism
v; + N; = M such that gv; = ¢;, for i = 1,2. Then v = v;p; : M — N is such that gv = 1y.
So g is a retraction. By Proposition 1.8.6, f is a section. This contradicts the fact that f

is irreducible. One can prove (2) in a dual fashion. O

Definition 3.3.3. A short exact sequence in mod A

0Lt M2 N

is called an almost split sequence (or an Auslander-Reiten sequence) if f is a minimal

left almost split morphism and g is a minimal right almost split morphism.

Proposition 3.3.4. ([3], IV.1.13) Consider a short exact sequence

0—>L—Jo -2 N0

i mod A. The following conditions are equivalent.
1) The given sequence is an almost split sequence.
2) L is indecomposable, and g is right almost split.
3) N is indecomposable, and f is left almost split.

(

(

(

(4) The map f is minimal left almost split.
(5) The map g is minimal right almost split.
(

6) The maps [ and g are irreducible.

Definition 3.3.5. Let A be a finite dimensional K-algebra with M an indecomposable

module in mod A. Let

P, p1 P, Po M 0
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be an exact sequence in mod A such that po : Py - M and p, : P, - Kerpy are projec-
tive covers. Applying the contravariant functor (=)t = Homa (-, A), we obtain an exact

sequence
Ph

0 M P! 2> Coker(pt) — 0

in mod A°. We denote Coker(p}) by TrM and call it the transpose of M.

Definition 3.3.6. The Auslander-Reiten translation is defined to be the compositions of
D with Tr. We set 7=DTr and 7 '=TrD.

Proposition 3.3.7. ([3]. IV.2.10) Let M and N be indecomposable modules in mod A.

(1) The module TM 1is zero if and only if M is projective.

(2) The module YN is zero if and only if N is injective.

(3) If M is a non-projective module, then TM is indecomposable non-injective and
TiTM 2 M.

(4) If N is a non-injective module, then 7-'N 1is indecomposable non-projective and
7T N2 N.

(5) If M, N are non-projective, then M = N if and only if TM = TN.

(6) If M, N are non-injective, then M = N if and only if 7'M = 771N

Proposition 3.3.8. ([3]. IV.3.1)

(1) For any indecomposable non-projective module M € mod A, there exists an almost

split sequence 0 > 7M - E - M — 0 in mod A.

(2) For any indecomposable non-injective module N € mod A, there exists an almost

split sequence 0 > N - F' - 771N - 0 in mod A.

Corollary 3.3.9. Let M be an indecomposable module in mod A.
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(1) There exists a minimal right almost split morphism g: N — M.
(2) There exists a minimal left almost split morphism f: M — N.

Proof. (1) If M is not projective then, by Proposition 3.3.8(1), there exists an almost
split sequence 0 - 7M — N — M — 0. In particular, there exists a minimal right almost
split morphism ¢ : N - M. If M is projective then, by Lemma 3.1.8(1), the inclusion

map ¢ :radM — M is a minimal right almost split morphism.

(2) If M is not injective then, by Proposition 3.3.8(2), there exists an almost split sequence
0> M - N - 7'M - 0. In particular, there exists a minimal left almost split morphism
f: M — N.If M is injective then, the canonical projection p : M — M [socM is a minimal
left almost split morphism, by Lemma 3.1.9(1). O

Lemma 3.3.10. (|2], 11.2.24) Let A be a finite dimensional K -algebra with M an inde-

composable module in mod A.

(1) There exists an irreducible morphism f : X — M if and only if there exists a
morphism h:Y — M such that [f h] X oY - M s munimal right almost split.

(2) There exists an irreducible morphism g : M — X if and only if there exists a

9

morphism h: M —Y such that 3

M - X @Y is minimal left almost split.

Corollary 3.3.11. Let A be a finite dimensional K -algebra with f : M — N an irreducible

morphism in mod A.

(1) If M is indecomposable and f is not a minimal left almost morphism, then there

exists an irreducible morphism g : M — L, where L is indecomposable such that

[ﬂ M — N L is irreducible.

(2) If N is indecomposable and f is not a minimal right almost morphism, then there
exists an irreducible morphism g : L — N, where L 1s indecomposable, such that

[f g]:MeL-N is irreducible.

57



Proof. (1) Suppose that M is indecomposable and f is not a minimal left almost mor-

phism. Then, by Lemma 3.3.10(2), there exists a nonzero morphism h : M — Y such

that £ :M — N &Y is minimal left almost split. Since Y # 0, we can decompose h as

h = [ g, :M — LY’ where L is indecomposable. So, we have a minimal left almost split
7 ;

map | g [: M > NeLaY’. So, by lemma 3.3.10(2), both g : M - L and lg] M- NelL
hl

are irreducible. The proof for (2) is dual. O

The following two results say that the components of an irreducible morphism are irre-
ducible.

fi
fa

X indecomposable and Yy, Yo nonzero. Then, f1, fo are irreducible.

Lemma 3.3.12. Let f = : X > YieYs be an irreducible morphism in mod A, with

Proof. By Corollary 3.3.9(2), there exists a minimal left almost split ¢ : X - Y. By
Proposition 3.2.7(1), f = hg, where h: Y - Y] @ Y; is a retraction. Let p; : Y1 @ Yy = Y}
be the canonical projection, for i = 1,2. Then f; = p;f = (p;h)g. Since p; is a retraction,

by Lemma 1.2.3(2), p;h is retraction. So, by Proposition 3.2.7(1), f; is irreducible. [

Lemma 3.3.13. Let f = [fl fg] : X1 @ Xy = Y be an irreducible morphism in mod A,

with Y indecomposable and X1, Xo nonzero. Then, f1, fa are irreducible.

Proof. By Corollary 3.3.9(1), there exists a minimal right almost split g : Y - X. By
Proposition 3.2.7(2), f = gh, where h: X; & Xy — X, is a section. Let u; : X; — X; @ X,
be the inclusion map, for i = 1,2. Then f; = fu; = g(hu;). Since u; is a section, by Lemma

1.2.3(1), hu; is a section. So, by Proposition 3.2.7(2), f; is irreducible. O

Lemma 3.3.14. Let A be a finite dimensional K-algebra, and let M, N, L be indecom-
posable modules in mod A with N % L.
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1) If f: M - N and g: M — L are irreducible, then so is / :M—->NelL.
( g g

(2) If f: N> M and g: L > M are irreduicble morphisms, then so is [f g] :No L -~
M.

Proof. Let f: M - N and g : M - L be irreducible morphisms. If f is left minimal
almost split, then g = hf, where h : N - L. Since f is irreducible, h is a retraction.
Since N and L are indecomposable, h is an isomorphism, a contradiction. Thus, f is not

minimal left almost split. So, we have a commutative diagram

f
fi
fr
M sy No N @& N,
\j?\\x T
I -

where the upper morphism is minimal left almost split and
v=[h b - h]:NoN &-@&N, L

with 7 > 1 and the N; are indecomposable. Since N # L, we see that h is not an iso-
morphism, that is, h € rad(V, L). If none of the h; with 1 < i < r is an isomorphism,

then

f
g=[h hi - h] @ =hf+hifi++h.f ¢ rad>(M, L),

fr

a contradiction to Lemma 3.2.5. Thus, we may assume that h; is an isomorphism.

99



Consider another commutative diagram

!
J1
fr
M —— NeN &N,

1% Iz

M s No L
f
g
where
~ Iy 0 -« 0 _
w—lh hy hrl.NeaNlea &N, >NolL

Since h = hih{th, we see that

Iy 0 Iy 0
—-hi*h h7Y| |In O - O [|-h7'h A7 |1y O
“I'' o o7l h h o mll 0 0| o 1|

0 0 0 0

That is, w is a retraction. By Proposition 3.2.7, [§:| : M — N & L is irreducible. The
proof for (2) is dual. O

Proposition 3.3.15. Let A be a finite dimensional K-algebra.

(1) Let M be an indecomposable non-projective module in mod A. There exists an
wrreducible morphism f : X — M if and only if there exists an irreducible morphism

oM > X.

(2) Let N be an indecomposable non-injective module in mod A. There exists an ir-
reducible morphism g : N — Y if and only if there exists an irreducible morphism

g:Y ->71IN.
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Proof. (1) Assume that f : X — M is irreducible. By Lemma 3.3.10(1), there exists a
morphism h:Y — M such that [ f h] : X @Y - M is right minimal almost split. Note
that [ f h] is an epimorphism, because M is not projective. Put L = Ker [ f h]. By

Proposition 3.3.4, the short exact sequence

A

0-L—X0Y —>M->0

is almost split. So, f’: L — X is irreducible and there exists an isomorphism ¢ : 7M — L.
Consequently, f’'g: 7M — X is an irreducible morphism. We can prove the necessity of
(1) by a dual fashion. Moreover, since 777N = N and 7-'7M = M, the statement (2)

follows from the statement (1). O

Corollary 3.3.16. Let A be a finite dimensional K-algebra.

(1) Let S be a simple projective module in mod A. If f:S — M is irreducible, then M

s projective and S is not injective.

(2) Let S be a simple injective module in mod A. If g: M — S is irreducible, then M

is injective and S is not projective.

Proof. (1) Assume that f: S — M is irreducible. By Corollary 1.9.2(2), S is not injective.
Let N be an indecomposable summand of M. By lemma 3.3.13, there exist an irreduicble
morphism f’: S — N. If N is not projective then, by Proposition 3.3.15, there exists
an irreducible morphism 7M — S, and this contradicts Corollary 1.9.2(1). Thus, N is

projective. And consequently, M is projective. We can prove (2) in a dual fashion. [

Lemma 3.3.17. Let f: X =Y be an irreducible morphism. If Y s indecomposable and
non-projective, then there exists an almost split sequence
)
g ‘
07 5 xox Ly o,
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Proof. Suppose that f: X — Y is irreducible. By Lemma 3.3.10, there exists a morphism
f": X’ - Y such that (f,f') : X ® X’ > Y is minimal right almost split, which is an

epimorphism because Y is not projective. By Proposition 3.3.4, there exists an almost

)

0-N L xex Yy o

split sequence

So, there exist an isomorphism A: 7Y — N. O]

3.4 Auslander-Reiten Quiver

If M, N are indecomposable modules in mod A, a morphism f : M — N is irreducible
if and only if it belongs to rad4 (M, N)\rad% (M, N) by lemma 3.2.5. Thus, the quotient
vector space rads(M, N)/rad’ (M, N) can be considered as a measure for the set of

irreducible morphisms from M to N.

Definition 3.4.1. Let M and N be indecomposable in mod A. The space of irreducible
morphisms s the K -vector space

rad (M, N)

Irrs(M,N) =
al ) rad’ (M, N).

Definition 3.4.2. Let A be a finite dimensional K -algebra, where K is an algebraically
closed field. The Auslander-Reiten quiver I'(mod A) of mod A is a translation quiver
defined as follows.

(1) The vertices of I'(mod A) are the isomorphism classes [M], where M ranges over

the indecomposable modules in mod A;

(2) Given two vertices [M] and [N], the number of arrows from [M] to [N] is equal
to the K-dimension of Irr(M, N).
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(3) The translation T is defined so that T[M]=[DTrM], for any indecomposable non-

projective module M in mod A.

In the sequel, for the sake of simplicity, we shall identify an indecomposable module M

in mod A with the corresponding vertex [M] in I'(mod A).

Lemma 3.4.3. (2|, IV.1.3) Let A be a finite dimensional K -algebra with M = &!_, M™
a module in mod A, where m; > 0 and the M; are indecomposable and pairwise non-

1somorphic.

(1) If f: L > M is a minimal left almost morphism, then dimglrra(L, M;) = my, for
i=1,...,t

(2) If g: M - N is a minimal right almost morphism, then dimgIrr4(M;, N) = m;, for
1=1,...,t

Lemma 3.4.4. ([2], IV.1.5) Let A be a finite dimensional K-algebra with M, N inde-
composable modules in mod A. If dimgHom (M, N) <1, then there exists no irreducible

morphism f:M - N@& N org: M & M — N.

Lemma 3.4.5. Let A be a finite dimensional K -algebra with M — N an arrow in T'(mod
A). The following statements hold.

(1) M N.

(2) If N is not projective, then there exists an arrow TN — M.

(3) If M is not injective, then there exists an arrow N - 771 M.

Proof. By definition of Auslander Reiten quiver, there exists an irreducible morphism

f:M — N. In particular, f is not an isomorphism.

(1) By Lemma 3.2.2, f is an epimorphism or a monomorphism. Suppose that M =z N. In

particular, dim(M) = dim(N). By Lemma 1.3.2, f is an isomorphism, a contradiction.
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(2) Assume that N is not projective. By Lemma 3.3.15(1), there exists an irreduicble

morphism g: 7N — M. Hence, we have an arrow 7N - M in I'(mod A).

(3) Assume that M is not injective. By Lemma 3.3.15(2), there exists an irreduicble

morphism ¢ : N — 77! M. Hence, we have an arrow N — 771 M in I'(mod A). ]
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CHAPTER 4

Radical Nilpotence of the Module

Category over a Nakayama Algebra

Now that we have almost all prerequisites, we demonstrate in this chapter the main result
of our research. We start by describing Nakayama algebras and their properties which

are important for our final result.

4.1 Nakayama Algebras

We let A denote a finite dimensional K-algebra and all A-modules are, unless otherwise

specified, finite dimensional left A-modules.

Definition 4.1.1. For a module M in mod A, since rad A is nilpotent, there exists a
minimal positive integer m such that rad™ M = 0. The integer m is called the Loewy length

of M and is denoted by L0(M). In this case, we obtain a decreasing chain

M >radM > srad™ M orad™M =0
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of submodules of M, called the radical series of M, where rad’M = (rad’A)M, for all

1=1,...,m.

It is clear that ¢¢(M) < dimg M, for every module M in mod A.

Definition 4.1.2. A non-zero module M in mod A is called uniserial if it admits a

unique composition series.

Clearly, every simple module S in mod A is uniserial with a unique composition series
0 c S. Note, however, that there exist uniserial modules which are not simple. Also, if M

is uniserial, every submodule and quotient of M is uniserial.

Lemma 4.1.3. ([3], V. 2.2) A module M in mod A is uniserial if and only if its radical

Series is a composition Series.

Lemma 4.1.4. Let A be a finite dimensional K-algebra with M a uniserial module in

mod A. The top and the socle of M are simple. In particular, M is indecomposable.

Proof. Since M is uniserial, let 0 c A;---c A,, = M be the Jordan Holder filtration of M.
Now, let N be a simple submodule of M. Then, consider the Jordan Hoélder filtration of
M|N, say 0 c My/N--- c M/N. This would give us a Jordan Holder filtration of M as
0c N c My---c M. Since M has a unique decomposition, N = A;. Therefore, M has a

unique simple module and hence, socM is simple.

Moreover, let N = radM be a unique maximal submodule of M. Then we consider the
Jordan Holder filtration of M /N, say 0 ¢ M;/N--- ¢ M/N. Since M is uniserial, the
radical series is a composition series. Then, each composition factor is simple. Hence,

topM is simple. Also, by Lemma 1.5.12, M is indecomposable.
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Definition 4.1.5. A finite dimensional K-algebra A is called a Nakayama algebra if all
indecomposable projective modules and all indecomposable injective modules in mod A

are uniserial.

Proposition 4.1.6. ([8], I. 10.6) Let A be a finite dimensional K-algebra. If A is a

Nakayama algebra, then every indecomposable module in mod A is uniserial.

4.2 Nakayama Algebras Given By a Bound Quiver

In this section, we study Nakayama algebras given by a bound quiver and their indecom-
posable projective modules and indecomposable injective modules. For this purpose, for

any integer n > 1, we consider a quiver

3
—
~
[\
~
w
~
~
N

|
—_
N

Proposition 4.2.1. ([8], 1. 10.3) Let A = kQ/I, where Q is a finite connected quiver and

67



I is an admissible ideal of kQ. Then A is a Nakayama algebra if and only if Q = A, or

A, for some n>1. In this case, I is a monomial ideal of kQ.

Proposition 4.2.2. Let A = KQ/I be a connected Nakayama algebra, and let p be a

mazximal path in Q(a,-), for some a € Qq.
(1) If p=e,, then P, =S,.

. aq (078
(2) If p is of the form a =ay — a; — -+ > a,_1 — a,, where r > 1 and aq,..., o, are

arrows, then P, has a K-basis {eq,a,a07, -, Q01 }.
Proof. By Proposition 2.3.4, P, has as a K-basis the set of classes modulo I of paths in
Q(a,-). Since Q = A, or A,, by Proposition 4.2.1, there exists at most one arrow in Q

starting in any given vertex.

(1) By Proposition 2.3.4 (3), S, = P,/radP,. If p = ¢,, then Q(a,-) = {e,}. So by
proposition 2.3.4 (2), radP, = 0, and hence, P, = S,,.

(2) Let p be of the form a = aq 2 a4y — 5 q,, where 7 > 1. It amounts to prove that

Qr(a,-) ={eq,a1,...,0p a1} = L.

Indeed, since a.---1 is a non-zero path, €., ay, ..., a,---a; are all non-zero paths. Thus,
P c Q[(&, —).

Conversely, let ¢ be a path of length s in Q;(a,-). We want to use induction on s to
show that g e . If s =0, then g = ¢, € &. Assume that s =1. That is, ¢ = 51, an arrow
in Q;(a,-). Since o is an arrow starting in a, by the above stated property, 51 = ;. In
particular, q € {e,, a1, as011, ..., a1 }. Suppose that s > 1 and any path of length s -1
in Qr(a,-) lies in &. Write q = 5,0s_1 ... 51, where the 5; are arrows. Then, S, 1... 05
is a path of s —1 in Q;(a,-). Since a,_1...a; is the only path of s —1 in &, by the
induction hypothesis, Fs_1...081 = as_1...aq. In particular, s — 1 < r and [, is an arrow
starting in as_;. Again by the above stated property, s = a,. That is, ¢ = ag-aq € L.
By induction, Q;(a,-) € &. Thus, Q;(a,-) = {eq,a1,..., @1} ]
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Proposition 4.2.3. Let A= KQ/I be a connected Nakayama algebra. Let q be a mazimal
path in Q(-,a), for some a € Q.
(1) If g=¢4, then I, = K <e: >2 S,.
(2) If q is of the form by B, by 1 — - > by LN by = a, where s > 1 and (,...,03, are
arrows, then I, has as a K-basis {e}, B, ... ,m*}.
Proof. By Proposition 2.3.5, I, has as a K-basis {p* | p € Q;(—,a)}, the dual basis of the
K-basis {5 | p € Q1(-,a)} of e,A. Since Q = A, or A, by Proposition 4.2.1, there exists

at most one arrow in () ending in any given vertex.
(1) If ¢ = &4, then Q;(-,a) ={e,}. Thus, I, = K <e} >. By Lemma 2.3.7, I, = S,.

(2) Let g be of the form b, B, bs_q — = by N by = a, where s > 1. It amounts to show

that Qr(—,a) = {€4, B1,5182,..., BB} := &. Since B0 is a non-zero path, e,, S,
..., B1---Bs are all non-zero paths. Thus, & ¢ Q;(-,a).

Conversely, let p be a path of length r in Q;(—, a). We want to use induction on r to show
that pe . Ifr=0,thenp=¢, € &.Ilf r =1, then p = 91, an arrow in Q;(-, a). Since J; is
an arrow ending in a, by the above stated property, n; = 81 € &2. Suppose that r > 1 and
any path of length r—11in Q;(-,a) lies in 2. Write p = 9172 . .. 0, where the 7; are arrows.
Since 71 ...m,_1 is a path of r—1 in Q;(-,a) and B ... 5,_1 is the only path of r—1 in &,
by the induction hypothesis, 7;...7,-1 = 81 ...6,-1. In particular, r — 1 < s and 7, is an
arrow starting in b,_;. By the above stated property, 0, = 8,. Thus, p=ny...1n._1n. € £.
By induction, Q;(-,a) € &. Thus, Q;(-,a) ={eca,b1,.-.,01Fs} ]

4.3 Main Statement

Let A be a connected Nakayama algebra given by a bound quiver. Our main result is to

state the necessary and sufficient conditions for rad®(modA) to vanish. We start with the
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necessary conditions.

Lemma 4.3.1. Let A = KQ/I be a connected Nakayama algebra. If rad®(modA) = 0,

then one of the following cases occurs:
(1) Q=A, and I =0, where 1 <n < 3.
(2) Q= A, and I is generated by all the paths of length two in @), where n > 3.
(3) Q= A, and I is generated by all the paths of length two in Q, where n > 1.

Proof. By Proposition 4.2.1, Q = A,, or A,,, for some n > 1. Suppose that rad®(modA) = 0.
If rad(modA) = 0, then A is simple, that is, @ = A; with I = 0. Thus, the case (1) occurs.

If rad(modA) # 0 but rad®(modA) = 0, then Q = A, and I = 0; see ([6], 5.1.7). Thus, the

case (1) occurs.

Suppose that rad®(modA) # 0. Then Q = A,, with n > 3; see ([6], 5.1.7) or Q = A, with
n > 1. By Proposition 1.9.6, rad*(A) = 0.

Assume that rad*(A) = 0. By Proposition 2.2.8, any path of length two lies in I. So, I is

generated by all the paths of length two. Thus, the case (2) or (3) occurs.

Assume now that rad*(A) # 0. Then, @ contains a path a —2=b —7 . ¢ such that Pa¢l.

By lemma 2.2.9, we have a sequence of radical morphisms
p, ML p M p
between indecomposable projective modules in mod A. Since
(P[a]o P[B])(ec) = Pla](P[B](e.)) = ecfa = Ba 0,

we see that P[a] o P[B] # 0. Since rad*(modA) = 0, neither P[3] nor P[a] lies in
rad’(modA). By Lemma 3.2.5, P[a] and P[j3] are irreducible. By Lemma 3.2.2, P[a]

and P[(] are monomorphisms, and so is P[a] o P[#]. In particular, by Lemma 1.3.2, the

vertices a, b, c are pairwise distinct.
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Assume that () contains an arrow v : ¢ - d. Then, ¥ € P.. As P[a] o P[] is a mono-
morphism, (P[a] e P[5])(7) # 0, that is, 73a # 0. By Proposition 2.2.8, rad®*(A) # 0, a

contradiction. Thus, () contains no arrow starting in c.

Dually, by Lemma 2.3.8, we have a sequence of radical morphisms

18] 1[a]

[c—)[b—)[a

between indecomposable injective modules in modA. Since Sa ¢ I, by Proposition 4.2.3,

et,B*,Ba lie in a K-basis of I. Moreover, by Lemma 2.3.8, we obtain
(I[a] o I[B])(e2) = I[a](1[B](e7)) = I[a](0) = 0
(I[a]o I[B])(B*) = I[a](I[B](B")) = I[a](e;) = O;

(I[a]o I[B])(Ba’) = I[a)(I[B](Ba’) = I[a)(a") = e;.

In particular, I[a] o I[3] # 0. Since rad*(modA) = 0, neither I[3] nor I[a] lies in
rad®(modA). By Lemma 3.2.5, I[3] and I[a] are irreducible. Since I,, I, are injective,

by Lemma 3.2.3(2), I[3] and I[&] are epimorphisms, and so is I[&] o I[5].

Assume that @ contains an arrow ¢ : d - @ in Q. Then, §* € I,. Since rad®(A) = 0, we
have Sad = 0. Therefore, S is a maximal path in Qr(-,c). By Lemma 4.2.3, 1. has a
K-basis {e*,3*,Ba’ }. Since I[a] o I[3] is an epimorphism,

6% = (I[a]o I[N (Mo~ es + Ar- 5 + Ao - Ba),
where Ao, A1, Ay € K. In view of the calculation stated above, we see that \ye = 0*, a
contradiction. Thus, ) contains no arrow ending in a. Being A, or An, the quiver @)

consists of the path a—2>b—L~ ¢ Since Ba ¢ I, we see that I = 0. That is, Case (1)

occurs. O

Next, we shall show that the conditions stated in Lemma 4.3.1 are also sufficient for

rad®(mod A) to vanish.

71



Lemma 4.3.2. Let A= KA. Then rad®(modA) = 0.

Proof. We may assume that A; is the quiver a —%= b—L . As seen in Example 2.4.8,

we obtain P, 2 I.; Py~radP,; P.2radP, % S.; I, % Sy, I/Sy 2 I, and I./S. = I.

First, we claim that the Auslander-Reiten quiver I'(mod A) of mod A is as follows:

P,
2N
B, I
g1 92
Pc Sb Im

where fi, fo are minimal right almost split monomorphisms, and f3, f; are minimal left

almost split epimorphisms.

Since P, is simple projective, by Proposition 3.1.8, the minimal right almost split mor-
phism for P, is the zero morphism 0 — P.. Because of Proposition 3.3.10(2), there exists

no irreducible map f: N - P.. So, there exists no arrow in I'(modA) ending with P..

Now because P, = radP,, by Lemma 3.1.8, there exists a minimal right almost split map
fi: P. — B,. Since P, is indecomposable, I'(mod A) has only one arrow P. - P, ending

with B,.

Suppose that fi is not a minimal left almost split morphism. By Corollary 3.3.11(1),
there exists an irreducible map (fi, f)” : P. > P, ® M, where M is indecomposable. In
particular, f : P. - M is irreducible. By Corollary 3.3.16, M is projective. By Lemma
3.3.10, P, is isomorphic to a direct summand of rad M. Since rad P, 2 P, and rad P, = 0, we
see that M = P,. On the other hand, by Lemma 1.3.5, Hom4(P., P,) = e, Aey = k < 3 >,
which is of dimension one, a contradiction to Lemma 3.4.4. So f; is the minimal left

almost split morphism for P.. On the other hand, since topP, = S, and P. = radP,, we
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have a short exact sequence

(1) 0—F

Since f; is a minimal left almost split morphism, by proposition 3.3.4, this is an almost
split sequence. In particular, g; : P, > S, is a minimal right almost split map. So, I'(mod
A) has only one arrow P, — P, starting with P. and only one arrow P, — S, ending with

Sp.

Furthermore, since rad P, = P, there exists a minimal right almost split monomorphism
fo: P, > P,. Since P, is indecomposable, I'(mod A) has only one arrow P, - P, ending

with P,.

Since P, # S,, by lemma 3.3.14(1), the map
(fQ) P> P, @5,
g

is irreducible. Suppose that it is not minimal left almost split. By Corollary 3.3.11, there

is an irreducible morphism ¢ : P, - X is irreducible with X indecomposable such that

2
g1 ZPbQPa@Sb@X

9

is irreducible. If X is projective, then P, is a direct summand of radX. In particular,
X ¢ P,. And since P, is simple projective, by Proposition 3.1.8, X # P.. Therefore,
X 2 P,. This yields an irreducible morphism

(ZQ):PWPG@P&.

However, by Lemma 1.3.5, Homa(P,, P,) = e, Ae, = k < & >, which is of dimension one,
a contradiction to Lemma 3.4.4. So, X is not projective. By Proposition 3.4.5(2), there

is an arrow 7X — P,. Since P, - B, is the only arrow ending with P,, we have 7X = P,,
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and consequence, X 2 7P, = 5,. So, we have an irreducible morphism

(i}l)ZPb%SbéBSb.

However, by Lemma 1.3.5, Hom (P, Sp) 2 €,S, = Sy, which is of dimension one, a contra-
diction to Lemma 3.4.4. So

(fZ)IPb—)Pa@Sb
g1

is a minimal left almost split monomorphism. By proposition 3.3.4, there is an almost

(fz)
g
(2) 0— B ~—>P05 2%y

split sequence

In particular, by lemma 3.3.13, f3 : P, - Y is an irreducible morphism. Now P, = I,
and I./S. = I. So, by Lemma 3.1.9, there is a minimal left almost split epimorphism
h: P, - I. Since [, is indecomposable, Y = [,. And we may assume that Y = I, and

f3 = h. In particular, So, P, — I, is the only arrow in I'(mod A) starting with P,.

Now, consider the irreducible map g : Sy = I,. Since Sy, = socl, with I,/S, 2 I,, we have

a short exact sequence

(3) 0 Sb 92 ]b fa

I, 0,

where f; : I, - I, is the canonical projection. By lemma 3.1.9, f; is a minimal left almost
epimorphism. In particular, f; is an irreducible morphism. Since g is also irreducible,
by Lemma 3.3.4, this is an almost split sequence. Finally, since [, is a simple injective

module, by lemma 3.1.7, there is no arrow starting with [,. This establishes our claim.

Now we show that any path of three irreducible morphisms between indecomposable
modules stated the above Auslander-Reiten quiver has a zero composite. Indeed, in view

of the almost split sequence (2), we have f3fs = —g2g1 = 0. Then, fsfofi = —g291f1 = 0.
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Since f3fs = —gog1 = 0, and in the view of the almost split sequence (3), we have fyf3fs =
—f19291 = 0. By proposition 3.2.10, we have rad®(modA) = 0. ]

In the following lemmas, we check the relations between dimension of any indecomposable

modules with respect to the nilpotency of radical square in Nakayama algebra.

Lemma 4.3.3. Let A = KQ/I be a Nakayama algebra with rad®*A = 0. Consider an

indecomposable module M in mod A.
(1) The dimension of M is equal to one or two.
(2) If dimg (M) =2, then M is projective and injective.
Proof. By Proposition 4.1.6, M is uniserial. Since rad*M = 0, we see that £(M) < 2.

If (M) =1, by Lemma 4.1.3, we have a radical series M > 0, which is the composition
series for M. Therefore, M is simple, and dimg (M) = 1.

If ¢6(M) =2, then we have a radical series M > radM > 0, which is a composition series
of M. In particular, M /radM and radM are simple.
Therefore, dimg (M) = dimg (rad(M)) + dimg (M [rad(M)) = 2. This proves Statement

(1).

Suppose that dimg (M) = 2. Let f : P - M be a projective cover of M. Then, by Theorem
1.7.3, P/radP = M [rad M. Being uniserial, by Lemma 4.1.3, M has a simple top, so does
P. By Lemma 1.5.12(1), P is indecomposable. By Statement (1), dimg(P) < 2. Since
f is an epimorphism, dim(P) > dim(M) = 2. Therefore, dimg(P) = 2 = dim(M). By
Lemma 1.3.2, f is an isomorphism. So M is projective. Now, let g : M — I be an injective
envelope of M.

Then, by theorem 1.7.5, soc(M) = soc(1). Since M is uniserial, by Lemma 4.1.3; M has a
simple socle, and so does I. By Lemma 1.5.12(2), [ is indecomposable. By Statement (1),
dim(7) < 2. Since g is a monomorphism, dim(/) > dim(M) = 2. So, dim(/) = 2 = dim(M).
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By Lemma 1.3.2, g is isomorphism. Hence, M is injective. Therefore, M is projective and

injective. [

Lemma 4.3.4. Let A= KQ/I be a Nakayama algebra with rad®>A = 0. Consider a simple
module S in mod A.

(1) If S is not projective with a projective cover P, then dim(P) = 2.

(2) If S is not injective with an injective envelope I, then dim([) = 2.

Proof. By Lemma 4.3.3(1), dim(S) = 1.

(1) Let S be non-projective with a projective cover g : P - S. In particular, S is the
simple top of P. By Lemma 1.5.12(1), P is indecomposable. By Lemma 4.3.3, dim(P) < 2.
If dim(P) =1 = dim(S) then, by Lemma 1.3.2, ¢g is an isomorphism, and then, S is
projective, a contradiction. So, dim(P) = 2.

(2) Let S be non-injective with an injective envelope f : S — I. In particular, S is the
simple socle of I. By Lemma 1.5.12(2), I is indecomposable. By Lemma 4.3.3, dim(/) < 2.
Since f is monomorphism, dim(/) > dim(S) = 1. If dim(/) = 1 then, by Lemma 1.3.2, f

is an isomorphism. Then, S is injective, a contradiction. So, dim(/) = 2. O

In the following, there are a few lemmas that help us to prove the sufficiency part of our

main result.

Lemma 4.3.5. Let A= KQ/I be a Nakayama algebra with rad®A = 0. Consider a simple

module S 1n mod A.

(1) If S is not projective with a projective cover g: P — S, then there exists an almost

split sequence

0 ) pP—~2-5 0,
where f 1s minimal right almost split and g is minimal left almost split.
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(2) If S is not injective with an injective envelope f: S — I, then there exists an almost

split sequence
f

0 S I-2s7-59 0,

where f is minimal right almost split and g is minimal left almost split.

Proof. (1) Assume that S is not projective with a projective cover g : P - S. Then, we

have a non-split short exact sequence

f

0 — rad(P) p—2-5 0.

Since P is indecomposable projective. By Lemma 3.1.8, f is minimal right almost split. In
particular, f is irreducible. Moreover, by Lemma 4.3.4, dim(P) = 2. So, dim(rad(P)) = 1.
Hence, rad(P) is a simple submodule of P. Being uniserial, by lemma 4.1.4, P has a
simple socle. Thus, rad(P) = soc(P), and hence, S is isomorphic to the socle-factor of P.
Moreover, by Lemma 4.3.3, P is injective. Therefore, by 3.1.9, g is minimal left almost
split. In particular, g is also irreducible. By Lemma 3.3.4, the above sequence is an almost

split sequence.

(2) Assume that S is non-injective with an injective envelope f: S — I. By lemma 2.3.7,
S 2 soc(I). Thus, we have a non-split short exact sequence

0 st

1—2-1/S 0.

Since [ is indecomposable injective, by Lemma 3.1.9, ¢ is minimal left almost split. In
particular, ¢ is irreducible. Moreover, by Lemma 4.3.4, dim(/) = 2. So, dim([/S) = 1,
and thus, I/S is simple. As we know, I/S is simple if and only if S € I is a maximal
submodule. So, S is a maximal submodule of /. Hence, rad(7) ¢ S. On the other hand,
being uniserial, I has a simple top. By lemma 1.5.7, rad(/) is also a maximal submodule
of I. This gives rise to S = rad([). Moreover, by Lemma 4.3.3, [ is projective. By Lemma
3.1.8, f is minimal right almost split. In particular, f is also irreducible. By Lemma 3.3.4,

the above sequence is an almost split sequence. O]
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Lemma 4.3.6. Let A = KQ/I be a Nakayama algebra with rad®A = 0. Consider a
sequence M NS of two irreducible maps between indecomposable modules in mod
A. If f is a monomorphism or g is an epimorphism, then, gf = 0.

Proof. Assume that ¢ is an epimorphism. Then, 1 < dim(L) < dim(N). By lemma 4.3.3,
dim(N) < 2. Therefore, dim(N') = 2 and L is simple. By lemma 3.3.2(1), there exists a

non-split short exact sequence

0 Ul N—2-1 0,

where U = Ker(g). By corollary 3.3.16(2), L is not projective, and by lemma 4.3.5(1),

there exists an almost split sequence

0 7L—4=P-—Ys] 0,

where w is minimal right almost split, v is minimal left almost split, and dim(P) = 2.
Since g is not a retraction and v is right almost split, g = vv’ for some map v': N - P.
Then, vv'h = gh = 0. Since u = Ker(v), there exists a map ' : U — 7L such that v'h = uu'.

Therefore, we have a commutative diagram as follows :

0 Ut N2 o0

ol

0 TL—+P—=1L 0.

Since g is irreducible, v’ is a section. In particular, v is a monomorphism. Since dim(P) =
2 =dim(N), by Lemma 1.3.2, v’ is an isomorphism. By lemma 1.8.3, we have two exact
sequences 0 - Ker(u') - Ker(v') and Ker(id,) - Coker(u’) - Coker(v’). Since v’ is an
isomorphism, Ker(v’) = 0 and Coker(v’) = 0. Similarly, Ker(id;) = 0 and Coker(id;) = 0.
This yields two exact sequences 0 - Ker(u’) — 0 and 0 - Coker(u') - 0. So, Ker(u') =0
and Coker(u’) = 0. That is, v’ is an isomorphism. As a consequence, we have an almost

split sequence
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where h is minimal right almost split. Being irreducible, f : M — N is not a retraction.

Thus, there exists a map ¢ : M — U such that f = hoq. Therefore, gf = ghq = 0.

Suppose now that f is a monomorphism. Then, 1 < dim(M) < dim(NV). By Lemma 4.3.3,
dim(N) < 2. Therefore, dim(N) = 2 and M is simple. Then, by lemma 3.3.2(1), there

exists a non-split short exact sequence

!

0 M N-lsvy 0,

where V' = Coker(f). By corollary 3.3.16(1), M is not injective, and by lemma 4.3.5(2),

there exists an almost split sequence

0 M- [ 2710 — 0,

where v is minimal right almost split, v is minimal left almost split, and dim(/) = 2.
Since f is not a section and w is left almost split, f = u'u for some map v’ : [ - N. Then,
hu'u = hf = 0. Since v = Coker(u), there exists a map v’ : 7-M — V such that hu' = v'v.

Therefore, we have a commutative diagram as follows :

0 M-t [~ M ——(
0 Mt N_—" .y 0.

Since f is irreducible, u’ is a retraction. In particular, «’ is an epimorphism.
Since dim(/) =2 = dim(N), by Lemma 1.3.2, v/ is an isomorphism.
By the Snake Lemma, we have two exact sequences
Ker(u") -» Ker(v") - Coker(idyy)
and
Coker(u") —» Coker(v") — Coker(idyy).

Since v’ is an isomorphism, Ker(u') = 0 and Coker(w’) = 0. Similarly, Ker(idy;) = 0 and

Coker(idys) = 0. This yields two exact sequences 0 — Ker(v') - 0 and 0 — Coker(v’) — 0.
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So, Ker(v") = 0 and Coker(v’) = 0. That is, v’ is an isomorphism. As a consequence, we

have an almost split sequence

L, v 0,

where h is minimal left almost split. Since ¢ is irreducible, there exists a map t: V — L

such that g =t o h. Therefore, gf =thf =0. m

Proposition 4.3.7. Let A = KQ/I be a Nakayama algebra with rad®?A = 0. Then
rad®(modA) = 0.
Proof. Let X, , X5 EER X3 KR X, be a sequence of three irreducible morphisms between

indecomposable modules. Then each f; is either a monomorphism or an epimorphism.

Moreover, by Lemma 4.3.3(1), dim(X;) <2 for any 1 <i < 4.

If dim(X;) = 1, then X is simple. So, f; is a monomorphism. So, by Lemma 4.3.6,
f2f1 =0. Then, f3f2f1 =0.

Assume dim(X7) = 2. If f; is a monomorphism, then dim(X3) > dim(X;) = 2, a contradic-
tion. So, f; is an epimorphism. Then dim(X3) < dim(X;) = 2. So, X is simple. Thus, f;
is a monomorphism. So, by Lemma 4.3.6, f3fs = 0, and hence, f3fsf1 = 0. By Proposition
3.2.10, rad®(modA) = 0. O

Now, we are ready to state the main result of this thesis.

Theorem 4.3.8. Let A= KQ/I be a Nakayama algebra, where Q is a finite connected
quiver and I is an admissible ideal of kQ. Then rad®(modA) = 0 if and only if one of the

following cases occurs.
(1) Q=A, with1<n<3 and I =0.
(2) Q= A, withn>1 and I is generated by all paths of length two in Q.

(3) Q=A, withn>3 and I is generated by all paths of length two in Q.
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Proof. The necessity of the theorem holds by Lemma 4.3.1. It remains to show the suffi-
ciency. Suppose that the case (2) or (3) occurs. By proposition 4.2.1, A is a Nakayama al-
gebra, and by proposition 1.9.6, rad*(A) = 0. Thus, by Proposition 4.3.7, rad®(modA) = 0.

Now, we suppose that Q@ = A, with 1 <n <3 and I = 0. If n = 1, then A is simple.
By Proposition 1.9.7, rad(modA) = 0. In particular, rad®(modA) = 0. If n = 2, then
rad®(mod)A = 0; see ([6], 5.2.4). So, rad*(modA) = 0. If n = 3 then, by Lemma 4.3.2,
rad®(modA) = 0. O
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CONCLUSION

In this thesis, after introducing the concept of radical in a K-linear category, we saw in
chapter 1, for a finite dimensional K-algebra A, rad(mod A) is zero if and only if A is

semi-simple.

Also, in the remaining chapters, we presented the concepts of the theory of representation

of algebras and the structure of Nakayama algebras on projective and injective modules.

Then, all concepts of four chapters helped us to show that in Nakayama algebras with a
module category, radical cube is zero if and only if Q is type of Q = A, with 1 <n < 3 and
I=0,Q=A, with n>1 and I is generated by all paths of length two in Q and Q = A,,

with n >3 and [ is generated by all paths of length two in Q.

82



BIBLIOGRAPHY

1]
2]

3]

4]
5]
(6]

8]

Ibrahim ASSEM. Algébres et modules : cours et exercices. Masson Paris, 1997.

Ibrahim ASSEM et Flavio Ulhoa COELHO. Basic representation theory of algebras.
Springer, 2020.

Ibrahim ASSEM, Daniel SIMSON, Andrzej SKOWRONSKI et al. Elements of the Repre-
sentation Theory of Associative Algebras : Volume 1 : Techniques of Representation
Theory. Cambridge University Press, 2006.

Claudia CHAIO et Shiping Liu. A note on the radical of a module category. Com-
munications in Algebra, 2013.

Marion HENRY. Calcul de la puissance annulatrice du radical a partir du carquois
ordinaire. 2015.

Saliou LO. Algébres de dimension finie dont le carré du radical de la catégorie des
modules est nul. 2021.

Ralf SCHIFFLER. Quiver representations. Springer, 2014.

Andrzej SKOWRONSKI et Kunio YAMAGATA. Frobenius algebras. European Mathe-
matical Society, 2011.

83



	SOMMAIRE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	INTRODUCTION
	CHAPTER 1 — Algebras and Modules
	Algebras
	Linear Categories
	Category of Modules
	Semi-simple Modules and Semi-simple Algebras
	Radical of Modules
	Projective and Injective Modules
	Projective Cover and Injective Envelope
	Exact Sequences of Modules
	Radical of the Module Category
	Standard Duality

	CHAPTER 2 — Quivers and Algebras
	Quivers
	Algebras Given by a Quiver
	Monomial Algebras
	Representations of a Quiver

	CHAPTER 3 — Auslander-Reiten Theory
	Almost Split Morphisms
	Irreducible Morphisms
	Almost Split Sequences
	Auslander-Reiten Quiver

	CHAPTER 4 — Radical Nilpotence of the Module Category over a Nakayama Algebra
	Nakayama Algebras
	Nakayama Algebras Given By a Bound Quiver
	Main Statement

	CONCLUSION
	BIBLIOGRAPHY

