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Abstract

The main objective of this thesis is to study the cluster-tilting subcategories
in a cluster category (@), where @ is a quiver with no infinite path of type A

o0
or A%.

We start this work with the 7-rigidity theory in an Auslander-Reiten k-
category A, where k is an algebraically closed field and 7 is the Auslander-Reiten
translation of A. Given a standard Auslander-Reiten component of A which is
a finite wing or, of shape ZA, or ZAZ,, we first characterize its maximal 7-rigid
sets and then produce a method to construct all of them. This technique also
allows us to obtain all the tilting modules over the path algebra of a linearly

oriented quiver A,,.

We then apply the above mentioned results to our main objective. Indeed, the
rigid subcategories of €'(Q) are determined by the 7-rigid sets in its fundamental
domain .Z#(Q), which consists of some standard Auslander-Reiten components of
shape ZA ., or ZAZ, of the derived category of finite dimensional representations
of (). The above results enable us to characterize and construct the maximal

rigid subcategories of € (Q).

Finally, combining these with the criteria by Holm-Jgrgensen and Liu-Paquette
for maximal rigid subcategories to be cluster-tilting, we shall be able to obtain a
complete characterization of the cluster-tilting subcategories of € (Q) and provide

an explicit method to construct them all.






Sommaire

L’objectif principal de cette these est d’étudier les sous-catégories inclinantes
amassées d'une catégorie amassée €' (Q), ou @) est un carquois sans chemins infinis
de type A or AY.

Nous commencons par la théorie de 7-rigidité dans une catégorie d’ Auslander-
Reiten A, ou 7 est la translation d’Auslander-Reiten de A. Etant donnée une
composante standard d’Auslander-Reiten de A qui est une aile ou de la forme
ZA, ou ZAZ, nous caractérisons d’abord ses ensembles 7-rigides maximaux et
produisons ensuite une méthode pour les construire tous. Cette technique nous
permet également d’obtenir tous les modules inclinants sur une algebre héréditaire

d’un carquois orienté linéairement de type A,,.

Nous appliquons ensuite les résultats mentionnés ci-dessus a notre objectif
principal. Effectivement, les sous-catégories rigides de €'(Q)) sont déterminées
par les ensembles 7-rigides dans son domaine fondamental Z(Q), qui se com-
pose de certaines composantes d’Auslander-Reiten de la catégorie dérivée des
représentations de dimension finie de @), qui sont toutes standards de type ZA
ou ZAZ,. Les résultats ci-dessus nous permettent de caractériser et de construire

les sous-catégories maximales rigides de €'(Q).

Enfin combinant nos résultats avec les criteres d’Holm-Jgrgensen and de Liu-
Paquette pour qu’une sous-catégorie maximale rigide soit inclinante amassée,
nous pourrons obtenir une caractérisation complete des sous-catégories incli-

nantes amassées de €' (@) et fournir une méthode explicite pour les construire.

IT
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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [24], 25], whose
initial aim was to study the dual canonical basis and total positivity in Lie theory.
It has been revealed that the theory of cluster algebras is connected to various
subjects of mathematics, such as representation theory, algebraic geometry and

combinatorics.

Let @ be a finite quiver without loops or 2-cycles. Consider the rational
function field Q(xy, ..., z,), where 1, ..., x, are labeled by the vertices 1,2,...,n
of Q. Using the local information of () at some vertex k, one mutates {z1,...,x,}
at z; and obtains a new set {z/,..., 2/} of elements of Q(z1,...,x;), which
corresponds to a new quiver )’ of vertices 1,2,...,n. Using information of ¢,
one mutates again {z/,...,2/}. The sets obtained by all possible mutations
are called clusters. An element of Q(z1,...,x,) is called a cluster variable if it
belongs to a cluster. The Z-subalgebra A(Q) of Q(xy,...,x,) generated by all

cluster variables is called the cluster algebra associated with Q).

A remarkable connection between representation theory and cluster algebras
was discovered by Buan, Marsh, Reineke, Reiten and Todorov in [20]. Indeed,
given a finite acyclic quiver @), they constructed the so-called cluster category
% (Q) associated with ), which is the orbit category of the derived category of
finite dimensional representations of ) by the composite of the Auslander-Reiten
translation and the shift functor. One calls €(Q) an additive categorification
of the cluster algebra A(Q) associated with @, in the sense that cluster-tilting
objects correspond to clusters; direct summands of cluster-tilting objets corre-
spond to cluster variables; and replacing an indecomposable direct summand of
a cluster-tilting object corresponds to mutating the corresponding cluster at the

corresponding cluster variable.



In a general 2-Calabi-Yau triangulated category, replacing cluster-tilting ob-
jects by cluster-tilting subcategories, Buan, Iyama, Reiten and Scott introduced
the notion of a general cluster structure; see [2I]. This inspired a great interest
in generalizing the construction given in [20] to the infinite case. Indeed, let Q
be a locally finite quiver without infinite paths. As shown by Bautista, Liu and
Paquette; see [15], the category rep(Q) of finite dimensional representations of )
over a field is a hereditary abelian category having Auslander-Reiten sequences,
and consequently, the derived category D’(rep(Q)) has Auslander-Reiten trian-
gles; see [53]. By Keller’s result in [39], the orbit category € (Q) of D’(rep(Q)),
constructed in the same fashion as in [20], is a 2-Calabi-Yau triangulated cat-
egory. Remarkably, it has been shown that the cluster-tilting subcategories in
% (Q) form a cluster structure; see [48] 62, [59]. For this reason, one calls €(Q)

the cluster category associated with Q).

As we can see, in order to study the cluster structure in %(Q), we shall
need to study its cluster-tilting subcategories. In case @) is finite of n vertices,
a cluster-tilting object in %(Q) is simply a rigid object of n non-isomorphic
indecomposable direct summands; see [20]. In case @ is infinite, it is more difficult
to recognize cluster tilting subcategories, not to mention to construct all of them.
The objective of this thesis is to deal with these two problems in the A,-case
and the A%-case.

Let @) be a quiver of type A, or AY without infinite paths. Holm-Jgrgensen
and Liu-Paquette have shown in [34], 48] that the cluster-tilting subcategories in
%' (Q) are the maximal rigid ones which are functorially finite in ¢(Q). Moreover,
a geometric model (that is, an infinite polygon with marked points in the A,-case
and an infinite strip with marked points in the AZ-case) has been constructed in
such a way that the maximal rigid subcategories correspond to triangulations of
the geometric model. This enabled them to characterize the functorial finiteness
of a maximal rigid subcategory in terms of the geometric model, that is, they gave
a criterion for a maximal rigid subcategory to be cluster-tilting. Note, however,
these geometric descriptions do not provide any method to obtain cluster-tilting
subcategories. In this thesis, we shall study the cluster-tilting subcategories of
% (Q) from a purely categorical point of view. Recall that cluster-tilting subcate-

gories are strictly additive, that is, closed under isomorphisms, finite direct sums



and taking direct summands; see [48, Section 1]. Since € (Q) is Krull-Schmidst,
every strictly additive subcategory .7 of € (@) is determined by a set ind7 of ob-
jects in its Auslander-Reiten quiver I'¢(g). Thus, we shall work in the framework

of I'¢(q) in order to provide

(1) a characterization of maximal rigid subcategories, and

(2) a method to construct all the maximal rigid subcategories, as well as all

the cluster-tilting subcategories.

We should point out that our construction of maximal rigid subcategories is
based on an effective construction of all tilting modules over the path algebra of
a linearly oriented quiver A,. We shall mention that Assem and Happel have

given an implicit method to construct the tilting modules of an algebra of type
A, in [].

For the rest of this introduction, we shall present more details. The clus-
ter category € (@) admits a fundamental domain % (@), which is a translation
subquiver of the Auslander-Reiten quiver I'ps(rep(g)) Of D’(rep(Q)). The canon-
ical projection 7 : D’(rep(Q)) — %€(Q) induces a translation quiver morphism
T F(Q) = I'¢(q), acting identically on the underlying quiver. In case @ is of
infinite Dynkin type, 7 : % (Q) — ' (q) is an isomorphism, and a set of objects

in I'¢() is maximal rigid if and only if it is maximal 7,-rigid in .#(Q), where

7, is the Auslander-Reiten translation of D(rep(Q)); see (5.1.7). Therefore, it

amounts to study the maximal 7,-rigid sets in .%(Q). This is particularly advan-
tageous since in this case every connected component of I'ps(ep(g)) 18 standard,
that is, the morphisms between two objects can be described by the paths be-
tween them. Moreover, this approach allows us to work under a more general
setting, that is, to study maximal 7-rigid sets in a standard component of an

Auslander-Reiten category.

For this purpose, we shall need some combinatorial considerations. Let (I", T)
be a translation quiver, which is a finite wing; see , or is of shape ZA
or ZAY. A section-generator of I' is a set of vertices of I' whose convex hull
is a section, or equivalently, a set of vertices of a section containing its source
vertices and its sink vertices; see (4.1.15)), (4.2.24) and (4.3.22). Since it is easy
to find all the sections in I, we shall be able to find all section-generators of I'.




To ease our work, we shall introduce a coordinate system for I so that we may
identify a vertex X € I' with a unique pair (i,,j, ) of integers; see Chapter 4.
In particular, the coordinate system yields an order < over the vertices of I'; see
, and . A set § of vertices of I' is called a sectional chain if
it is a chain such that, for every minimal cover X <Y in &S, there is a path in I
connecting X and Y. Indeed, every section-generator of I" is a sectional chain;

see (4.1.15)), (4.2.24) and (4.3.23)).

Assume that I" is a finite wing or of shape ZA . Then, every vertex X € [ is
the wing vertex of a unique wing Wy in I'; see . Fix two vertices X,Y € I'.
We have X XY if and if only Wx C Wy. We say that Wx, Wy are comparable
if X,Y are comparable. Moreover, we shall say that Wx, Wy are separable if
there is a quasi-simple vertex between them but contained in neither of them; see
. If X <Y and X,Y are connected by a path, then we define W5¥ to be
the maximal wing contained in Wy such that Wy, Wi are separable. In case I’
is of shape ZA ., the quasi-simple vertices of I" can be written as S; with i € Z
such that S;,; = 7.5;. We denote by R (respectively, R; ) the infinite sectional
path starting (respectively, ending) with S;. A set of vertices of I is called locally
finite if it contains at most finitely many vertices of each of the R} and the R;.
Given any n € Z, we define 't = Uicn R, the full subquiver of I' generated
by the successors of S,,_1, and I',, = J i~n B 5 the full subquiver of I' generated
by the predecessors of S, ;1.

Now, let A be an Auslander-Reiten category; see , with Auslander-
Reiten quiver I' 4 and Auslander-Reiten translation 7. We are ready to describe
our construction of the maximal 7-rigid sets in a standard component I of "4,
which is a finite wing or is of shape A, or AY. Roughly speaking, our construc-
tion consists of a choice of one or two section-generators of I' and an addition of

some extra objects in some finite wings.

First, let W be a standard component of I'4 which is a wing of rank n;
see (1.4.4). In this case, a pair (X,Y) in W is 7-rigid if and only if Wx, Wy
are comparable or separable; see . Since addWW = modk&n; see ,
the maximal 7-rigid sets in VW correspond to the tilting modules in modH, and

consequently, a maximal 7-rigid set in W is a 7-rigid set of n objects. This allows
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us to construct inductively the maximal 7-rigid sets in W. Indeed, this is trivial
in case W of rank 1 or 2. In case n > 2, we shall take a section-generator S
of W. Being a sectional chain, § is of the form X; < X, < --- < X,,, where
Xy, Xyiq with 1 <t < m are connected by a path in YW. As mentioned above, we
obtain wings W))((:H with 1 <t < m, which are pairwise separable of rank less
than n; see 1' Choosing a maximal 7-rigid set ©; in W))((:H, which is doable
by the induction hypothesis, we obtain a maximal 7-rigid set SUO;U---UO,,_;
in W. Indeed, every maximal 7-rigid set in WV can be obtained by this way; see
. Since we are able to obtain all the section generators of W, this provides

a method to obtain all the maximal 7-rigid sets in W.

Secondly, let I" be a standard component of I' 4 of shape ZA,. Similarly, a
pair (X,Y) in I' is 7-rigid if and only if Wx, Wy are comparable or separable;
see (5.3.1). The maximal 7-rigid sets in I" are characterized in Theorem ,
in particular, they always contain a section-generator. To construct a maximal
T-rigid set, we start with a section-generator S of I', which is necessarily of the
form

Xi<Xpg=<- =X <00

where X;, X;,1 are connected by a path for all ¢ > 1. As mentioned in the finite
wing case, we obtain finite wings W))((ZH in I'. Choosing a maximal 7-rigid set

O, in W))((:H for all ¢, we obtain a set © = J;-, ©;, called an addend to S, such
that S U © is 7-rigid; see . If § is locally finite; see , then SU©
is maximal 7-rigid in [". Otherwise, say, S is almost contained in some R, ; see
(5.3.22)). Then, we choose another section-generator S” of I" almost contained in
R with m > n + 2, and an addend ©g to S’. Moreover, we choose a maximal

7-rigid set © in the (possibly empty) finite wing 'Y, N I'Z,. Then
SUBsUS'UBs UB

is a maximal 7-rigid set in I'. More importantly, all maximal 7-rigid sets in [’

are constructed by one of these two constructions; see ([5.3.24]).

For our later purpose, we should point out that every maximal 7-rigid set in
I'Z, (respectively, I't,) is of the form SUOsUO, where S is a section-generator

almost contained in R} with j > n (respectively, Rf with i < n), Os is an

5



addend to S, and © is a maximal 7-rigid set in the (possibly empty) finite wing
I't; NIz, (respectively, I't, N I'7)); see (5.3.28) and (5.3.27).

>n

Thirdly, let I" be a standard component of I"4 of shape ZAZ. In this case,
a pair (X,Y) in I' is 7-rigid if and only if X,Y are comparable; see ([5.4.1)).
Thus, the maximal 7-rigid sets in I" are simply the sections in I'; see (5.4.3) and
(@3.19).

Finally, we go back to the cluster category €(Q) of type A, or AZ. In
case @ is of type A, the fundamental domain .7 (Q) for € (Q) is the connecting
component of I'pe(ep(q)), Which is of shape ZA,. As explained above, we shall be
able to characterize the maximal 7,-rigid sets in .% (Q)) and construct all of them.
Combining these results with Holm and Jgrgensen’s criterion for a maximal rigid
subcategory (that is, a triangulation of the infinite-gon) to be cluster-tilting, we
obtain a complete characterization of the cluster-tilting subcategories in €(Q);
see , and a method to construct them all; see . Indeed, a strictly
additive subcategory 7 of €(Q) is cluster-tilting if and only if ind.7 is a maximal
7,-rigid set in .Z (Q)) obtained by taking a locally finite section-generator of .7 (Q),
or taking two section-generators with one almost contained in R and the other

almost contained the R, , for some n.

Now, assume that @ is of type AL. The fundamental domain .7 ((Q)) consists
of three connected components of I'psep(g)), namely, the connecting component
Cq which is of shape ZAZ, and two regular components £, R of I'iep0) which
are orthogonal of shape ZA,. W shall choose the coordinate systems for £, R
to be related to the coordinate system for Cg in such a way that the 7-rigidity of
a pair of objects in two different components can be easily described; see ([7.2.1)).
As a consequence, every maximal 7, -rigid set in .#(Q)) without objects of Cg is
a union of a maximal 7,-rigid set in £ and a maximal 7,-rigid set in R with at

least one of them being dense in its own component; see ((7.2.3)).

To obtain the maximal 7, -rigid sets in .# (@) intersecting Cq, we shall take
a sectional chain S in Cg, which is necessarily of the form {X,},ez with Z an
interval of Z such that X,, < X, ;1 and X,,, X,,;1 are connected by a path p,,
for all non-maximal n € Z. For each non-maximal n € Z, we define a finite wing

Wk, x,..1, which lies in £ or R depending on s(p,); see (7.1.2)). Then, choosing

6



we obtain an addend © =J, _; 0, to S,

a maximal 7-rigid set ©,, in Wy, x
such that S U © is 7, -rigid.

n+17 nerl

Consider two coordinate sets [, = {i, | X € S} and J, ={j, | X € S}. We
define £ 1s to be ELO in case Is has a minimal element ig; and the empty set
otherwise, moreover, define L, to be £, in case Is has a maximal element
11; the empty set otherwise. In a similar fashion, we define two subquivers Ri Js
and R, of R. Then, we choose maximal 7,-rigid sets ®3'S, ®7'S, &=’ and

O3 in L£F, , L2, RE

Zre0 L1 RZ,, and R, respectively, such that @ZIS is dense in

>Jso
. . _ . .. I -
L%, and ®=79 is dense in R, in case S has a minimal element, and 7S s

. _ Jo - . . . .
dense in £ Is and <I>7<2 S is dense in Ri Js 1N case S has a maximal element. This

yields a maximal 7,-rigid set
SUBUOLS UdLs UdRs UDLT

in .7 (Q). More importantly, every maximal 7-rigid set containing objects of Cg

can be obtained in this way.

As shown above, we obtain a complete description of the maximal 7, -rigid
sets in .Z (Q). Using our methods to construct maximal 7-rigid sets in a standard
Auslander-Reiten component of an Auslander-Reiten category, this description
allows us to construct all the maximal 7,-rigid sets in .#(Q). Finally, combining
these results with Liu and Paquette’s criterion for a maximal rigid subcategory
(that is, a triangulation of the infinite strip) to be cluster-tilting, we obtain a
complete characterization of the cluster-tilting subcategories in €(Q)) and an
effective method to construct them all; see . Indeed, a strictly additive
subcategory .7 of € (Q) is cluster-tilting if and only if ind.7 is a maximal 7, -rigid
set in % (Q) obtained by taking a section-generator S (not just a sectional chain)
as follows:

SUeuUdTUdsUdLs UL,

where © is an addend to S, @ZI‘S , CDZIS , <I>7<3JS , <I>7>3‘]5 are densely maximal 7, rigid

+

sets in £<Is7 STs)

RZ,., and RZ,_, respectively.






Chapter 1
Preliminaries

Throughout this thesis, k stands for an algebraically closed field. In this
chapter, we shall introduce some terminology of partially ordered sets, which will
be used throughout this thesis. We also collect some notions and basic facts
about k-linear categories, path categories and mesh categories. It comes mainly
from [5], [43], and [55].

1.1 The partially ordered sets

In this section, we shall introduce some terminology of partially ordered sets,

which will be frequently used later.

Let (P, <) be a partially ordered set, also called a poset. If a < b and a # b,
we write a < b and call b a cover of a in P. We say that b is a minimal cover of a
in P provided that a < b and there exists no element ¢ € P such that a < ¢ < b.

A subset S of P is called a chain provided, for any a,b € S, that a < b or
b < a. A chain S in P is called mazimal if there is no such a chain S’ in P that
SCS.

Let X be a subset of P. A subset 7 of X is called dense in X if for any element
x € X, there is an element a € T such that x < a.

9



1.2 Linear categories

A k-linear category or simply k-category is a category in which the morphisms
sets are k-vector spaces and the composition of morphisms is k-bilinear. Such a k-
category is said to be Hom-finite if all the morphisms spaces are finite dimensional

over k.

For the rest of this section, A stands for a Hom-finite k-category. Given an
object X in A, End 4(X) = Hom4(X, X) is a finite dimensional k-algebra, called
the endomorphism algebra of X. Given an ideal Z in A, as defined in [5, A.3(3.1)],
one defines a quotient category A/Z as follows. The objects are those of A, and
given objects X,Y, we have Hom 4,7(X,Y) = Homu(X,Y)/Z(X,Y), and the

composition of morphisms is induced from the composition of morphisms in A.

1.2.1 DEFINITION. An object X € A is called a direct sum of X1,..., X, € Aif
there exist morphisms ¢; : X; — X, called injections, and morphisms p; : X —
X, called projections, such that X7 ,¢;p; = 1x, and for 1 <1,5 < n,

lx,, ifi=yj;
piq; =
’ 0, otherwise.

In this case, write X = X; - ® X,,.

A non-zero object X € A is indecomposable provided that X = X; & X,
implies X; =0 or X5 = 0.

Given X = X; @ --- @ X, with injections ¢; : X; = X andY =Y, @ --- DY
with projections u; : Y — Y}, every morphism f : X — Y in A is identified
with a matrix f = (fij)sxr, Where f;; = u;fq; € Homu(X,,Y;), for all 4,5. In
particular,

Homu(X,Y) = @HomA i Y5)

1.2.2 DEFINITION. A k-category A is called additive if the following are satisfied.

(1) There is a zero object 0, that is, Hom4(X,0) = 0 and Hom4(0, X) = 0 for
every object X € A.

10



(2) For any objects Xy, -+, X, € A, the direct sum X; @& --- @ X, exists in A.

1.2.3 DEFINITION. An additive k-category is called a Krull-Schmidt category
provided that every object decomposes into a finite direct sum of objects having

local endomorphism rings.

Let A be a Hom-finite Krull-Schmidt k-category. Non-zero object decomposes

into a finite direct sum of indecomposable objects; see, for example, [43], (4.2)].

To conclude this section, assume that A is an abelian k-category, as defined
n [56]. We refer the notion of Yoneda Ext Groups Ext"(X,Y), with n > 1, to
[61), §3.4]. An abelian category A is called hereditary if Ext?(X,Y) = 0, for any
X, Y e A

1.3 Quivers and path categories

The objective of this section is to recall some notions and terminology from

quivers and path categories.

1.3.1 DEFINITION. A quiver is a quadruple @ = (Qo, @1, s,t), where Qg is a set
of vertices, ()1 is a set of arrows, and s,t : ()1 — Qo are maps. Given an arrow

a € @1, one calls s(a) its source and t(«) its target; and writes « : s(a) — t(«).

Throughout this section, we fix such a quiver @ = (Qq, @1, s,t). The under-
lying graph of () is obtained from () by forgetting the orientation of the arrows.
The quiver () is said to be connected if its underlying graph is connected. One
says that @ is finite if ()y and (), are finite sets. Moreover, () is called locally
finite if, for any a € @, the number of arrows « with s(a) = a, as well as, the
number of arrows 8 with ¢(3) = a, is finite. In this thesis, we assume that all

quivers are locally finite.

A vertex a in @ is called a source vertez if () has no arrow a with t(a) = a;

and a sink vertez if @) has no arrow a with s(a) = a.

11



Let a,b € Q. A path p of length l(p) > 1 from a to b is a sequence of arrows
denoted by p = ay(p) - - - ap, where oy € @y for all 1 < i < [(p) and s(a;) = a,
t(a;) = s(aiq1) for 1 < i < I(p) and t(ayp)) = b. In this case, a is called a
predecessor of b, and b is called a successor of a. In particular, if there exists an
arrow a — b, then a is said to be an immediate predecessor of b, and b is said to
be an immediate successor of a. In the sequel, a path from a to b will be simply
denoted by a ~~ b. Moreover, with each vertex a one associates a trivial path
€4, which is of length 0. A path of length greater than or equal to 1 is called a
cycle if its source and target coincide. A quiver is called acyclic if it contains no
cycles. The quiver @) is called strongly locally finite if it is locally finite and, for
any a,b € (Qy, (Q contains only finitely many paths from a to b.

A quiver Q' = (@, Q1, s, ') is called subquiver of Q = (Qo, @1, s,t) if Qy C Qo
and Q) € @ and 8" = sy and t' = t|g,. A subquiver Q' of @ is called full if
Q1 ={a e @] s(a) € Q)and t(a) € Qy}, and convex provided that every path
To — X1 — -+ — T, in Q with zg,z, € Q' lies entirely in @’. In particular, a

convex subquiver of () is always full.

Let 7 be a set of vertices of (). The convex hull of T is the minimal convex
subquiver of () containing 7T, that is the full subquiver of ) generated by the

vertices lying on a path in () whose endpoints belong to 7.

With each arrow a : @ — b in @), we associate a formal inverse a~! : b — a,
with the source s(a™!) = b and the target t(a™') = a. An edge in Q is an arrow
or the inverse of an arrow. A trivial path is called a trivial walk. A non-trivial
walk w in @ is a finite or infinite product of the form ---¢;y1¢; - -+, where ¢; are
edges such that t(c;) = s(c;y1) for all i. Such a walk is called reduced if ¢;11 # c; !
for every 7. We shall say that a vertex x appears in w if z = s(¢;) or x = t(¢;) for
some 7; and an arrow o appears in w if ¢; = a or ¢; = a~ ! for some j. Moreover,
one says that w is simple if every vertex appears in w at most once. Finally, we
shall say that a subquiver @’ of a quiver ) is given by a simple walk w if Q)
consists of the vertices appearing in w and () consists of the arrows appearing

n w.

Given a quiver Q = (Qo,Q1), one defines its path category k[Q] over k as

follows. Its objects are the vertices of (), and given a, b € (), the set of morphisms
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from a to b is given by the k-vector space with a basis the set of all paths from
a to b. The composition of morphisms is induced from the composition of paths.
Clearly, k[Q] is a k-category. Furthermore, the path algebra of @ over k is defined
by

kQ = @ Homyg(a, b),

a,beQo

whose multiplication is induced from the composition of morphisms in k[Q)].

Recall that a k-algebra H is called hereditary if every submodule of a projective
H-module is projective.lt is well known that if () is finite and acyclic, then the
path algebra k@ is hereditary; see, for example, [5, (VII 1.7)]. For more details

on algebras and modules, we refer the reader to [3], [61] and [56].

1.4 Translation quivers and mesh categories

In this section, we shall collect some notions and facts about translation quiv-
ers and mesh categories. Moreover, we shall introduce some notions and termi-

nology in a translation quiver which is a wing or of shape ZA.

1.4.1 DEFINITION. A translation quiver I' = (I'y, Iy, T) is given by an underlying
quiver (I'g, I'1), which is locally finite without multiple arrows, together with a
translation, that is an injective map 7 : I'y — I'g, where Iy is a subset of Iy,
such, for any z € I'j and any y € Iy, that y — z is an arrow if and only if 72 — y
is an arrow. The vertices in I'g which do not belong to I are called projective,

those not belonging to the image of 7 are called injective.

Throughout this section, let I' = (g, I'1,7) stand for a translation quiver.
Given x € [y, the T-orbit of x is the set of all vertices of the form 7"x with n € Z.
A connected full subquiver of I' is called a section in I' if it is acyclic, it meets

each 7-orbit exactly once and it is convex in [I'.

1.4.2 DEFINITION. A section-generator of I' is a set of vertices whose convex

hull is a section of I'.
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A path xg = 1 — -+ — x, in [ is called sectional if x; 2 T2, 1, for all
0<<n.

A translation quiver (A, 7,) is a translation subquiver of (I', T) provided that
A is a subquiver of I' and 7,2 = 72, whenever x is a vertex of A such that 7z

belongs to A.

Next, we will recall some facts on mesh categories. Recall first that k[I'] is
the path category of the quiver I' over k. Given a non-projective vertex z € I, if
o; T2 = Y;, 1 =1,...,r arethe arrows startingin7zand 3; : y; — 2,2 =1,...,r
are the arrows ending in z, then m, = Y., f;a; € k[I'] is called a mesh relation.
The mesh ideal in k[I'] is the ideal generated by all the mesh relations. The
mesh category k(I') is the quotient category of k[I'] modulo the mesh ideal; see,
[55, (2.1)]. There exists a canonical projection functor p : k[I'] — k(I), acting
identically on the vertices. Given u € k[I'], we shall write @ for the image of u

under p.

Let A be a convex subquiver of I'. Then A is a translation quiver and we

denote its mesh category by k(A).

1.4.3 LEMMA. Let I' be a translation quiver and let A be a convex subquiver of
. If k{A} denotes the full subcategory of k(I') generated by the vertices of A,
then there is an isomorphism F : k(A) — E{A} acting identically on objects. In

particular, for any x,y € A, we have
HOHIk(A)(ZU, y) = Homk(F) (337 ?J)-

Proof. Let k{A} be the full subcategory of k(I") generated by the objects of A.
Restricting the canonical projection k[I'] — k(I") to the path category k[A], we
obtain a full dense functor F' : k[A] — k{A}. It remains to show that KerF' = I,
the mesh ideal of A.

Indeed, let z,y be objects in A. Since A is convex in I, every mesh in A is
a mesh in I". In particular, Ia(z,y) C Ir(z,y) = (KerF)(x,y). Conversely, let
v be a non-zero element in (KerF)(x,y). Then v = ¥!_,u;m;v;, where m; is a
mesh in k[I'] starting with z; and ending with y;, and v; € Homyr(y;,y) and

v; € Homyr(z, ;). We may assume that the u; and the v; are non-zero. Then
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I contains a path x ~» x; ~ y; ~ y, for each 1 <i < r. Since A is convex in
I, we see that x;,y; € A, and hence, v € Ia(x,y). This shows that KerF' = 4.

The proof of the lemma is completed.

Given a quiver A = (Ay, A1) without oriented cycles, we can construct a
translation quiver ZA as follows. The set of vertices of ZA is Z x Ay; given
an arrow « : x — y in A, there are arrows (n,«) : (n,z) — (n,y) and arrows
(n,a') : (n+1,y) = (n,z). Define 7(n,z) = (n+ 1,z), for any x € Ay. One
says A is of type A if the underlying graph of A is A,,, with n > 1, A or AZ.
In this case, ZA will be simply written as ZA. A reduced walk w in ZA is called

sectional if the 7-orbits in w are pairwise distinct.

The following notion is well known; see, for example [55]. It shall play an

important role in our later investigation.

1.4.4 DEFINITION. A wing W is a translation quiver of the following shape

TN
N
NV
NS

In such a wing W, the vertex s is the unique source vertex, ¢ is the unique
sink vertex, while m is called the wing vertex. The unique path from s to m is a
section formed by the projective vertices of W, called the left-most section; and
the unique path from m to t is a section formed by the injective vertices, called
the right-most section. Observe that the left-most section and the right-most
section have the same vertices, called the rank of YW. For convenience, we define

a wing of rank 0 to be the empty set.

Let I" be a translation quiver, which is a wing or of shape ZA. A monomial
mesh relation in ' is a path 7o — y — x, where y is the only immediate

predecessor of x in I'. Given x € I', one defines the forward rectangle R* of x to
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be the full subquiver of I" generated by its successors y such that no path x ~~ y
contains a monomial mesh relation. Dually, define the backward rectangle R, of
x in I'. In particular, if I" is of shape ZAZ, then, by definition, R* consists of all

successors of x and R, consists of all predecessors of x.

The following lemma is a slight extension of Lemma 1.1 in [4§].

1.4.5 LEMMA. Let I' be a translation quiver which is a wing or of shape ZA. If
x,y € I', then Homypry(x,y) # 0 if and only if y € R* if and only if v € Ry; and
in this case, the class of every path from x toy forms a k-basis of Homyry(x,y).
Proof. In case I is of shape ZA, the statement is Lemma 1.1 in [48]. Let W be a
wing of positive rank, which is considered as a convex subquiver of a translation

quiver I" of shape ZA . Given z,y € W, by Lemma [1.4.3] we have

HOHlk(W)(l'; y) = Homk(F) (Ia y)-

Since W is convex in I', by definition, y is in R* in W if and only if y is in
forward rectangle of x in I'. Thus, the statement follows immediately from the

previously considered case. The proof of the lemma is completed.

We conclude this section with more notions and terminology, which will be
used later. Let I' stand for a translation quiver which is a wing or of shape ZA .
In case I' is a wing of rank n, the vertices t; = 7¢~'t, where ¢ is the unique sink
vertex and 1 < ¢ < n, are called quasi-simple. In case I' is of shape ZA ., then a
vertex is called quasi-simple if it has only one immediate predecessor. Moreover,
given a quasi-simple vertex s, there exists in I' a unique infinite sectional path
starting in s, called the ray starting with s; and a unique infinite sectional path

ending in s, called the co-ray ending with s.

The following statement is evident.

1.4.6 LEMMA. Let I' be a translation quiver which is a wing or of shape ZA .,

and let x be a vertex in I'.
(1) There exists a sectional path r1 — -+ — x,, = x with x1 quasi-simple.

(2) There exists a sectional path © =y, — -+ — y; with y; quasi-simple.
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(3) The convex hull W, of x1,y1 in I' is a wing of rank n, whose wing vertex

15 .
Let I' be a translation quiver which is a wing or of shape ZA.. Given a
vertex z € I', the rank of W, is called the quasi-length of x, written as ((z).

The following statement is easy to verify.

1.4.7 LEMMA. Let I' be a translation quiver which is a wing or of shape ZA .
There ezists a partial order =< over I'y so that x =<y if and only if W, C W,

REMARK. Given z,y € I', it is evident that W, C W, if and only if z € W,

The following definition is important to our later investigation.

1.4.8 DEFINITION. Let I' be a translation quiver which is a wing or of shape
ZA. Let W, W, be wings in I" with source vertices s,,s, and sink vertices
iz, ty, respectively. We shall say that W,, W, are

(1) comparable it W, CW, or W, C W,;
(2) separable if "s, = t, for some r > 2, or 7"s, = t, for some r > 2.

We illustrate Definition [1.4.8(2) by the following figure, where r > 2.

r
T Sy Sy

The following statement gives some properties of paths between two compa-
rable vertices of I.

1.4.9 LEMMA. Let I' be a translation quiver which is a wing or of shape ZA,
and let x,y € I' be comparable. If I has a path between x and y, then it is
sectional and is the unique path in I' between x and y.
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Proof. We shall consider only the case where W, C W,. In particular, x € W,.
Since W, is convex in ', there exists a path in I" between x and y if and only
if there exists a path in W, between x and y. Since y is the wing vertex of W,,
the latter statement holds if and only if = lies on the left-most or the right-most
section of W,; and in this case, W, contains a unique path between z and y,

which is sectional. The proof of the lemma is completed.

In view of Lemma [1.4.9] we have the following definition.

1.4.10 DEFINITION. Let I' be a translation quiver which is a wing or of shape
ZA. A chain S : z1 < x9--- <z, in I is called sectional if I' contains a path

between x; and x;1,t =1,...,m — 1.

The following statement will be used to characterize the 7-rigid pair, which

will be introduced in Chapter 5.

1.4.11 PROPOSITION. Let I' be a translation quiver which is a wing or of shape

ZA . Gwen x,y € I', the following statements are equivalent.

(1) Wy, W, are comparable or separable.
(2) y€ Ryp and y & R™ ™.
(3) v ¢ Ry andx ¢ R™ V.

Proof. By definition, y € R,, if and only if 72z € RY if and only if x € R™ Y.
Therefore, y ¢ R,, if and only x ¢ R™ Y. Similarly, y ¢ R™ * if and only if
x & R.,. This shows the equivalence of Statement (2) and Statement (3).

For proving the equivalence between Statements (1) and (2), we shall first
consider the case where I' is of shape ZA,. Fix z,y € I'. Let s,,s, be the
source vertices and t,,t, the sink vertices of the wings W, and W, respectively.

Assume that the ray starting with s, has the form
Seg =M1 —> Mg —> -+ =My —> Myy1 — ",

where m,. = x. Then the right-most section of W, is

My =7 ey — =7 Ty s Dy Ty =1
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On the other hand, since the above ray is a section, y = 7"m;, for some n € Z
and some ¢ > 1. In particular, t, = 7"¢,.

Assume first that 1 < ¢ < r. Suppose that —(r —i) < n < 0. Then
y € W,, and hence, W,, W, are comparable. In this situation, Statements (1)
and (2) both hold. Suppose now that n > 0. Then y is a predecessor of Tz,
and in particular, y ¢ R™ © and W,, W, are not comparable. If y ¢ R,,, then
I’ contains a path y ~» 7s — 2z — s ~» 7x, where s is quasi-simple. In this
case, s = 7%m; for some a > 1, and 7s = 77%, for some b > 0. This yields
t, = 0T, with b+ a + 1 > 2, and hence, W,, W, are separable. Conversely,
if W,, W, are separable, then t, = 7Ps; with p > 2. Thus, I'" contains a path
Yy~ ty = 2= 717ty ~ 7P, =5, ~ x. Hence, y € R;,. This establishes the
equivalence of Statements (1) and (2) in this situation. Similarly, Statements (1)
and (2) are equivalent in case n < —(r —1i). Assume now that ¢ > r. It is similar
to show that Statements (1) and (2) are equivalent in this situation.

Now consider the case where I' is a wing. It can be viewed as a convex
subquiver of a translation quiver of shape ZA,,. Then the statement follows from
the properties of forward rectangles and backward rectangles. The proof of the

proposition is completed.

We shall give the following sketch to illustrate the above proposition in case

I' is a wing.

3 1 4

In the above figure, a vertex y € I" lies in the region 1 if and only if W, C W,;
and y lies in the region 2 if and only if W, C W,; and y lies in the region 3 or 4
if and only if W, and W, are separable.

The following definition is essential for our later investigation.
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1.4.12 DEFINITION. Let I" be a translation quiver which is a wing or of shape
ZA. Let x,y € I' with x < y such that z,y are connected by a path. We define

W, to be the maximal wing contained in W, so that W, and W are separable.

REMARK. If z,y with <y are connected by an arrow, then W, = 0.

Definition [1.4.12] can be illustrated by the following figures.
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Chapter 2

Auslander-Reiten Theory

The notion of Auslander-Reiten sequences was first introduced by M. Auslan-
der and 1. Reiten in [8,[9] in 1970s. Since then, it has been playing an important
role in the representation theory of artin algebras. Later on, it has been developed
in abelian categories; see [I1], 13], and triangulated categories; see [31], 51]. Until
now the Auslander-Reiten theory has been extended to Krull-Schmidt categories;
see [12, 146].

2.1 Auslander-Reiten categories

The objective of this section is to recall the Auslander-Reiten theory in a
Krull-Schmidt category from [9] 10, 12}, 46].

Throughout this section, A stands for a Hom-finite Krull-Schmidt k-category.
The Jacobson radical of A is the two-sided ideal rad.A such, for all X, Y € A, that
rad(X,Y) = {h € Hom4(X,Y) | 1x — g o h invertible for all g € Homu(Y, X)}.
Define rad*(X,Y) to be the k-subspace of rad(X,Y’) consisting of all finite sums
of morphisms of the form ¢f, where f € rad(X, Z) and g € rad(Z,Y).

Let f: X — Y be a morphism in \A. One says that f is a section if there is a
morphism g : Y — X such that gf = 1x; and a retraction if there is a morphism
h 1Y — X such that fh = 1y. Moreover, f is called irreducible if f is neither
a section nor a retraction while every factorization f = hg implies that ¢ is a

section or h is a retraction. Finally, f is left almost split if f is not a section and
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every non-section morphism ¢ : X — L factors through f; left minimal if any
endomorphism A : Y — Y such that hf = f is an automorphism; and source
morphism if it is left minimal and left almost split. Dually, one says that f is right
almost split, right minimal and a sink morphism. Note that a source morphism is
originally called a minimal left almost split morphism, whereas a sink morphism

is called a minimal right almost split morphism in [9, [10].

A sequence XLy 2.7 of morphisms in A is called a short pseudo-

exact sequence if the following two conditions are satisfied:
(1) f is a pseudo-kernel of g, that is, for any object M € A, we have an exact

sequence
Hom (M, X) —L= Homu(M, V) —2= Homu(M, Z);

(2) g is a pseudo-cokernel of f, that is, for any object N € A, we have an

exact sequence

HomA(Z, N) —~~ Hom (Y, N) — > Hom.(X, N).
The next two definitions are quoted from [46].

2.1.1 DEFINITION. A short pseudo-exact sequence X oy Sz A with
Y # 0 is called an Auslander-Reiten sequence if f is a source morphism and g is

a sink morphism.

REMARK. If X 1>V %~ 7 is an Auslander-Reiten sequence in A, then it

is unique up to isomorphism for X and unique for Z. Write 7,7 = X and
T X =2

2.1.2 DEFINITION. We shall say that A is an Auslander-Reiten category if, for

each indecomposable object X in A, the following two statements hold.

(1) Either X is the starting term of an Auslander-Reiten sequence or there is

a source epimorphism f: X — Y

(2) Either X is the ending term of an Auslander-Reiten sequence or there is a

sink monomorphism g : Y — X.
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The following result is quoted from [46, (1.5), (6.1)]. For more details on
Auslander-Reiten theory in abelian categories and in triangulated categories, we
refer the reader to [9] and [31].

2.1.3 LEMMA. (1) If A is abelian, then X LoV —227 is an Auslander-
Ly 2z 0 s an almost

Reiten sequence if and only if 0 X
split sequence as defined in [9].

(2) If A is triangulated with a shift functor [1], then X1y 2.7 isan
Auslander-Reiten sequence in A if and only if it can be embedded in an

Ty 2oz " X

Auslander-Reiten triangle X

The following lemma is well known; see, for example, [10, (V.1(1.7))].

2.1.4 LEMMA. Let A be an Auslander-Reiten category.
(1) If f: X =Y is a source morphism in A, then X is indecomposable.

(2) If g: Y — Z is a sink morphism in A, then Z is indecomposable.

The following statement is well known; see, for example, [46, Section 1].

2.1.5 LEMMA. Let A be an Auslander-Reiten category. If f : X — Y is a source
morphism or sink morphism in A, then f is irreducible if and only if f # 0.

We refer the following result to [12} (3.4)(3.8)].

2.1.6 LEMMA. Let A be an Auslander-Reiten category. If

fi
S X = oY
Jn
is a source morphism in A with Y; # 0, then
fis
fi,
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is irreducible for any subset {fi,, -, fi.} of {f1, -, [n}

We conclude this section with the Auslander-Reiten quiver I' 4 of A, which
is a translation quiver defined as follows. The vertex set is a chosen complete
set of representatives of the isomorphism classes of indecomposable objects in A.

Given vertices X, Y, the number of arrows from X to Y is the k-dimension of
Irr(X,Y) :=rad(X,Y)/rad?*(X,Y).

The translation 7, called the Auslander-Reiten translation, is such that 7,7 = X

if and only if A has an Auslander-Reiten sequence X Ty 4.z

One says that X € A is basic if X =2 X1 @ --- ® X;, where Xq,..., X, are
pairwise different objects in I'4; and in this case, {X1,...,X;} is called the

corresponding set of X in I 4.

Given two connected components I', 2 of I',, we write Hom4(I", 2) = 0, if
Homy (M, N) =0 for all M € I' and N € (2; and say that I", {2 are orthogonal if
Hom (1", £2) = 0 = Homyu(£2,I').

2.2 Standard Auslander-Reiten components

The main objective of this section is to study subcategories of an Auslander-
Reiten category generated by the objects of a convex subquiver of a standard

component of its Auslander-Reiten quiver.

Throughout this section, let A stand for an Auslander-Reiten category. Let
I’ 4 be the Auslander-Reiten quiver, and 7, be the Auslander-Reiten translation
of A. Let A be a convex subquiver of I'4. We shall denote by A(A) the full
subcategory of A, whose objects are the vertices of A; and by addA the full sub-
category of A, whose objects are the finite direct sums of objects of A. Observe
that A itself is a translation quiver with mesh category k(A). One says that A is
standard if there exists an isomorphism ¢ : k(A) — A(A), acting identically on
the objects; see, for example, [47, (1.2)]. A connected component of I" 4 is called

standard if it is standard as a convex subquiver of I" 4.
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2.2.1 LEMMA. Let A be an Auslander-Reiten category and I' be a standard com-

ponent of I'4. If A is a convex subquiver of I', then A is also standard.

Proof. Let ¢ : k(I') — A(I') be an isomorphism, acting identically on the
objects. Let A be a convex subquiver of I". Denote by k{A} the full subcategory
of k(I') generated by the objects in A. Restricting ¢ yields an isomorphism
¢a: k{A} = A(A). By Lemmall.4.3] there is an isomorphism F : k(A) — k{A}
acting identically on objects of A. Thus, the composite of F' and ¢, is an
isomorphism from k(A) to A(A) acting identically on objects. The proof of the

lemma is completed.

2.2.2 LEMMA. Let A be an Auslander-Reiten category and I be a standard com-
ponent of I'4. If A is a convex subquiver of I', then add A is an Auslander-Reiten

category.

Proof. First of all, every Auslander-Reiten sequence X —Y —— 7 in A with
X or Z in I' is an Auslander-Reiten sequence in addI’. Moreover, a source
epimorphism f : X — Y in A with X € [' is a source epimorphism in add/’, a
sink monomorphism g : Y — Z in A with Z € [' is an sink monomorphism in

addl’. This is, add[" is also an Auslander-Reiten category and [qar = I

Now, assume that A is a convex subquiver of I'. Let A’ be the full subquiver
of I' generated by the objects M ¢ A. Let ¢ : addA — addl'/addA’ be the
composite functor of the canonical embeding addA — addl" and the canonical
projection addl” — addIl'/addA’. We claim that ¢ is an equivalence. Indeed,
since the objects of addA” are zero objects in addI" /Jadd A’, we see that ¢ is dense.
Since ¢ is evidently full, it remains to prove that ¢ is faithful. Suppose that this
is not the case. That is, there exists a non-zero morphism f: X — Y € addA
such that ¢(f) = 0. Then, f = gh with morphisms h: X - Z andg: Z = Y,
where Z is a non-zero object of addA’. Write Z = &}, Z;, where Z,, ..., Z, € A,
and g = (g1,...,9,) and h = (hy,...,h,)T with g; : Z; = Y and h; : X — Z,,
for i = 1,--- ,n. Since f # 0, we have g;h; # 0 for some 1 < ¢ < n. Being
standard, I' contains a path X ~~ Z; ~» Y. Since A is convex in I', we have
Z; € A, which is a contradiction. This establishes our claim. By Proposition 2.9
n [46], it follows that addA is also an Auslander-Reiten category. The proof of

the lemma is completed.
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Let I' be a translation quiver. Given a path p in the path category k[I'], we
denote by p its image in the mesh category k(I").

2.2.3 LEMMA. Let A be an Auslander-Reiten category, and let A be a convex
subquiver of a standard component I' of I'y. If o : k(A) — A(A) is an iso-
morphism acting identically on objects, then o(a@) is in rad(X,Y), for any arrow
a: X —>YeA

Proof. Let o : k(A) — A(A) be an isomorphism acting identically on objects.
Let a : X — Y be an arrow in A. Set u = o(@). Since X,Y are indecomposable,
we need only to show that u is not an isomorphism. Suppose that v :Y — X is
a morphism in addA such that vu = 1x. Then there are some pairwise different
paths ¢; : Y ~» X such that v = X | \;0(g;), where 0 # \; € k. Thus, o(&,) =
Iy = vu = X" ,0(N\qa). That is, £, = X | NG, that is, e, — X \jgia € 14,
which is absurd. The proof of the lemma is completed.

Given an object X € A, denote by X the set of the arrows in A starting
with X and by X~ the set of the arrows in A ending with X.

2.2.4 LEMMA. Let A be an Auslander-Reiten category, and let A be a convex sub-
quiver of a standard component I' of I'y. If o : k(A) — A(A) is an isomorphism

acting identically on objects, then the following statements hold.
(1) Let X be an object of A. Then addA has a source morphism
()
o(XT) = c X—@P Y,
o(an)
where o; : X — Y, i =1,...,n, are the arrows of X ™.
(2) Let Z be an object of A. Then addA has a sink morphism
o(Z7)=(0(B), - ,0(Ba): DL Yi—Z,
where B; : Y; — Z,i=1,...,n, are the arrows of Z~.

(3) If A has a mesh starting at X and ending at Z, then A has an Auslander-
o(Xt) v o(Z7) A

Reiten sequence X
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In particular, I'yqgan = A, which is a translation subquiver of I.

Proof. Let o : k(A) — A(A) be an isomorphism acting identically on objects.

We shall first prove Statement (3). Assume that A contains a mesh as follows.

NG
X 7Z
.

Set o(X*) = (o(a1), - ,0(a,))" and o(Z7) = (0(B1), -+ ,0(Bn)). We claim
that o(X ™) is a source morphism in A and ¢(Z7) is a sink morphism in A. First
of all, by the property of Auslander-Reiten quiver, there is a source morphism
f:X — @Y in A Then f # 0; see, [40, (1.1)]. Write f = (f1,---, fu)-
By the equivalence, there are some paths «;; : X ~ Y;, j = 1,--- ,n;, such that
fi = Z;-Lil)\ija(%j), where 0 # \;; € k, for all ¢ = 1,--- ,n. Obviously, each
7:; factors some arrows of X*. It gives us that f; factors through o(X™), for
all # = 1,--- ,n. Hence, there is a morphism h : @ ,Y; — ®],Y; such that
f = ho(X*). By Lemma[2.1.5 f is irreducible. By Lemma [2.2.3] §(X™) is not
a section. Thus, h is a retraction. Hence, h is an automorphism. It follows that
o(X™) is a source morphism in A. Similarly, we could show that o(Z~) is a non-

zero sink morphism in A. Thus, our claim is true. By the property of Auslander-
o(X+ /
Reiten quiver, A has an Auslander-Reiten sequence X D b, Y .7z
with Z indecomposable. Note that o(Z7)o(XT) = o(X,5:a;) = 0. By the
pseudo exactness, there is a morphism h : Z — Z such that ¢(Z~) = hg'. Thus

we have the following commutative diagram

(Xt !
Xy v

Z

H ‘h
o + o4~

(XT) (Z7) 7

X——@Vi—

Since 0(Z~) is a non-zero sink morphism, by Lemma m, it is also irreducible.
On the other hand, ¢’ is not a section. Thus, h is a retraction. Since Z is

indecomposable, h is an automorphism. Therefore,
o(Xt o4~
X (XT) @5:1}/1‘ (Z7) 7
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is an Auslander-Reiten sequence in A.

For proving statement (1), let X be an object of A such that X+ = {ay, -, @, },
where o; : X — Y, for i = 1,--- ,n. Denote by X; the set of all the arrows
in I starting at X. Thus, X" is a subset of X;'. By Statement (3), o(X[) is
a source morphism in A. Set o(X*) = (o(@), - ,0(a,))". By Lemma [2.1.6]
o(X™) is irreducible. Then, by similar discussion as the proof of Statement (1),
o(X) is left almost split in addA and left minimal. Hence, o(X™) is a source
morphism in addA. The proof of Statement (2) is similar. Finally, it follows that
I'yaan = A, which is a translation subquiver of I'. The proof of this lemma is

completed.

A connected subquiver A of a translation quiver I' is called sectional if A

meets each 7-orbit at most once.

2.2.5 LEMMA. Let A be an Auslander-Reiten category, and let A be a finite

convex sectional subquiver of a standard component of I'. If M is the direct sum

of the objects in A, then Endy4(M) = kEA.

Proof. Write H = End4(M), where M is the direct sum of the objects of A.
By Lemma and Lemma 2.2.4] addA is an Auslander-Reiten category with
L'yqan = A. Being a sectional subquiver of I', the translation quiver A contains
no mesh. Therefore, k[A] = k(A). Since A is standard by Lemma we
obtain k[A] = A(A). This yields the following isomorphisms:

kA = @xyea, Homya (X, Y)
@X,YEAO Hom 4(4)(X,Y)

®X7Y€AO Homy(X,Y)
H

11

1%

where the first equation is the definition of a path algebra. The proof of the

lemma is completed.

2.2.6 DEFINITION. Let I' be a connected component of I' 4. A wing in ' is a

convex translation subquiver of I" which is a wing.

In the rest of this section, we shall study the additive subcategory addW of
A generated by the objects in a wing W in I
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2.2.7 LEMMA. Let A be an Auslander-Reiten category, and let VW be a wing in
a standard component of I' 4. If X, Y € W, then Hom4(X,Y) # 0 if and only
if X € RY if and only if Y € Rx; and in this case, every path of irreducible
morphisms in A from X toY forms a k-basis of Hom4(X,Y).

Proof. By Lemma [2.2.1] W is standard. Then there exists an isomorphism
o: k(W) = A(W), which acts identically on the objects. It follows that, for
any X,Y € W, we have Homyoy)(X,Y) = Hom o) (X,Y) = Homu(X,Y). It
follows from Lemma that Hom4(X,Y) # 0 if and only if X € RY if and
only if Y € Ryx. In this case, by Lemma again, dim; Homyow)(X,Y) =
dimy Hom 4(X,Y) = 1. Assume that we have a path of irreducible morphisms

X = x, -2 f2 X, "X, =Y.

X4

In particular, f; # 0, for each 1 < i < n. It is sufficient to show that f,, --- f; # 0.
Since o is an isomorphism, for each 1 < i < n, thereisapathp; : X;_1 ~ X; € W
such that f; = \;o(p), for some 0 # \; € k. Since f; is irreducible, by Lemma
2.2.3) we deduce that p; is an arrow. Write p; = oy, for i = 1,--- ,n. By Lemma
1.4.5, we see that &y, ---a&; forms a k-basis of Homyow)(X,Y). It follows that
o fi=A- - Ao(ay)---o(ar) # 0. The proof of this lemma is completed.

2.2.8 LEMMA. Let A be an Auslander-Reiten category, and let W be a wing in a
standard component of I' 4. Let f :'Y — X be an irreducible morphism in addWV.
If there is a non-zero morphism u : Z — Y such that fu =0, then Z ¢ R¥.

Proof. Suppose that Z € R¥. Since u # 0 and Lemma we see that Z € RY .

Moreover, there is a path of irreducible morphisms

Y =Y, -2y, £ ... Y, -2y, =27

such that ¢, ---¢g1 : Y — Z forms a basis of Homy(Y, Z). Thus, u = A\g,, -+ 1
for some A\ € k. Again by Lemma [2.2.7] we see that fg,---¢1 forms a basis
of Hom4(Z, X), and hence it is not zero. Thus, 0 = fu = Afg,--- g1 gives us
that A = 0. It follows that u = 0, a contradiction. The proof of the lemma is

completed.

For later use, we shall recall the following notions and terminology. Let H be a

finite dimensional k-algebra. Denote by modH the category of finitely generated
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left H-modules and by projH the full subcategory of finitely generated projec-
tive left H-modules. The following statement is well known. For the reader’s

convenience, we shall include a short proof.

2.2.9 LEMMA. Let H be a hereditary algebra and f : P — @ a morphism in
proj H. Then f is irreducible in projH if and only if f is irreducible in modH .

Proof. We need only to show the necessity. Assume that f : P — (@ is irreducible
in proj H. Let f = hg, where g: P — M,h: M — @) and M € mod H. Then we

have the following commutative diagram.

\/

M—>Imh

where i is an injection, p is an epimorphism. Since H is hereditary and Im(h)
is a submodule of @), Im(h) is projective. Since f is irreducible in projH, either
pg is a section or 7 is a retraction. If pg is a section, then there is a morphism
s : Im(h) — P such that spg = 1p which yields g is a section. If 7 is a retraction,
then there is a morphism ¢ : @ — Im(h) such that it = 1g. Since p is also a
retraction, there is a morphism p’ : Im(h) — M such that pp’ = lynpy. Then
hp't = ipp't = 1¢, which yields that h is a retraction. Hence, f is irreducible in
mod H. The proof of the lemma is completed.

The following statement is crucial to our later investigation.

2.2.10 THEOREM. Let A be an Auslander-Reiten category, and let W be a wing
in a standard component of I' 4 with left-most section A. Set H = End (M),

where M s the direct sum of the objects on A. Then we have an equivalence
Hom4(M, —) : addW — mod HP

which induces an isomorphism W — I'goo of translation quivers.

Proof. By Lemma [2.2.4] I"aqay = W. We shall need only to consider the case
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where W is of rank n > 1. Then, W can be depicted as follows.

Xn n Xn—l n—1" o X2,2 Xl 1
N NS
Xn,nfl """ 3,2 22,1

R N
Xn,?) Xn—1,2 Mn—2 1
NN
Xn,2 anl,l
NS
Xn,l

The arrows are denoted by a;; : X;; — X; 1, where 2 < j <4 < n and by
Bij + Xij — Xi—1y, where 1 < j < i < n. By Lemma [2.2.1, W is standard.
Hence, there exists an isomorphism o : k(W) — A(W), which acts identically on
objects. By Lemma fij=o0(a; ) X;; = X;j—1 with 2 < j <i <n;and
Gij = J(Bm-) : Xi; = X, with 1 < j <4 < n are irreducible morphisms in A,

which are fitted into the following Auslander-Reiten sequences:

fii Gi,i—1 .
Xig—Xijior——=Xi_1i-1, 1=2,...,n.
and
(fi,j-9i,5)T (9ij—1,fi—1,5) . .
Xij— =X 10X ————= X1, 2<j<i<n

By the assumption, M = X, 1 @ --- & X,,,,. Note that, X, ; € RXui only if
t=14,i—1,---,j, forany X;; € W. For simplicity, we write (—)* = Hom4(M, —).
We shall split our proof into several statements.

(1) The morphism f;; : X}, — X}, | is a monomorphism, for 2 < j <
i < n. Indeed, assume that h € X7, such that f’;(h) = 0. We may write
h = (hi,--- , hy), where h,, € Homu (X, X;;), forall ¢t = 1,..., n. In particular,
fijohy=0,forallt =1,...,n. Assume that h, # 0, for some p =1,--- ,n. By
Lemma we have X,,,, € RXii. Thus, j < p < 4. In this case, Xnp is also
in RXii-1. By Lemma [2.2.8] it follows that h, = 0, a contradiction. Thus, h = 0
and hence, f; is a monomorphism.

(2) The morphism gf; = Xi; — X[ .
i < n. Indeed, let h € X7, ;. We may write h = (hy,---,h,) where h; €
Hom 4(X, ¢, Xi—1;), for all 1 < ¢ < n. Suppose that h, # 0. Then by Lemma
, we have X,,, € R¥i-1i. Thus, we see that p =i —1,---,j. By Lemma

is an epimorphism, for 1 < j <
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227 we see that gi; © gis1; - © Gnj © fuj+1 © -+ © fayp forms a k-basis of
Hom 4(X,, ,, Xi—1,;). Thus, we have the following equations

hp = AgijoOGi+15 " O Gnj O fajr10 0 fup
= 97 j(Agit15 -0 Gnj O fujr10- 0 fup),
for some A € k. Hence, g;; is an epimorphism.

(3) Ker(g;;) € Im(f; 1), for 1 <j < i < n. Indeed, let u = (uy, -+ ,up)
be a morphism from M to X, ; such that g; ;(u) = 0, where v, : X,,; — X, ; for
1 <t < n. Hence, we have g, ju; = 0, for 1 <t <n. Fix p with 1 <p < n. If
u, = 0, then, trivially, the statement is true. Assume that u, # 0. By Lemma
, we see that X,,,, € R¥7\R¥i-15. Thus, p = i. In this case, by Lemma ,
we see that fi i1+ git1i - Gn—1,9n, forms a k-basis of Hom 4(X,, ;, X; ;). Hence,
Ui = ANfijt1° " Git1i " Gn—1,9n, for some X € k. Clearly, u; factors through f; ;.
Thus, we have

w= (0. g 0) € In(fl )
(4) Ker(gy; 1, fi1;) CIm(ff, 95,7, for 2 <j <i <n. Indeed, let

Uy Ug - U,

’Ul ’U2 ... Un
be a morphism from M — X,;_; ©& X, 1 , where v, : X,,; — X, ;1 and v, :
Xnt — X;oq, fort =1,--- ,n, such that

Uy Uy -+ U
(9ij—1, ficrj) © "] =0.
U1 Vo [N Un,
Hence, ¢; j—1us + fi—1,;v =0, for t = 1,--- ,n. It is sufficient to show that each

u u
! ] . For this purpose, we assume that [ P ] # 0, for some

Jij

Uy 9i,j Up
1 < p < n. Thus, by Lemma [2.2.7, we see that X,,, is in R¥wi-1 or in R¥i-14.
Thus, p =i,i—1,---,j,j—1. Consider p =i or j—1. In this case, X,,, & R*—14.
By Lemma [2.2.7, we have v, = 0. It follows that g; ;_ju, = 0. By Statement
(3), there is (hq,--- ,hy) : M — X, ;, where hy : X}y — X, for t =1,--- n,
such that (0, ,up, -+ ,0) = f7;(h1,--+ ; hp, -+, hy). In particular, u, = f; jhy,.

Moreover, by Lemma [2.2.7], g; jh, = 0. Thus,
Up| _ Jigl € Im f{:J .
Up Gijlp 95,
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Now consider p =i—1,---,j. By Lemma[2.2.7 agin, f;;fij41-- fipGirip " Inp
forms a k-basis of Homu (X, ,, X;j—1) and ¢;;fij+1- - fipGit1p- - gnyp forms a

k-basis of Hom 4 (X, ,, X;—1,;). Hence, we have

Up = Npfijfiger- - fipGivrp Gnp and Up = pipGijfijer - fipGivrp- - Gnps

for some A, i1, € k. Then the following equations hold.

0 = gij1up+ fii1;0p

NGij—1figliger- - fipGitip - Gnyp
tpfio1iGigfiger - fipGivip Gnp

(ApGij—1fig + tpfio19i5) fijr1 - fipGisip  Gnp
(Ap = tp)Gij—1fijfigrr fipGivip Gnps

_|_

where the last equation follows from that g;;—1fi; + fi—1,9;; = 0. Note that
fij+1 - fipGit1p - - Gnp forms a basis of Hom 4 (X, ,, X; ;), and in particular it is
non zero. This gives us A, = p,. Thus,

[ p] - [g”:J] (Apfz‘,jﬂ : "fz‘,pgz‘+17p"'g”’p) < m [ j] |

Up i 9i,j

(5) The functor (—)* maps every Auslander-Reiten sequence in addW to
Auslander-Reiten sequences in mod H°P.

Indeed, first of all, since g¢;;,—1f;; = 0, by the pseudo-exactness, we have
9ii1f5i = 0. Then it follows immediately from Statement (1), (2) and (3) that,

for each 1 < i < n, we have a short exact sequence

* *
fm‘ ii—1

0— X7, —> X,

i,0—1

*
X 1io1—0.

Again, by Statement (1) and (2), we see that (f;;, g;;)" is a monomorphism and
(9551, fi-1;) is an epimorphism. Since (g;;-1, fi—1;) © (fi;,9i;)" = 0 by the
pseudo-exactness, we have (g7, 1, fi ;) o (75, 9;;)" = 0. By Statement (4), we
see that, for each pair (7, j) with 2 < j <i < n, we have a short exact sequence

T
(f;j]’gz])

0 X Xiia® Xy

(g:’j_laf:_l,j)

*
X 1-1—=0.

Secondly, we shall show that all the above exact sequences are Auslander-
Reiten sequences. By Lemma [2.2.5] we know that H = kA, and consequently,
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H = EA°P. Hence, the Auslander-Reiten quiver of H°P is a wing having the

same rank as W. In view of Proposition 2.3 in [43], X , X5 .-, X} are

the non-isomorphic indecomposable projective modules of mod H°? and the mor-

phisms fr  f¥ i, -+, f¥, are irreducible monomorphism in proj H°?. More-
over, by Lemma[2.2.9 we see that f; ., fr . 1, -, [, are also irreducible monomor-

phisms in mod H°P. This gives us a path of irreducible monomorphisms

I n 1 n,2

n,n n,n— n,

X * ) * ) L * *
n,n n,n—1 n,2 n,1»

with X, simple. Since X, is projective simple and f , is irreducible, we see

that f, is a source morphism. This gives us an Auslander-Reiten sequence

frn

*
gn,nfl

* *
— X, 1 —0.

n,n—1

0 Xon

In particular, g ,,_; is irreducible and X} is indecomposable as well as sim-

—n—1

ple. Since f;, ; is a monomorphism and g, ; is an epimorphism, we have
f*

X #F X 1,1 Hence, :”7”_1 is irreducible. By the description of I"oqpep,
gn,nfl

«
we see that [ :’"_1] is a source morphism. Therefore,
gn,n—l

f*
n,n—1
* * *
gn,n—l X* X* (gn,n—27fnfl,nfl)
n,n—2 S n—1,n—1

X*

n—1n—2 0

*
0 Xn,nfl

is an Auslander-Reiten sequence. In particular, X ,, 5 is indecomposable and

9n.n—2 is irreducible. Thus, by induction on j where n —1 > j > 2, we have that

f:,j]
0 Xn,j Xn,j—l D Xn—l,j

(G i-1Fn-14) <,

n—1j-1"_~ 0

is Auslander-Reiten sequence, for n — 1 > j > 2. In particular, we obtain a path

of irreducible monomorphisms in modH °P

* * *
—1,n—1 n—1,n—2 n—1,2
* n—. * ) * ) *
—_— X R X —_ X
n—1n—1 n—1n—2 n—1,2 n—1,1
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with X, simple. Thus, we complete the proof of Statement (5) by doing
the same discussion.

(6) The functor (—)* : addW — modH®P is an equivalence. Indeed, by
Statement (5), we have an isomorphism of translation quivers G : W — I'pgop,
where G(X;;) = X}; and G(ay;) = o ; and G(B;;) = Bf; for any X, ; € W and
a; j, Bij € W. Now we define a functor oy : k(I'ger) — ind H°P, acting identically
on objects, such that oy (a;;) = f;; and UH<BZ]-) = g;;, for all o ;, B, € I'pos.
Since ['gor is also standard, we see that oy is an isomorphism. Thus, we have

the following commutative diagram

k(G)

k(W) k(L mor)
T
AW) ind H°P

where k(@) is an equivalence of mesh categories induced by G. It follows that
Homy (M, —) : AOV) — indH? is an equivalence. Moreover, it is natural to
define an additive functor Homy4 (M, —) : addWW — modH°P. By additivity,
Hom 4(M, —) is dense and fully faithful. Hence, Hom 4(M, —) is an equivalence.
From the proof, we see that Hom 4(M, —) induces an isomorphism from W to

I"gor. The proof of the theorem is completed.
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Chapter 3
Cluster Categories

The aim of this chapter is to recall briefly the definition of the cluster category
% (Q) associated with a strongly locally finite quiver ). In the finite case, it was
defined by Buan, Marsh, Reineke, Reiten and Todorov in [20], by taking a partic-
ular orbit category of the derived category of finite dimensional representations
of Q. In the infinite Dynkin case, Liu-Paquette and Yang have showed in [48]
and [62] that the same construction yields a triangulated category, whose cluster
tilting subcategories form a cluster structure as defined in [21]. More recently,
St’ovicek and Roosmalen proved in [59] that the same result holds in the general

strongly locally finite case.

3.1 Cluster categories in the general sense

The objective of this section is to recall from [21] and [4§] some basic notions

and terminology for general cluster categories.

Throughout this section, A shall stand for a Hom-finite Krull-Schmidt tri-
angulated category with a shift functor [1]. Denote by D = Homy(—, k) the
standard duality for the category of finite dimensional k-vector spaces. Let .7 be
a full subcategory of A and X be an object in A. A morphism f : X — T with
T € 7 is called a left 7 -approximation of X if f induces an epimorphism

Hom(f, M) : Homy (T, M) — Hom4 (X, M),
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for any M € .7; a morphism ¢ : T' — X with T' € .7 is called a right 7 -

approximation of X if g induces an epimorphism
Homy (M, g) : Hom4(M,T) — Hom4 (M, X),

for any M € 7. One says that 7 is covariantly finite in A if every object in A
admits a left 7 -approximation; dually, one says that .7 is contravariantly finite
in A if every object in A admits a right .7 -approximation; and functorially finite

in A if it is covariantly and contravariantly finite in A.

A Serre functor for A is an auto-equivalence S of A such that, for any objects
X,Y € A, there exists a natural isomorphism Hom4(X,Y) = DHom4(Y,SX). If
A has a Serre functor S, then it is an Auslander-Reiten category whose Auslander-
Reiten translation is given by S o [—1]; see [53]. Moreover, one says that A is
2-Calabi- Yau if [2] is a Serre functor.

Now let A be a 2-Calabi-Yau triangulated category. Omne says that a full
subcategory of A is strictly additive if it is closed under isomorphisms, taking
finite direct sums and taking direct summands. Let .7 be a strictly additive
subcategory of A. In particular, .7 is Krull-Schmidt. The quiver of .7 is defined
to be the underlying quiver of its Auslander-Reiten quiver. Moreover, given an
indecomposable object M of .7, denote by ), the full additive subcategory of
7 generated by the indecomposable objects not isomorphic to M. Observe that
I is also strictly additive in A.

3.1.1 DEFINITION. [2T] Let A be a 2-Calabi-Yau triangulated k-category. A
non-empty collection € of strictly additive subcategories of A is called a cluster
structure if, for each subcategory 7 € € and each indecomposable object M € .7,

the following conditions are verified.

(1) There exists a unique (up to isomorphism) indecomposable object M* of A,
with M* 2 M, such that the additive subcategory py(7) of A generated
by Zy; and M* belongs to €.

(2) There exist two exact triangles in A as follows :

M f

N > M M[1] and M* %~ L Y~ M M*[1]
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where f,u are minimal left .Z)-approximations, and g, v are minimal right

Jv-approximations in A.

(3) The quiver of 7 contains no oriented cycle of length one or two, from which
the quiver of uy(7) is obtained by the Fomin-Zelevinsky mutation at M
as described in [24, (1.1)].

Let A be a 2-Calabi-Yau triangulated category with a strictly additive sub-
category .7. Given X € A, write Hom 4(.7, X[1]) = 0 if Hom4(Y, X[1]) = 0 for
any Y € 7. One says that .7 is weakly cluster-tilting provided, for every X € A,
that Hom 4(.7, X[1]) = 0 if and only if X € .7; and cluster-tilting provided that
T is weakly cluster-tilting and functorially finite in \A.

3.1.2 DEFINITION. [48] A 2-Calabi-Yau triangulated k-category is called a cluster

category if its cluster-tilting subcategories form a cluster structure.

3.2 Derived categories of finite dimensional rep-

resentations of quivers

The objective of this section is to recall briefly the derived category of finite

dimensional representations of a quiver. For more details, we refer to [10, [5 [15].

Throughout this section, () stands for a connected locally finite quiver without
infinite paths. Under this assumption, by Koénig’s Lemma; see [42], @Q is strongly
locally finite.

3.2.1 DEFINITION. A k-representation M of () consists of

(1) a family of k-vector spaces M (a) with a € Qy;

(2) a family of k-linear maps M («) : M(a) — M (b) with av: @ — b in Q).

Given two representations M, N of ), a morphism f : M — N is a family
{fa : M(a) = N(a)}eeq, of k-linear maps such that for each arrow o : @ — b
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in @1, we have N(a)f, = fiM(«a). Let f : M — N and g : N — L be two
morphisms of representations of (). Their composition gf is defined to be the
family {g.f. : M(a) — L(a)}eeq,- This yields the category of k-representations
of @, denoted by Rep(Q). Moreover, one says that a representation M is finite
dimensional if Y,eq, dim, M (a) is finite. We shall denote by rep(Q) the full

subcategory of Rep(Q) of finite dimensional representations.

Let a € Qy. The simple representation S, at a is defined by S,(a) = ke, and
Sa(b) = 0 for all vertices b # a. The projective representation P, at a is defined
as follows. For any vertex b € (g, P,(b) is a k-vector space spanned by the paths
from a to b; and for each arrow a: b — ¢, P,(«) : P,(b) — P,(c) is a k-linear map
sending every path p to ap. Finally, the injective representation I, at a is a k-
representation such that for each vertex b € Qo, I,(b) is a k-vector spaces spanned
by the paths from b to a; and for each arrow a : b — ¢, I,(«) : I,(b) — I,(c) is a
k-linear map sending every path pa to p and vanishing on the paths which not

factor through «.

Since @) has no infinite paths, rep(Q) is a Hom-finite Krull-Schmidt hereditary
abelian k-category; see [26] (8.2)] and has Auslander-Reiten sequences; see, [15]
(3.7)]. That is, rep(Q) is an Auslander-Reiten category, whose Auslander-Reiten
translation is denoted by 7,. We define the Auslander-Reiten quiver I".epq) of
rep(Q) in such a way that its vertex set contains the indecomposable projective
representations P,, the indecomposable injective representations I, and the sim-
ple representations S,, for all a € (Jy. A connected component of I'.¢ (@) is called
preprojective if it contains some P, with a € @, preinjective if it contains some
1, with a € @y, and regular if it contains neither P, nor I,, for any a € ()y. Since
() is assumed to be connected, I'yep(@) has a unique preprojective component and

a unique preinjective component; see [15], 26].

A quiver () is said to be of infinite Dynkin type if its underlying graph is one
of the following infinite graphs.

Aoo : o O— e —0O oO— o™
o .
Aoo' cee—0 O—ttve—0O O— vt
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In this case, the Auslander-Reiten quiver I',ep() of rep(Q)) has been explicitly
described by Bautista, Liu and Paquette in [15, [4§].

3.2.2 THEOREM. Let Q) be a quiver of infinite Dynkin type with no infinite path.

(1) Every connected component of I'yep() is standard.

(2) The preprojective component P is of shape NQ°P and the preinjective com-
ponent T is of shape N™Q°P such that Hom,ep(q) (Z,P)=0.

(3) Ewvery regular component R is of shape ZA such that Hom,epg)(Z,R) = 0
and Hom,ep) (R, P) = 0.

(4) There are r regular components, where
(a) r=01if Q is of type A;
(b) r=11if Q is of type Doo;

(¢) r=214fQ is of type A, and in this case, the two reqular components

(o op)

are orthogonal.

Now we shall study the derived category D’(rep(Q)) of rep(Q). For more de-
tails about derived categories, we refer to [49] [60]. As usual, considering an object
M € rep(Q) as a stalk complex concentrated at degree 0, we shall regard rep(Q)
as a full subcategory of D°(rep(Q)). It is well known that D®(rep(Q)) is a Hom-
finite Krull-Schmidt triangulated category having Auslander-Reiten triangles; see
[15, B1]. That is, D(rep(Q)) is an Auslander-Reiten category, whose Auslander-
Reiten translation is denoted by 7,. Observe that Db(rep(Q)) admits a Serre
functor S = 7, o [1]; see [53]. One defines the Auslander-Reiten quiver I'psep(q))
of Db(rep(Q)) such that its vertices are the shifts of the vertices of I'iepg). In
this way, I".ep(@) becomes a full translation subquiver of I'pe(ep(gy). Recall that
I’ porep()) has a connecting component Cq obtained by gluing the preprojective

component P of I'yep@) with the shift by -1 of the preinjective component Z of
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I'vep(@) in such a way that each arrow a — b € )1 induces an arrow L[-1] = B,
in Cgp; see [15], B31].

The following statement gives some properties of connected components of

I'pb(rep(@))» for which we refer to [I5], Section 7].

3.2.3 THEOREM. Let Q) be an infinite Dynkin quiver without infinite paths.

(1) Every connected components of I'pbep(q)) @5 standard.
(2) The connecting component Cq of I pb(rep(qy) 5 0f shape ZQP.

(3) The connected components of I' puep(q)) are the shifts of Cqo and the shifts

of the reqular components of I'wep(q)-

3.3 Cluster categories associated with a quiver

The objective of this section is to recall from [20, 48] the cluster category
associated with a quiver. For this purpose, let () be a connected locally finite
quiver with no infinite path. Recall that rep(Q) is an Auslander-Reiten category,
whose Auslander-Reiten quiver is I'.¢p(g) and whose Auslander-Reiten translation
is 7,. The derived category D’(rep(Q)) is an Auslander-Reiten category, whose
Auslander-Reiten translation is merely an auto-equivalence of D°(rep(Q)). In
order to obtain Auslander-Reiten category whose Auslander-Reiten translation
is an automorphism, we shall choose a skeleton 2°(Q) of D’(rep(Q)), that is the
additive subcategory of D’(rep(Q)) generated by the objects which are the shifts
of the objects in I'yep). Then 2°(Q) is an Auslander-Reiten category, whose
Auslander-Reiten quiver I’y coincides with the Auslnader-Reiten quiver of
D*(rep(Q)), and whose Auslander-Reiten translation 7, is an automorphism of
2°(Q). Considering the automorphism F = 7_' o [1] of 2°(Q), one defines the
orbit category

as follows. The objects are the same as those of 2°(Q); for any pair of objects
X,Y € ¥(Q), the morphisms are given by
Homy(g)(X,Y) = ®iczHomgyg) (X, F'Y).
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The composition of morphisms is given by (g;)icz © (fi)icz = (hi)icz, where h; =

Yptq=iF?(9p) fq- The canonical projection functor

m: 2°(Q) = €(Q)
is defined by X — X and f — (f;)iez where fo = f and f; = 0 while i # 0.

The following result is due to [20] B9, 48, (9, [62].

3.3.1 THEOREM. Let Q) be a connected locally finite quiver without infinite paths.

(1) The orbit category € (Q) is a cluster category.

(2) The canonical projection functor 7 : 2°(Q) — €(Q) sends indecomposable

objects to indecomposable objects.

(3) The canonical projection functor = : 2°(Q) — €(Q) sends exact triangles
in D*(rep(Q)) to exact triangles in € (Q).

(4) The canonical projection functor © : 2°(Q) — €(Q) sends Auslander-
Reiten triangles in D®(rep(Q)) to Auslander-Reiten triangles in €(Q).

REMARK. Denote by 7, the Auslander-Reiten translation of €(Q). In view
of Theorem m(él), we have the following observation. If X € I'.p ) which
is non-projective, then 7, X = 7, X = 7_X; and for any Y € 'y, we have
7,Y =71.Y, while for any Z € €(Q), we have 7,2 = Z[1].

3.3.2 DEFINITION. Let Q be a connected locally finite quiver without infinite
paths. The fundamental domain .7 (Q) of the cluster category € (Q) is defined as
follows. If @ is of finite Dynkin type, then .7 (Q) is the full subquiver of g
generated by the representations in I'\ep) and the shifts by -1 of the injective
representation in I'.p(q); otherwise, .7 (Q) is the subquiver of Iy consisting

of the connecting component Cq of I' (g and the regular components of I'.ep(q)-

REMARK. (1) It is well known that every indecomposable object of € (Q) is iso-
morphic to a unique object in .% (Q). In particular, we shall define the Auslander-
Reiten quiver I'¢ () of € (Q) so that its vertices are the vertices of .7 (Q).
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(2) If @ is an infinite quiver without infinite paths, then the canonical functor
7 2°(Q) — €(Q) induces a translation-quiver-isomorphism 7 : Z(Q) = 'y (q),
acting identically on the underlying quiver. We shall say that the image of the
connecting component in % (Q) under 7 is the connecting component of I'¢(q;
and the image of a regular component in .%(Q) under 7 is a regular component

of I'gq). Note, however, that none of the connected components of I'¢ () is
standard in €(Q).

The following statement describes the morphisms in € (()) between objects in

fundamental domain in case () is of infinite Dynkin type.

3.3.3 LEMMA. Let Q) be an infinite Dynkin quiver with no infinite path. Then,
for any two objects X, Y € . (Q), we have

Home () (X, Y) = Homgeg)(X,Y) & DHomy g (Y, T]_?)X).

Proof. Now let X, Y € .%(Q). There exists an integer n > 0 such that M = 7_"X
and N = 7_"Y are representations. Since 7, is an equivalence, in view of Lemma
2.6(1) in [48], we have

12

Homy(g)(X,Y) Homg gy (7" X, 7,"Y)

= Homg ) (M, N)

Homgu(q) (M, N) @ DHomgug) (N, 72 M)
Homge(q) (T M, 7y N) & DHomge (o) (T N, 727" M)

= HOHI@b(Q) (X, Y) ) DHOHI@I)(Q) (Y, TgX)

1%

1%

The proof of the lemma is completed.

We conclude this section with a description of the Auslander-Reiten quiver
I'4(q) of €(Q) in case @ is of infinite Dynkin type; see [48, (2.9)].

3.3.4 THEOREM. Let Q) be an infinite Dynkin quiver without infinite paths. Then
Iy consists of the connecting component of shape ZQP and r regular compo-

nent of shape ZA,, where
(1) r=0, in case Q is of type A;

(2) r=1, in case Q is of type Dy;
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(3) =2, in case Q is of type AX; and in this case, the two regular components

[o.op]

are orthogonal.
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Chapter 4

Coordinate systems for some

special translation quivers

In this chapter, we shall introduce a coordinate system for a translation quiver
which is a wing, or of shape ZA, or ZAZ, in order to characterize wings, sections
and section-generators in these types of translation quivers. The results will be

used later to study the 7-rigidity theory, which is an essential topic of this thesis.

4.1 Coordinate system for a wing

The objective of this section is to introduce a coordinate system for a wing,
which will enable us to describe sub-wings, sections and section-generators in

such a wing.

Throughout this section, let VW stand for a wing of rank n, whose translation
is written as 7. Let T" be the unique sink vertex of W. The quasi-simple vertices
of WareT; =7"'T,i=1,...,n. For each 1 <i < mn, denote by R; the longest
sectional path in W starting with 7}, and by R, the longest sectional path ending
with T;.

4.1.1 LEMMA. For any verter X € W, there exists a unique pair (i,,j,) of
integers with n > i, > j, > 1 such that R;; N Rj_X = X.

Proof. Let X € W,. Clearly, X € R;; for some unique 1 <17, < n. Then, R;;
has a subpath T; — --- — X of length [ > 0. Observe that W has a sectional
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path X — --- — T of length [, for some 1 < j, < n. Thus, X € R]-_X, and

hence, X = R N R; . Observing that T; = 77'T; =7'x""'"T =T, _;, we
X X X X X

see that j, =i, —[. Therefore, 1 < 5, <17, < n. The proof of the lemma is

completed.

Writing X = (i,,7j,), we obtain a coordinate system for W as follows.

Observe that the quasi-simple vertices are (7,7), ¢ = 1,...,n. In particular,

(n,n) is the source vertex and (1, 1) is the sink vertex.

The following easy statement describes the arrows, the translation and the
paths in W.

4.1.2 LEMMA. Let X,Y be vertices in WV.

(1) There exists an arrow X — Y in W if and only if (i,,7,) = (i,,j, — 1) or
(1y.y) = (ixy = 1, Jy)-
(2) X =7Y if and only if (iy,j,) = (i, + 1,7, +1).

(3) There exists a pathp : X ~Y in W if and only if i, > i, and j, > j, .
In this case, l(p) = (i, —i,) 4+ (4 — Jy)-

Proof. Statement (1) and Statement (2) are obvious from our coordinate system.
Since a path is a composition of arrows, Statement (3) follows from the Statement

(1). The proof of the lemma is completed.

The following statement is a description of the sectional paths in W.
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4.1.3 LEMMA. Letp: X; — X9 — --- = X,,, be a sectional path in VW. Then

exactly one of the following statements is true.
(1) (ixtajxt) = (ixlajxl —t+ 1), fO’f’ t= 1, e, M.

(2) (ix,.dx,) = (iy, —t+1,j ), fort=1,...,m.

Proof. Write (iy ,jy ) = (s,t). By Lemma m(l), the statement is evident for
m = 2. Assume now that m > 2. By the induction hypothesis, we may assume
that iy, =sandj, =r—t+1,foralll1 <t <m-—1. In view of Lemmam(l),
we see that (i —1)=(s,r—m+1)or

Xm? ij) - (iXm—l ) ij_1

(ixm7jxm) = (ixm,l - 17jxm,1) = (7' - 17j —n+ 2) = (Z.Xm,Q - 17jx - 1)'

m—2

Since p is sectional, by Lemma M(Q), the second case does not occur. The

proof of the lemma is completed.

As an application of the preceding statement, we obtain the following descrip-

tion of a sub-wing in W in terms of the coordinates.

4.1.4 LEMMA. Let X, M be vertices in VV.

(1) The source vertex of Wy is (i and the sink vertex is (j,Jy)-

X7/[:X)7
(2) M € Wx if and only if i, >1i,, and j,, > j,.
(3) The quasi-length of X € W is given by ((X) =i, —j, + 1.

Proof. Let Sx be the source vertex of Wyx. Then there is a sectional path
Sx =X1 = Xp = -+ = X, = X in W. Since X is quasi-simple, 1, = j .
Since iy > j, by Lemmald.1.1} we deduce from Lemmal[t.1.3|that (i, ,j, )=
= i,. Then, Sx = (i,,i,) and
U(X)=m=1, — j, + 1. Similarly, we see that the sink vertex Tx = (j,j,)-
Now, let M € Wx. Then M < X if and only if M € Wx. This is, by Lemma
, equivalent to the existence of a path Sx = (i,,i,) ~» M and a path
M ~~Tx = (j,jy). By Lemma [4.1.2(3), this is equivalent to i, >1,, i, > j,,
and ¢, > j, j,, > Jjy- Thatis, i, > max{i,,,j,, } and min{i,,, 7, } > j,. Since

(ixlajxl —m + 1). In particular, in =iy

1, > J. the latter condition is equivalent to ¢, > i,, and j,, > j,. The proof

of the lemma is completed.
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4.1.5 REMARK. Let X,Y € W. By Lemma [4.1.2(2) and Lemma {4.1.4(3), we
see that X,Y are in the same 7-orbit if and if only ¢(X) = ¢(Y). Moreover,
1 </{X)<mn,forany X €¢ W

Recall from Lemma that the vertex set W, is a partially ordered set. The

following statement characterizes the partial order < in terms of the coordinates.

4.1.6 LEMMA. If X, M € W)y, then M < X if and only ifi,, <1, and j,, > j,.

Proof. Let X, M € Wy. Then M < X if and only if M € Wy. The statement
follows immediately from Lemma M(Z) The proof of the lemma is completed.

Recall that we have defined two wings in VW to be separable in Definition
1.4.8(2). The following statement gives a description of two separable wings in

terms of the coordinates.

4.1.7 LEMMA. If XY € W, then Wx, Wy are separable if and only if j,, > i, +2
or j, > i, + 2; and in this case, Wy, Wn are separable for any M € Wx and
N e Wy.

Proof. Let XY be vertices in W. Let Sx,Sy be the source vertices in Wy
and in Wy, respectively, while let T'x, Ty be the sink vertices in Wy and in Wy,
respectively. Clearly, we have Sx = (i,,i,) and Tx = (j,,j,) while Sy =
(iy,i,) and Ty = (J,,J, ). By definition, Wx, Wy are separable if and only if
7tSy = Tx for some t > 2, or 7"Sx = Ty for some r > 2. Indeed, by Lemma
4.1.2(2), the first condition is equivalent to j, > i, + 2 and the second condition
is equivalent to j, > i, + 2. The rest of the statement is trivially to see. The

proof of the lemma is completed.

Let X,Y € W with X < Y. Recall from Definition [1.4.12] that if X Y are
connected by a path, then we defined a wing W5 in Wy. The following statement

describes Wit in terms of the coordinates.

4.1.8 LEMMA. Let X, Y € W with X <Y. If X,Y are connected by a path p,
then Wi¥ = 0 in case £(p) = 1; and otherwise, Wyt = Wy, where Z € Wy with

. j):{wx—z,m, if s(p) = X;
aes (i ,i, +2), iftp)=X.
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In particular, Wi is a wing of rank {(Y) — ((X) — 1.

Proof. Assume that X,Y are connected by a path p in W. If [(p) = 1, then p is
an arrow. Thus, W;¥ = (). Now consider I(p) > 1. Suppose that s(p) = X. That
is, p: X ~ Y. By Lemma [I.4.9] p is sectional. Since X <Y, by Lemma
and Lemma[4.1.6] i, =i, and j, > j,. By Lemma[1.1.2(3), i(p) = j, — j, > 2.
Hence, by Lemma, Z=(jy—2,j,) € Wy. Moreover, since i, =i, —2 < i,
and j, = j,, by Lemma [£.1.6, W, C Wy, and by Lemma {.1.7, Wz, Wx are
separable. This shows that W, C W{f )

Now let M € Wi¥. In particular, M € Wy, by Lemma , iy, <1, and
Ju = Jy- Since Wy, Wi¥ are separable, by Lemma , Wy, Wy are separable.
By Lemma consider first j,, > ¢, + 2. Then j,, > ¢,. Hence, by Lemma
M.1.6] M & Wy, contradiction. Hence, i,, < j, —2. By Lemma[.1.6, Wy C Wy,
Hence, Wi¥ C Wy. Thus, Wy¥ = W5;. We deduce from Lemma [4.1.4{3) that
((Z)=4(Y)—£(X)—1. That is, W5 is of rank ¢(Y) — £(X) — 1. The case that

t(p) = X is similar to show. The proof of the lemma is completed.

In the rest of this section, we study sections and section-generators in W. We

shall start with the following lemma.

4.1.9 LEMMA. Let X,Y be two vertices in V.

(1) If X, Y are comparable, then X <Y if and only if {(X) < (Y).

(2) There is an edge X — Y in W if and only if X <Y with £(Y) = (X)) +1
orY < X with ((Y) =((X) — 1.

Proof. Assume that X,Y are comparable. It is easy to see that X < Y if and
only if the rank of Wy is smaller than the rank of Wy . The latter is equivalent
to £(X) < £(Y). This shows Statement (1).

For proving the necessity of Statement (2), we consider only the case where
there is an arrow X — Y in W. By Lemma [1.1.2(1), (i,,j,) = (i, — 1,j,) or
(iy,7y) = (ix,jy —1). In the first case, Y < X with £(Y) = ¢(X) — 1; and in
the second case, X <Y with ¢(Y) = ¢(X) + 1.

For proving the sufficiency of Statement (2), we consider only the case where

X <Y with ((Y) = ((X) + 1. Then, 1 = £(Y) — 6(X) = (i, — i) + (j — 4,).
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Since i, >4, and j, > j,, we have i, =i, and j, =j, +1ori, =i, +1 and
jy =Jy. By Lemma[d.1.2] (1), W has an arrow X — Y in the first case; and an

arrow Y — X in the second case. The proof of the lemma is completed.

Recall that W, is a poset. By abuse of language, we shall say that W is a
poset. Let & be a subset of Wy. We shall write ¢(S) = {{(X)| X € S§}. As a
subset of integers, ¢(S) is a totally ordered set.

4.1.10 LEMMA. Given a chain S in W, we have an isomorphism of posets
0:8 = US8): X —UX).

Proof. 1t is evident that the map ¢ is surjective. Given XY € S, by Lemma
4.1.9(1), X <Y if and only if £(X) < £(Y'). This implies that ¢ is injective and

preserves the order. The proof of the lemma is completed.

The following statement describes the maximal chains in W.

4.1.11 LEMMA. A chain S in W is mazimal if and only if ((S) ={1,2,...,n}.

Proof. Let S be a chain in W. Assume first that £(S) = {1,2,...,n}. Let Y ¢ W
be such that S U {Y} is a chain in W. By assumption, there is a vertex X € S
such that ((X) =((Y). If X #Y, then X <Y or Y < X. By Lemma [{.1.10]
(X)) < L(Y) in the first case and ¢(X) > ¢(Y") in the second case, a contradiction.
Thus, X =Y. Therefore, S is a maximal chain.

Conversely, assume that S is a maximal chain in WW. Suppose on the contrary
that m € {1,2,...,n} but m ¢ ¢(S). Observe that the wing vertex Z of W
is a maximal element in WW. By the maximality of S, we see that Z € S, and
hence n = ¢(Z) € {(S). Now, let N be the minimal element in S. We claim
that £(N) = 1. Otherwise, /(N) =t > 1. Let S be the source vertex of Wy. In
particular, S < N. Since ¢(S) =1 <t = ¢(N), we have S < N. Hence, SU {S}
is a chain, a contradiction. Therefore, {1,n} C ¢(S). In particular, 1 < m < n.

Now let s be the maximal integer in ¢(S) such that s < m and let ¢ be the
minimal integer in ¢(S) such that m < ¢. In particular, ¢ is a minimal cover of s
in ¢(S). By Lemma [4.1.10} there exist X,Y € S such that Y is a minimal cover
of X with ¢(X) = s and ¢(Y) = t. By Lemma i, <i, and j, > j,, or

else, i, <1, and j, > j,.
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In the first case, by Lemma [4.1.4)3), i, > j, — m + ((Y). By Lemma [4.1.1]
The vertex M with (i,,,j,,) = (iy,7, — m + £(Y)) belongs to W. By Lemma
1.1.6) M < Y. Moreover, since i,, = i, > i, and j,, = j, —m+ {Y) <
Jy —UX)+L0Y) = j, — (i, —iy) < jy, by Lemma again, X < M.
Since Y is a minimal cover of X, we see that S U {M} is a chain in W. Since
(M) =m ¢ {S), we have M ¢ S, a contradiction. Similarly, we shall obtain
a contradiction in the second case. Thus, ¢(S) = {1,2,--- ,n}. The proof of the
lemma is completed.

Recall that a reduced walk w is called sectional if the 7-orbits in w are pairwise
distinct.

4.1.12 LEMMA. Let X; — X9 — --+ — X, be a sectional walk in WV.

(1) Either ((X;) =4(X1)+i—1, forall1 <i<m orl(X;) =0X;)—i+1,
forall1 <i<m.

(2) For1l<i,j<m, we have {(X;) < {(X;) if and only if X; < X;.

Proof. We first show Statement (1) by induction. It is trivial when m = 1. Now
we may assume that m > 1 and (X;) = ¢(X;)+i—1for 1 <7 <m—1. Thereis
an edge X,,_1 — X,,. By Lemma [1.1.9(2), we know that ((X,,) = {(X,,_1) — 1
or £(X,,) = l(Xm-1) + 1. Assume that ¢(X,,) = ¢(X,,—1) + 1. Then, ((X,,) =
(X p—2). Thus, by Remark , X,, and X,,_9 are in the same 7-orbit. Since
w is reduced, X,, # X,,_2. It is a contradiction, since w is a sectional walk.
Therefore, ((X,,) = ¢(X;)+m — 1. Thus, we establish Statement (1). Statement
(2) follows easily from Statement (1) and Lemma [4.1.9(2). The proof of the

lemma is completed.

REMARK: Let p: X; — Xy — -+ —X,,,, with m < n, be a sectional path in
W. Since the X; are in different 7-orbits, by Remark [4.1.5| the ¢(X;) are pairwise
distinct. Hence, p satisfies Lemma

4.1.13 LEMMA. Ifp: X1 — Xo — -+ = X,,, with m < n, is a sectional path in
W, then p is the unique sectional walk from Xy to X,, in WW.
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Proof. Let p: X, X5 e X,, be a sectional path in YW. We shall
consider only the case where ¢(X,,) > ¢(X;). In view of Lemma [1.1.12[1), we
deduce that ¢(X;) = ¢(Xy) + (i — 1), for ¢ = 1,...,m. Moreover, by Lemma
W, there is some integer ¢ such that ¢ = % for 1 < p < m. We shall show the

lemma by induction. It is trivial when m = 1. We assume that m > 1 and the

statement holds for m — 1. Assume that

&1 c2 Cr—1

Y, =X,

X1=" Ys

is a sectional walk in W from X; to X,,. Applying Lemma [4.1.12|1) again,
we obtain £(Y;) = ¢(Y1) + (i — 1), for « = 1,...,r. In particular, r = m and
U(Xp—1) = (Yin_1). Moreover, by Lemma [1.1.12|2), X; < Y,,_1, and then
') > i, = 1. We claim that ¢,,_; is an arrow. Otherwise, it is the inverse

Y,

m—1 X1

of an arrow Y, — Y,,—1. Thus, Y,,-1 = 77X,,—1. Then, 7, L=~ 1 <4,
which is a contradiction. Hence, ¢,,—; is an arrow. Since £(Y,,—1) = ((X,—-1), we

obtain ¢,,—1 = au,—1. Moreover, by the induction hypothesis, we have ¢, = «,,

for p=1,...,m — 1. The proof of the lemma is completed.

The following is a description of sections in W.

4.1.14 PROPOSITION. Let X' be a full subquiver of W. The following statements

are equivalent.
(1) X is a section in W.
(2) Yo is a mazimal chain in W.

(3) X is given by a sectional walk X1 — Xo — -+- — X,,, with ((X;) =t for

=1,...,n.

Proof. Suppose that V' is a section. Since Y meets every T-orbit exactly once, by
Remark we may assume that Xy = {X;, Xo, -+, X, } with £(X;) = ¢, for
t =1,...,n. Indeed, for each t € {1,2,--- ,n — 1}, ¥ contains a walk X; = Y}
— Y, — -+ — Y, = X;,1, which is sectional since ) is a section. By Lemma
4.1.12|(1), £(X¢y1) = (Xy) + 7, and since £(X;,1) =t + 1, we obtain r = 1. That
is, I' contains an edge X; — X,y for every t € {1,2,--- ,n — 1}. This shows

that X' is given by a sectional walk as stated in Statement (3).
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Assume now that X, is a maximal chain in I'. By Lemma we have
0(Xy) ={1,2,--- ,n}. Then in view of Lemma [4.1.10] X~y may be written as

X1-<X2'<"'-<Xn

with ¢(X;) = ¢, for t = 1,...,n.. By Lemma [£.1.9(2), I" contains an edge X;
— Xyq1, foreach t € {1,2,--- ;n —1}. Thus, X is given by a sectional walk as
stated in Statement (3).

Finally, assume that X can be given by a sectional walk X; — Xy — --- —
X, with £(X;) =t, fort = 1,...,n. In view of Lemma[l.1.12{2), Xy is a chain in
W. Since ((Xo) ={1,2,--- ,n}, by Lemma , Yo is a maximal chain in W.
Thus, Statement (2) holds. It remains to show that Statement (1) holds. Indeed,
Y meets every T-orbit exactly once. Let, moreover,

p: Xs=Yo=>Y1 ==Y, =X,

be a non-trivial path in W with X, X; € Y. We may consider only the case
where ((X;) < £(X};). Suppose that p is not sectional. Then there is a path from
7~ X to X;. By Lemma(?)), iy, —1=i—x, >ix, and jx,—1 = j—x, > jx,.
By Lemma 4.1.6] X, and X; are not comparable. On the other hand, X' contains
a subwalk w : Xy — X, — -+ — X;, which is a sectional walk. By Lemma
4.1.12(2), X; < X;, a contradiction. Hence, p is sectional. By the uniqueness
stated in Lemma p = w. In particular, p lies in X. Thus, X' is a section
in W. The proof of the proposition is completed.

Recall that a set of vertices of W is a section-generator of W if its convex
hull is a section in W. The following statement gives a description of section-

generators in WW and also provides a way to obtain them. We refer the notion of
a sectional chain in W to Definition [[.4.10l

4.1.15 PROPOSITION. Let S be a set of vertices in WW. Then the following state-

ments are equivalent.

(1) S is a section-generator of W.
(2) S is a sectional chain such that {1,n} C {(S).
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(3) S is a subset of vertices of a section X in W containing all the source

vertices and all the sink vertices of Y.

Proof. Assume that S is a section-generator of WW. That is, its convex hull X is a
section in W. In particular, S C Xy. By Proposition[d.1.14]2), S is a chain. Then
we may assume that S is of the form X; < X5 < --- < X,,. By Lemma [4.1.10],
we have {(X;) < --- < {(X,,). On the other hand, by Proposition [4.1.14(3),
Y is given by a sectional walk My — My — --- — M, with ((M;) = t with
1 <t < n. By the definition of the convex hull, M; lies on a path p in X' from
X, to X, for some 1 < s,7 < m. Since p is a sectional walk, by Lemma [4.1.12(1),
((X,) < (M) < (X,) or £(X,) < (M) < €(X,). Hence, £(X,) = ((My) = 1
or {(X,) = {(M;) = 1. In either case, since ¢(X;) is the smallest in ((S), we see
¢(X,) = 1. In a similar fashion, we may show that ((X,,) = ¢(M,) = n.

We claim, for each 1 <t < m, that VW contains a path between X; and X;,;.

Indeed, being a section, )’ contains a sectional walk
X =Yo—Y1— - —Yi = Xy,

where ¢ > 1. If ¢ = 1, then our claim is evident. Assume that ¢ > 1. Since
0(X;) < (Xi41), by Lemma[4.1.12(1), we have ((X;) < (Y1) < €(X¢41). On the
other hand, since X' is the convex hull of S, we see that Y] lies on a path p in X
between two vertices M, N € S. We may assume that /(M) < ¢(N). Then in view
of Proposition [1.1.14)(3), ¢(M) < ((Y;) < ¢(N). By Lemma [1.1.10] £(X;41) is a
minimal cover of ¢(X;) in 4(S). Thus, (M) < 0(X;) < (Y1) < U(Xy1) < L(N).
In view of Proposition [1.1.14)3), X contains a sectional walk

M- —X— e —Y— - — X,y — -+ — N,

By Lemma , this walk coincides with p or p~!. In particular, there is a path
between X; and X;,;. Hence, § is a sectional chain. This shows that Statement
(1) implies Statement (2).

Now assume that S is a sectional chain such that {1,n} C ¢(S). Then we
may assume that S is of the form X; < Xy < -+ < X,,. In view of Lemma
[4.1.10] we see that ¢(X;) =1 and ¢(X,,) = n. By Lemma assume that p,
is the sectional path between X, and X, for each 1 < p < m. In particular, p,

is a sectional walk X, = X, — Xp1 — -+ — Xp, = X,41. Since X, < X,41,

7t}7
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by Lemma [4.1.9(1), we have ¢(X,) < ¢(X,4+1), and hence, by Lemma
(1), the £(X,) = U(Xpp) < U Xp1) < -+ < U(Xpy,) = U(Xps1). Therefore, the
walks p, with 1 < p < m can be composed to form a sectional walk Y. By
Proposition (3), Y is a section in W. Since the p, are paths, we see that
S ={Xi,...,X,,} contains all the sink vertices and the source vertices of ¥. This
shows that Statement (2) implies Statement (3). Moreover, since X' is generated
by the paths p,, we see that X' is contained in the convex hull of S. Since X is
convex, it is the convex hull of S. Thus, § is a section-generator. This shows
that Statement (2) implies Statement (1).

Finally, assume that S = {Xy,---, X, } is a subset of vertices of a section
2 in W containing all the source vertices and all the sink vertices of 3. Since
S C X, by Proposition[4.1.14(2), S is a chain. Again, by Proposition[4.1.14(3), X
is given by a sectional walk of form M; — My — --- — M,, with {(M;) = 1 and
¢(M,) = n. Therefore, M; and M, are sink or source vertices in Y. Apparently,
M, M, € §. In particular, the ¢(X,) with 1 < p < m are pairwise distinct. We
may assume that ((X;) < ((X3) < -+ < {(X,,). In this case, X; = M; and
X = M,. Hence, /(X;) =1 and ¢(X,,) = n. Fix p with 1 < p < m. Being

connected, Y contains a reduced walk
pp:Xp:Ybiyvli 7K’—17Y;’:Xp+1-

By Lemma [.1.12] £(X,) = {(Yy) < £(Yy) < --- < (Y;) = €(Xp41). If p, is not a
path or the inverse of a path, then r > 1 and some Y; with 1 < j < r is a sink
vertex or a source vertex in X. Observing that ¢(Y;) # ¢(X;) for all 1 <i < m,
we see that Y; € S, a contradiction. Therefore, S is a sectional chain. The proof

of the proposition is completed.

4.2 Coordinate system for a translation quiver
of shape ZA

The main objective of this section is to introduce a coordinate system for a
translation quiver of shape ZA ., which is slightly different from the one consid-
ered in [34] and has been implicitly used in [48]. It allows us to describe some
essential combinatorial notions such as the partial order, the section-generators

and the sectional chains in such a translation quiver.
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Throughout this section, I" stands for a translation quiver of shape ZA ., with
translation 7. Fixing a quasi-simple vertex Sy, we obtain the quasi-simple vertices
S; = 1Sy with 4 € Z in I'. For each i € Z, denote by R} the ray in I" starting
with S;, that is, the unique infinite sectional path starting with S;; and by R;

the co-ray ending with .S;, that is, the unique infinite sectional path ending with
Si- Then, FO = UieZ (Rj_)o = U]EZ (RJ_)O

4.2.1 LEMMA. Writing Zr = {(i,j) € Z X Z | i > j}, we obtain a bijection
O: Iy —=Zr: X — (iy,]y)

so that R;; N Rj_x = {X}, for every X € I'y.

Proof. Let X € I'y. There exists a unique integer ¢, such that X € R;; )
Then, R;; has a subpath 7°xS; — -+ — X of length [ > 0. Observe that
I" has a sectional path X — --- — 7/x 5, of length [. Thus, X € Rj_X, and
hence, X = ij N R; . Since Tix Sy = 77 71x Sy) = Tix LSy, we see that j, =
i, —1 <i,. Therefore, (i,,j,) € Zp with i, > j,. In particular, ® is injective.
Assume conversely that (i,7) € Zp. Since | = j —i > 0, the ray R has
a subpath 705y — --- — Y of length I. Then, I' contains a sectional path
Y — - — 7Sy = 73Sy, That is, Y € Iy is such that ®(Y) = (4, j). The proof

of the lemma is completed.

In view of Lemma for every X € Iy, we shall write X = (i, j, ). This

yields a coordinate system for I" as follows.

The following statement is an explanation of the coordinates of a vertex in

terms of the rays and co-rays in I
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4.2.2 LEMMA. Let i,7 be integers. If X is a vertex of I', then
(1) i, =i if and only if X € R];
(2) jyx =J if and only if X € R} .

The following statements is similar to Lemma [4.1.2] whose proof is omitted.

4.2.3 LEMMA. Let X,Y be two vertices in I'.

(1) There ezists an arrow o : X — Y in I' if and only if (i,,j,) = (iy,j, — 1)
or (iy>jy) = (ix - ]‘7jX)'

(2) X =7Y if and only if (iy,j,) = (i, + 1,5, +1).

(3) There exists a path p: X ~~Y in W if and only if i, > i, and j, > j, .
In this case, l(p) = (i, —i,) 4+ (Jx — 7y )-

The following result describes the sectional paths in I', whose proof can be

translated word-by-word from the proof of Lemma [4.1.3]

4.2.4 LEMMA. Letp: X7 — X9 — --- — X, be a sectional path in I'. Then one

of the following statements is true.

(1) (iXt?th) = (iX17jX1 —t+ 1), fO?"t = 1, o, n.
(2) (iy,,dx,) = (ix, =t + 1,45, ), fort=1,...,n.
Recall that every vertex X € [I' is the wing vertex of a wing Wx in [ as

defined in Definition [1.4.6, The following statement is similar to Lemma [4.1.4]

whose proof will be omitted.

4.2.5 LEMMA. Let X, M be two vertices in I.

(1) The source vertex of Wy is (iy,i,), and the sink vertex is (j,jy)-
(2) M € Wx if and only if i, >1i,, and j,, > j.
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(3) The quasi-length of X € I' is given by €(X) =i, —j, + 1.

4.2.6 REMARK. By Lemma [4.2.3(2) and Lemma [4.2.5(3), we see that X,Y € I
belong to the same 7-orbit if and if only ¢(X) = ¢(Y). Observe that the ¢(X),

with X € I') may run over all the positive integers.

Recall from Lemma[l.4.7] that there is a partial order < over I'y. By abuse of
language, we shall say that I' is partially ordered by <. The following statement

is an analogue to Lemma [4.1.6] whose proof is omitted.
4.2.7 LEMMA. If X, M € I'y, then M <X X if and only ifi,, <i, and j,, > j,.

We describe the separability of two wings in ' as defined Definition [1.4.8in

terms of the coordinates in the following statement, which is similar to Lemma

417

4.2.8 LEMMA. Giwen X,Y € I'y, the wings Wx, Wy are separable if and only
if 3¢ > 1y, +2 orj, > i, +2; and in this case, Wy, Wy are separable for any
M € Wyx and N € Wy-.

Let X,Y € I' with X < Y. Recall from Definition [1.4.12] that if XY are
connected by a path, then we have defined a wing W5* in Wy. The following

statement describes W5 in terms of the coordinates which is similar to Lemma

4138

4.2.9 LEMMA. Let XY € I' with X <Y. If X,Y are connected by a path p,
then Wit = () in case £(p) = 1; and otherwise, Wi = Wy, where Z € Wy with

i (ixsiy +2),  ift(p) = X.
In particular, Wit is a wing of rank ((Y) — ((X) — 1.

The partial order < over I' plays an essential role in this section. Compare
the following statement with Lemma [4.1.9|
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4.2.10 LEMMA. Let XY be two vertices in I'.

(1) If X, Y are comparable, then X <Y if and only if {(X) < (V).
(2) There is an edge X — Y in I' if and only if X <Y with ((Y) =0(X) + 1
orY < X with ((Y) ={(X) — 1.

Next, we shall study the chains in I'. The following observation is evident.

4.2.11 LEMMA. FEvery vertex in I' is a cover of only finitely many vertices.

Given a set S of vertices in I, we shall write ¢(S) = {{(X)|X € S}. The

following statement is similar to Lemma [4.1.10

4.2.12 LEMMA. Given a chain § in I', we have an isomorphism of posets

0:8—=US): X — ((X).

The following statement describes the infinite chains in I".

4.2.13 LEMMA. An infinite chain S in I' is of the form
Xi<Xog <o <X, <+

Proof. Let S be an infinite chain. By Lemma [4.2.12 ¢(S) is an infinite set of

positive integers, and hence, it is of the following form
U(Xq) < l(Xo) < - <lX,)<---

Applying Lemma again, § is of the form as stated in the lemma. The

proof of the lemma is completed.

The following statement describes the maximal chains in I". By N* we denote
the set of the positive integers. Compare it with Lemma [4.1.11]

4.2.14 LEMMA. A chain S in I' is maximal if and only if £(S) = N*.
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Proof. Let S be a chain in I'. Assume first that ¢(S) = N*. Suppose that there
is a vertex Y such that S U {Y} is a chain in I". Then there is a vertex X € S
such that ((X) =((Y). If X #Y, then X <Y or Y < X. By Lemma [4.2.12]
((X) < £(Y) in the first case and £(X) > £(Y') in the second case, a contradiction.
Thus, X =Y. Therefore, § is a maximal chain in I

Conversely, assume that § is a maximal chain in I". We claim that § is an
infinite chain and contains a minimal element of quasi-length 1. Suppose first
that S has a maximal element X. Take Z = (i, + 1,j,). By Lemma [4.2.7
X < Z, and hence, Z ¢ S, which is a contradiction. Thus, § is infinite. By
Lemma [£.2.13] S has a minimal element Y. Suppose secondly that £(Y) > 1. Let
S be the source vertex of Wy. Then, S < Y. Since ¢(S) =1 < {(Y), we have
S <Y, and in particular S ¢ S, which is a contradiction. Our claim is true.

Suppose now on the contrary that there is an integer n such that n & ¢(S).
In particular, n > 1. Since S is infinite, by Lemma there are M, N € S
such that (M) < n < ¢(N). It is evident that we may assume that ¢(NN) is
the minimal cover of ¢(M) in ¢(S). Then by Lemma [4.2.12] N is a minimal
cover of M in §. By Lemma [4.2.7 i,, < i, and j,, > j,, or else, i, < i,
and j,, > j,. In the first case, by Lemma [1.2.5(3), i, > j, —n + {(N). By
Lemma I" contains a vertex L with (i,,7,) = (iy,jy —n+¢(N)) € I'. By
Lemma [4.2.7, L < N. Moreover, since i, =i, > i, and j, = j, —n+ {(N) <
gy —UM)+0(N) = j,, — (iy —i,) < j,» By Lemma[4.2.7 M < L. Since N is a
minimal cover of M, we see that SU{L} is a chain in I". Since ¢(L) =n & ((S),
we have L ¢ S, a contradiction. Similarly, we shall obtain a contradiction in the

second case. Thus, (S) = N*. The proof of the lemma is completed.

The following definition gives us two convex subquivers of I', which will play

an important role on the study of cluster categories of type ZAZ.
4.2.15 DEFINITION. Given an integer n, define

r, = UKnRj and I'Z, = Uj>nR].‘.

REMARK. Let m,n be integers.
(1) Ifm>n,then I't, CT'f and I'Z, CTI'2,,.
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(2) If X € I, then X € 'L, if and only if i, < n, whereas X € I'Z,, if and
only if 5, > n.

(3) It will be useful to observe that I't, is the full subquiver of I" generated
by the successors of the quasi-simple vertex S,,_1, and ', is the full subquiver

of I' generated by the predecessors of the quasi-simple vertex S, 11.

The following easy lemma describes the intersection of two subquivers defined
in Definition [£.2.15

4.2.16 LEMMA. Let m,n be two integers.
(1) Ifm<n+1thenI't, NI, =0.
(2) If m>n+2, then I't, NT'Z, =Wz with (i,,j,) = (m—1n+1).

Proof. Let X € I't, N I'Z,. Thus, n < j, <i, < m. We deduce from Lemma

that m > n 4 2. This shows Statement (1). Consider the vertex Z € I’
with (i,,7,) = (m — 1,n+ 1). Obviously, X € Wy. Hence, I't, N I'Z, CWy.
On the other hand, Z € I'Y, N I'Z,. The proof of the lemma is completed.

The following easy statement follows immediately from Lemmas and

427

4.2.17 LEMMA. Consider a ray R and a co-ray Ry in I

(1) The vertices in R} form a chain such, for XY € R, that X <Y if and
only if j > jy-

(2) The vertices in R; form a chain such, for X,Y € R}, that X <Y if and
only if 1, <1,.

4.2.18 DEFINITION. A set of vertices in I" is called locally finite if it contains at

most finitely many vertices of each of the rays R and each of the co-rays R} in
I.

The following statement collects some properties of infinite chains in I". We

refer the notion of the density in a poset to Section 1.4.
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4.2.19 LEMMA. Let S be an infinite chain in I', and let i,j be two integers.
(1) If S is locally finite, then S is dense in I'.
(2) If S has infinitely many vertices of R}, then S is a dense subset of 'Y, ;.

(3) If § has infinitely many vertices of R}, then S is a dense subset of I'_;_;.

Proof. Assume that S contains finitely many vertices of each ray and each co-ray
in ' and X, is the minimal element in §. Since & N RJr and SN R both
are finite, the chain S, = S\(R;’;{l U RjX1) is infinite. Then take Xs to be the
minimal element in 8. Thus, we have Xy < X with j, <j, <i, <i, . By

induction, since S is infinite, we obtain an infinite subchain
X1 <Xo<- =X, <+

of § such that i, <4, ~andj, >j, , forn=>1 Nowlet M e I' There
is some X, such that ¢, <1, and j,, <j, . Thatis, M < X,,. This shows
Statement (1).

Assume now that S contains infinitely many vertices of R;". In particular,
SN R; is an infinite chain. Let X € S. Then, by Lemma there is a vertex
Y € SN R} such that X < Y. Thus, by Lemma 4.2.7, i, < i, = i. Hence, S is
a subset of I'Z, ;. Now let M € I'f, . Being infinite, SN R;" contains an object
Z such that j, < j,,. Moreover, since i,, < i, and j,, > j,, by Lemma [£.2.7]
M < Z. This shows Statement (2). The proof of Statement (3) is similar.The

proof of the lemma is completed.

The following statement will be used in the study of cluster-tilting subcate-

gories of cluster categories of type AZ.

4.2.20 LEMMA. Let T be a set of vertices of I'L, (respectiviey, I',) for some
n € Z. Then T is dense in F+ o(respectively, I'2)) if and only if T contains

infinitely many vertices of R, (respectively, Rn+1)'

Proof. We shall consider only the case where 7 C I'f . The sufficiency follows
from Lemma [4.2.19(2). Assume now that 7 contains finitely many vertices of
R . Then there is a vertices X € R, | which does not belong to 7. Apparently

X has no cover in 7. Hence, T is not dense. The proof of the lemma is completed.
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In the following, we shall focus on the sections and section-generators in I'.
Comparing the following statement with Lemma [4.1.12} we shall omit the proof.

4.2.21 LEMMA. Let X1 — Xy — -+ — X,, be a sectional walk in I', where
n € 7.

(1) Either 0(X;) =0(Xy)—i+1 foralll <i<n—1o0rl(X;)=0(X1)+i—1
forall1l <i<n.

(2) £(X;) < 0(X;) if and only if X; < X, for all 1,5 > 1.

The following statement describes the sectional paths in I', whose proof is
similar to that of Lemma [£.1.13

4.2.22 LEMMA. Ifp: X7 — X5 — -+ — X,, is a sectional path in I', then p is

the unique sectional walk from X to X,, in I.

The following statement is a characterization of sections of I'. Compare it to

Proposition {.1.14]

4.2.23 PROPOSITION. Let X be a full subquiver of I'. The following statements

are equivalent.
(1) X is a section in X.
(2) Yo is a mazimal chain in I
(3) X is given by an infinite sectional walk as follows:
X, — Xy — oor — X, — s
with £(X,) = 1.

Proof. Assume first that X is a section in I'. Since Y meets every T-orbit exactly
once, we may write Yo = {X1, Xo,..., X,,...} with {(X,) = n for all n > 1.
For each n, X' contains a walk X,, =Yy — Y, — --- — Y, = X,,41, which is
sectional since X is a section. By Lemma [4.2.21(1), ¢(X,+1) = ¢(X,,) + 7, and
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since £(X,11) = n+ 1, we obtain r = 1. That is, I" contains an edge X,, — X, 11
for every n. This shows that Y is given by an infinite sectional walk as stated in
Statement (3).

Assume now that Xy is a maximal chain in I". By Lemmal[d.2.14] ¢(X,) = N*.

Thus, Yy is an infinite chain of the form
Xi<Xo< <X, <+

with ¢(X,,) = n, for all n > 1. By Lemma [4.2.10(2), we see that I" contains an
edge X,, — X, 11, for each n > 1. Thus, X' is given by an infinite sectional walk
as stated in Statement (3).

Assume now that Y is given by an infinite sectional walk
X, — Xyg— o0 — X, — e

with ¢(X;) = 1. By Lemma [4.2.21|(1), we have ¢(X,,) =n for n > 1. By Lemma
4.2.21(2) and Lemma , Yo is a maximal chain in I". This shows Statement
(2). It remains to shows Statement (3). Indeed, X meets every 7-orbit in I’
exactly once. Now, consider a non-trivial pathp: X, =Yy —> Y, —--- =Y, =
X, in I" for some m,n. We shall consider only the case where ¢(X,,) < £(X,,).
Suppose that p is not sectional. Then there is a path from 77X, to X,,. By
Lemma (.23 i.-x, > ix, and j,-x, > jy, . Since iy, —1 = i,-x, and
JXm — 1 = Jr-x,,, we see that ix, >, and j, > j, . Thatis, X,, and X,
are not comparable, a contradiction. Hence, p is sectional. Since ) contains a
sectional subwalk w : X,, — X,,.1 — -+ — X,,, by the uniqueness stated in
Lemma [4.2.22) p = w. In particular, p lies in Y. That is, ) is a section in [

The proof of the proposition is completed.

We refer the notion of a section-generator of I" to Definition and the
notion of a sectional chain in I" to Definition [1.4.10l The following statement

gives a description of section-generators in I

4.2.24 PROPOSITION. Let S be a set of vertices of I'. The following statements

are equivalent.

(1) S is a section-generator of I.
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(2) S is an infinite sectional chain containing a vertex of quasi-length 1.

(3) S is an infinite set of vertices of a section X of I' containing all the source

vertices and all the sink vertices of 2.

Proof. Assume that S is a section-generator of I'. That is, the convex hull X
of § is a section in I'. By proposition [.2.23|(3), X' is given by a sectional walk
starting with a vertex M of quasi-length 1. Moreover, by Proposition (2),
X is a chain in I'. Since § C X', we see that § is also a chain in I". Assume that
S has a maximal element Y. By Lemma , S is contained in Wy . Since Wy
is convex, X' is contained in Wy. Therefore, Y is finite by Lemma [4.2.11], which

is absurd. Thus, § is an infinite chain. Write
S:Xi<Xg < <X, <

By definition, M lies on a path p in ) from X, to X, for some s, > 1. Since
p is a sectional walk, by Lemma [1.2.21)2), we have ((X,) < ¢(M) < {(X,) or
U(X,) < U(M) < 0(X;). Hence, {(X;5) =4(M) =1or {(X,) =4(M)=1. In
either case, since ¢(X;) is the smallest in ¢(S), we see £(X;) = 1.

We claim, for each ¢ > 1, that I' contains a path between X; and X;,;.

Indeed, being a section, X' contains a sectional walk
Xi=Yo—Y1— - —Y; = Xy,

where ¢ > 1. Since ((X;) < {(Xi41), by Lemma [£.2.21[1), we have ((X;) <
0(Y1) < 0(Xyq1). Since X' is the convex hull of S, on the other hand, Y; lies on a
path p in X between two vertices M, N € S. We may assume that (M) < ((N).
Then ¢(M) < £(Y;) < L(N). Since ¢(X;11) is a minimal cover of ¢(X;) in {(S), we
obtain ¢(M) < 0(X;) < 0(Y]) < U(Xi41) < L(N). In view of Proposition
and Lemma [£.2.2T] we see that X contains a sectional walk

M- —X— - —Y— - — X,y — -+ — N,

By Lemma |4.1.13], this walk coincides with p or p~!. In particular, there is a path
between X; and X;,;. Hence, § is a sectional chain. This shows that Statement
(1) implies Statement (2).

67



Now assume that S is an infinite chain, with 1 € ¢(S), of the form
Xi <Xy <o <Xy < oe

In view of Lemma we have ¢(X;) = 1. By Lemma [1.4.9, assume that p,
is the sectional path between X, and X, .1, for each n > 1. In particular, p,, is a
sectional walk X, = X, 0 — Xp1 — -+ — Xp4, = Xypq. Since X,, < X441, by
Lemma [4.2.10|(1), we have £(X,) < £(X,11), and hence, by Lemma [4.2.21](1), the
U(X,) = U Xno) < U(Xn1) < -+ < UXns,) = €(Xns1). Therefore, the walks p,
with n > 1 can be composed to form an infinite sectional walk X' with ¢(X;) = 1.
By Proposition [1.2.23|(3), X is a section in I'. Since the p, are paths, we see that
S={Xi,...,X,,...} contains all the sink vertices and the source vertices of X.
This shows that Statement (2) implies Statement (3).

Finally, suppose that S = { X, -, X,,,--- } is a subset of vertices of a section
X in I' containing all the source vertices and sink vertices of Y. Since X is a
section, by Proposition [4.2.23(3), X is given by an infinite sectional walk of form
My — My — -+ — M,, — -+ with ¢(M;) = 1. Therefore, M; is sink or source
vertex in Y. Apparently, M; € S. In particular, the ¢(X,) with n > 1 are
pairwise distinct. We may assume that £(X;) < ((Xs) < --- < {(X,) <---. In
this case, X7 = M;. Hence, {(X;) = 1. Fix n with n > 1. Being connected, X
contains a reduced walk p,, : X, =Yy —Y, —--- — Y,y — Y, = X,,.1. By
Lemma [1.2.21)(1), ((X,) = £(Yy) < €(Y1) < - < L(Y,) = €(X,11). If p, is not
a path or the inverse of a path, then » > 1 and some Y; with 1 < j < risa
sink vertex or a source vertex in Y. Observing that ((Y;) # ¢(X;) for all i > 1,
we see that Y; € S, a contradiction. Thus, p, is a path in I" for all n > 1, and
hence, Y is contained in the convex hull of §. Being convex, Y is the convex
hull of S. Hence, S is a section-generator. This shows that Statement (3) implies

Statement (1). The proof of the proposition is completed.

The following result states some properties of section-generators of I'.

4.2.25 COROLLARY. Let S be a section-generator of I' and X be its convex hull.

(1) If S contains at most finitely many vertices of each ray and each co-ray,
then X has no infinite path.
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(2) If S contains infinitely many vertices of some ray R}, then X has an infinite

path p such that p lies in R .

(3) If S contains infinitely many vertices of some co-ray R, then X' has an

infinite path p such that p lies in R, .

Proof. By Proposition [4.2.24[2), S is infinite. By Proposition [£.2.23] X is given
by an infinite sectional walk of the form M; — My — -+ — M,, — --- with
¢(My) = 1. Moreover, by Lemma [4.2.21(1) and (2), X' is such that M, < M,
for n > 1.

Assume first that S contains at most finitely many vertices of each ray and
each co-ray. Suppose on the contrary that X' contains an infinite path p starting
or ending at some M, in Y. We shall only consider the first case. Since V' is
a section, p is a sectional path. Then p entirely lies in R, for some i € Z.
By Lemma [4.2.12] there are finitely many X € S such that X < M,. Since
S is infinite, p contains infinitely many vertices of S, which is a contradiction.
Therefore, p is finite. This shows Statement (1). Suppose now that S N R is

infinite. Then, we may write S N R} as follows.
Ny <Nyg<--+ <N, <---.

Observe that there is a p, : N, ~ N, lying entirely in R}, for n > 1. Then,
the p, can be composed to an infinite path p which lies in R;". Moreover, by
the definition of convex hull, p is contained in Y. This shows Statement (2).

Statement (3) is similar to show. The proof of the corollary is completed.

We conclude this section by introducing infinite co-wings in I', which will be

used in Chapter 7.

4.2.26 DEFINITION. Given a quasi-simple vertex S € I', we define the infinite
co-wing W(S) with co-wing vertez S to be the full subquiver of I" generated by
the vertices X for which there exists a path N ~» X ~» M, where M belongs to
the ray starting with S and N belongs to the co-ray ending with S.

We give a description of infinite co-wings in I" in terms of the coordinates.
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4.2.27 LEMMA. Let S be a quasi-simple vertex of I'. If X € I, then X € W(S)
if and only if i, > i, = jg > jy if and only if S € Wx.

Proof. Since S is quasi-simple, ¢, = j,. Thus, R;; is the ray starting with
S and R;_is the coray ending with S. Now assume that X € W(S). By
definition, there exists a path N ~» X ~» M, where M € st and N € Ri_s' In
particular, i,, = j, = i,. By Lemma [£.2.3] (3), j, < j, and iy > 7,,. Thus,
Iy 215 =Jg 2 Jx-

Conversely, suppose that X € I' such that i, > i, = j;, > j,. By Lemma
[1.2.1] the vertices N, M with (i,,j,) = (iy,is) and (i, j,,) = (ig,7y) belong
to I'. Clearly, M € R;“S and N € R; . In view of Lemma W(S), I’ contains
a path N ~» X ~» M. Therefore, X € W(S). The rest of the statement follows
immediately from Lemma [4.2.7] The proof of the lemma is completed.

4.3 Coordinate system for a translation quiver
of shape ZA7,

The objective of this section is to introduce a coordinate system for a transla-

tion quiver of shape ZAZ in order to describe its sections and section-generators.

Throughout this section, let I" stand for a translation quiver of shape ZAZ,
whose translation is written as 7. We fix two double infinite sectional paths Ry
and Lg in I', whose intersection consists of one vertex. Writing R; = 7° R, and

L; = 'Ly for i € Z, we can picture I" as follows.



Thus, for any vertex X € I', there is a unique pair (i,,j,) of integers such
that X = L; N R;_. In the sequel, for convenience, we shall identify X with

(i, Jy). In this way, I' is endowed with a coordinate system as follows.
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0
N } N N /NS
}172) }Oal) (_170) (_Qa_l)
(2,2) \1 1) \0 0)/l ?1 —6[ ?2—2)
RS PGB
271) ]-aO) (Oa'l) (_]—a_2)
N N N SN
(371) (270) (17_1) (07_2) (_17_3)

The following easy statement relates the coordinates of a vertex and the double

infinite sectional paths L; and R; in I'.

4.3.1 LEMMA. If X € I', then the following statements hold.
(1) Ifi € Z, then i, =1 if and only if X € Ly;
(2) If j € Z, then j, = j if and only if X € R;.

Using the coordinate system for [', the arrows and the translation can be

described as follows.

4.3.2 LEMMA. Let X,Y be two vertices in I.

(1) There exists an arrow X — Y if and only if (iy,j,) = (iy,jy — 1) or
(iy.0y) = (ixy = 1, Jy)-

(2) X =7Y if and only if (iy,j,) = (i, + 1,5, +1).

REMARK. In view of Lemma [1.3.2(1), every vertex X € I' has exactly four

neighbors as follows:
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Y Ys
NS
X
7N
Y; Y,
where (iylvjyl) = (i, Jx +1), (iy2vjy2) = (ix = Ljy), (Z.y37jy3) = (ix +Ljy)
and (iY47jY4) = (ixvjx - 1)'

The following statement is an easy consequence of Lemma [4.3.2{1).
4.3.3 LEMMA. Given vertices X,Y € I, there exists a path X ~Y if and only if

iy > 1, and j, > j,; and in this case, the path is sectional if and only if i, =i

or jy = Jy-

Y

The following statement describes the sectional paths in I

4.3.4 LEMMA. Let X1 — X5 — --- = X, be a sectional path in I'. Then
(1) (z’Xp,jXp) = (ix,,jx, —p+1), forp=1,...,n; or
(2) (ix,.Jx,)

Proof. Write (iy ,jy ) = (s,1). By Lemma W(l), the statement is evident for
n = 2. Assume now that n > 2. By the induction hypothesis, we may assume
that i, =sandj, =t—p+1, foralll <p<n-—1. Inview of LemmaW(l),
we see that (i, ,j, )= —1)=(s,t—n+1)or

(in _p+17jX1); forp: 1,---,”.

<ZXTL—1 ) an—l

iy, Jx,) = (iy | — 1,an_1) =(s—1t—n+2)= (an_Z -1 , - 1).

n—1

Since this path is sectional, by Lemma [4.3.2|2), the second case does not occur.

The proof of the lemma is completed.
4.3.5 DEFINITION. Given a vertex X € I', its level ¢(X) is defined by
UX) =1

X_jX'

The following statement is an easy consequence of Lemma [4.3.2(2).
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4.3.6 LEMMA. Two vertices X,Y € I' lie in the same T-orbit if and only if
0X)=L(Y).

REMARK. Observe that the levels of vertices in the double infinite sectional path
Ly run over the integers. Thus, in view of Lemma 4.3.2(2), we have a bijection

between the levels of vertices in " and the integers.

The following statement is easy to verify.

4.3.7 LEMMA. The vertex set of I' is partially ordered in such a way that X <Y
iof and only iof i, <1, and j, > 7, .

REMARK. For convenience we shall say, by abuse of language, that I" is a poset.

The partial order introduced in Lemma plays an essential role in this

section.

4.3.8 LEMMA. Let X,Y be two vertices in I'.

(1) If X,Y are comparable, then X <Y if and only if {(X) < {(Y).

(2) There is an edge X — Y in I' if and only if X <Y with ((Y) =0(X) + 1
orY < X with {(Y)=0(X) — 1.

Proof. By definition, ((Y) — 4(X) = (i, — i) + (Jy — Jy)- If X <Y, then
0(Y) —¢(X) > 0. Assume now that X,Y comparable with ¢(X) < ¢(Y). We
claim that X < Y. Otherwise, Y < X. In view of the equation, we see that
0(Y) —¢(X) <0, a contradiction. This shows Statement (1).

For proving the necessity of Statement (2), we consider only the case where
there is an arrow X — Y in I'. By Lemma [.3.2(1), (iy,j,) = (i, — 1,j,) or
(iy,7y) = (ix,Jy —1). In the first case, Y < X with £(Y) = ¢(X) — 1; and in
the second case, X <Y with ¢(Y) = ¢(X) + 1.

For proving the sufficiency of Statement (2), we consider only the case where
X <Y with £(Y) =4(X) + 1. Then, 1 =Y) —4(X) = (i, — i)+ (Jx — Jy)-
Since ¢, >4, and j, > j,, we have i, =¢, and j, =j, +1lori, =i, + 1 and
Jy = Jy. By Lemma m(l), I' has an arrow X — Y in the first case; and an

73



arrow Y — X in the second case. This shows Statement (2). The proof of the

lemma is completed.

The following statement gives some properties of paths between comparable

vertices.

4.3.9 LEMMA. Let XY € I' be comparable. If I' has a path p between X and
Y, then p is sectional and is the unique path between X and Y .

Proof. We shall only prove the case where I" has a path p from X to Y. Write
p: X=M —---—>M,_1—>M.=Y

with r > 1. By Lemma [1.3.3 we have i, > i, >4, and j, > j,, > j, for
t=1,...,r. Assume first that X <Y. Then ¢, <i_and j, > j . This implies
that either ¢, =i, for ¢ =1,...,7, or j,, = j, fort =1,...,r. By Lemma
4.3.2(1), in the first case, we have (i, ,j,, ) = (ix,jy —t+ 1), fort =1,...,7;
and in the second case, we have (i = (i, —t+1,j5,), fort =1,...r.
In particular, p is the unique path from X to Y, and it is sectional by Lemma
. It is similar to show that the lemma holds in case Y < X. The proof of

the lemma is completed.

NIt7th)

Given a set S of vertices of I', we shall write ((S) = {¢{(X)|X € S}. The
following statement is similar to Lemma [4.1.10| and Lemma [4.2.12) whose proof

will be omitted.

4.3.10 LEMMA. Given a chain § in I', we have an isomorphism of posets

0:8 = US): X —UX).

Observe that I' contains infinite chains; for instance, given any integer 1,
the vertices of R; form an infinite chain. The following statements collect some

properties of infinite chains in I".

4.3.11 LEMMA. If S is an infinite chain in I', then it is of one of the following

three forms:
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(1) Xi<Xo<-- <X, <.
(2) - <X, < <Xy < Xj.
(B) =Xy =Xy < Xy <

Proof. By Lemma [£.3.10] ¢(S) is an infinite set of integers. Thus, ¢(S) is of one
of the following form

(1) 6(X1) < (X)) <+ < U(Xp) <---.

(2) - <U(Xp) < <UX2) < L(Xq).

(3) - <l Xp1) < UX,) <l Xpg1) <---.
Applying Lemma again, S is of one of the forms stated in the lemma. The
proof of the lemma is completed.

REMARK. A chain S in I is called double infinite if it is of the form --- < X, 1 <

X, < X,41 < ---. That is, S has neither maximal nor minimal element.

The following statement is a description of maximal chains in I".

4.3.12 LEMMA. A chain S is mazimal in I’ if and only if ((S) = Z.

Proof. Let S be a chain such that ¢(S) = Z. Assume that there is a vertex Y
such that S U {Y} is a chain in I". Then there is a vertex X € S such that
UX)=0Y). IfX #Y, then X <Y or Y < X. By Lemma[4.3.10] /(X) < {(Y)
in the first case and ¢(X) > (YY) in the second case, a contradiction. Thus,
X =Y. The necessity is established.

Conversely, assume that S is a maximal chain in I'. Suppose first that S
has a minimal element X. Take Z = (i, — 1,j,). Clearly, Z < X, and hence,
Z ¢ S. Then, we obtain a chain S U {Z}, which contradicts the maximality
of §. Similarly, we can show that S has no maximal element. Thus, S is a
double infinite chain. Suppose on the contrary that there is an integer n such
that n ¢ ¢(S). By Lemma [4.3.10] ¢(S) has neither a lower bound nor an upper
bound, and hence, there are X,Y € S such that ((X) <n < {(Y). It is evident
that we may assume that Y is a minimal cover of X in §. Then, either ¢, < i,
and j, > j,, orelse, i, <1, and j, > j,. In the first case, consider the vertex
M = (i,,j, —n+L(Y)) e I'. Then, M < Y. Moreover, since i,, =14, > i, and
Ju=Jy —n+LlY)<jg, —UX)+UY)=7,— (i, —iy) < Jy, we have X < M.
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As a consequence, S U {M} is a chain. Since ((M) =n & ((S), we have M & S,
a contradiction to the maximality of S. Similarly, we shall obtain a contradiction

in the second case. Hence, {(S) = Z. The proof of the lemma is completed.

4.3.13 DEFINITION. Let & be a chain in I'. We shall write
Is={ieZ|SNL;#0}={i, | X € S}

and

Js={i€Z|SNR, #0} = {j, | X € 5}.

Let S be a chain in " with X € I'. By the definition of the partial order, we
clearly see that if X is a minimal element in I”, then 7, is a minimal element in
Is and j, is a maximal element in Jg; if X is a maximal element in I", then ¢, is
a maximal element in /s and j, is a minimal element in Js. We shall now state

more properties of Is and Js.

4.3.14 LEMMA. Let S be an infinite chain in I', and let i, j be integers.
(1) If SN L; is a double infinite chain, then S C L;, that is, Is = {i}.
(2) If SN R; is a double infinite chain, then S C R;, that is, Js = {j}.

(3) If SN L; is an infinite chain having a minimal (respectively, maximal)
element, then i is the largest (respectively, smallest) integer in Is, while Jg

has no minimal (respectively, maximal) element.

(4) If SN R; is an infinite chain having a minimal (respectively, mazimal)
element, then j is the smallest (respectively, largest) integer in Js, while Is

has no mazimal (respectively, minimal) element.

Proof. Assume that SN L; is a double infinite chain. By Lemma[4.3.10} ¢(SNL;)
is an infinite set of integers having neither minimal nor maximal element. Thus,
for any Z € S, there exist X,Y € SN L; such that £(X) < {(Z) < {(Y). By
Lemma 4.3.10, X = Z =Y. Therefore, i = i, < i, < i, = i, and hence,
i, =1i. Hence, Is = {i}. This establishes Statement (1). Similarly, we can prove
Statement (2).
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For proving Statement (3), we shall consider only the case where SN L; is an

infinite chain with a minimal element. That is, S N L; is of the form
Xi <Xy =< <X, <.

Since the X; have the same i-coordinate, Jx, > Jx, > 0 > Jx, > o0 In
particular, Jsnz, has no minimal element, and consequently, neither does Js.
Moreover, since S N L; has no maximal element, by Lemma [4.3.10, neither
does £(S N L;). Thus, for any Y € S, there is some X,, such that {(Y) < {(X,,).
By Lemma Y < X, and hence, i, < i, = i. This implies that i is the
maximal element in Is. This establishes Statement (3). Similarly, we can show

Statement (4). The proof of the lemma is completed.

4.3.15 LEMMA. Let S be a double infinite chain in I'.

(1) If Is has a minimal (respectively, mazimal) element i, then SN L; is a chain

having no minimal (respectively, mazimal ) element.

(2) If Js has a minimal (respectively, mazimal) element j, then S N R; is a

chain having no mazximal (respectively, minimal ) element.

Proof. For proving Statement (1), we shall only prove the case where Is has a
minimal element ¢. Suppose on the contrary that § N L; has a minimal element
X. We claim that X is a minimal element in S. Let Y € § be such that Y < X.
That is, i, <i, =14 and j, > j,. Since ¢ is the minimal in Is, we have i, = i.
That is, Y € § N L;. By the minimality of X, we have Y = X, a contradiction.
This establishes Statement (1). The proof of Statement (2) is similar. The proof

of the lemma is completed.

4.3.16 LEMMA. Let S be a chain in I'.

(1) Ifig,11 € Is with iy < iy, then iy is the minimal cover of ig in Is if and
only if there are X, Y € S, with Y a minimal cover of X, such that i, =i

and i, = 1.

(2) If jo, 1 € Js with jo < j1, then jy is the minimal cover jo in Js if and only
if there are XY € S, with Y a minimal cover of X, such that j, = jo and
jX = jl'

7



Proof. We shall prove only Statement (1). Let ip,i; € Is with ig < i;. Assume
first that X,Y € S, with ¥ a minimal cover of X, such that i, = iy and
1, = 1. Let ¢ € Ig, that is, S N L; contains a vertex Z. Observe that either
Z 2 X orY <X Z. In the first case, t =1, <1, = ip; and in the second case,
t =1, > 1, =1. Thus, % is the minimal cover of 7 in Is.

Conversely, assume that ¢; is the minimal cover of iy in Is. By definition,
SNL;, and SN L; are non-empty. We claim that SN L;, has a maximal element
X. Indeed, if this was not the case, S N L;, is either a right infinite chain or a
double infinite chain. By Lemma [4.3.14] i is the largest integer in Is, which is
contrary to the fact that i < ¢;. Thus, our claim is true. Similarly, § N L;, has
a minimal element Y. Since X, Y are comparable with i, =1y <3 =1i,, we see
that X <Y. Given a vertex Z € §,ift X < Z <Y, then g =1, <i, <1, =13.
Since X is maximal in SNL;, and Y is minimal in SN L;,, we see that Z € SNL;,
and Z € SN L;,. That is, i, # ip and i, # 4;. This yields that iy < i, < i,
which is a contradiction. Hence, Y is a minimal cover of X in S. The proof of

the lemma is completed.

From now on, we shall start to study sections and section-generators in I'.
First recall that a reduced walk X; — X5 — --- —X, in a translation quiver is

called sectional if the 7-orbits of X; with 1 < i < n are pairwise different.

4.3.17 LEMMA. Let X; — X9 — --- —X,, be a sectional walk in I".

(1) Either ((X;) =0(X1)+i—1 foralll <i<n, orl(X;) =4(X;)—i+1 for
alll <3 <n.

(2) For any 1 <i,j <mn, we have {(X;) < (X;) if and only if X; < X;.

Proof. We show Statement (1) by induction. It is trivial when n = 1. We may
assume that ¢(X;) = €(X;) +i—1for 1 <i <n—1. Consider n. There is an
edge X,,_1 — X,. By Lemma[4£.3.8) (2), we know that ¢(X,,) = {(X;) + n—1 or
0(X,) = 4(X,) +n —2. Since (X,_») = {(X,) +n — 2, by assumption, we have
U(X,) = {(X,)+n—1. Statement (2) follows from Statement (1) and Lemma
4.3.8(2). The proof of the lemma is completed.
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REMARK: Let p: X; — Xy — -+ — X, be a sectional path in I'. Since the X;
are in different 7-orbits, by Lemma [4.3.6 the ¢(X;) with 1 < i < n are pairwise

distinct. Hence, p satisfies Lemma [4.3.17

4.3.18 LEMMA. Ifp: X; = X5 — -+ = X, is a sectional path in I, then p is

the unique sectional walk from Xy to X,, in I.

Proof. Let X; X, 2 . X, be a sectional path in I". We shall
consider only the case where ¢(X,) > ((X;). In view of Lemma [4.3.17(1), we
deduce that ¢(X;) = ¢(X1)+ (i — 1), for i = 1,...,n. Moreover, by Lemma
and , there is some integer i such that i =i, for 1 <t <n. We shall show

the lemma by induction. It is trivial when n = 1. We assume that n > 1 and the

n—

statement holds for n — 1. Assume that

c2 Cr—1

X =72V e Y, = X,

is a sectional walk in I" from X; to X,. Applying Lemma [£.3.17(1) again, we
obtain ((Y;) = (Yy)+(i—1), fori = 1,...,r. In particular, r = n and {(X,,_1) =
0(Y,—1). Moreover, by Lemma (2), X1 <Y1, and then 4, >, =1
We claim that ¢,,_; is an arrow. Otherwise, it is the inverse of an arrow X,, —
Y,_1. Then, Y,,_1 = 77 X,,_1. Then, iYnil =1

Hence, ¢,_1 is an arrow. Since {(Y,_1) = ¢(X,_1), we obtain ¢,_1 = a,_1. By

x, , —1 < which is a contradiction.

the induction hypothesis, we have ¢; = oy, for t = 1,...,n — 1. The proof of the

lemma is completed.

The following statement describes the sections in I

4.3.19 PROPOSITION. Let X be a full subquiver of I'. The following statements

are equivalent.
(1) X is a section in I
(2) Yo is a mazimal chain in I.
(3) X is given by a double infinite sectional walk as follows:
= Xy — Xy — X — 01

with {(X,11) = 0(X,) + 1 for alln € Z.
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Proof. Assume first that X is a section in I'. Since X meets every 7-orbit exactly
once, we may write Yo = {---, X,,, X411, - } with {(X,,)) = n for all n € Z.
For each n, ) contains a walk X,, =Y, — Y, — --- — Y, = X,,,1, which is
sectional since X is a section. By Lemma [4.3.17(1), ¢(X,11) = €(X,) + 7, and
since £(X,11) = n+ 1, we obtain r = 1. That is, I" contains an edge X,, — X, 11
for every m. This shows that X is given by a double infinite sectional walk as
stated in Statement (3).

Assume now that Xy is a maximal chain in I". By Lemma [4.3.12] {(2) = Z.

Thus, Y is a double infinite chain of the form
<X <X, <X <

with ¢(X,) = n, for all n € Z. By Lemma [4.3.8(2), we see that I" contains an
edge X,, — X411, for each n € Z. Thus, X' is given by a double infinite sectional
walk as stated in Statement (3).

Finally, assume that X' is given by a double infinite sectional walk
T n—lanan—i-li"'a

with ¢(X,) = n for n € Z. In view of Lemma [£.3.17|(2), Xy is a double infinite
chain in I". Since ¢(Xy) = Z, by Lemma Yy is a maximal chain in
I'. That is, Statement (2) holds. It remains to show that Statement (1) holds.
Indeed, X meets every 7-orbit in I" exactly once. Now, consider a non-trivial path
p: Xp=Yy—>Y —--- =Y, =X, in I' for some m,n € Z. We shall consider
only the case where ¢(X,,) < ¢(X,). Suppose that p is not sectional. Then there
is a path from 77X, to X,,. By Lemma , =X, = ix, and jr-x, > Jy .
Since ix,, —1 = i,-x,, and jx,,—1 = j-x,,, we see that ix, >, andj, > 7j, .
That is, X,, and X, are not comparable, a contradiction. Hence, p is sectional.
Since V' contains a sectional subwalk w : X,, — X,,.1 — -+ — X,,, by the
uniqueness stated in Lemma [4.3.18] p = w. In particular, p lies in 2. That is, X

is a section in I'. The proof of the proposition is completed.

The following statement is about the sections in I" containing no infinite path.

4.3.20 LEMMA. A section of I' contains no infinite path if and only if it passes
L; and R; for alli,j € Z.
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Proof. Let X be a section of I'. Assume that X' passes every L; and every R;,
where ¢, 5 € Z. That is, Iy, = Jy, = Z. Suppose on the contrary that X' contains
an infinite path p. In view of Lemma [4.3.3, we may assume that p is a subpath
of some L;. That is, ¥ N L; is an infinite chain. By Lemma [4.3.14](1) and (3), i is
either minimal or maximal in Iy, a contradiction. The sufficiency is established.

Conversely, assume that X contains no infinite path. By Proposition [£.3.19]
2y is a maximal chain in I'; and by Lemma , 0(Xy) = 7Z. Given i € Iy,
we claim that ¢ + 1,9 — 1 € Iy,. Indeed, by the convexity of X in I', we see
that X N L; is a finite chain. Let Y, be the maximal element in X N L;. By
Proposition [4.3.19](3), there is a vertex Y; € X such that £(Y;) = ¢(Yy)+1. Then,
Yy < Y7, In particular, Y7 € L;. That is, iy, # 4. Since iy, > 1y, we obtain
i, > iand j, < jy. Since 1= (Y1) — €(Ya) = (iy, — i) + (jyy — v, )y We
obtain ¢, =1, +1=1i+1 Thus, i+1€ Iy, Considering the minimal element
of ¥’ N L;, we see that i — 1 € I,. This establishes our claim. As a consequence,
Iy, = Z. In a similar fashion, we can show that Jy,, = Z. The proof of the lemma

is completed.

We give the following definition. Compare it with Definition [1.4.10]

4.3.21 DEFINITION. A chain S in [ is called a sectional chain if any two vertices
X, Y € §, with Y a minimal cover of X in §, are connected by a path in I

The following is a description of a sectional chain in I

4.3.22 PROPOSITION. A set S of vertices of I' is a sectional chain if and only
if its convex hull is a connected subquiver X of a section of I' such that S is

contained in Xy and contains all the sink vertices and all the source vertices of

X,

Proof. Suppose that S is a sectional chain in I". By Lemma we can
write & = {X, }nez, where Z is some interval of Z, such that X,, < X, for
every non-maximal n € Z. In view of Lemma 4.3.9, X,,, X,, ;1 are connected by
a sectional path p,, for each non-maximal n € Z. In particular, p, is a sectional
walk X, = X,,0 — Xs1 — -+ — X, = Xy41. Since X,, < X1, by Lemma
4.3.8(1), we have ¢(X,) < {(X,+1), and hence, by Lemma [4.3.17|(1),

U X)) =0 Xno) < U Xp1) <--- <l Xpy,) = U Xns1).
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Therefore, the X, ; with n € Z and 1 < j <t,, generate a connected subquiver
Y of I'. In view of Proposition [£.3.19(3), X' is a subquiver of a section in I'. In
particular, ) is convex. On the other hand, Y is contained in the convex hull
of §. Therefore, ) is the convex hull of S. Since the p,, are paths, we see that
S = { X, }nez contains all the sink vertices and all the source vertices of X'. The
necessity is established.

Conversely, let S be a subset of vertices of X of I', containing all the source
vertices and sink vertices of Y. Since X is a subquiver of a section, in view of
Proposition [£.3.19] S is a chain. By Lemma[1.3.10| we may write S = {X,, }ner,
where Z is some interval of Z such that ¢(X,,) < ¢(X,41) for each non-maximal
n € Z. Fixn € Z. Since X' is a connected subquiver of a section of I, it contains
a sectional walk p, : X, =Yy — Y, — -+ — VY, 1 — Y, = X,,41. Since {(X,,) <
((X,11), by Lemma [£.3.17)(1), €(X,) = £(Yy) < £(Y1) < - < UY;) = U(Xpi1).
If p, is neither a path nor the inverse of a path, then » > 1 and some Y; with
1 < s < ris asink vertex or a source vertex in Y. Observing that ¢(Y;) # ((X,,)
for all n € Z, we see that Y, ¢ S, a contradiction. The proof of the proposition

is completed.

The following is a description of section-generators in I

4.3.23 PROPOSITION. A set of vertices in I' is a section-generator if and only if

it 1s a double infinite sectional chain.

Proof. Let S be a set of vertices in I'. Assume first that the convex hull X' of §
is a section. Since § C Yy, by Proposition (2), S is a chain. Suppose that
S has a maximal element X. By Lemma , ¢(X) is the maximal element in
((S). Let M € X. Then, M lies on a path p in X' between two vertices Y, Z € S.
We may assume that ¢(Y) < ¢(Z). Since X is a section, p is a sectional walk. By
Lemma [1.3.17)(1), ((Y) < (M) < £(Z), and thus, (M) < ¢(X). That is, £(X)
is the maximal element of ¢(Y'), a contradiction to Proposition [4.3.19(2). Thus,
S has no maximal element. Similarly, S has no minimal element. Thus, S is a
double infinite chain. Assume now that X, Y € & such that Y is a minimal cover

of X. Then X contains a sectional walk
X=X —X— - —X,=Y.
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We claim that there is a path between X and Y. This is evident if i = 1. Assume
that ¢ > 1. Then, ¢(X) < ¢(X5) < {(Y) by Lemma [.3.17(1) . Moreover, X,
lies on a path p in X' between two vertices M, N € §. We may assume that
(M) < £(N). Then ¢(M) < £(X5) < ¢(N). Since £(Y) is a minimal cover of
((X) in ¢(S) by Lemma[1.3.8], we obtain £(M) < {(X) < €(X5) < L(Y) < ((N).
In view of Proposition [4.3.19(3), X contains a sectional walk

M— i —X— i — Xyg— e — Y — .. — N,

By Lemma [4.3.18] this walk coincides with p or p~t. In particular, there is a path
between X and Y. Hence, S is a sectional chain.

Conversely, assume that S is a double infinite chain of the form
e X=X <o RX, <

such that X,, and X,,,; are connected by a path p,, for every n € Z. By Lemma
4.3.10) we have

e < X)) < U Xp) << U(X) <
By Lemma |4.3.9] p, is a sectional path, which is a sectional walk of the form
Xn = Xn,O 7 Xn,l T Xn,tn = Xn—&—l‘

In particular, the full subquiver X' of I' generated by the vertices X, ; with
n € Z and 1 < ¢ < t, is connected and contained in the convex hull of S.
On the other hand, since ¢(X,,) < ¢(X,41), in view of Lemma [4.3.17, we have
((Xnit1) =0X,:)+1and X,,; < X, 41, for 0 <i <t,—1. Thus, Xy is a chain
with ¢(Xy) = Z. By Lemma , Yo is a maximal chain in I'. By Proposition
4.3.19, X' is a section in I'. Being convex, Y is the convex hull of §. The proof

of the proposition is completed.

REMARK. We can easily deduce from Proposition [4.3.22 that S is a section-
generator of I' if and only if its is a subset of vertices of a section X in I’

containing all the sink vertices and all the source vertices of Y.

The following result states a property of sectional chains in I'.
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4.3.24 PROPOSITION. Let S be a sectional chain in I', and let X be its convex
hull in I'. Then X s a section in I' without infinite paths if and only if neither

of Is and Js has an upper or lower bound.

Proof. Assume first that X' is a section containing no infinite path. Then S,
by definition, is a section-generator of I'. By Proposition [£.3.23] S is a double
infinite chain. Suppose on the contrary that Is has a smallest integer 7y. Since X
is a section, by Lemma [£.3.19, Yy is a chain and S C Yy. In particular, Is C I,
and Js C Jy,. We shall show that 7, is also the smallest integer Iy,. Indeed,
let X € ). By definition, there exist M, N € S such that X lies on a path p
between M and N. Since X' is a section, p is a sectional path lying entirely in
Y. By Lemma , p is a sectional walk. In view of Lemma (2), either
M <X <Nor N =X <M. We may assume that the first case occurs. Since
1,, € Is, we obtain ¢y <i,, <1,. Thus, 7y is indeed the smallest integer in Iy, .
On the other hand, since X contains no infinite path, I, = Z by Lemma [4.3.20]
a contradiction. Similarly, we shall obtain a contradiction if /s has a largest
integer. In a similar fashion, we can show that Js has neither upper bound nor
lower bound.

Conversely, assume that neither of Is and Js has an upper or lower bound.
Then, by the definition of the partial order over I" we see that & has neither a
minimal element nor a maximal element, that is, S is a double infinite chain.
Since S is also a sectional chain, by Proposition [£.3.23] S is a section-generator
of I, that is, X' is a section in I'. By Lemma[4.3.19] Xy is a chain. Since § C Xy,
we have Is C Iy, and Js C Jy,. Suppose that X' contains an infinite path p.
Being sectional, p is contained in some L; or in some R;. Consider only the first
case. In particular, X N L; is infinite. By Lemma [4.3.14](3), i is the largest
or the smallest integer in Iy, a contradiction. The proof of the proposition is

completed.

We shall conclude this section by the following two lemmas, which will be used
to characterize the 7-rigidity in Chapter 5. Recall that, given X € I", denote R
the forward rectangle of X and Rx the backward rectangle of X. The following

statement describes RX and Ry in terms of the coordinates.

4.3.25 LEMMA. Let X,Y be vertices in I'. The following statements hold.
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(1) Y € Rx if and only i, > i, and j, > j,.

X

(2) Y € RX if and only if i, < i, and j, < j,.

Proof. We shall prove only (1). Consider a vertex Y € I'. By definition, Y € Ry
if and only if Y is a predecessor of X. By Lemma [£.3.3] the latter is equivalent

to i, >4, and j, > j,. The proof of the lemma is completed.

We have the following useful observation. Compare it with Lemma [1.4.11}

4.3.26 LEMMA. Let X,Y € I'. The following statements are equivalent.

(1) X,Y are comparable.
(2) X ¢ Ry and X ¢ R Y.
B) Y¢ER.x andY & R X,

Proof. First, we shall show the equivalence of Statements (2) and (3). By def-
inition, X € R,y if and only if 7Y € R¥ if and only if Y € R™ X. Similarly,
X € R" Y ifand only if Y € R,x. It remains to show the equivalence of State-
ments (1) and (2).

Assume first that X < Y. That is, ¢, <1, and j, > j,. Hence, we have
iy <iy+l=i,andj, >j, —1=j . By Lemma the first inequality
shows that X ¢ R,y and the second inequality shows that X & R™ Y. Similarly,
if Y < X, thenY & R.x and Y ¢ R™ ¥, and by the equivalence of Statements
(2) an (3), we also have X ¢ R,y and X ¢ R™ Y. This shows that Statement (1)
implies Statement (2).

Assume, conversely, that X,Y not comparable. In particular, ¢, # i, and
Jy 7# Jyx- Suppose first that ¢, > ¢,.. Then j, > j,. Thus, we have i, > i, +1 =
i, and j, >j,+1=j . Thatis, Y € R,x, and in particular, Statement (2)
does not hold. Similarly, if i, > i, then X € R,y, that is, 7Y € RX. This
implies that Y € R™ . This shows that Statement (2) implies Statement (1).

The proof of the lemma is completed.
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Chapter 5

The 7-rigidity theory in an

Auslander-Reiten category

The aim of this chapter is to study the 7-rigidity theory in an Auslander-
Reiten category, one of the essential topics in this thesis. The 7-rigidity theory
first appeared in the representation theory of artin algebras in connection with
tilting modules; see, for example, [45] 58], while a systematic study in the rep-
resentation theory was first carried out by Adachi, Iyama and Reiten in their
introduction of 7-tilting theory; see [I]. Observe that the 7-tilting theory was
actually inspired by the cluster tilting theory; see, for example, [20].

Throughout this chapter, let A stand for an Auslander-Reiten category, whose
Auslander-Reiten quiver is denoted by I" 4 and whose Auslander-Reiten transla-

tion will be written as 7.

5.1 The 7-rigidity

The objective of this section is to introduce the notion of 7,-rigidity in A.
We shall start with the following definition.

5.1.1 DEFINITION. An object X € A is called 7,-rigid if Hom, (X, 7,X) = 0,

and an additive subcategory of A is called 7, -rigid if each of its objects is 7 ,-rigid.

Since every non-zero object of A is a finite direct sum of objects in I"y4, it is
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natural for us to introduce the notion of 7,-rigid set in I" 4 as follows.

5.1.2 DEFINITION. (1) A pair (X,Y") of objects in I 4 is called a 7, -rigid pair
if X @Y is a 7,-rigid object in A.

(2) A set T of objects in I"4 is called 7 ,-rigid if every pair (X,Y) in 7 x T is

7 -rigid.

(3) Given a subquiver A of I'4, a 7,-rigid set T of objects in A is called
mazimal T ,-rigid in A provided, for any X € A, that 7 U {X} is 7,-rigid
if and only if X € T.

REMARK. Let A be a subquiver of I'4. A maximal 7 ,-rigid set in A is not

necessarily a maximal 7,-rigid set in " 4.

Let 7 be an additive subcategory of .A. We shall denote by ind.7 the set of
objects of I' 4 which lie in .. The following statement is evident.

5.1.3 LEMMA. An additive subcategory 7 of A is T ,-rigid if and only if ind.7

is a 7,-rigid set i I 4.

Now, let A be a convex subquiver of a standard component of I" 4. By Lemma
2.2.2] addA is an Auslander-Reiten category, whose Auslander-Reiten translation
will be denoted by 7,. The following easy observation is important for our later

investigation.

5.1.4 LEMMA. Let A be an Auslander-Reiten category, and let A be a convex
subquiver of a standard component I' of I' . If X, Y € A are 7,-rigid, then the
pair (X,Y) is 7, -rigid if and only if it is T, -rigid.
Proof. Let X,Y be two 7,-rigid objects lying in A. By Lemma [2.2.4] I'yqaa
is a translation subquiver of I'. In particular, for any object X € A, either
7,X =71,X, orelse, 7,X = 0. Thus, the necessity is trivial.

Assume that (X,Y) is a 7,-rigid pair in addA. If Hom4(X,7,Y) # 0, then
7,Y # 0 and 7,Y € A. Being standard, I' contains a path X ~» 7,Y, and
hence, a path X ~ 7,Y ~» Y. Since A is convex in I', we obtain 7,Y € A,

a contradiction. Hence, Homu4(X,7,Y) = 0. Similarly, Hom4(Y,7,X) = 0.
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Since Hom4 (X, 7,X) = Homu(Y,7,Y) = 0 by the assumption, X @Y is a 7,-
rigid object, that is, (X,Y) is a 7,-rigid pair in A. The proof of the lemma is

completed.

REMARK. Let A be a convex subquiver of a standard component of I" 4. If every

object in A is 7,-rigid, then the 7,-rigid sets in A are the 7,-rigid sets in A.

We shall remark that the 7-rigidity theory is closely related to the tilting
theory over a finite dimensional hereditary algebra and the cluster tilting theory
in a cluster category; see, for example, [32, B35, 20]. Indeed, consider a path
algebra H = k@), where () a finite acyclic quiver with n vertices. It is well known
that the category modH of finitely generated H-modules is an Auslander-Reiten
category; see [9]. We denote by I'y its Auslander-Reiten quiver and by 7,, its
Auslander-Reiten translation. A module M in modH is called tilting if it is 7,,-
rigid with n non-isomorphic indecomposable direct summands; see [32]. We refer
to [1§] for the definition of a tilting module over a general finite dimensional

k-algebra.

The following statement is well known; see, for example, [35, (14)].

5.1.5 LEMMA. A basic module in modH is tilting if and only if its corresponding

set in I'y 1s mazimal T, -rigid.

Next, we recall the 7-rigidity theory in cluster categories. Fix @) a locally finite
quiver without infinite paths. Recall that the skeleton 2°(Q) of the derived
category DP(rep(Q)), chosen in Section 3.3, is an Auslander-Reiten category,
whose Auslander-Reiten quiver is denoted by I'5e) and the Auslander-Reiten
translation is denoted by 7,. Furthermore, the cluster category %(Q) is an
Auslander-Reiten category, whose Auslander-Reiten quiver I’ () has as vertices
the objects of the fundamental domain .7 (Q).

An object X in €(Q) is said to be rigid if Home gy (X, X[1]) = 0; and a pair
of objects (X,Y) in € (Q) is called a rigid pairin €(Q) if X @Y is rigid. A set
of objects in €'(Q) is rigid if every pair of its objects is rigid.

The following result is very important to our study.
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5.1.6 LEMMA. Let ) be an infinite Dynkin quiver with no infinite path. If X,Y

are indecomposable objects in € (Q), then the following statements are equivalent.
(1) The pair (X,Y) is rigid in €(Q).
(2) The pair (X,Y) is 7, -rigid in €(Q)
(3) The pair (X,Y) is 7, -rigid in 2°(Q).

Proof. Since € (Q) is 2-Calabi-Yau, the equivalence of Statement (1) and State-
ment (2) is trivial. Let X,Y be two indecomposable objects of €(Q). We may
assume that XY are in the fundamental domain .%(Q). Suppose first that X

and 7,Y are representations. By Lemma 2.6(1) in [48], we have

1%

Homg () (X, Y[1]) Homgoy (X, 7,.Y)
Homfg(Q) (X, TDY)
HOII]@I;(Q) (X, TDY) EB DHOIH@Z;(Q)(TDY, TgX)

Hom v(g) (X, 7,Y) & DHomge(g) (Y, 7,X).

e 11

2

Since €'(Q) is 2-Calabi-Yau in which every indecomposable object is rigid; see
[48], Corollary 2.10], (X, Y') is rigid in €(Q) if and only if Home ) (X, Y[1]) = 0.
In view of the above isomorphisms, this is equivalent to Homgug) (X, 7,Y) =0
and Homgug) (Y, 7,X) = 0. Since every connected component in .7 (Q) is stan-
dard, every object in .#(Q) is 7,-rigid. Thus, the latter condition is equivalent
to (X,Y) being 7,-rigid in .7 (Q).

In general, there is an integer n > 0 such that 7_"X and T(;”J“lY are repre-
sentations. Set M = 7_"X and N = 7_"Y. Since 7, is an equivalence, (X,Y")
is a rigid pair in € (Q) if and only if (M, N) is a rigid pair in € (Q). As we have
just shown, this is equivalent to (M, N) is a 7,-rigid pair in .#(Q). Since 7, is
an equivalence, the latter is equivalent to (X,Y’) being 7, -rigid pair in .7 (Q).

The proof of the lemma is completed.

Given a strictly additive subcategory 7 of €' (@), we shall denote by ind7 the
set of objects of I'¢(g) which lie in .7. Observe that the objects in ind.7 form a
complete set of representatives of the isomorphism classes of the indecomposable
objects of 7.
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5.1.7 PROPOSITION. Let Q be an infinite Dynkin quiver with no infinite path,
and let T be a strictly additive subcategory of €(Q). The following statements

are equivalent.
(1) T is weakly cluster-tilting in €(Q).
(2) indT is a mazimal rigid set in Iy ).
(3) ind.7 is a maximal T, -rigid set in F(Q).

Proof. By Lemma 2.11 in [48], 7 is weakly cluster-tilting in % (Q) if and only
if .7 is maximal rigid in €(Q). Since € (Q) is Krull-Schmidt, the equivalence
of Statement (1) and Statement (2) holds. The equivalence of Statement (2)
and Statement (3) follows immediately from Lemma [5.1.6f The proof of the

proposition is completed.

5.2 Maximal 7-rigid sets in a standard wing

Throughout this section, assume that A is an Auslander-Reiten category such
that its Auslander-Reiten quiver is a standard wing of positive rank n, which is
denoted by W. The Auslander-Reiten translation of A will be simply written as

7. Our objective of this section is to study the maximal 7-rigid sets in W.

As seen in Lemma [1.4.6] each object X € W is a wing vertex of a unique wing
Wy of rank ¢(X) in W. In Definition [1.4.8] we have defined two wings Wy, Wy
in W to be comparable or separable. These notions enable us to describe the

7-rigidity of a pair of objects in W.

5.2.1 LEMMA. If X, Y € W, then (X,Y) is a T-rigid pair if and only if Wx, Wy
are comparable or separable.

Proof. Let X,Y be objects in W. Since W is standard, by Lemma [2.2.7]
Hom4(X,7Y) # 0 if and only if 7Y € RX if and only if Y € R™ X. Simi-
larly, Hom4(Y,7X) # 0 if and only if Y € R,x. Since X € R™ %, we have
Homu(X,7X) = 0, and also, Hom4(Y,7Y") = 0. Therefore, (X,Y) is a 7-rigid
pair if and only if Homy(X,7Y) = 0 and Hom4(Y,7X) = 0, if and only if
Y ¢ WX and Y € R.x. By Proposition , the latter is equivalent to

Wy, Wy are comparable or separable. The proof of the lemma is completed.
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5.2.2 REMARK. (1) In view of Lemma [5.2.1] every object in W is 7-rigid.

(2) Let Wx be a wing in W. By Lemma addWy is an Auslander-Reiten
category with ["aqaw, = Wy, whose Auslander-Reiten translation is writ-
ten as 7,. By Lemma a set of objects in Wy is 7-rigid if and only if

it is 7, -rigid.

Recall that W, is a poset in such a way that X <Y if and only if Wx C Wy..

As an immediate consequence of Lemma/[5.2.1] we obtain the following statement.

5.2.3 COROLLARY. Fvery chain & in W is a T-rigid set.

The following lemma is useful in our future investigation.

5.2.4 LEMMA. Let X,Z € W with X & Wy. Then (X,Z) is a T-rigid pair if
and only if (X,Y) is a T-rigid pair, for every Y € Wj.

Proof. We shall only need to prove the necessity. Assume that (X, Z) is a 7-rigid
pair. Since X &€ Wy, by Lemmal5.2.1, W, C Wy, or else, Wx, Wy are separable.
Let Y € Wy,. In particular, Wy C W,. If W, C Wy, then Wy C Wyx. If
Wy, Wy are separable, then by Lemmal[4.1.7, Wy, Wy are separable. By Lemma
5.2.1, (X,Y) is a 7-rigid pair. The proof of the lemma is completed.

From now on, we shall study the maximal 7-rigid sets in WW. Given a set T

of objects in W, denote by |7 its cardinality.

5.2.5 LEMMA. A 7-rigid set T in W is maximal T-rigid if and only if |T| = n.

Proof. By Theorem [2.2.10] there is an isomorphism F : addW — modH, where
H = kA, the path algebra of a linearly oriented quiver of type A,,. In particular,
F induces a translation quiver isomorphism F’' : W — I'y. Then, Ty = F'(T)
is a 7,-rigid set in I'y, which is maximal 7, -rigid if and only if 7 is maximal
7-rigid in W. Now, by Lemma [5.1.5] T is maximal 7,,-rigid in I'y if and only if
@ ety M is tilting in modH. The latter is equivalent to |Tz| = n. The proof of

the lemma is completed.

The following result states more properties of a maximal 7-rigid set in W.
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5.2.6 LEMMA. Let T be a mazimal T-rigid set in W.
(1) The wing vertex of W is in T.

(2) If X € T, then T N Wy is mazimal T-rigid in Wx, and consequently,
[T N Wx| =0X).

Proof. Let M be the wing vertex of W. Given any X € T, since Wx C Wy,
we deduce from Lemma that (X, M) is a 7-rigid pair. Hence, T U{M} is
7-rigid. By the 7-rigid maximality of 7, we obtain M € T.

Now, we fix X € 7. Let Y € Wx be such that (T NWx)U{Y} is 7-rigid. We
claim that (Z,Y) is a 7-rigid pair for any Z € T. Indeed, the claim is obvious
if Z € Wy, and otherwise, since (Z, X) is 7-rigid, it follows from Lemma m
That is, 7 U {Y'} is 7-rigid. By the 7-rigid maximality of T, we obtain Y € T,
and hence, Y € T N Wy. This shows that 7 N Wy is maximal 7-rigid in Wx.
By Lemma [5.2.5] |7 N Wx| = £(X). The proof of the lemma is completed.

REMARK. If n =1, then W is the only maximal 7-rigid set in W. If n = 2, then
W has exactly two maximal 7-rigid sets, namely, the vertex set of the left-most

section and that of right-most section.

Our main objective is to show that the maximal 7-rigid sets in W can be
constructed from section-generators of W, which are defined in Definition |1.4.2]
For this purpose, we shall need to recall the coordinate system for WW. As seen
in Section 4.1, we shall identify an object X € W with a pair (i, j,) of integers,
where n >4, > j, > 1. In this way, W can be pictured as follows:
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5.2.7 PROPOSITION. Let T be a mazximal T-rigid set in W. Then every maximal

chain in T is a section-generator of W.

Proof. Let & be a maximal chain in 7. If the rank n of W is equal to 1, then
trivially our statement is true. Now assume n > 2. By Lemma [5.2.6(1), the
wing vertex M of W lies in 7. Since M is the maximal element in WV, we may
enumerate the objects of § in such a way that X; < Xy < --- < X,,,, where
m > 2 and X,,, = M. If {(X;) > 1, then |T N Wx,| > 1 by Lemma [5.2.6] (2).
Thus, 7 contains some Xy with ¢(Xy) < ¢(X;). This yields a chain S U {X,} in
T, a contradiction. This shows that ¢(X;) = 1.

By Proposition [£.1.15(2), it remains to show that W has a path between
Xp, Xpi1, for every 1 < p < m. If W has no path connecting X, and X, for
some 1 < p < m, then by Lemma (4.1.2(3) and Lemma , ix, < iy, and
Txp > Jxpas In view of Lemma{d.1.1} ¢, > j, > Tx,e10 and hence, W contains
the object Y € W with (i, j,) = (ix,. Jx,,,)- Then, X <Y < X1, by Lemma
[4.1.6] Since S is a maximal chain in 7, we obtain Y ¢ T.

Let Z € T. We claim that (Y, Z) is 7-rigid. Suppose that Wy, W, are
not comparable. Then, X,.1 € Wy, Z € Wy and Z € Wx,. In particular,
Z ¢ {X,, Xp11}. By Lemma , it suffices to show that Wy, Wy are separable.
If Wx,,,, Wz are separable, then Wy and Wy are separable by Lemma .

It remains to consider the case where Z € Wy, ,. Then j, > j, . Since
S is a maximal chain in 7, we see that X, € Wy. Since (Z, X,) is 7-rigid, Wy
and Wy, are separable. By Lemma , consider first Jx, = 1, +2. Then
by =iy, 2 Jx, > 1; 2 J; 2 Jx,,, = Jy- This implies that Wz C Wy, a

Y

contradiction. Thus, ¢, < j, —2, and hence, ¢, =i, < j, —2. This shows that
Wy, Wy are separable. Thus, our claim is true. Hence, T U{Y} is 7-rigid which
contradicts the maximality of 7. Therefore, WV has a path between X,,, X, 1, for
every 1 < p < m. The proof of the proposition is completed.

We now give some properties of a section-generator S of WW. First, by Proposi-
tion[£.1.15] S is a sectional chain. That is, S is of form X; < X5 < -+ < X,,,, with
m < n, such that X;, X;,; are connected by a path in W, fort =1,2,...,m— 1.
As seen in Definition , every pair (X, X;,1) determines a wing W))((IH in
W, fort=1,...,m—1.
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5.2.8 LEMMA. Let S be a section-generator of VW of form X; < Xy < --- < X,,.

(1) The wings W;)({fﬂ with 1 <t < m are pairwise separable.
(2) If M € W))((:H with 1 <t <m, then M ¢S and SU{M} is T-rigid.

Proof. Assume that W})((fﬂ # () and W))((:H # () with 1 <t < p < m. Since
X1 < X, we obtain Wx,,, C Wx,. By Definition Wil € W,
and W;g;’ﬂ, Wy, are separable. Since W§§;+1 C Wk, Statement (1) follows from
Lemma 1.7

Now let X, € § with 1 SpgmandletMEW;)((fﬂ withl <t<m. Ift <p,
then Wy, ,, € Wx,. We deduce from Deﬁnitionthat Wi C W))((ZH C Wk,
Hence, M # X,, and (M, X,,) is 7-rigid by Lemma. Ift > p, then X, € Wx,.
By definition, W))((:H,Wxt are separable. Thus, by Lemma m, Wx,, Whr are
separable. Therefore, M # X,, and (X,, M) is a 7-rigid pair by Lemma .
Moreover, since S is 7-rigid by Corollary SU{M} is 7-rigid. The proof of

the lemma is completed.

The following statement is our main result of this section.

5.2.9 THEOREM. Let T be a set of objects of W. Then T is maximal T-rigid if

and only if there exists a section-generator
S X1 <Xo=<-- <X,

of W such that
T:SU@1U"'U@m,1,

where © is a maximal T-rigid set in W))((:H, fort=1,....m—1.

Proof. Assume that § : X7 < X5 < --- < X, is a section-generator of VW and ©,
is a maximal 7-rigid set in W))((;l, fort =1,...,m — 1. By Proposition (2)
and Lemma [£.1.10] £(X;) =1 and ((X,,) = n. Set

T=SUOB,U---UB,,_;.

In view of Lemma and Lemma [5.2.1] 7 is a 7-rigid set in W. By Lemma
[5.2.8(2), the ©; with 1 <t < m are pairwise disjoint. Moreover, by Lemma
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and Lemma we have |0 = (X;11) — €(X;) — 1. Thus,

T = |S|+|01]+ -+ |Om_1]
— (U = 6(X0) = 1) 4+ (X ) = £(Xr) — 1)
= (X)) — (X)) + 1

= n.

By Lemma [5.2.5] 7 is maximal 7-rigid in W.

Conversely, assume that 7 is a maximal 7-rigid set in W. Let
S X1 <Xo<-- <X,

be a maximal chain in 7. By Proposition [5.2.7] S is a section-generator. Set
O, =T NW3t  foreach 1 <t < m. Let 1 <t < m. We claim that

X412

TN Wxipy = (T 0O W) U(T N Wy!,) U {Xi )

Let M € T N Wk,,,. Since (M, X;) is a 7-rigid pair, by Lemma [5.2.1, W), W,
are comparable or separable. This gives us that M <X X; or X; < M < X;,; or
M € W))éf“. Since S is a maximal chain in 7, we have M < X; or M = X,

or M € W))((ZH. Hence, our claim is true. Since 7 is maximal 7-rigid, by Lemma

5.2.6(2), we have
O = [T OWx o[ = [T 0Wx [ =1 = (X)) — €(X0) — 1,

which is equal to the rank of W))&H. Thus, by Lemma , O, is a maximal
T-rigid set in W))((fﬂ. By sufficiency, SUO©; U---U©O,,_; C T is maximal 7-rigid
in WW. Hence,

T=8SUO,U---UB,, ;.

The proof of the theorem is completed.

REMARK. We should point out that Theorem [5.2.9] enables us to construct all
the maximal 7-rigid sets in WW by induction. As we have seen, this is trivial if W
is of rank one or two. Given a wing of rank n > 2, applying Proposition [4.1.15]
we are able to obtain all the section-generators of WW. Next, let S be a section-

generator of W of the form X; < Xy < --- < X,,. For each 1 <t < m, in view
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of Lemma WXt ., Is a wing of rank smaller than n, and by the induction
hypothesas, its max1mal 7-rigid sets can be found using Theorem [5.2.9

In particular, consider the hereditary algebra H = kz&n, where ,&n, withn > 1,
a linearly oriented quiver of type A,,. Since 'y is a standard wing of rank n, in
view of Lemma [5.1.5, we see that Theorem provides a method to construct

all the basic tilting modules in modH.

EXAMPLE. Let H = k‘&G. The Auslander-Reiten quiver 'y is shown as below.
We easily see that { X, Xy, X3} is a section-generator of I'y such that X; < Xs <
X, and {V7, Y5} is maximal 7,-rigid in W5}, and {Z;} is maximal 7,-rigid in
Wigj By Theorem , X1 Xod XsdY, DYy P Z is a tilting module.

X,
Y, @ ® o o7
PN N
TNNNNS
DN\
NSNS
X}'@/‘

5.3 Maximal 7-rigid sets in a standard compo-

nent of shape ZA

Throughout this section, A stands for an Auslander-Reiten category, whose
Auslander-Reiten translation will be simply written as 7. Let I' be a standard
component of I' 4 of shape ZA . In this section, we shall first characterize the

maximal 7-rigid sets in I" and then give a method to construct all of them.

For this purpose, recall first from Lemma that each object X in I" is a
wing vertex of a unique wing Wy of rank /(X)) in I". In Definition , we have
defined the notion of comparable or separable wings. In terms of these notions,
the following statement describes the 7-rigidity of a pair of objects of I'. We shall

omit its proof since it is similar to the proof of Lemma [5.2.1]
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5.3.1 LEMMA. If X|Y € I', then (X,Y) is a T-rigid pair if and only if Wx, Wy
are comparable or separable.

We shall give the following remark. Compare it with Remark [5.2.2]

5.3.2 REMARK. (1) In view of Lemma [5.3.1] every object in I" is 7-rigid.

(2) Let Wx be a wing in I'. By Lemma addWy is an Auslander-Reiten
category with I"aqaw, = Wy, whose Auslander-Reiten translation is writ-
ten as 7,. By Lemma a set of objects in Wy is 7-rigid if and only if

it is 7, -rigid.

Next, we shall recall a coordinate system for I as defined in Section 4.2.
Indeed, fix a quasi-simple object S in I'. Then the quasi-simple objects in I" are
S; = 7'S, with i € Z. The ray starting with S; is denoted by R, and the co-ray
ending with .S; is denoted by R; . Given an object X € I', by Lemma , there
is a unique pair (i, j, ) of integers with i, > j,, such that X = R;; N RJ-_X. For

simplicity, we write X = (i, j, ). In this way, I" can be pictured as follows.

2,2 1,1 0,0) (-1-1
(3 2)} )\2 1)} )\1 0)} )?01% §1 -2)
A BB

371) 270) (1a'1> (Oa'2>

N\ NS Y
(471) (370) (27_1) (17_2) (07_3)

Moreover, by Lemma m, (I, <) is a partially ordered set; and, as seen
in Definition 4.2.15] every integer n determines two convex subquivers I'f, and
I'2, of I'. We have the following observation.

5.3.3 COROLLARY. (1) A chain S in I' is a T-rigid set.

(2) If M € I't, and N € I'Z,, for some n € Z, then (M, N) is T-rigid.
Proof. Statement (1) follows immediately from Lemma [5.3.1 Now fix n € Z.
Let M € I't, and N € I'Z,, that is, i,, < n —1 and j, > n+ 1. Therefore,
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i,, <jy—2. By Lemma Wi, Wy are separable. By Lemma[5.3.1] (M, N)
is 7-rigid. The proof of the corollary is completed.

Now we shall state some properties of 7-rigid sets in I'.

5.3.4 LEMMA. Let T be a T-rigid set in I'.

(1) There exists at most one integer i such that T contains infinitely many
objects of R If such i exists and T U {M} is T-rigid for some M € T,
then M e I't, , or M € I'

<i+ >i+1-

(2) There exists at most one integer j such that T contains infinitely many
objects of R;. If such j exists and T U{M} is T-rigid for some M € T,
then M e I'C; y orMeT?t, .

Proof. We shall prove only Statement (1). The proof of Statement (2) is similar.
Assume that there are i,5 € 7Z such that 7T contains infinitely many objects
of each of R and R;. We may assume that j > i. By Lemma {4.2.17, both
T N RS and T N RS are infinite chains. Then there exists X € 7 N R with
Jx < i. Moreover, there exists Y € T N R such that j, < j,. That is,
j=i,>1=1, > j, > j,. Hence, in view of Lemma and Lemma [.2.§]
Wx, Wy are neither comparable nor separable. By Lemma [5.3.1] (X,Y) is not
7-rigid, which is a contradiction. Therefore, there exists at most one ¢+ € Z such
that 7 contains infinitely many objects of ray R; .

Now assume that 7N R; is infinite. Let M € I" such that TU{M} is 7-rigid.
Since 7 N R} is infinite, by Lemma [4.2.11] there is an object X € T N R such
that X is not less than M. Since (X, M) is 7-rigid, by Lemma Wi, Wx
are comparable or separable. In the first case, by Lemma(4.2.7, 7, <<, <4, that
is, M € I'f, ;. In the second case, by Lemma , iy iy —2<i,—2<ior
Ju Ziy+2=1i+2 Thatis, M € I'Z, , or M € I'Z, ;. The proof of the lemma
is completed.

We introduce the following notion to simplify the later statements.

5.3.5 DEFINITION. A convex subquiver A of I' is called wing-complete provided
the wing Wx is contained in A, for all X € A.
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Observe that every wing in " is wing-complete. Moreover, given an integer n,
the subquivers I't, and I'Z,, are wing-complete. In the following, we shall give
some properties of 7-rigid sets in a wing-complete subquiver of I'. The proof is
similar to that of Lemma [5.2.4l

5.3.6 LEMMA. Let A be a wing-complete subquiver of I'. If X,Z € A with
X €Wy, then (X, Z) is T-rigid if and only if (X,Y) is T-rigid, for allY € Wy.

Given a wing-complete subquiver A of I'; a 7-rigid set 7 in A is called locally
mazimal if T N Wy is maximal 7-rigid in Wy, for all X € 7. By Lemma [5.2.5]
this is equivalent to say that |7 N Wx| = ¢(X), for all X € T.

The following statement gives a property of a maximal 7-rigid set in a wing-
complete subquiver of I', whose proof can be translated word-by-word from that
of Lemma[5.2.6/2).

5.3.7 LEMMA. If A is a wing-complete subquiver of I', then every maximal T-

rigid set in A s locally mazimal.

In the following, we shall focus on the maximal 7-rigid sets in I :n and those
in I'C

~n, for some n € Z. This is very important for our later study.

5.3.8 LEMMA. Let n be an integer.

(1) A mazimal T-rigid set in I't, is infinite.

(2) A mazimal T-rigid set in I'Z,, is infinite.

Proof. We shall only prove Statement (1). Let 7 be a maximal 7-rigid set in I'F,,.
Assume that 7T is finite. Then there is X € R | with j < j,,, for any M € T.
Thus, X € I'f, and X & T. Since i,, < i, =4, by Lemma W € Wy,
for any M € 7. By Lemma [5.3.1), 7 U {X} is 7-rigid, a contradiction. Hence, T

is infinite. The proof of the lemma is completed.

5.3.9 LEMMA. Let n be an integer.
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(1) If T is a mazimal T-rigid set in 'L, then T contains infinitely many objects

of RS, for some i < n.

(2) If T is a mazimal T-rigid set in I'Z,, then T contains infinitely many objects

of R}, for some j > n.

Proof. We shall only prove Statement (1). Let 7 be a maximal 7-rigid set in
I't,. Suppose that T contains only finitely many objects of R}, for each i < n.
Let ig < n be the largest integer such that 7 N R;g # (). Take Ny € T N R;g
with ¢(Np) being maximal. We claim that N, has no cover in 7. Suppose on
the contrary that No < N for some N € T. Then, j, < j, <iy <iy <n
Since 49 = iy, , by the maximality of 49, we have i, = iy, that is, N € R;g. Since
Ny is the object in R;Z with the biggest quasi-length, in view of Lemma m(?)),
Jn = Jn,- It tollows that N = Ny, a contradiction. Our claim is true. Now let

i1 < Jy, be the biggest integer such that 7 N RZ # (). The existence of 4y is
deduced from Lemma m(l) Again, take the object Ny in 7 N R; with the
biggest quasi-length. By similar discussion, N; has no cover in 7.

Consider now the object M with (i,,, j,,) = (io, jy, ). Since n > i > j, , by
Lemma M € I't,. Observe that Ng < M and Ny < M. Thus, M & T.
Let Z € T. If Z € Wy, then by Lemma [5.3.1] (Z, M) is 7-rigid. Suppose
now that Z € Wy,. In particular, Z ¢ Wy,. Since N; has no cover in T, we
have Ny ¢ Wy. That is, Wz, Wy, are not comparable. Since (N7, Z) is 7-rigid,
Wh,, Wz are separable with ¢, +2 < j . Since j, = j,,, we see that Wy, Wz
are separable. Hence, (M, Z) is T-rigid. This shows that TU{M } is 7-rigid, which
is a contradiction to the 7-rigid maximality of 7. Therefore, T contains infinitely

+

many objects of R;", for some ¢ < n. The proof of the lemma is completed.

The following statement is a characterization of maximal 7-rigid sets in I'Z,,.

+

Zn» Which con-

5.3.10 PROPOSITION. Let T be a locally maximal T-rigid set in I’

tains infinitely many objects of R} for some i < n.

(1) Ifi=n—1, then T is mazimal T-rigid in I't,.

+

(2) Ifi =n—2, then T is mazimal T-rigid in I't, and contained in I't

<n—1-
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(3) Ifi <n—2, then T is mazimal T-rigid in I't, if and only if
T=(TNII )U(TNWy),

where Z = (n—1,i+2) € T.

Proof. Let M € Fin such that 7 U {M} is 7-rigid. By Lemma (1), M e
Ir'ti,ooMerlZ,,,.
Ifi=n—1ori=mn-—2,then by Lemma(l), rt,nrz,,, =0. That
is, M € I'Y,,,. In particular, 7 is contained in I'f, ;. Since 7 N R is an
infinite chain, by Lemma {4.2.19(2), there is an object X € 7 N R} such that
M < X. That is M € Wx. In particular, (T N Wx) U {M} is 7-rigid. By the
local maximality of T, we see that M € T. Therefore, T is maximal 7-rigid in
I't,. This shows Statement (1) and (2).
Consider now that i < n — 2. By Lemma (2), rt,nrs, ., =Wy with
(iy.J,) = (n—1,i42). Thus, M € 'L, or M € Wy. In particular, we have

T=(TNIt )U(TNnWy).

Assume that Z € T. Thus, in view of Lemma [£.2.19(2), M has a cover X in
T. That is, M € Wx. Then, similarly, by the local maximality of 7, we deduce
that M € T. Hence, T is maximal 7-rigid in I', . Conversely, assume that 7T is
maximal 7-rigid in I'Y,. It remains to show that Z € 7. We may assume that
M € T. Then Wy, Wy are comparable in case M € T N FLH; and Wy C Wy
in case M € Wy. This shows that (M, Z7) is a 7-rigid pair. By the 7-rigid
maximality of 7, we see that Z € T. The proof of the proposition is completed.

We shall state a characterization of maximal 7-rigid sets in /', without proof.

5.3.11 PROPOSITION. Let T be a locally mazimal T-rigid set in I'Z,,, containing

infinitely many objects of R, for some j > n.

(1) If j =n+1, then T is maximal T-rigid in I'2,,.
(2) If j =n+2, then T is maximal T-rigid in I'Z, and contained in ', .
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(3) If j > n+2, then T is mazimal T-rigid in I'C,, if and only if
T = (Tﬂ F;j—l) U (Tﬂ Wz),

where Z = (j —2,n+1) € T.

Given an integer n, let 77 be a maximal 7-rigid set in I'Y,, and 75 be a maximal
7-rigid set in I'C,,. The following gives us a sufficient and necessary condition for
T1 U7T; being a maximal 7-rigid set in I'. We refer the notion of the density in a

poset to Section 1.4.

5.3.12 PROPOSITION. Let Ty be a mazimal T-rigid set in Fin and Ty be a maz-

imal T-rigid set in I'C,,, for some n € Z. Then Ty U T, is a mazimal T-rigid set

in I' if and only if Ty is dense in I't, or Ty is dense in I'Z,,.

Proof. Set T = Ty U7T;. By Corollary (2), T is a 7-rigid set in I'. By Lemma
, TN R;FO and 73N R, both are infinite, for some i, jo € Z with ig <n < jo.

For proving sufficiency, we may assume that 77 is dense. By Lemma [4.2.20]
we have ig = n — 1. Let M € I" such that 7 U{M?} is 7-rigid. Since T3 U{M} is
7-rigid, by Lemmal[5.3.4] we have M € I't, ., or M € ', . Thatis, M € I't,
or M € I'_,,. By the maximality of 7; and 75, the first case implies that M € T;
and the second case implies that M € T;. Therefore, M € T, and T is maximal
T-rigid in I".

Conversely, assume that 7 is maximal 7-rigid in I" but 7; is not dense in
I't, and T, is not dense in I'Z,,. Then, by Lemma , we have ip < n —1
and jo > n + 1. Assume that ip = n — 2. By Proposition (2), Ty is
contained in I'Y, ;. If jo = n+ 2, then by Proposition (2), 75 is contained
in I'2,, ;. Observe that the quasi-simple object S with (i, j,) = (n,n) belongs to
rt, ,nrz,_;. Hence, by Corollary (2), TU{S} is 7-rigid, which contradicts
the maximality of 7. If jo > n + 2, then, by Proposition [5.3.11)(3) 7 contains
an object Z € I' with (i,,7,) = (jo — 2,n + 1) having no cover in 7. Take the
object X with (i,,j5,) = (o — 2,n). Observe that X € I'C, | and Z < X.
Hence, X ¢ T5. Let M € T. If M € Ty, then M € I't,_,. By Corollary (2),
(M, X) is 7-rigid. If M € T;, then, by Proposition [5.3.11|(3), M € W, C Wy
or M € I'Z This shows that (M, X) is 7-rigid. Thus, 7 U {X} is 7-rigid,

>j0—1°
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which contradicts the 7-rigid maximality of 7. If ig < n—2, then we have similar

discussion. This shows the necessity. The proof of the proposition is completed.

From now on, we come back to our main objective of this section, which is to

study the maximal 7-rigid sets in I".

5.3.13 PROPOSITION. Let T be a maximal T-rigid set in I'. Then T contains
infinitely many objects of some ray R} if and only if T contains infinitely many

objects of some coray R, where j > i+ 2.

Proof. Assume that 7 contains infinitely many objects of R, for some i € Z. Let
X € T. By Lemma W(Z), we have X € 'Y, or X € I'Z,,,. Sincel't,, | and
'z, aredisjoint, T = (TNI'E, )U(TNIZ, ). Inview of Corollary(Z), we
deduce that 7NI'Z,, is maximal 7-rigidin I'J; ;. By Lemma(2), TN
contains infinitely many objects of some co-ray R}, with j >+ 1. Similarly, we

can show the other direction. The proof of the proposition is completed.

Let 7 be a set of objects in I" with Z € T. We say that Z is a maximal object

in 7 if Z has no cover in 7.

5.3.14 PROPOSITION. Let T be a mazximal T-rigid set in I'. If Z € I', then Z is
a maximal object in T if and only if T contains infinitely many objects of each
of the co-ray R;ZH and the ray R;FZ_Q.

Proof. Let Z be an object in I'. In particular, i, > j,. Suppose that 7T contains
infinitely many objects of each of Ri_z 4o and R;FZJ. Let N be an arbitrary object
in 7. We deduce from Lemma 5.3.4/ that N € I'Z; _j or N € I'S; ., or N €
Fiizﬂ NIy, . Thatis, N € Fijz_l oo N el \yorN=ZbyLemma
4.2.16(2). In particular, Z has no cover in 7. It remains to show that Z € 7.
Indeed, by Corollary (N, Z) is T-rigid. Hence, T U {Z} is 7-rigid. By the
7-rigid maximality of 7, we have Z € T.

Conversely, assume that Z € T is a maximal object. Let M € 7. Since
(Z, M) is T-rigid, by Lemma Wy €Wy or Wy, Wy are separable. In the
first case, we have i, > 7,, > j,, > j,. In second case, we have j,, > i, + 2 or

iy < J, —2. Thus, wesee that M € I'S; _; or M € I'L; ;. Therefore, we have
T=(TNnr; Ju(Tnry ).
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Since 7 is maximal 7-rigid in I', and F;jZ_I,FijZ_l are disjoint, in view of
Corollary (2), TNIZ; _yis maximal 7-rigid in I'S; ;) and 77N Fijzfl is
maximal 7-rigid in "% J, 1 By Lemma , TN i1 contains infinitely many
of some co-ray R; with j > j, —1land T NI sz—l contains infinitely many of
some ray R with i < j, — 1. Since 7 is maximal 7-rigid in I", by Proposition
5.3120 T NI, _is dense in I'S; _; or TN Fijzfl is dense in Fijzfl. By
Lemma|4.2.20, j = j, or it = j, — 2. In case j = j,, since 7 N R;Z is infinite, T

has an object X lying in Rj_Z such that Z < X, which is a contradiction. Hence,
t =7, — 2. That is, T contains infinitely many objects of the ray RL—2'

Observe that we also have
T=(Tn F:¢Z+1) V(TN )

In a similar fashion, we can show that 7 contains infinitely many objects of the

co-ray R;Z 4o The proof of the proposition is completed.

The following statement gives some properties of a maximal 7-rigid set in I'.

5.3.15 COROLLARY. If T is a maximal T-rigid set in I', then T contains at most
one mazximal object and at least one infinite mazximal chain.
Proof. Let T be a maximal 7-rigid set in I'. It follows from Proposition
and Lemma that 7 has at most one maximal object.

For proving the second part, we first claim that 7 contains an infinite chain.
Indeed, if 7 has a maximal object Z, then, by Proposition , TN R;-“Z 4o 18
infinite, which is an infinite chain. Otherwise, every object of 7 has a cover in

T; and consequently, 7 contains an infinite chain. Our claim is established. Now
let S be an infinite chain in 7. By Lemma [4.2.13] § is of the following form:

X1 < Xo<-- <X, <

Since [ is interval-finite, we may assume without loss of generality that X, is a
minimal cover of X,,_; for every n > 1. Thus, by Lemma 4.2.12]

(X)) < U(Xo) < < UX,) <---

Now assume that Y € 7T is such that S U {Y'} is a chain. Then, we have
0(X,) < LY) < l(Xpy1) for some n. This gives us that X, < Y < X,,1.
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By the assumption, Y = X,, 1. Therefore, S is a maximal chain in 7. The proof

of the corollary is completed.

Recall that a set of objects in [' is locally finite if it contains only finitely

many objects of every ray and every co-ray in I.

5.3.16 LEMMA. Let T be a mazximal T-rigid set in I'. The following statements

are equivalent.
(1) T is dense in I'.
(2) T is locally finite in I
(3) T has an infinite chain which is locally finite in I.

Proof. First, assume that 7T is dense in I'. Suppose on the contrary that 7 is
not locally finite. Then we may assume that 7 contains infinitely many objects
of some ray R;. By Lemma[5.3.4] every object in 7 lies in I't, , or I'C, ;. Asa
consequence, the quasi-simple object S with (i, j,) = (¢ + 1,7+ 1) has no cover
in 7. That is, 7 is not dense in I'. This contradiction shows that Statement (1)
implies (2).

Now, by Corollary [5.3.15] 7 contains an infinite chain S. Assume that 7
is locally finite. In particular, S is locally finite. Hence, Statement (2) implies
Statement (3). Finally, assume that 7 contains an infinite chain S which is
locally finite . By Lemma [4.2.19(1), S is dense in I', and so is 7. This shows
that Statement (3) implies Statement (1). The proof of the lemma is completed.

The following statement gives a complete description of the maximal 7-rigid
sets in I

5.3.17 THEOREM. If T is a locally maximal T-rigid set in I', then it is maximal

7-rigid in I' if and only if one of the following situations occurs.
(1) T contains an infinite chain which is locally finite.

(2) T contains infinitely many objects of some ray R; and infinitely many
objects of some co-ray R; with j > i+ 2; and it conlains the object Z =
(7 — 2,0+ 2) whenever j > i+ 4.
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Proof. Let T be a locally maximal 7-rigid set in I'. Assume that 7 is maximal
7-rigid in I". By Corollary [5.3.15] 7 contains an infinite chain S. Suppose that
Statement (1) does not hold. Then we may assume that S N R} is infinite, for
some j. Then 7" N R is infinite, and by Proposition , T N R} is infinite, for
some integer ¢ with ¢ < j — 2. Moreover, in case j > i + 4, by Propostion [5.3.14]
the object Z = (j — 2,7+ 2) is a maximal object in 7. This shows the necessity.

For proving the sufficiency, let M € I" such that TU{M} is 7-rigid. We claim
that M has a cover in 7. If Statement (1) holds, then our claim follows from
Lemmal4.2.19(1). Now assume that Statement (2) holds. Since both 7 N R;" and
T N R; are infinite chains, by Lemma , we have M € Fii—i—l or M €'

>j-1
oo Mell, NI, Incase M e I't,  or M € I'Z;_,, our claim follows from

Lemma (2) and (3). Otherwise, M € I't; ,NI'Z;,,. By Lemma (2),
we have Fl—jfl NIZ,., =Wz where Z = (j — 2,i+ 2). In particular, j > i + 4,
and hence, by assumption, Z € 7. Obviously, Z is a cover of M in 7. Our
claim is established. Now let X be a cover of M in 7. That is, M € Wx. Since
(T NWx)U{M} is 7-rigid, by the local maximality of 7, we have M € T N Wy,
and hence M € T. Therefore, T is maximal 7-rigid in I'. The proof of the

theorem is completed.

The following statement shows some properties of the infinite maximal chains
in a maximal 7-rigid set in I'. For this, we refer the notion of section-generators
of I' to Definition [1.4.2] Let S be a section-generator of I'. By Proposition

4.2.24(2), S is an infinite sectional chain of form
Xi<Xo< =X, <+

such that there is a path between X, and X, 1, for all n > 1. For each n, we
define a wing W))({:H in I" as indicated in Definition [1.4.12]

5.3.18 PROPOSITION. Let T be a mazximal T-rigid set in I'. If
S X1 <Xy < <X, <
is an infinite mazximal chain in T, then
(1) S is a section-generator of I';
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(2) TN W))((:H is mazximal T-rigid in W))((:H, for every n > 1.

Proof. Let § : X1 < X9 < --- < X,, < --- be an infinite maximal chain in 7. If
((X;) > 1, then |T NWx,| > 1 by Lemmal5.3.7} Thus, 7 contains some X, with
0(Xo) < £(X;). This yields a chain S U {X,} in 7, a contradiction. This shows
that ¢(X;) = 1.

By Proposition[£.2.24] it remains to show that I" has a path between X,,, X, 41,
for every n > 1. Let n > 1. Consider the wing Wx .. By Lemma T is

locally maximal. Then 7 N Wk, ,, is maximal 7-rigid in Wx, . In particular,

SN Wx IX1-<X2"'-<XR+1

n+1

is a maximal chain in 7 N Wk, ,,. By Proposition [5.2.7, SN Wx,,, is a section-
By Proposition [4.1.15} it is a sectional chain. Hence, X,
and X,,41 is connected by a path in I". Statement (1) is established.

generator of Wx, .

For proving Statement (2), we claim that

TOWx,o, = (TOWx,)U(T nWx", ) U{Xpp1},

n+1

for n > 1. Now let M € T N Wk,,,. Since (M,X,) is a 7-rigid pair, by
Lemma [5.3.1, Wy, Wy, are comparable or separable. In the first case, we have
M € Wy, or M = X, since § is a maximal chain in 7 in the second case,
we have M € W))((:H. Observe that 7 is locally maximal and Wy, W;’((;H are
separable, we have

T AWy

n+1

| =T OWx i | = [T O Wy, | = 1= (Xnga) = €(X0) = 1,

which is equal to the rank of W))((:H by Lemma m Therefore, by Lemma ,
TOWs"

completed.

, 1s a maximal 7-rigid set in Wy" . The proof of the proposition is

The following statement is essential to our main purpose, which is to construct

the maximal 7-rigid sets in I'. Compare it with Lemma |5.2.8]

5.3.19 LEMMA. Let I' have a section-generator
S:X1‘<X2—<----<Xn.<....
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1) The wings Wit with t > 1 are pairwise separable.
Xet1

(2) If M € W', then M & S. Moreover, Wi, Wx, are separable in case

X417’
p <t; and Wy € Wk, in case p > t.

Proof. The proof of Statement (1) is similar to that of Lemma For proving
Statement (2), let X, € S and let M € Wg!  with p,t > 1. If p < ¢, then
X, € Wx,. By definition, W))gfﬂ,WXt are separable. Therefore, Wy, W, are
separable. If p > ¢, then Wy, , € Wx,. We deduce from Definition that
W C W))(Q C Wk,. The proof of the lemma is completed.

t+1 —

The following definition is essential to our main result of this section.

5.3.20 DEFINITION. Let I'" have a section-generator
S X1 <Xo<-- <X, <.

If ©,, is a maximal 7-rigid set in the wing W))((:H for each n > 1, then the union
© =", 0, is called an addend to S in I

5.3.21 EXAMPLE. Given an integer n, the ray R} and the co-ray R, both are
section-generators. And both of them admit only the empty addend in I.

5.3.22 DEFINITION. Given an infinite chain § in I', we say that S is almost
contained in R} if all but finitely many objects of S are contained in some ray
R almost contained in R} if all but finitely many objects of S are contained in

7 )

some co-ray R; .

5.3.23 LEMMA. Let S be an infinite chain in I'. Then S is almost contained in
some ray R (respectively, co-ray R} ) if and only if SN R ( respectively, R} )
is infinite.

Proof. We shall only show the sufficiency. Assume that S N R; is infinite, for
some integer 7. In view of Lemma , the chain SN R;" has a minimal element
X. Let Y € 8 such that X < Y. Being infinite, S N R contains an object Z
such that Y < Z. Obviously, ¢ = i, < i, <1, = 4. Hence, i, = i, that is,
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Y € Rf. By Lemma4.2.11} S contains finitely many object covered by X. Thus,

S is almost contained in R;". The proof of the lemma is completed.

Let A be a convex subquiver of I' with a set 7 of objects in A. Then T is
called densely maximal T-rigid in A if it is dense in A and maximal 7-rigid in A.

The following statement provides a way to construct a 7-rigid set in .

5.3.24 THEOREM. Let S be a section-generator of I', and let ©g be an addend
toS in I

(1) The set SUOg is locally mazimal T-rigid.

(2) If S is almost contained in some ray R, then S U Ogs is densely maximal

_l’_

T-rigid m I'Z; ;.

(3) IfS is almost contained in some co-ray R}, then SU®g is densely mazximal

T-rigid in 1'Z

>j—1-
(4) If S is locally finite, then S U ©Og is densely maximal T-rigid in I.

Proof. Assume that S is of form X; < Xo <--- < X,, <--- and Og = Uzozl O,,
where ©,, is a maximal 7-rigid set in W))((:H for all n > 1. By Lemma |5.2.5( and
Lemma [£.2.9 we have |©,| = ((X,,11)—((X,)—1, foralln > 1. Set T = SUBs.
In view of Lemma[5.3.19 and Lemma T is a T-rigid set.

Now we claim that |7 N Wx, | = ¢(X,,), for all n > 1. Since ¢(X;) = 1, then

our claim is true. Assume that the claim is true for n — 1. Now consider n > 2.

By Lemma [5.3.19(2), we see that

TNWyx, = 6U---UB, 1 U{Xy, -+, X}
- @n,1U(7—mWXn_1)U{Xn}.

Since ij:* and Wy
Thus, we have

are disjoint and ©,,_; C W))g:’l, so are ©,,_; and Wy

n—1 n—1"

|Tﬁ Wxn’ = g(Xn) — K(Xn,l) -1+ g(anl) +1= g(Xn)

Hence, our claim is true. Now let M € ©,,, for some n > 1. Since W), C W))<(Z+1’
in view of Lemma [5.3.19(2), we have

T OWy| = [T OWRr, 0 Way| = 8, N Way| = ((M),
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where the last equality follows from Lemmal5.2.6(2) since ©,, is a maximal 7-rigid
set in W))((:H. This shows that 7 is locally maximal 7-rigid. Statement (1) is
established.

Next, Statement (2) follows from Proposition [5.3.10(1) and Lemma [4.2.19(2)
while Statement (3) follows from Proposition [5.3.11(1) and Lemma [4.2.19(3).
Finally, Statement (4) follows from Theorem [5.3.17(1) and Lemma [4.2.19(1).

The proof of the theorem is completed.

The following statement is our main result of this section.

5.3.25 THEOREM. Let I' be a standard component of I' 4 of shape ZA.,. A set
T of objects of I' is maximal T-rigid if and only if one of the following situations

OCCUTS.

(1) T = SU©Og, where S is a locally finite section-generator of I' with an
addend Og.

(2) T = SUBs US U Og, where S is a section-generator of I' almost
contained in some R with an addend Os, and S’ is a section-generator

almost contained in R}, for some i+ 2 < j <i+ 3, with an addend O.

B) T=8SUBsUS UBgs UO, where S is a section-generator of I' almost
contained in some R with an addend Os, and S’ is a section-generator
almost contained in R}, for some j > i+ 4, with an addend O, and © is

a mazimal T-rigid set in Wy with Z = (j — 2,1+ 2).

Proof. Let T be a set of objects in I". If Statement (1) occurs, then by Theorem
5.3.24(4), T is maximal 7-rigid in I". Assume that Statement (2) occurs. By
Theorem [5.3.24(2) and (3), S U O is a 7-rigid set in I'f, ; and &' U Oy is a
7-rigid set in I'C; ;. Since j > i + 2, by Corollary (2),

T=SUBsUS UBg

is 7-rigid. Moreover, by Theorem [5.3.24)(1), T is locally maximal. Since j < i+3,
in view of Theorem [5.3.17(2), 7 is maximal 7-rigid in I". Now assume that
Statement (3) occurs. Similarly, SUOsUS'UBOg is 7-rigid and locally maximal.

Since © is a maximal 7-rigid set in Wz, by Lemma [5.2.6, we see that Z belongs
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to © and O is locally maximal. Since W, C Fij_l NI, SUBs CI'E,, and
S'UBs C I'; 4, by Corollary (2), T=8UOBsUS8 UBs UBO is 7-rigid.
Observing that 7T is locally maximal, by Theorem (2), T is maximal 7-rigid
in [I'. This shows the sufficiency.

Conversely, let 7 be maximal 7-rigid in I". By Lemma [5.3.7, T is locally
maximal. In view of Theorem [5.3.17] first we assume that 7 contains an infinite
maximal chain

S: X1 <Xo<- <X, <

which is locally finite in I". By Proposition [5.3.18(1) and (2), S is a locally finite
section-generator of I and ©,, = 7 N W))((:H
definition, Os = |J,—, ©, is an addend to S in I'. Therefore, by the sufficiency,
S U BOg is a maximal 7-rigid set in I'. Moreover, since S U ©s C T, we have
T=8UBs.

Second assume that 7 contains infinitely many objects of R and infinitely

is maximal 7-rigid in W)){(:H. By

many objects of R, where j > ¢+ 2. Then we deduce that 7 contains two
infinite maximal chains S and &’ such that 7 N R;r C Sand TN R; C S

In view of Proposition [5.3.18{(1) and Lemma [5.3.23 S is a section-generator of
I" which is almost contained in R and &' is a section-generator of I" which is

almost contained in Rj’. Write
S:Xi<Xo<-- <X, <
and
S VI<Yy<- <Y, <.

Set ©, = TﬂW))((ttH, for eacht > 1 and O, = TﬂW;,/:H, for each s > 1. In view of
Proposition [5.3.18(2), ©s = J,~, ©; is an addend to § in I" and O = | J -, O/,
is an addend to &" in I'. In case i + 2 < j < i+ 3, by the sufficiency

T =SUBsUS UBg

is maximal 7-rigid in I". Since 7' C T, we have T = T'. In case j > i+ 4, by
Theorem [5.3.17|(2), the object Z with (i,,j,) = (j — 2,7 + 2) belongs to T. Set
O =T NWyz, and by the local maximality of 7, we have © is a maximal 7-rigid
set in W . Again, by the sufficiency,

T"=SUBsUS UBg UB
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is maximal 7-rigid in I". Since 7" C T, we have 7 = T"”. The proof of the

theorem is completed.

REMARK. In view of Proposition [5.3.16] a set of objects in I" is densely maximal
7-rigid in I" if and only if it is of the form as stated in Theorem [5.3.25(1).

5.3.26 REMARK. We should point out that our results enable us to construct
all the maximal 7-rigid sets in I'. Indeed, using Proposition and Corollary
4.2.25], we are able to construct all the section-generators in I', which are locally
finite or almost contained in some ray or some co-ray. By applying Theorem [5.2.9]
we are able to construct all the maximal 7-rigid set in a finite wing; and moreover,
in view of Define [5.3.20, we are also able to construct all possible addends to a

given section-generator of I'.

To conclude this section, we shall give a method to construct all the maximal
7-rigid sets in 'Y or in I'Z,, respectively, for some n € I". This will be used in
Chapter 7.

5.3.27 PROPOSITION. Let I' be a standard component of I' 4 of shape ZA..
Given an integer n, a set T of objects in 'L, is mazimal T-rigid in 'L, if and

only if one of the following situations occurs.

(1) T =8UBs, where S is a section-generator of I', which is almost contained
m R;” withn —2<i<n-—1, and Og is an addend to S in I'.

(2) T = SUBOsUO, where S is a section-generator of I', which is almost
contained in R with i <n — 3, Og is an addend to S, and © is mazimal
T-rigid set in Wy with (i,,7,) = (n — 1,1+ 2).

Proof. Let T be a set of objects in I'Z,. Let S be a section-generator of I'
almost contained in R;" for some i < n. In particular, S N R} is infinite. Let
Os be an addend to S in I'. By Theorem [5.3.24(1), S U O is locally maximal
7-rigid and contained in I'f,,;. Assume first that Statement (1) occurs. That
is, T =SUOg with i =n — 1 or i = n — 2. By Proposition [5.3.10(1) and (2),
T is maximal 7-rigid in I'Y,. Assume now that Statement (2) occurs. That is,
T =8SUBsUO with n > i+ 3, where © is a maximal 7-rigid set in W, with
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(iy.j,) = (n—1,4+2). Since SUBs C I't,,, and © C I'Z,,,, by Corollary
(2), T is 7-rigid. By Lemma O is locally maximal, and, hence, 7T is
locally maximal. Observe that T = (T N I'Z,.,) U (T N Wz). By Proposition
5.3.10(3), 7 is maximal 7-rigid in I'Y,. The sufficiency is established.

Conversely, let T be a maximal 7-rigid set in I'%,. Consider the co-ray R ;.
We claim that 7 U R, is maximal 7-rigid in I'. Since R, , is a section, in
particular, it is a section-generator of I' and has only the empty addend. By
Theorem (2), R, ., is densely maximal 7-rigid in I'C,. By Proposition
5.3.12, our claim is true.

Since T U R, is not locally finite, in view of Theorem and Lemma
[(.3.16] T U R, satisfies Statement (2) or (3) in Theorem [5.3.25 Consider the
first case. That is,

TUR, =8 UBsUSUBg,

where Og is an addend to a section-generator &’ which is almost contained in
some R and Og is an addend to a section-generator & which is almost contained
in some R} with ¢ +3 > j > ¢+ 2. In particular, 7 U R, contains infinitely
many objects of R;. Since 7 U R, contains infinite may objects of R,
by Lemma [5.3.4(2), we have j = n+ 1. Thus, i = j—2 =n—1ori =
j—3 =n—2. By Theorem (2) and (3), SUOs C I'Y,,, C I't, and
S§'UBg C I'S,,. Therefore, we have 7 = S U Og. That is, T verifies Statement
(1) in the proposition. Considering the second, similarly we can show that 7T
verifies Statement (2) in the proposition. This establishes the necessity. The

proof of the proposition is completed.

REMARK. A set of objects in I'%, is densely maximal 7-rigid in I'%,, only if it is
of the form as stated in Proposition [5.3.27(1) with ¢ = n — 1. In view of Remark
5.3.26, we are able to construct all the maximal 7-rigid sets in I'Y,.

The following statement is similar to show.

5.3.28 PROPOSITION. Let I' be a standard component of I' 4 of shape ZA.

Given an integer n, a set T of objects in I'C, is maximal T-rigid in I'S, if and

only if one of the following situations occurs.

(1) T =S8UBg, where S is a section-generator of I', which is almost contained
in Ry withn < j <n+ 3, with an addend Bs.
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(2) T = SUBsUO, where S is a section-generator of I', which is almost
contained in R; with j < n+ 3, with an addend Os; and © is mazimal
T-rigid set in Wy with (i,,7,) = (j —2,n+1).

REMARK. A set of objects in I'Z,, is densely maximal 7-rigid in I'Z,, only if it is
of the form as stated in Proposition [5.3.28(1) with j =n + 1.

5.4 Maximal 7-rigid sets in a standard compo-

nent of shape ZAZ

The main objective of this section is to study maximal the 7-rigid sets in

a standard component of shape ZAZ of I',, where 7 is the Auslander-Reiten

A
translation of A. For this purpose, we shall fix throughout this section a standard
component I' of I' 4 of shape ZAZ. Recall that we have defined a coordinate
system for I" in Section 4.3. This yields a partial order over I'; see Lemma |4.3.7|
As shown in the following statement, the 7-rigidity in I is completely determined

by this order.

5.4.1 LEMMA. If XY € I', then (X,Y) is a 7-rigid pair in I" if and only if
X,Y are comparable.

Proof. Let X,Y be objects in I'. Since I' is standard, by Lemma [2.2.7] we
have Homy(X,7Y) # 0 if and only if 7Y € RY if and only if Y € R X.
Similarly, Hom4(Y,7X) # 0 if and only if Y € R,x. Since X ¢ R™ ¥, we
have Hom4(X,7X) = 0, and also, Hom4(Y,7Y) = 0. Therefore, (X,Y) is a
7-rigid pair if and only if Hom4(X,7Y) = 0 and Hom4(Y,7X) = 0, if and only
if Y ¢ R X and Y ¢ R,x. By Lemma [£.3.26] the latter is equivalent to X,Y

are comparable . The proof of the lemma is completed.

5.4.2 REMARK. In particular, Lemma implies that every object in I' is
T-rigid.

Immediately, we are able to characterize the maximal 7-rigid sets in I
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5.4.3 PROPOSITION. Let I' be a standard component of I' o of shape ZAZ,. A
set T of objects in I' is mazimal T-rigid if and only if it is the verter set of a
section in I'.

Proof. Let T be a set of objects of I'. In view of Lemma [5.4.1] 7 is maximal
7-rigid in I" if and only if it is a maximal chain in I". By Proposition [£.3.19] the
latter is equivalent to T being the vertex set of a section in I'. The proof of the

proposition is completed.
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Chapter 6

Cluster-tilting subcategories of a

cluster category of type A

The objective of this chapter is to give a characterization of the cluster-tilting
subcategories of a cluster category of type A,, and to provide a method to
construct all of them. Throughout this chapter, let ) be a quiver of type A,

with no infinite paths.

6.1 Cluster-tilting subcategories of a cluster cat-

egory of type A

Recall that the skeleton 2°(Q) of D’(rep(Q)) chosen in Section 3.3, is an
Auslander-Reiten category, whose Auslander-Reiten translation is written as 7,,.
The connecting component Cq of I'g(q) is standard of shape ZA ., which is ob-
tained by gluing the preprojective component of I,y and the shift by —1 of the
preinjective component of I'yep(g). The cluster category €'(Q) is an Auslander-
Reiten category, whose Auslander-Reiten translation is denoted by 7. Since Cq
is the fundamental domain for € (Q), the canonical functor 7 : 2°(Q) — €(Q)
induces a translation-quiver-isomorphism 7 : Cg — I'¢(g), which acts identically

on the underlying quiver. In particular, I'¢(q) is of shape ZA .

Observe that Cq is a standard component of shape ZA,,. By applying The-
orem [5.3.17| and Theorem [5.3.25 we are able to characterize and construct all
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the maximal 7, -rigid sets in Cy. Recall that Holm and Jgrgensen have given a
geometric characterization of the functorial finiteness of maximal rigid subcat-
egories of €'(Q) in [34]. By using these results, in this section, we shall give a
characterization of cluster-tilting subcategories of €’ (Q), and more importantly,

provide a method to construct all of them.

Let I' be a translation quiver of shape ZA. Given a vertex X € I', we have
the forward rectangle RX and the backward rectangle Ry in I" defined in Section
1.2. These enable us to describe the morphisms between objects in I'¢(g) in the

following statement.

6.1.1 LEMMA. Let Q) be a quiver of type A, with no infinite path. Given XY €
Iy, we have

k, if Y € RXU Ry x;

Homg o) (X,Y) =
@! ) {0, otherwise.

Proof. Let X, Y € I'¢(q). Since 7 : Co — I'¢(q) is an isomorphism of translation
quivers acting identically on the underlying quiver, we have Y € RX U RT% x C
Iy ifand only if Y € RXURT%X C Cq. Since Cq is standard, by Lemma|1.4.5|

the latter is equivalent to

Homgu ) (X,Y) # 0 or Homgsg) (Y, T;X) £ 0.

That is,
HOm@b(Q) (X, Y) EB DHom@b(Q) (Y, TEX) # 0

In view of Lemma W, it is equivalent to Homg ) (X,Y) # 0. Moreover, by
Proposition 2.12 in [48], Home (X, Y") is at most of dimension 1. The proof of

the lemma is completed.

On the other hand, the cluster category used by Holm and Jgrgensen in [34]
is constructed as follows. Consider the polynomial k-algebra R = k[t], which is
a DG-algebra with zero differential and ¢ placed in homological degree 1. Let
D(R) be the derived category of DG-modules over R with finite dimensional
homology over k. This is a Hom-finite Krull-Schmidt 2-Calabi-Yau triangulated
category with a Serre functor S = [2], where [1] is the shift functor of D/(R) as

a triangulated category. In particular, D/(R) is an Auslander-Reiten category,
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whose Auslander-Reitn quiver I'ps(g) is of shape ZA., with Auslander-Reiten
translation 7, = S o [~1] = [1]. Given an object X € I'ps(g), the backward
rectangle RTE « and the forward rectangle R"=* in I’ pf(r) are precisely H*(X)
and H~(X), respectively, as defined in Definition 2.1 in [34]. Given XY €
I'ps(ry, by Proposition 2.2 in [34], we obtain

k, ifY € RXURux;

Hompsp(X,Y) =
() ) {0, otherwise.

The following statement says that the two cluster categories ¢’ (Q) and D/ (R)

are indeed equivalent.

6.1.2 LEMMA. Let @ be a quiver of type A, without infinite paths. Then there is
an equivalence from € (Q) to DY (R), which commutes with the Auslander-Reiten

translations.

Proof. First there is a translation-quiver-isomorphism ¢ : I'pspy — I'g(@)- In
particular, ¢(7,X) = 7,¢(X), for all X € I'psg). Given X,Y € I'ps(g), we have

Hompsp(X,Y) #0 ifand only if Y € RX U RT}%X
if and only if ¢(Y) € R?) U R )

In view of Lemma [6.1.1], we see that ¢ induces an isomorphism

¢x,y : Homps gy (X, Y) — Homg (g (#(X), (Y)).

It is easy to check that ¢x y is natural in both X and Y. It is evident that ¢ in-
duces an equivalence from DY (R) to € (Q). The proof of the lemma is completed.

Now for our main purpose, we shall need to recall some geometric notions and
terminology from [34]. Let 2., stand for an oo-gon with marked points, that is
the upper half plane in the plane R? with marked points which are denoted by

n € 7, as shown below.

Figure 6.1: An oo-gon with marked points.
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A simple curve in 2, is a curve which does not cross itself and joins two
(maybe identical) marked points, called endpoints of the curve. A simple curve
is called internal if it intersects the boundary of 2l only at the endpoints. Two
distinct simple curves in 2, are said to cross if they have a common point which

is not an endpoint of any of the two curves.

Given two marked points m, n with m—n > 2, the isotopy class of the internal
simple curves in 2., connecting m and n is called the arc in A, with end-points
m,n, which is denoted by [m,n| with m > n. We shall denote by arc(2,) the

set of all arcs in 2., that is,

arc(As) = {[m,n] | (m,n) € Z x Z with m > n + 2}.

Two arcs « = [m, n] and 8 = [p, ¢] in A, are said to be crossing if every curve
in « crosses each of the curves in . It is easy to see that this is equivalent to the
condition that either m > p >n > g or p > m > g > n. In the following figure,

only «, 3 are crossing.

6.1.3 DEFINITION. A triangulation of %A, is a maximal set of pairwise non-

crossing arcs in ..

Let S be a set of arcs of 2,. One says that S is locally finite if every marked
point of 2, is an endpoint of at most finitely many arcs in S. Given a marked
point n in A, if both the set of arcs [m,n] € S with m > n and that of arcs
[n,p] € S with n > p are infinite, then the union of these two sets is called a
fountain in S with fountain base n. Moreover, given two marked points m,n in
A, with m > n, if both the set of arcs [p,m| € S with p > m and that of arcs
[n,q] € S with n > ¢ are infinite, then the union of these two sets is called a

splitting fountain in S.
The following figures show three types of triangulations of 2.
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(NN

5 4 -3 2 -1 0 1 2 3 4 5

Figure 6.2: A triangulation of 2., having a fountain

N T 0 1 2 3 4 5 6

R A

Figure 6.3: A triangulation of 2, having a splitting fountain

Figure 6.4: A locally finite triangulation of 2,

Note that I'¢(q) is a translation quiver of shape ZA.,. As we did in Section
4.2, we may give a coordinate system for I'¢ (). Indeed, the quasi-simple objects
in I'¢) will be denoted as S, with n € Z such that 7.5, =
starting with S, is denoted by R, and the co-ray ending with S,, is denoted by
R . Given an object X € I'¢(q), there is a unique pair of integers (i,,j,) with

iy = Jjy.such that B NR; ={X}

6.1.4 LEMMA. There is a bijection

U Ty — arc(ae) - X = g = iy + 1,5, — 1],

Proof. By definition, arc(2) = {[m,n] | m—n > 2}. Clearly, we have a bijection

0:Zp — arc(Uso) = (4,5) —= [t + 1,5 — 1],
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where Zp = {(i,7) € Z x Z | i > j}. Thus, the statement follows from Lemma
[4.2.1] The proof of the lemma is completed.

Given a set T of objects in I'¢(q), denote by arc(7) the image of 7 under V.
Then immediately, we have the following statement.

6.1.5 LEMMA. Let T be a set of objects in I'¢(q).

(1) arc(T) is locally finite if and only both T N R} and T N R; are finite, for
every integer 1.

(2) arc(T) has a fountain if and only if there is some i such that both T N R},
and T N R, are infinite.

(3) arc(T) has a splitting fountain if and only if TOR] and TOR; are infinite
for some integers i, j with j > i + 2.

Proof. Given an integer 7, we see that
arc(T N R ) = {[i,p] € arc(T) | i — 1> p}

and
are(T 0 Ry) = {la1] € are(T) | g > i + 1},

Firstly, arc(7) is locally finite if and only if both {[i,p| € arc(T) |i —1 > p}
and {[q,7] € arc(T) | ¢ > i+ 1} are finite for all i € Z if and only if arc(T N R} )
and arc(7T N R, ) are finite for all i € Z. Since W is a bijection, the latter is
equivalent to 7 N R, and 7 N R;, are finite, for all i € Z. This establishes
Statement (1).

Secondly, arc(7) has a fountain if and only if both {[i, p| € arc(T) |i—1 > p}
and {[q,7] € arc(T) | ¢ > i+ 1} are infinite for some i if and only if arc(T N R} )
and arc(7 N R;, ;) are infinite for some ¢ if and only if TN RS, and T N R;,, are
infinite for some ¢. This establishes Statement (2). Similarly, we can establish

Statement (3). The proof of this lemma is completed.

Let 7 be a strictly additive subcategory of €' (Q)). Denote by ind.7 the set
of objects in I"¢(g) which lie in .77. Moreover, denote by arc(.7") the set of arcs
U(X) with X € ind.7.
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Observe that the maximal rigid subcategories of €' () are precisely the 1-
maximal orthogonal subcategories as defined in [34, (4.1)]. We have the following

result.

6.1.6 PROPOSITION. Let Q be a quiver of type A without infinite paths. A
strictly additive subcategory 7 of €(Q) is weakly cluster-tilting if and only if
arc(7) is a triangulation of Us.

Proof. By Lemma 2.1 in [48], .7 is weakly cluster-tilting if and only if ind.7
is a maximal rigid set in I'y(g). Since 4(Q) = D'(R) by Lemma , the
proposition follows immediately from Theorem 4.3 stated in [34]. The proof of

the proposition is completed.

The following statement gives a criterion for a weakly cluster-tilting subcate-

gory of €' (Q) to be a cluster-tilting subcategory.

6.1.7 THEOREM ([34]). Let Q be a quiver of type A without infinite paths. A
weakly cluster-tilting subcategory T of € (Q) is a cluster-tilting subcategory if and

only if arc(7) is a triangulation of Ao, which is locally finite or has a fountain.

Proof. The statement follows immediately from Theorem 4.4 in [34] and Lemma

6.1.2] The proof of the theorem is completed.

Recall that 7 : Cq — I'¢(g) is an isomorphism of translation quivers acting
identically on the underlying quiver. Let S be a section-generator of I'¢(g).
Observe that S is also a section-generator of Cg. Let © be an addend to S in Cq
as defined in Definition [5.3.20] Considering © as a set of objects in I'y(q), We
shall call it an addend to S in I'¢(q).

The following statement is our main result of this section.

6.1.8 THEOREM. Let €(Q) be the cluster category associated with a quiver @
of type A without infinite paths. A strictly additive subcategory T of €(Q) is

cluster-tilting if and only if one of the following situations occurs.

(1) ind7 = SUBOs, where S is a locally finite section-generator of I'y(q) with
an addend Og.
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2) ind.7 =SUOsUS"UBOg/, where S is a section-generator of I'¢oy which
9 (@)
is almost contained in some ray Ry and has an addend ©s, while S is a

section-generator of I'¢ gy which is almost contained in the co-ray R, , and
has an addend Og: .

Proof. Let 7 be a strictly additive subcategory of €’ (Q). Observe that ind.7 is
a set of objects in I'¢(q), as well as, a set of objects in Cq.

Assume first that ind.7 verifies Statement (1). Considered as a set of objects
in Cq, ind.7 satisfies Statement (1) stated in Theorem [5.3.25] Therefore, ind.7 is
a maximal 7,-rigid set in Cg. By Proposition T is a weakly cluster-tilting
subcategory of €(Q). By Proposition [6.1.6, arc(.7) is a triangulation of .
Moreover, by Statement (1), ind.7 contains a locally finite section-generator S
of I'¢(g). By Lemma , ind.7 is locally finite in I'¢(q). That is, ind7 N R}
and ind.7 N R; are finite, for i € Z. By Lemmal6.1.5(1), arc(.7) is locally finite,
and by Theorem [6.1.7], .7 is a cluster-tilting subcategory of €(Q).

Assume next that ind.7 verifies Statement (2). Considered as a set of objects
in Cp, indJ satisfies Statement (2) with j = i + 2 stated in Theorem [5.3.25
Therefore, ind.7 is a maximal 7,-rigid set in Cg. By Proposition , T is a
weakly cluster-tilting subcategory of €'(Q). By Proposition[6.1.6] arc(.7) is a tri-
angulation of 2,,. Moreover, by Statement (2), ind.7 contains section-generators
S and 8’ of I'y(q) with S almost contained in some ray R and S almost con-
tained in co-ray R ,. Since & and & are infinite, indZ N R, and ind.7 N R;,
are infinite. By Lemma [6.1.5(2), arc(.7) has a fountain, and by Theorem [6.1.7]
T is cluster-tilting in €’ (Q). This establishes the sufficiency.

Conversely, assume that 7 is cluster-tilting in €(Q). As a set of objects Cq,
by Proposition [5.1.7 ind.7 is maximal 7, -rigid. That is, ind.7 verifies one of the
three conditions stated in Theorem [£.3.25]

Suppose that ind.7 verifies Statement (2) stated in Theorem with
Jj > i+ 2. That is, ind.7 contains section-generators S and &’ of Cg with S
almost contained in the ray R and & almost contained in the co-ray R;. Since
S and & are infinite, ind.7 N R} and ind.7 N R} are infinite. By Lemma M(?)),
arc(.7) has a splitting fountain. By Theorem 7 is not cluster-tilting, a
contradiction. Similarly, we shall obtain a contradiction if ind. 7 verifies State-
ment (3) stated in Theorem [5.3.25] Therefore, ind7 verifies either Statement (1)
or Statement (2) with j = ¢ + 2 stated in Theorem [5.3.25] Considered as a set
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of objects in I'y(q), ind.7 verifies Statement (1) or Statement (2) stated in the

theorem. This establishes the necessity. The proof of the theorem is completed.

REMARK. Let () be a quiver of type A, without infinite paths. We should point
out that our results will enable us to construct all the cluster-tilting subcategories
of €(Q). Indeed, using Proposition and Corollary , we are able to
construct all the section-generators in I'¢ gy which are locally finite or almost
contained in some ray or some co-ray. Given a section-generator S in I'y(q), as
indicated in Define [5.3.20] we shall apply Theorem to construct all possible
addends © to S in I'¢(q).

To conclude this section, we shall give a complete description of the cluster-
tilting subcategories of € (Q). A rigid set T of objects in I'¢(q) is called locally
mazimal in 'y q) if |T N Wx| = (X)), for every X € T.

6.1.9 THEOREM. Let €(Q) be the cluster category associated with a quiver @
of type A without infinite paths, and let T be a strictly additive subcategory of
€ (Q). Then T is cluster-tilting in € (Q) if and only if ind.T is locally mazimal

rigid satisfying one the following conditions.

(1) T contains an infinite chain which is locally finite in 'y (q).

(2) T contains infinitely many objects of some ray R; and infinitely many

objects of the co-ray R, 5 in I'g(q).

Proof. Let 7 be a strictly additive subcategory of €' (Q). Observe that ind7 is
a set of objects in I'¢ (), as well as, a set of objects in Cq.

Assume that .7 is cluster-tilting. Then ind.7 verifies Theorem [6.1.8 Since
every section-generator of I'¢ () is a chain by Proposition (2), ind.7 verifies
Statement (1) or (2) stated in the theorem. Considering ind.7 as a set of objects
in Cg, by Proposition [5.1.7], ind.7 is maximal 7,-rigid in Cp. By Lemma [5.3.6]
ind.7 is locally maximal in Cy. Thus, as a set of objects in I'¢(q), ind.7 is locally
maximal in I'¢(g). The necessity is established.

Conversely, assume first that ind.7 is locally maximal verifying Statement (1)
stated in the theorem. Considering ind.7 as a set of objects in Cp, by Theorem
5.3.17(1), ind.7 is maximal 7,-rigid in Cg. Therefore, ind.7 is of one of the
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three forms stated in Theorem [5.3.25 Since ind.Z contains an infinite chain in
Co which is locally finite, by Lemma it is locally finite. Hence, ind.7 is
of the form stated in Statement (1) in Theorem [5.3.25] Therefore, as objects of
I'4(q), ind.7 is of the form stated in Statement (1) in Theorem [6.1.8 Thus, .7
is cluster-tilting.

Assume secondly that ind.7 is locally maximal verifying Statement (2) stated
in the theorem. Similarly, considering ind.7 as a set of objects in Cg, by Theorem
5.3.17(2), ind.7 is maximal 7,-rigid in Cg. Since ind.7 contain infinitely many
objects of some ray R; and the co-ray R, in Cq, it is not locally finite. By
Lemma , ind.7 contains no infinite chain which is locally finite in Cg.
Hence, ind.7 verifies Statement (2) or (3) in Theorem [5.3.25 Since i is unique
by Lemma ind.7 verifies Statement (2) in Theorem [5.3.25] Therefore,
as objects of I'g(q), indJ verifies Statement (2) in Theorem [6.1.8 Thus, 7
is cluster-tilting. The sufficiency is established. The proof of the theorem is

completed.
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Chapter 7

Cluster-tilting subcategories of a

cluster category of type A

The main objective of this chapter is to provide a way to construct all the
cluster-tilting subcategories of a cluster category of type AY. Throughout this

chapter, () stands for a quiver of type A% without infinite paths.

7.1 The coordinate systems for the fundamental

domain

The objective of this section is to introduce the coordinate systems for the
fundamental domain .7 (Q). Recall that the skeleton 2°(Q) of D°(rep(Q)) chosen
in Section 3.3 is an Auslander-Reiten category, whose Auslander-Reiten transla-
tion will be simply written as 7. The fundamental domain % (Q) for the cluster
category €' (Q) consists of three standard components of I (), namely, the con-
necting component Cgp and two orthogonal regular components R and £. Each
of these three components will be equipped with a coordinate system, which will

be used throughout this chapter.

Let us start with a coordinate system for the connecting component Cy. Recall
that Cg is of shape ZAZ. As in Section 4.3, we fix two double infinite sectional
paths Ly and Ry, whose intersection contains exactly one object. Write L; = 7°L

and R; = 77 Ry, for i, j € Z. For each X € Cg, there exists a unique pair (i, j, ) of
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integers such that {X} = L; NR;_. For convenience, we shall write X = (i, j ).
By Lemma m, (Cg, =) is partially ordered in such a way that X <Y ifi, <1,
and j, > j,.

Next, observe that £ and R are of shape ZA ... In order to fix a coordinate
system for each of them, we need to reformulate a result stated in [48, (4.1)].
For this purpose, recall from Definition that, for a quasi-simple object S
in £ or in R, the infinite co-wing W(S) is the full subquiver generated by the
object X for which there exist paths N ~» X ~» M, where M belongs to the ray
starting with S and N belongs to the co-ray ending with S.

7.1.1 LEMMA. Let L; and R; with i,7 € Z be the previously fized double infinite
sectional paths in Cg. There is a unique quasi-simple object Sp, € L and a unique

quasi-simple object T € R such that the following statements hold.

(1) If X € Cg and i € Z, then X € L; if and only if Homgeq) (X, 7'SL) # 0;
and in this case, for each N € L, one has Homg gy (X, N) # 0 if and only
ZfN € W(TZSL)

(2) If Y € Cg and j € Z, then Y € R; if and only if Homgsg) (Y, 7/Tk) # 0;
and in this case, for each M € R, one has Homgu ) (Y, M) # 0 if and only
ZfM S W(TjTR).

Proof. We shall prove only Statement (1). Let X € Cg and N € £. We claim
that Home () (X, N) = Homgs () (X, N). By Lemma (3.3.3,

Homg ) (X, N) = Homgs gy (X, N) & DHomgs gy (N, 7°X).

By the property of Cg, there exists an integer n > 0 such that 77""2X is a
representation. That is, 772X lies in the preprojective component P of I’ rep(Q)-

Since 77" N € L is a representation, we have
Homgu ) (N, 7°X) = Homgnq)(t "N, 77"?X)

Homyep(g) (77" N, T2 X)
= 0.

12

The last equality holds since Hom,ep(g)(£,P) = 0. This establishes our claim.

Compare the L; and R; chosen above with those chosen in Section 4 in [48].
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Since 7 : F#(Q) — 'y (q) is a translation-quiver-isomorphism acting identically
on underlying quiver, our statement follows immediately from Lemma 4.1 in [48].

The proof of the lemma is completed.

Now, we are ready to fix a coordinate system for £. Set So = 7-S;, € L. Let
L with i € Z stand for the ray in £ starting with 745, and L; with j € Z for
the co-ray in £ ending with 77S,. For each M € £, by Lemma , there is a
unique pair (i,,,7,,) of integers, with ¢,, > j,,, such that {M} = LZW nL; . For
ien Li and
L3, =U;s,L; By Lemma (2), if m>n+1, then £f, NLZ, is a wing in
L with a wing vertex Z = (m — 1,n + 1).

simplicity, we write M = (7,,,7,,). Given an integer n, write £, = J

To fix a coordinate system for R, we set Ty = 7~ Tk and denote by R with
i € Z the ray in R starting with 79T, and by R; with j € Z the co-ray in R ending
with 77Ty. For each N € R, by Lemma , there is a unique pair (i,,j,) of
integers, with i, > j,, such that {N} = RZV N R; . For simplicity, we write
N = (iy,jy)- Given an integer n, write RE, = U,_, B and R, = U, R; -
By Lemma [4.2.16(2), if m > n+ 1, then RE, N'RZ, is a wing in R with a wing
vertex Z = (m — 1,n+1).

Let X,Y be objects in Cg with X < Y connected by a path p. By Lemma
4.3.9, p is a sectional path. Thus, by Lemma if s(p) = X, then i, =i,
and j, > j,; if t(p) = X, then i, < i, and j, = j,. The following definition is

important in our later investigation.

7.1.2 DEFINITION. Let X,Y be two objects in Cg with X < Y and connected
by a path p. Define

)

We o — R:jx NRS, . if s(p) =X
Xy =

>ty
7.1.3 LEMMA. Let XY € Cq, with X <Y, be connected by a path p.

(1) ]fl(p) = 1, then ijy = @

129



(2) If l(p) > 1 and s(p) = X, then Wxy = Wy, where Z € R with (i,,j,) =
(jx - 17jY + 1)'

(3) If l(p) > 1 and t(p) = X, then Wxy = Wy, where Z € L with (i,,j,) =
(i, — 1,4, +1).

Proof. We shall consider only the case where t(p) = X. By definition, Wx y lies in
R. Ifl(p) =1, then (i, j,) = (iy,j, +1) by Lemma[t.3.2(2). Since j, = j, +1,
by Lemma (1), Wxy = 0. If [(p) > 1 then, by Lemma , i, =1, and
jx > Jjy + 1. By Lemma [£.2.16(2), Wxy = Wz with (i,,j,) = (j, — 1.4, +1).
The proof of the lemma is completed.

7.2 Maximal 7-rigid sets in the fundamental do-
main

The main objective of this section is to give a method to construct all the
maximal 7-rigid sets in the fundamental domain .#(Q). For this purpose, we
shall make a frequent use of the double infinite sectional paths L; and R; which
determine the coordinate system for Cg. Recall, moreover, that the quasi-simple
objects in £ are S; = 77715, with ¢ € Z and those in R are T; = 79Ty with
Jj € Z, where Sy, and Tg are as stated in Lemma [7.1.1]

Recall that an object X in L (respectively, R) determines a wing Wx in L
(respectively, R) formed by the objects M with j, < j,, <1, <i,. Moreover,
let m,n € Z with m < n, we shall denote by [m, n] the interval of the integers
1 with m < ¢ < n. The following is a criterion for two objects from different

components forming a 7-rigid pair.

7.2.1 LEMMA. Let X € Co, M € L, and N € R.
(1) (X, M) is a T-rigid pair if and only if S; & W if and only if i & [j,,,7,,]-
(2) (X, N) is a7-rigid pair if and only if T; ¢ Wi if and only if j, & [jy,iy]-

Proof. We shall prove only Statement (1). Since 7 is an automorphism of 2°(Q),
in view of Theorem W(Q), Homgp ) (M, 7X) = 0. Write i, = 1, that is,
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X € L;. By Lemma [7.1.1) Homgs (X, 7M) # 0 if and only if 7M € W(r'Sy,)
if and only if M € W(r"1S) = W(S;). Therefore, (X, M) is 7-rigid if and only
it M & W(S;). In view of Lemma , the latter is equivalent to S; & W),.
Then our statement follows from Lemma [4.2.7] and Lemma [4.2.1. The proof of

the lemma is completed.

The following statement follows immediately from Lemma [7.2.1]

7.2.2 COROLLARY. Let X € Cg, M € L, and N € R.

(1) If (X, M) is a T-rigid pair, then (Y, M) is a T-rigid pair, for any Y with

Iy = 1.

(2) If (X, N) is a T-rigid pair, then (Z,N) is a T-rigid pair, for any Z with
Jz = Jx-

We start with maximal 7-rigid sets in .% (@) which contain no objects of the

connecting components Cq.

7.2.3 THEOREM. Let T be a set of objects in F(Q) with T NCqo = 0. Then T

is mazimal T-rigid in F(Q) if and only if the following statements are satisfied.
(1) T N L is mazimal T-rigid in L.
(2) T NR is mazimal T-rigid in R.
(3) T NL is dense in L or T N'R is dense in R.

Proof. Suppose that 7 is maximal 7-rigid in .% (). Since 7 has no object in Cg
and L, R are orthogonal, 7 N £ is maximal 7-rigid in £ and 7 NR is maximal
7-rigid in R. If Statement (3) is not true, then there is a quasi-simple object S in
L which is not covered by any object in 7 N L and a quasi-simple object T'in R
which is not covered by any object in 7 NR. Consider the object X € Cq with
(ix,Jy) = (is,ir). By the definition of the coordinate systems, we have S; = .5
and Tj =T. Let M € T N L. Since S is not covered by M, that is, S; & War.
By Lemma [7.2.1(1), (X, M) is 7-rigid in .#(Q). Therefore, (T N L) U {X} is
7-rigid. Similarly, (7T N'R) U{X} is 7-rigid. Hence, T U {X} is 7-rigid, which is
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a contradiction to the 7-rigid maximality of 7. Thus, Statement (3) holds. The
necessity is established.

Conversely, we assume that 7 NL is densely maximal 7-rigid in £, and T NR is
maximal 7-rigid in R. Since £ and R are orthogonal, 7 is 7-rigid. Let X € Cy.
By the density of 7 N L in £, the quasi-simple object S; € L is covered by
some object M € T N L, that is, S; € Wy. By Lemma (1), (M, X) is
not a 7-rigid pair. Therefore, T is maximal 7-rigid in .#(Q). The proof of the

proposition is completed.

For the rest of this section, we shall focus on the 7-rigid sets in .% (Q)) which
contain some objects in Cg. Recall that Cq is a poset. The following statement

decribes the 7-rigid sets in Cq.

7.2.4 LEMMA. A set of objects in Cq is T-rigid if and only if it is a chain.

Proof. Since Cq is a standard component of I'pb(ep(qy) of shape ZAZ, by Lemma
[b.4.1] a pair of objects in Cq is 7-rigid if and only if they are comparable. Imme-

diately, our statement holds. The proof of the lemma is completed.

7.2.5 LEMMA. Let S be a chain in Cq.

(1) If M € L, then SU{M} is 7-rigid if and only if iy, & [J.,, 0]
X € S; and in this case, S U{L} is T-rigid for every L € Why.

for every

(2) If N € R, then SU{N} is 7-rigid if and only if j, & [jy,iy] for every
X € S; and in this case, S U{L} is T-rigid for every L € Wy.

Proof. We shall prove only Statement (1). Let M € L. Since S is 7-rigid, the
first part of the statement follows immediately from Lemma [7.2.1)(1).

Now, assume that SU{M} is 7-rigid. Let L € Wy,. Then j,, < j, <i, <i,,.
In particular, i, ¢ [j for every X € S. This in turn implies that S U {L} is

7-rigid. The proof of the lemma is completed.

L’iL]

Recall that a 7-rigid set 7 of objects in £ (respectively, R) is said to be locally

maximal if 7 N Wx is a maximal 7-rigid set in Wy, for each X € T.

7.2.6 COROLLARY. Let T be a mazimal T-rigid set in .7 (Q).
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(1) TNL=01f and only if TN L; # 0 for every i € Z; and otherwise, T N L

1s locally maximal in L.

(2) TOAR =0 if and only if TN R; # 0 for every j € Z; and otherwise, T N'R

18 locally maximal in R.

Proof. We shall prove only Statement (1). Assume that 7 N L; # 0 for every
i € Z. That is, for any integer ¢, there is an object X € T N Cqg such that
iy =i. Then, by Lemma[7.2.5(1), T U{M} is not 7-rigid, for any object M € L.
Therefore, TN L = (.

Assume, conversely, that 7 N L = () but 7 N L; = () for some integer 7. That
is, for any X € T NCq, we have i, # i. Since T NCq is a chain by Lemma [7.2.4]
applying Lemma (1) to the quasi-simple object S; € L, we conclude that
(TNCgq)U{S;} is 7-rigid. Moreover, since R and £ are orthogonal, (TNR)U{S;}
is T-rigid, and consequently, T U{S;} is 7-rigid. This contradiction to the 7-rigid
maximality of T establishes the first part of Statement (1).

Next, assume that TN L # (. Fix M € T N L. We claim that T N W,y is
maximal 7-rigid in W),. Indeed, assume that N € W), is such that (7 N Wy,) U
{N}is 7-rigid. Let X € TNL. If X € Wy, then (N, X) is trivially 7-rigid.
Otherwise, since (M, X) is 7-rigid, we deduce from Lemma that (N, X) is
r-rigid. Hence, (7 N L) U {N} is 7-rigid. Moreover, since (7 N Cq) U {M} is
7-rigid, by Lemma [7.2.5(1), (T NCq) U {N} is 7-rigid. Since (T NR) U {N} is
T-rigid, we conclude that 7 U {N} is 7-rigid. By the 7-rigid maximality, N € T,
that is, N € T N W)p,. This establishes our claim. The proof of the corollary is

completed.

The following statement describes when a maximal 7-rigid set in Cg is also a

maximal 7-rigid set in .7 (Q).

7.2.7 PROPOSITION. A set S of objects in Cq is a mazimal T-rigid set in F (Q))

if and only if it is the vertex set of a section in Cqg containing no infinite path.

Proof. Let S be a set of objects in Cg. Assume that S is a maximal 7-rigid set
in Z#(Q). In view of Corollary , S passes through every L; and every R;
for 7,5 € Z. Observe that S is maximal 7-rigid in Cg. By Theorem and
Lemma there is a section X in Cg containing no infinite path such that
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S = Xy. Conversely, assume that there is a section 2 of Cg containing no infinite
path such that S = Xy. By Theorem , S is maximal 7-rigid in Cg; and by
Lemma , S passes every L; and every R, for i,j € Z. That is, SN L; #
and SN R; # 0 for all 4, j € Z. By Lemma[7.2.5, SU{M} is not 7-rigid, for any
object M € LU R. Therefore, S is maximal 7-rigid in .#(Q). The proof of the

proposition is completed.

Recall now that a chain § in Cg is called a sectional chain if, every two objects
of §, with one being a minimal cover of the other, are connected by a path in
Co; and if X, Y € Cp with X <Y are connected by a path, then they determine
a (possibly empty) wing Wy,y in £ or in R as shown in Definition [7.1.2]

7.2.8 LEMMA. Let S be a sectional chain in Cg, and let X, Y € S with Y being

a minimal cover of X.
(1) If Z € Wxy, then SU{Z} is T-rigid.

(2) If M,N € S with N being a minimal cover of M such that N < X, then
(L, Z) is a T-rigid pair, for any L € Wy n and Z € Wxy.

Proof. We shall only consider the case where ) 2 Wy y C £. By Lemmal[7.1.3(3),
Wxy = Wy, where U € L with (i,,,j,) = (i, — 1,i, +1).

First, we claim that SU{U} is 7-rigid. By Lemmal7.2.5/(1), it suffices to show
that S contains no object lying in L;, for every ¢ with j, < ¢ < q,. If this was
not the case, then there exists some V' € § such that ¢, =4 with 5, <i <i,. In
particular, V' ¢ {X,Y}. Since § is a chain, we obtain V' < X or V > Y. In the
first case, « =i, < i, = j, — 1; and in the second case, ¢ = i, > i, =i, + 1,
a contradiction. Our claim is true. Then, by Lemma (1), SU{Z} is T-rigid
for every Z € Wy. Statement (1) is established.

For proving Statement (2), let M, N € S with N being a minimal cover of
M such that N < X. In particular, ¢, < i,. Assume that L € Wy and
Z € Wxy. f Wy v C R, since R, L are orthogonal, (L, Z) trivially is a 7-rigid
pair. Assume now that Wy,xy C £. By Lemma [7.1.3(3), Wy,ny = Wy, where
V =(iy—1,i,,+1). Observe that i, =i, —1and j, =i, +1. Since i, <i,, we
obtain 7, < j, + 2. That is, Wy and Wy are separable by Lemma . Thus,
for any L € Wy v = Wy and Z € Wxy = Wy, we have Wy, W; are separable
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and hence, (L, Z) is a 7-rigid pair by Lemma [5.3.1} The proof of the lemma is

completed.

In Proposition [7.2.3] we have characterized the maximal T-rigid sets of .7 (Q)
without objects of C; and in Proposition [7.2.7, we have characterized the maxi-
mal 7-rigid sets of .#(Q) containing only objects of Cg. In the following, we shall
study general maximal 7-rigid sets of .7 (Q).

Given a chain & in Cg, recall that the coordinates of the objects of S determine
two integer sets Is = {i, | X € §} and Js = {j, | X € S}. Moreover, given
n € Z, we have L, = J,_, L;” and L2, = U, L;, which are subquivers of L.
Similarly, RE, = U,., RS and R, = U,.,, Ry, which are subquivers of R. The
following statement collects some properties of maximal 7-rigid sets in .#(Q),

which contains some objects of Cg.

7.2.9 PROPOSITION. Let T be a mazimal T-rigid set in F(Q) with T NCq # 0.

(1) T NCq is a sectional chain in Cg.

(2) If Wxy # 0 for some X, Y € T NCqy withY a minimal cover of X, then

T N Wxy is mazimal T-rigid in Wx y .

_l’_

(3) If Itnc, has a minimal (respectively, mazimal) element ig, then T N L,

(respectively, T N LS, ) is mazimal T-rigid in L, (respectively, L, ).

+
<Jo
(respectively, T N'RZ;,) is mazimal T-rigid in RE, (respectively, RZ;, ).

(4) If Jrrc, has a minimal (respectively, mazimal) element jo, then T N'R

Proof. Being 7-rigid, by Lemma[7.2.4], T NCq is a chain in Cg. Now, assume that
X,Y € T NCq, where Y is a minimal cover of X. We need to show that X,Y
are connected by a path in Cgp. Since X XY, we have ¢, <1, and j, > j,.
Iti, =14, or j, = j,, we deduce from Lemma that X,Y lie on L; _or
R; . Otherwise, we have iy, < i, and j, > j,. Consider the object Z € Cq
with (i,,7,) = (iy,J, ). Then, X < Z < Y. Since Y is the minimal cover of
X in T NCq, we see that Z ¢ T. We claim that 7 U {Z} is 7-rigid. Since
(T NCq) U{Z} is a chain, by Lemma [7.2.4] it is 7-rigid. Now let M € T N L.
Since (X, M) is 7-rigid with i, = i, by Corollary[7.2.2(1), (Z, M) is 7-rigid. This
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shows that (7 N L)U{Z} is 7-rigid. Similarly, (7T N"R) U {Z} is 7-rigid. This
establishes our claim, which contradicts the 7-rigid maximality of 7. Statement
(1) is established.

For proving Statement (2), let X,Y € T N Cq with Y a minimal cover of X
such that Wy y # 0. In view of Lemma (3), we may assume that Wy y =
Wy, where Z € L with (i,,j,) = (¢, — 1,4, +1). Since T N L is locally
maximal in £ by Lemma [7.2.6] it suffices to show that Z € 7T. Indeed, by
Lemma [7.2.§(1), we see that (T N Cq) U {Z} is 7-rigid. Since £ and R are
orthogonal, (T NR) U {Z} is 7-rigid. Finally, take an object M € T N L. Since
(X, M) and (Y, M) are 7-rigid pairs, by Lemma [7.2.1(1), iy, %, & [j,,,1,,]. Since
1, <1i,, we conclude that 7, < j, <1, <1,,o0ri, >1,,ori, <j,. Inthe
first case, j, =i, +1 <5, <14, <1, —1=1,. Then, Wy C Wy, and hence,
(M, Z) is T-rigid by Lemma [5.3.1] In the second case, j, =i, +1 > i, +2; and
in the third case, i, =i, —1 < j,, — 2. In both cases, Wy, W, are separable;
and by Lemma [5.3.1] (M, Z) is 7-rigid. This shows that (7 NL)U{Z} is T-rigid.
Consequently, 7 U {Z} is 7-rigid. By the 7-rigid maximality of 7, we obtain
Z € T. Statement (2) is established.

For proving Statement (3), we shall consider only the case where I7rc, has
a minimal element 9. Let N € LZ, be such that (7 N LZE, ) U{N} is 7-rigid.
In particular, i, < ig. We claim that N € T, or equivalently, 7 U {N} is 7-
rigid. Indeed, since £ and R are orthogonal, (T NR) U {N} is 7-rigid. Next, let
X € TNCq. Since iy € Irnc,, by the minimality of i, we have i, > ig > i, > jy,
and in particular, i, & [j,,7,]. By Lemma [7.2.5(1), (T NCq) U{N} is 7-rigid.

Finally, since i9 € I7nc,, we have i, = ig for some X € T NCq. Take an
object M € TNL. Since (X, M) is T-rigid, by Lemma [7.2.1] iy & [j,,,%,,]. Then,
iy < do Or j, > ig. That is, either M € LL, or M € LI, . In the first case,
(M, N) is 7-rigid by our assumption. In the second case, by Corollary [5.3.3(2),
(M, N) is 7-rigid. This shows that (7 NL)U{N} is 7-rigid. This establishes our
claim. By the 7-rigid maximality of 7, we have N € T, and hence, N € TN L’Iio.
Therefore, TNLE, is maximal 7-rigid in £Z, . By a similar discussion, Statement

(4) holds. The proof of the lemma is completed.

The following statement collects of some properties of a maximal 7-rigid set
T in .7 (Q) with T NCq a double infinite chain.
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7.2.10 LEMMA. Let T be a mazimal T-rigid set in F(Q) such that T NCq is a

double infinite chain.

(1) If T N L; has a minimal (respectively, mazimal) element , for some i € Z,
then T N L, (respectively, T N L) is finite.

(2) If T N R; has a minimal (respectively, mazimal) element , for some i € Z,
then T N Ry, (respectively, T N R;,) is finite.

(3) If TN L; and T N\ R; are both finite, for alli,j € Z, then Itnc, has neither
minimal nor mazimal element and Jrnc, has neither minimal nor mazimal

element.

Proof. We shall only prove Statements (1) and (3). Assume that 7 N L; has
a minimal element X, for some ¢ € Z. Obviously, 7T N L; C T NCq. Being a
double infinite chain, 7 M Cg contains an object M such that M < X. That is,
i, < i, =14 Since X is the minimal element in 7 N L;, we have i,, < i — 1.
Assume that 7 N L | is infinite. Then it contains an object Z with i, =i — 1
and j, <1i,,. Thus, i, € [j,,i,]. By Lemma([7.2.1] (M, Z) is not a 7-rigid pair,
a contradiction. Hence, 7 N L}, is finite. Similarly, if 7 N L; has a maximal
element, then 7 N L, is finite. This establishes Statement (1).

For proving Statement (3), assume that 7 N L; and 7 N R; are both finite, for
all i, j € Z. We shall consider only the case that I7rc, has a minimal element 4.
Since 7 N L;, is finite, it has a minimal element N. Now let X € 7 N Cg such
that X < N. Then ¢, <1, = 1i,. By the minimality of 7y, we see that i, = 7.
That is, X € L;,. By the minimality of NV, we see that X = N. Thus, N is a
minimal element in 7 N Cq which is a contradicts our assumption that 7 N Cq
is a double infinite chain. Thus, Statement (3) is established. The proof of the

lemma is completed.

In view of Proposition [7.2.9(1), given a maximal 7-rigid set 7 in .Z(Q), if
T NCq # 0, then it is a sectional chain in Cg. Next we shall extend a sectional
chain in Cp to a maximal 7-rigid set in .#(Q). We start with the following

definition.
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7.2.11 DEFINITION. Let S = {X, },er be a sectional chain in Cg, where [ is
some interval of Z such that X,, < X,,,; for every non-maximal integer n € I.

Let ©,, be a maximal 7-rigid set in Wk,

Lemma [7.2.8[(2), the set

Xon41s fOr every non-maximal n € I. By

©= Un,n—l—le] @n

is 7-rigid. Moreover, by Lemma [7.2.§(1), S U © is 7-rigid. Therefore, we shall
call © an addend to S in .7 (Q)).

Observe that SUO is not necessarily a maximal 7-rigid set in .%# (Q), as shown
below.

7.2.12 EXAMPLE. Let
S: <X, 1 <X, < X1 <o

be a chain in Cg contained in the double infinite section path Ry such that
(ix,:Jx,) = (2n,0) for n € Z. Obviously, S is a sectional chain. By definition,
Wx, X1 = Wz, where Z = (2n + 1,2n + 1) is the quasi-simple object Sa,41 in
L, for every n € Z. That is, the addend © to S is the set

{ 75—17317337"' aSQTL—l"'}~

Since S U© U {11} is 7-rigid, where T} is the quasi-simple object in R, we see
that S U © is not maximal 7-rigid in .% (Q).

The following result shows some properties of an addend to a sectional chain
in Z(Q).

7.2.13 LEMMA. Let S be a sectional chain in Cq, and let © be an addend to S
in Z(Q).

(1) If Is has a smallest (respectively, largest) integer iy, then © N L is contained
in L3, (repectively, LT, ).

(2) If Js has a smallest (respectively, largest) integer jo, then ©NR is contained

in RS, (repectively, RZ; ).
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Proof. We shall only prove Statement (1) in case Is has a smallest integer 7.
Take an object M € © N L. By definition, M € Wxy for some X,Y € § with
Y a minimal cover of X. By Lemma [7.1.3(3), Wx,y = Wy, where Z € L with
(i,,j,) = (i, — 1,4, +1). Since M € Wy and i, € Is, we have j,, > j, =
iy +1>14g. That is, M € L, . This shows that © N L C LI, . The proof of the

lemma is completed.

Let S be a sectional chain in Cg, and let © be an addend to § in .#(Q). The

following lemma shows how to complete SUO to a maximal 7-rigid set in .#(Q).

7.2.14 LEMMA. Let S be a sectional chain in Cq, and let © be an addend to S
in Z(Q). If M € Z(Q)\(SUO), then SUOU{M} is T-rigid if and only if one
of the following statements holds.

(1) M € Cq is either a lower bound or an upper bound for S.
(2) M € L is such that either i,, < i for alli € Is or j,, > for alli € Is.

(3) M € R is such that eitheri,, < i for all j € Js orj,, > j, for all j € Js.

Proof. Fix an object M € #(Q)\(S U©O). Suppose first that SUO U {M} is 7-
rigid. Firstly, assume that M € Cg. Being 7-rigid, SU{M} is a chain by Lemma
. We shall need to show that Statement (1) holds. Indeed, suppose on the
contrary that M is neither a lower bound nor an upper bound for S. Since S is
interval-finite, there are X, Y € § with Y being the minimal cover of X such that
X < M <Y. By the assumption, X, Y are connected by a path p. Consider first
the case that t(p) = X. By Lemma p is the unique sectional path in Cg from
Y to X. Then, by Lemma [4.3.4] i, <i, and j, = j,. By the definition of the
partial order in Cg, we have i, <1, <1, and j, = j,, = j,. Therefore, M lies
on p by Lemma In particular, I(p) > 1. By Lemma [7.1.3(3), Wx,y = Wy,
where Z € £ with (iz,j,) = (i, —1,i, +1). In view of Lemma [5.1.4) and Lemma
5.2.6(2), Z lies in every maximal 7-rigid set in W. In view of the definition of
O, we see that Z € ©. Since j, =i, +1 <1, <i, —1=1,, by Lemma[7.2.]
(M, Z) is not T-rigid, a contradiction to © U {M} being 7-rigid. Similarly, we
will obtain a contradiction if s(p) = X. This establishes Statement (1).
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Secondly, assume that M € L£. We need to show that Statement (2) holds.
Suppose on the contrary that there exist some iy,%1 € Is such that 7,, > iy
and j,, < ¢y. Since SU{M} is 7-rigid, by Lemma [7.2.5] i does not lie in the

interval [j for every ¢ € Is. In particular, i,i1 & [j,,,%,,], and therefore,

M) iM]7
10 < J,, <1, <1t;. Moreover, we may assume that i, is the largest integer in Is
such that 79 < j,, and 7, is the smallest integer in Is such that 7,, < 7;. Then,
i1 is the minimal cover of 4y in Is. By Lemma [4.3.16]1), there exist X,Y € S
with Y being a minimal cover of X such that i, = iy and i, = #;. Let p be
a path in Cg between X and Y. Since X,Y are comparable, Lemma [4.3.9, p
is sectional. Since i, < i,, by Lemma [£.3.4(2), s(p) = Y. Therefore, Wyxy is
contained in £. By Lemma [7.1.3(3), Wxy = Wy with (i,, j,) = (i1 — 1,ip + 1).
Since i +1 < j,, <1, <143 —1, we have M € Wy y. By definition, © contains a
maximal 7-rigid set ©xy in Wxy. In particular, Oxy U{M} is 7-rigid. By the
7-rigid maximality of Oy, we have M € Oxy. In particular, M € ©. This is a
contradiction. Hence, Statement (2) holds. Similarly, if M € R, then Statement
(3) holds. The necessity is established.

Next, we shall prove the sufficiency, that is, each of the three statements stated
in the lemma implies that SU©O U {M} is 7-rigid. Assume first that Statement
(1) is true. Then M € Cg, which is either a lower bound or an upper bound for
S. We shall consider only the case where the first situation occurs. In view of
Lemmal[4.3.10, S has a minimal element X. By the definition of the partial order
in Cg, we deduce that 7, is the smallest integer in /s and j is the largest integer
in Js. Since M < X, we have 7,, <1, and j,, > j,. Take N € ©. Assume that
N € L. By Lemma [7.2.13(1), N € L2; - Observe that i, > j, >i,. That is,
iy & [nsiy]- By Lemmal[7.2.1[1), (M, N) is 7-rigid. In case N € R, we similarly
have (M, N) is 7-rigid. This shows that © U {M} is 7-rigid. Furthermore, since
M is lower bound of S, the set S U {M} is a chain in Co. By Lemma [7.2.4]
SU{M} is 7-rigid. This proves that SUO U {M} is 7-rigid.

Assume now that Statement (2) holds. Then M € L such that either i,, <
for all « € Is or j,, > ¢ for all i« € Is. We shall consider only the case where

the first situation occurs. In particular, [j,,,7,,] N Is = ) and Is has a smallest
integer 4. That is, SN L; = 0 for every i € [j,,,7,]. By Lemma [7.2.5(1),
SU{M} is 7-rigid. Next, take N € ©. If N € R, since L, R are orthogonal,
then (M, N) is 7-rigid. Otherwise, N € L. Since Is has minimal element ig, by
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Lemma (1), N e L3, Since i,, < iy, we have M € L%, . By Corollary
5.3.3(2), (M, N) is 7-rigid. This shows that SU© U {M} is 7-rigid. Finally, in
case Statement (3) holds, we may show in a similar fashion that SU© U {M} is
7-rigid. The sufficiency is established. The proof of the lemma is completed.

Recall that a set of object in Cg is a section-generator of Cq if its convex hull

in Cq is a section in Cq.

7.2.15 PROPOSITION. Let S be a sectional chain in Cg, and let © be an addend
to S in Z(Q). Then SUO is a mazimal T-rigid set in F(Q) if and only if S is

a section-generator of Co such that its convex hull has no infinite path.

Proof. Let X be the convex hull of § in Cp. Assume that S U © is a maximal
T-rigid set in #(Q). We claim that neither of Is and Js has an upper or lower
bound. Otherwise, assume first that Is has a smallest integer 5. Choose some
object M € L with i,, < ip. In particular, j,, < 4o. By Lemma [7.2.13|1),
M ¢ ©. By Lemma [7.2.142), SUO© U {M} is 7-rigid. This contradicts the
7-rigid maximality of § U ©. Thus, Is has no lower bound. Similarly, we could
show that Is has no upper bound. In a similar fashion, we can show that Js has
neither an upper bound nor a lower bound. By Proposition [4.3.24] ) is a section
of Cg having no infinite path. In particular, § is a section-generator of Cg.

Now assume that S is a section-generator of Cg and X' is a section in Cq
containing no infinite path. By Proposition [£.3.23] S is a double infinite chain.
Moreover, by Proposition 4.3.24, neither of Is and Js has an upper or lower
bound. Suppose that S U © is not maximal 7-rigid in .%(Q). Then, there exists
an object M € .Z(Q)\(SUO) such that SUOU{M} is 7-rigid. If M € Cq, then
Lemma [7.2.14|(1), M is a lower bound or an upper bound of S, contradiction to
the fact that S is double infinite. If M € £ then, by Lemma [7.2.14)(2), i, is a
lower bound or an upper bound of Is, contradiction. If M € R, then, by Lemma
7.2.14)3), j,, is a lower bound or an upper bound of Js, a contradiction again.

The proof of the proposition is completed.

The following definitions will be used in our main result of this section.

7.2.16 DEFINITION. Let S be a chain in Cg.
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(1) Let £J<FIS = L%, in case Is has a smallest integer io; and otherwise, the
empty set. Moreover, let £ I, = L2, in case Is has a largest integer i;;
and otherwise, the empty set.

(2) Let RE = RZ,, in case Jg has a smallest integer jo; and otherwise, the
empty set. Moreover, let R I = RZ,;, in case Js has a largest integer ji;
and otherwise, the empty set.

Fix an integer 7. Let ® be a set of objects in LI, (respectively, £2,). Recall
that @ is dense in LE, (respectively, £2,) if, for any M € L, (respectively, £Z,),
there exists N € ® such that Wy, € Wy. We have the same fashion for R’; and
R,

The following is the main result of this chapter, which gives a description of

all the maximal 7-rigid sets in .% () containing some objects in Cq.

7.2.17 THEOREM. Let T be a set of objects of F(Q). Then T is a mazimal
T-rigid set in F(Q) with T N Cq # 0 if and only if there is a sectional chain S
in Cg such that

T=SUuUd Ud s udys UdL’s,
where

(1) © is an addend to S in F(Q);

<IS . . .. . + . . . + .
(2) ®:°¢ is a mazimal T-rigid set in LT, , which is dense in L, in case S

has a minimal element;

(3) 7' is a mawimal T-rigid set in L),

which is dense in L2 in case S

has a mazximal element;

(4) ®37S is a mazimal T-rigid set in RE;_, which is dense in RY, in case S
S <Js
has a mazximal element;

(5) @275 is a mazimal T-rigid set in R g

which is dense in R;Js m case S

has a minimal element.
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Proof. Assume first that S is a sectional chain in Cg such that
<l >1, <J, >J,
T=SUOUP*UD, UPZ" UDLS

as stated in the theorem. Consider an object M € CD;IS. Then, Is has a minimal
element 4o with £, = £, . By Lemma (1), ©NLC L, . In particular,
M ¢ ©N L, and hence, M ¢ SUO. Since i,, < ip < @ for all i € Is, by
Lemma [7.2.14(2), SU© U {M} is 7-rigid. That is, (M, N) is 7-rigid, for any
N € SU0O. Now, assume that N € @ZIS. Then, Is has a a maximal element 7;

) _ _ ) . . _ _ ) I
with £>I.s = L'>i1. Since ig < iy, we have N € £>il - £>i0. Since M ¢ CIDZ S C

Lt by Corollary |5.3.3(2), (M, N) is 7-rigid. Since £, R are orthogonal, (M, N)

<ig?

is 7-rigid, for every N € <I>7>3JS U (ID;‘]S . Since @ZI‘S is 7-rigid, we have shown that
(M, N) is 7-rigid, for every N € T. If M € @ZIS U (I>7>2‘]3 U @;JS, using a similar
argument, we may show that (M, N) is 7-rigid, for every N in 7. This shows
that 7 is 7-rigid in Z(Q).

For proving the maximal 7-rigidity of 7 in .% (Q), let M € .#(Q) be such that
T U{M} is 7-rigid. We shall show that M € T. Suppose that M ¢ SUO. In
view of Lemma we need to consider three possibilities. Assume first that
M € Cgq, which is either a lower or upper bound of S. We shall consider only
the case where M is a lower bound of §. In particular, S has a minimal element
X. Then, i, is the minimal element Is and j, is the maximal element in Js.
By Statement (2), ®5'¢ is dense in £F,_ = £f, | and by Statement (5), &7’ is

<Is <iy’

dense in RS, =R<; - Since M < X, we have 7,, <1, or j,, > j,. Assume first
that i,, < i,. Consider the quasi-simple object S € L with (ig,j,) = (i

M Z]\/f)'
. Ie . .
we have S € LI, . Since ®;°5 is dense in LI, , there
X X

exists some N € ®3' such that S € Wy. Then, i,, =i, € [j,,i,]. By Lemma

» "M

Since i, = 1, < iy,
7.2.1(1), (M, N) is not 7-rigid, a contradiction. In case j,, > j,, a dual argument
will yield a contradiction.

Assume now that the second case stated in Lemma [7.2.14] occurs, that is,
M € L such that ¢, < forall ¢ € Is or j,, > 1 for all i € Is. We shall consider
only the first case. Then, Is has a minimal integer iy. Since i,, < 79, we have
M e L£f, = LI, . Since @7’ is maximal 7-rigid in LE,. and s U {M} is
7-rigid by our assumption, we obtain M € @ZIS. Similarly, if the third case
stated in Lemma occurs, then M € (1)7>st . This establishes the sufficiency.

Conversely, assume that 7 is a maximal 7-rigid set in . % (Q) with TN Cq # 0.
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By Lemma [7.2.9(1), S = T N Cq is a sectional chain in Co. We may write
S = {X,}nez, where Z is an interval of Z, such that X, < X, for any
non-maximal n € Z. Given a non-maximal integer n € Z, by Lemma [7.2.9(2),
Ox, x,.1 = T N Wx, x,,, is a maximal 7-rigid set in Wy, x,,. By definition,
© = Upnt1ez Ox,, x,,, is an addend to S in Z(Q). In view of Definition
and Lemma [7.2.9(3), we see that @3’ = 7N L%, is a maximal 7-rigid set in
EIIS. We shall verify the second part of Statement (2). Assume that S has a
minimal element X. Then, ELS = /JL-X with ¢, the minimal element in Is.
By Proposition (1), ®5's contains infinitly many objects of the ray L} for
some 7y < %,. Suppose on the contrary that @ZIS is not dense in ﬁiix. Then,
ip < i, — 1 by Lemma Consider the quasi-simple object S € £ with
(ig,7s) = (ip+1,i9+1). We claim that S has no cover in 7NL. Indeed, let N € £
be such that S < N. Then j, < j, =io+1 =1, <i,. Thatis, N ¢ £E; ., and
N & L, ;- By Lemma M(l), O3’ U{N} is not 7-rigid. Since @39 C T, we
have 7 U {N} is not 7-rigid. In particular, N ¢ T, that is, N ¢ T N L. Thus,
our claim is true. Therefore, io+1 ¢ [j,,,1,,] for every M € T N L. Consider now
Z € Cq with (i,,7,) = (ip+1,j,). Since i, =ip+1 < i, and j, = j,, we have
Z < X. Since X is the minimal element in S, we see that Z ¢ S, and hence,
Z ¢ T. Observing that SU{Z} is a chain, by Lemmal[7.2.14(1), SU{Z} is 7-rigid.
Since i, = igp+1 & [j,,.1,,] for every M € TNL, we deduce from Lemma[7.2.1](1)
that (T N L) U{Z} is 7-rigid. Furthermore, since (T NR) U {X} is 7-rigid and
jx = Jj,» we conclude from by Corollary [7.2.2)2) that (7T N'R) U {Z} is -rigid.
As a consequence, 7 U{Z} is 7-rigid. Since Z ¢ T, we obtain a contradiction to
the maximality of 7. Thus, Statement (2) holds.

Similarly, ®7¢ =7 N L2 1 Vverifies Statement (3), O =T NRE J Verifies
Statement (4), and ®2'S =7 N R, verifies Statement (5). Thus,

<1 >1 <J >J.
T =SUOUDS UP'S UdL'S UdL's

is a maximal 7-rigid set in .% (Q). Since T’ C T, we have 7' = T. The proof of

the theorem is completed.

7.2.18 REMARK. To conclude this section, we should point out that our results

enable us to construct all the maximal 7-rigid sets in #(Q). Indeed, applying
Theorem [5.3.25| enables us to construct all (densely) maximal 7-rigid sets in each
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of the regular components £ and R. Thus, Theorem tells us how to find all
the maximal 7-rigid sets in .% (()) containing no objects of Cy. Next, applying
Theorem [7.2.17, we shall be able to construct all the maximal 7-rigid sets in
Z(Q) containing some objects in the connecting component Cg. Indeed, using
Proposition £.3.22] we are able to construct all the sectional chains in Cp. Given
a sectional chain § in Cg, as indicated in Define [7.2.11] we shall apply Theorem
to construct all possible addends © to S in . (Q). Moreover, using Theorem
[5.3.27| and [5.3.28] we are able to construct all the (densely) maximal 7-rigid sets

I I : _ _ .
o3's @71 9275 and BR7° in L, L3, RE, and RZ,_, respectively.

7.3 Cluster-tilting subcategories of a cluster cat-
egory of type AY

The objective of this section is to give a method to construct all the cluster-

tilting subcategories of a cluster category €(Q) of type AZL.

In view of Theorem we are able to characterize and construct all the
maximal rigid subcategories of € (Q). Indeed, Liu and Paquette have given a
geometric criterion for a maximal rigid subcategory of € (Q) to be cluster-tilting;
see [48]. Next, combining these results, we shall provide a method to construct

all the cluster-tilting subcategories of €(Q).

For this purpose, we shall recall some geometric notions and terminology
from [48]. Denote by B, the infinite strip in the plane of the points (z,y) with
0 <y < 1. The points [; = (i,1),i € Z, are called the upper marked points, and
t; = (—1,0),17 € Z, the lower marked points. An upper or lower marked point will

be simply called a marked point.

B R S O T P T N I T

ty T3 Ty T3 ¥y T3 T o9 T_3 T_4
Figure 7.1: An infinite strip with marked points.
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A simple curve in B, is a curve which does not cross itself and joins two
(maybe identical) marked points called endpoints. A simple curve is called in-
ternal if it intersects the boundary of 2., only at the endpoints. Two distinct
simple curves in B, are said to cross if they have a common point which is not
an endpoint of any of the curves. Let p,q be two distinct marked points. There
is an isotopy class of internal simple curves in B, connecting p and ¢, which is
called a segment of endpoints p, q; denoted by [p, q] or [q,p]. A segment « in B
is called a connecting arc if o = [l;,v;] with i,j € Z; an upper arc if a = [1;, 1]
with j —¢ > 2, and a lower arc if & = [t,,v,] with p — ¢ > 2. A segment is
called an arc in B, if it is a connecting, upper or lower arc. We shall denote by
arc(Bo.) all the arcs in B,. One says that two arcs a, § cross if every curve in

a crosses each of the curves in [.

REMARK. It is easy to see that two upper arcs [[;,[;] with j —i > 2 and [[,, [,]
with ¢ —p > 2 crossif j > g >4 > por q > 7 > p > Similarly, two lower
arcs [v;,t;] with ¢ —j > 2 and [t,,v,] withp —¢ > 2 crossif i > p > j > g or
p > 1 > q > j. Moreover, two connecting arcs [[;, t;] and [[,,t,] cross if i < p and
Jj <gqorp<iandq< j Furthermore, an upper arc [[;, ;] with j —¢ > 2 and a
connecting arc [[,,t,] cross if j > p > ¢. Finally, a lower arc [v;, t;] with i —j > 2
and a connecting arc [l,,t,] cross if ¢ > ¢ > j. An upper arc and a lower arc

never Cross.

7.3.1 DEFINITION. A maximal set of pairwise non-crossing arcs of B, is called

a triangulation.

Ly La Lo Ly L L L I3 |

Ty T3 Ty T3 g V-1 T 9 ¥_3 ¥_4

Figure 7.2: A triangulation T of 9B.

Let T be a triangulation of ®B.,. A marked point in B, is called T-bounded
if it is an endpoint of at most finitely many arcs in T. An upper marked point [,

is called
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(1) a left T-fountain base provided that the set {j € Z | [l,,t;] € T} has a
minimal integer but no maximal integer, and there exist infinitely integers
i < p—1such that [(;,[,] € T but at most finitely many integers j > p + 1
such that [[,,[;] € T;

(2) a right T-fountain base provided that the set {j € Z | [l,,¢;] € T} has a
maximal integer but no minimal integer, and there exist infinitely integers
i > p+ 1 such that [[,,;] € T but at most finitely many integers j < p — 1
such that [[;,[,] € T;

Similarly, a lower marked point t, is called

(1) a left T-fountain base if provided that the set {j € Z | [l;,t,] € T} has a
minimal integer but no maximal integer, and there exist infinitely integers
i > p+ 1 such that [t;,t,] € T but at most finitely many integers j < p —1
such that [v,, ;] € T;

(2) a right T-fountain base provided that the set {j € Z | [l,,t;] € T} has a
maximal integer but no minimal integer, and there exist infinitely integers
i < p— 1 such that [t,, ;] € T but at most finitely many integers j > p+1
such that [v;,v,] € T;

Moreover, an upper marked point in B is called a full T-fountain base provided
that the set {j € Z | [l,,t;] € T} has neither minimal nor maximal integer, and
there exist infinitely integers ¢ < p — 1 such that [[;,[,] € T and infinitely many
integers j > p + 1 such that [[,,[;] € T; a lower marked point ¢, is called a full
T-fountain base provided that the set the set {j € Z | [l;,t,] € T} has neither
minimal nor maximal integer, and there exist infinitely integers ¢ > p 4+ 1 such
that [t;,t,] € T and infinitely many integers j < p — 1 such that [¢,,v;] € T.

For brevity, a left, right or full T-fountain base will be simply called a T-
fountain base. It is easy to see that the above definitions are equivalent to those
given in [48, Section 3]. In Figure the upper marked point [y is neither T-
bounded nor a T-fountain base. In Figure below, the upper marked point [,

is a full T-fountain base.
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Ty T3 Ty T1 To T3 ¥ o9 T_3 T_4

Figure 7.3: A triangulation T of B, with a T-fountain base.

Recall that by ) we denote a quiver of type A% having no infinite path. The
skeleton 2°(Q) of the derived category D°(rep(Q)) chosen in Section 3.3 is an
Auslander-Reiten category, whose Auslander-Reiten quiver and Auslander-Reiten
translation are denoted by I'gs(g) and 7. Moreover, 'y contains three con-
nected components: the connecting component Cg of shape ZAZ,, and two regular
components £ and R which are of shape ZA_.,. On the other hand, the cluster
category € (@) is also an Auslander-Reiten category, whose Auslander-Reiten
quiver and Auslander-Reiten translation are denoted by I'¢(g) and 7. Since
Cg, £ and R form a fundamental domain .# (Q) for € ((Q)), the canonical functor
m: 2°(Q) = €(Q) induces a translation-quiver-isomorphism 7 : .7 (Q) — '¢(q),
which acts identically on the objects. Moreover, 7 restricted to Cg, £ or R is a
translation-quiver-isomorphism, respectively. Thus, I'¢ () consists of three con-
nected components, namely, C,x = 7(Cq) which is of shape ZAY, and Lo = 7(L)
and Ry = m(R) which are of shape ZA .

As in Section 7.1, we shall give a coordinate system for each of the three
components of I'¢(g) in such a way that the three coordinate systems are related
to each other. To start with, we fix two double infinite sectional path Lo and Ry
in Cy, whose intersection contains a unique object Uy. Then, for any i,j € Z,
write L; = T(;LO and R; = T(J%RO. Thus, given an object X € Cy, there is a
unique pair (iy, j, ) of integers such that L; N R; = {X}. For convenience, we
shall write X = (i, j, ). This yields a coordinate system for Cy, which coincides

with the coordinate system Cg.

Now, we shall give a coordinate system for each of L4 and R¢. Consider U,
as an object in I'po(rep(q)), there is a unique quasi-simple object Sy, € Lg such

that Homgug)(Up, Sp) # 0. The quasi-simple objects in Lg are S; = 72715,
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with i € Z. The ray starting with S; is denoted by L;, and the co-ray ending
with S; is denoted by L; . Given an object M € L4, by Lemma , there is a
unique pair of integers (i,,,j,,) with ¢,, > j,., such that M = LjM nL; . We
shall write M = (i,,, j,,)- This yields a coordinate system for L, which coincides
with the coordinate system for L.

Similarly, Hom gy (Uo, Tr) # 0 for a unique quasi-simple object Tr € Ry¢.
The quasi-simple objects in R¢ are T; with T; = 72 'Tg, with ¢ € Z. The ray
starting with 7} is denoted by R;", and the co-ray ending with T} is denoted by
R, . Given an object N € R¢, by Lemma there is a unique pair of integers
(iy,Jy) With i, > j,, such that N = R;;V NER; . We shall write N = (i, jy)-
This yields a coordinate system for R, which coincides with the coordinate
system for R.

The following result is a reformation of some facts stated in [48], Section 4].

7.3.2 LEMMA. There is a bijection V : (I'¢(g))o — arc(Bs), defined by

[[ix’thL it X € C‘ﬁ;
U(X) =< [, -1l 4], X €Ly
[t 11t 1), ifX € Re.

Given a strictly additive subcategory 7 of €(Q), denote by ind.7 the set
of objects of I'¢(g) which lie in 7. Moreover, denote by arc(.7) the set of arcs
U(X) with X € ind.7.

7.3.3 THEOREM ([48)]). Let Q be a quiver of type AZ having no infinite path.
A strictly additive subcategory T of €(Q) is weakly cluster-tilting if and only if
arc(.7) is a triangulation of B.

The following statement gives a condition for a weakly cluster-tilting subcat-
egory of €(Q) being cluster-tilting.

7.3.4 THEOREM ([48]). Let Q be a quiver of type AL having no infinite path. A
strictly additive subcategory T of €(Q) is cluster-tilting if and only if arc(7)
1s a triangulation of B, with infinitely many connecting arcs, and every marked

point in B, is either an arc(T)-fountain base or arc( 7 )-bounded.
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Given a weakly cluster-tilting subcategory, the following statement gives a
combinatorial interpretation of the arc(.7)-bounded marked points and the left
(right) arc(.7)-fountain bases in B,

7.3.5 LEMMA. Let T be a weakly cluster-tilting subcategory of €(Q). Consider

an upper marked point l; and a lower marked point tj in B with t,j € Z.

(1) The upper marked point l; is arc(.7)-bounded if and only if L; N ind.7,
Li,NindZ and L7, Nind.7 are finite.

(2) The lower marked point ¢; is arc(.7 )-bounded if and only if R; Nind.7,
R, Nind.7 and Ry, NindT are finite.

Proof. Consider the bijection W : (I'¢(g))o — arc(B), stated in Lemma [7.3.2]
We obtain

O(L; NindT) = {[;,v,] € arc(.7)},
O(LS , NindT) = {[I,, ;] € arc(T) | p <i— 1},
O(L;, Nind.T) = {[l;, ;] € arc(T) | ¢ > i+ 1}.

By definition, [; is arc(.7)-bounded if and only if the sets {[l;, ;] € arc(.7)},
{I,, ;] € arc(T) | p < i—1} and {[l;,[,] € arc(F) | ¢ > i + 1} are all finite.
This is evidently equivalent to that R; Nind.7, £, NindJ and £;,, NindT
are finite. This establishes Statement (1). Statement(2) is similar to show. The

proof of the lemma is completed.

Given a weakly cluster-tilting subcategory, the following statement gives a

combinatorial interpretation of the left (right) arc(.7)-fountain bases in B

7.3.6 LEMMA. Let T be a weakly cluster-tilting subcategory of €(Q). Consider

an upper marked point l; and a lower marked point v; in B, with i,) € Z.

(1) The upper marked point I; is a left arc(.7)-fountain base if and only if
L; Nind.7 is a chain having a maximal element but no minimal element,
and LT, Nind.7 is infinite but L, Nind.T is finite.

(2) The upper marked point ; is a right arc(T)-fountain base if and only if
L; Nind.S is a chain having a minimal element but no mazimal element,
and L, Nind.7 is infinite but L}, NindT is finite.

150



(3) The lower marked point tj in B is a left arc(.T)-fountain base if and only
if R;Nind.7 is a chain having a maximal element but no minimal element,
and Ry, Nind.J is infinite but R} | NindJ is finite.

(4) The lower marked point t; in B is a right arc(.7)-fountain base if and
only if R; Nind.7 is a chain having a mazimal element but no minimal
element, and Rj_l NindJ is infinite but R, NindT is finite.

Proof. Considering the bijection ¥ : (I'¢g))o — arc(Bs), stated in Lemma
7.3.2,, we obtain

O(L; NindT) = {[;,v,] € arc(.7)},

O(Lf, NindT) = {[l,, ;] € arc(T) | p <i— 1},
O(L;, Nind.T) = {[l;, ;] € arc(F) | ¢ > i + 1}.

By definition, [; is a left arc(.7)-fountain base if and only if the following
conditions hold.

(a) {p € Z | [li,xy] € arc(.7)} has a minimal integer but no maximal one.

(b) There exist infinitely integers p < i — 1 such that [[,,[;] € arc(.7).

(c) There exist at most finitely many integers p > i + 1 such that [[;,[,] €
arc(.7).

Since L, is a chain by Proposition [4.3.19(2), L; Nind7 is a chain with respect
to the partial order over Cy. Condition (a) is equivalent to the fact that L;Nind.7
has a maximal element but no minimal element. Condition (b) is equivalent to
the fact that L} ; Nind.7 is infinite, while Condition (c) is equivalent to the fact
that L, Nind.7 is finite. This establishes Statement (1). The other statements
can be verified similarly. The proof of the lemma is completed.

Given a weakly cluster-tilting subcategory 7, the following statement gives
a combinatorial interpretation of the full arc(.7)-fountain bases in B.,. We shall

omit the proof, since it is similar to the ones of the two preceding lemmas.

7.3.7 LEMMA. Let T be a weakly cluster-tilting subcategory of €(Q). Consider

an upper marked point l; and a lower marked point v; in B, with i,) € Z.
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(1) The upper marked point l; is a full arc(J)-fountain base if and only if
L;Nind7 is a double infinite chain, while Lf  NindJ and L;,, NindT

are infinite.

(2) The lower marked point t; is a full arc(.7)-fountain base if and only if
R;Nind7 s a double infinite chain, while R;r_l NindJ and R, NindT
are infinite.

Recall that the restricted map 7 : £ — L is also an isomorphism of trans-
lation quivers acting identically on the underlying quiver. Thus, £ and L4 may
share the same coordinate system as defined in Section 2.2. Let § be a section-
generator of L. Thus, § is also a section-generator of L. Since L is a standard
component of ') and is of shape ZA ., we see that § admits an addend © of
S in L as defined in Definition [5.3.20} Considering © as a set of objects in Lg(q),

we shall call it an addend to S in L&. We may have the same discussion for Re.

Given ¢ € Z, write

ch=\J L and L= L,

m>i

which are convex subquivers of L4. Similarly, write

RE, = UmR; and RZ, = R;

. m?
m>t

which are convex subquivers of Ry¢.

The following statement shall enable us to construct all the densely maximal

rigid sets in L, or LZ,,, for any n € Z.

7.3.8 PROPOSITION. Let n be an integer.

(1) A set T of objects in LE, is densely mazimal rigid in LL, if and only if
there is a section-generator S of L which is almost contained in L} | such
that T =S U O, where © is an addend to S in L.

(2) A set T of objects in L2, is densely mazimal rigid in L2, if and only if
there is a section-generator S of L which is almost contained in L, such

that T = SUO, where © is an addend to S in Lg.
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Proof. Let T be a set of objects in L. Assume that there is a section-generator
S of L4 which is almost contained in L} ; such that 7 = S U ©, where O is an
addend to S in L. Consider T as a set of objects of L. Then § is a section-
generator of £, which is almost contained in the ray = (L} ;) in £ and © is an
addend to S in L. Since L is of shape ZA,, by Proposition [5.3.27] T is densely
maximal 7-rigid in 7~ (£%,). Considering 7 as objects of L4, by Lemma m,
T is densely maximal rigid in £%,,.

Conversely, assume that 7 is a densely maximal rigid set in £Z,,. Now con-
sider 7 as a set of objects in .#(Q). In particular, 7 is contained in 7~ (L%,) a
subquiver of £. By Lemma , T is a densely maximal 7-rigid set in 7~ (£Z,,).
By Proposition [5.3.27] there is a section-generator S of £ which is almost con-
tained in a ray L} ; in £ such that 7 = S U O, where O is an addend to S in
L. Consider T as a set of objects in L¢. In particular, S is a section-generator
of L4 which is almost contained in the ray L | in Lg, and © an addend to S
in L. The proof of the proposition is completed.

The following statement shall enable us to construct all the densely maximal
rigid sets in RE, or RS, for any n € Z. We shall omit the proof, since it is
similar to that of Proposition [7.3.8|

7.3.9 PROPOSITION. Let n be an integer.

(1) A set T of objects in RE, is densely mazimal rigid if and only if there is
a section-generator S in Ry, which is almost contained in R} _,, such that

n—1
T =8SUO, where © is an addend to S in Re.

(2) A set T of objects in R<,, is densely mazimal rigid if and only if there is
a section-generator S in Ry, which is almost contained in R, ,, such that

T =S8 U®O, where © is an addend to S in Ry.

Recall that (Cy, =) is a partially ordered set as defined in Section 4.3. Let S
be a chain in Cy. Writing Is = {i € Z | SNL; # 0}, we have Eifs = L7, in case
Is has a smallest integer ig; and the empty set otherwise; and £ I, = L2, in

case Is has a largest integer i1; and the empty set otherwise. Similarly, writing
Js ={j € Z| SNR; # 0}, we have R:]s = RZ,, in case Jg has a smallest
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integer jo; and the empty set otherwise; and R_ I = R, incase Js has a largest

integer 71; and the empty set otherwise.

The following is a necessary condition for a weakly cluster-tilting subcategory

of €(Q) to be a cluster-tilting subcategory.

7.3.10 LEMMA. If .7 is a cluster-tilting subcategory of € (Q), then Co Nind.T is

a section-generator of Cyg.

Proof. Assume that 7 is a cluster-tilting subcategory of 4’(Q). By Theorem
7.3.4(2), arc(.7) contains infinitely many connecting arcs. By Lemma [7.3.2]
ind7 N Cy is infinite. Since 'y @) and #(Q) have the same set of objects,
ind.7 N Cq is infinite.

Since 7 is a maximal rigid subcategory in € (Q), by Proposition , ind.s
is a maximal 7-rigid set in .#(Q). By Theorem , there is a sectional chain
S in Cq such that

ind7 =SUUO Uds UL UL,

where O, <I>ZIS , @ZIS , @;JS and <I)7>QJS are as stated in Theorem . Obviously,
S=CoNind.7 =Cy Nind.T.

To show that C4 N ind.7 is a section-generator of Cy, by Proposition [4.3.23]
it remains to show that S has neither maximal nor minimal elements. Assume
on the contrary that S has a minimal element X. In this case, 7, is the minimal
element in Ig, and hence, £E, = ELX. By Theorem [7.2.17(2), ®5' is dense
in [,Z-X,
L;;q in £. In particular, L;;fl Nind.7 is infinite. By Lemma [7.3.5(1), the
upper marked point [; is not arc(7)-bounded; and by Lemma @(3), [ is

not a right arc(.7)-fountain base. On the other hand, since S is an interval-finite

and by Lemma |4.2.20), (13215 contains infinitely many objects of the ray

chain with a minimal element, its subchain SN L,-X =ind7 N Lix has a minimal
element. By Lemma (1), i, is not a left arc(.7)-fountain base; and by
Lemma m(l), [; . is not a full arc(.7)-fountain base. By Theorem T is
not cluster-tilting, a contradiction. Hence, S has no minimal element. Similarly,

S has no maximal element. The proof of the lemma is completed.

Recall that m : #(Q) — I'¢(@) is an isomorphism of translation quivers acting

identically on the underlying quiver. Let S be a section-generator of Cy. Observe
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that S is also a section-generator of Cg. Let © be an addend to S in #(Q) as
defined in Definition Considering © as a set of objects in I'¢(q), we shall
call it an addend to S in I'¢(q).

The following statement is one of our main results, which enables us to con-
struct all the cluster-tilting subcategories of a cluster category of type AS. We
should mention that, for convenience, the empty set is considered as a dense
subset of itself.

7.3.11 THEOREM. Let € (Q) be the cluster category associated with a quiver @
of type A without infinite paths. A strictly additive subcategory T of €(Q) is

cluster-tilting if and only if there is a section-generator S of C¢ such that
ind7 =SUOUO UdL UL UL,
where

(1) © is an addend to S in I'¢(q);

+ .

. Ie - .
2150 While 77 is a densely mazimal

(2) ®E'S is a densely mazimal rigid set in £

rigid set in L

>Is;

+

Zgs While CI);‘]S 15 a densely maz-

(3) CID;JS s a densely mazimal rigid set in R

imal rigid set in RZ ;..

Proof. Let .7 be a strictly additive subcategory .7 of € (Q). Suppose that there

is a section-generator S of Cy such that
ind7 =SUBUO U UdLs UDLs,

where ©, 'S, 775 579 and 275 are as in Statements (1), (2) and (3) stated
in the theorem. By Proposition [£.3.23] S is a double infinite chain.

Now, we consider ind.7 as a set of objects of .#(Q). Then S is a section-
generator of Cg and © is an addend to S in #(Q). In view of Lemma [5.1.6]
O5's @75 d575 and @47 verify respectively the Statements (2), (3), (4) and
(5) stated in Theorem [7.2.17, Therefore, ind.7 is a maximal 7-rigid set in .7 (Q).
By Proposition T is a weakly cluster-tilting subcategory of € (Q). By
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Theorem arc(.7) is a triangulation of *B.,. We shall show that arc(.7)
verifies the conditions stated in Theorem [7.3.4l

Fix an integer i € Z. Consider first the case where L;Nind.7 is finite. Observe
that ind.7 is a maximal 7-rigid set in .#(Q) and ind.7 N Cy = S is a double
infinite chain. As a finite chain, L; N ind.7 has a minimal element as well a
maximal element. By Lemma (1), L}, NindZ and L;,, Nind7 are both
finite. By Lemma [7.3.5(1), [; is arc(:7)-bounded.

Suppose now that ind.7 N L; is infinite. First, assume that ind.7 N L; is a
double infinite chain. That is, S N L; = ind.7 N L; is a double infinite chain. By
Lemma [1.3.14]1), Is = {i}. That is, i is the minimal element in /5. In particular,
LL, = LI, #0. Being dense in L, by Lemma , ®'s N L is infinite,
and hence L] ; Nind.7 is infinite. Since i is the maximal element in Is, we
similarly show that L;,; Nind.7 is infinite. Therefore, by Lemma (1), [; is a
full fountain.

Secondly, assume that L; Nind.7 has a minimal element. That is, SN L; =
L; NindZ has a minimal element. By Lemma [4.3.14{(3), i is the largest integer
in Is. Thus, L3, = L, # 0. Since @7’ is dense in LZ;, by Lemma ,
o7 NI 1 is infinite. Hence, ind.7 N L, is infinite. On the other hand, observe
that ind.7 is a maximal 7-rigid set in .#(Q) and S = ind.7 N Cq is a double
infinite chain. Since L; N ind.7 has a minimal element, by Lemma (1),
L Nind7 is finite. Therefore, by Lemma (2), [; is a right arc(.7)-fountain
base. Finally, assume that L;Nind.Z7 has a maximal element. Then it is similar to
show that [; is a left arc(.7)-fountain base. This shows that every upper marked
point is either arc(.7)-bounded or an arc(7 )-fountain base. Similarly, we can
show that every lower marked point is either arc(.7)-bounded or an arc(.7)-
fountain base. By Theorem [7.3.4] .7 is cluster-tilting in €(Q).

Conversely, assume that 7 is a cluster-tilting subcategory of € (Q). By The-
orem arc(.7) is a triangulation of B,,. Consider ind.7 as a set of objects
of #(Q). By Proposition , ind.7 is maximal 7-rigid in .#(Q). By Theorem
[7.2.17] there is a sectional chain S in Cg such that

ind7 =SUO U Ud UdLs UDLs,

where @,(DZIS,@ZIS,q)fzJS and <I>7>2J3 satisfy the conditions stated in Theorem
[7.2.17 Consider ind.7 as a set of objects in I'g(g). Since S = Cy NindT, by
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Lemma [7.3.10] S is a section-generator of Cy. By our definition, © is an addend
to S in I'¢ (). Moreover, in view of Lemma , @ZIS is a maximal rigid set in
LY. We claim that ®7' is dense in £, _. Indeed, we may assume that £, # 0.
Then, LI, = L%;, where i is a minimal element in Is. Since S is a double
infinite sectional chain by Proposition [1.3.23] we deduce from Lemma [4.3.15(1)
that SN L; is a chain having no minimal element. Then, L; Nind.7 =S N L; is
infinite. Hence, by Lemma([7.3.5(1), [; is not arc(.7 )-bounded. By Theorem [7.3.4]
and Lemma [7.3.6(2), [; is either a left arc(.7)-fountain base or a full arc(.7)-
fountain base. By Lemmas (3) and (1), L, Nind7 is infinite. Since
@5’ is maximal rigid in ELS and L | C ['J<FIS7 we have L} | Nind7 C &3’
That is, QDZIS contains infinitely many objects of L; ;. By Proposition ,
@ZIS is dense in £ r¢- Similarly, we can show that @ZI‘S is a densely maximal
rigid set in £;_. This shows that Statement (2) holds. In a similar fashion, we

may show that Statement (3) holds. The proof of the theorem is completed.

REMARK. Let ) be a quiver of type A without infinite paths. We point out
that our results enable us to construct all the cluster-tilting subcategories of
the cluster category € (Q). Indeed, by Proposition , we are able to obtain
all the section-generators of Cy. Given a section-generator S, as indicated in
Definition [7.2.11], by applying Theorem [5.2.9] we are enable to obtain all possible
addends © to S in I'¢ (). Finally, applying Proposition[7.3.8 and [7.3.9) enables us

to construct all the densely maximal rigid sets in £L, , £, , RL;., and R,

respectively.
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Conclusion

Let @ be a locally finite quiver without infinite path. The orbit category
% (Q) is a cluster category in the sense that its cluster-tilting subcategories form
a cluster structure. Particularly, it is true if @) is of infinite Dynkin type, that is,
Q is of type A, AY or D. In this thesis, we provide an effective method to
construct all the maximal rigid subcategories and cluster-tilting subcategories of
% (Q) in case @ is of type Ay, or AL,

Now let @ be a quiver of type D, without infinite paths. Observe that € (Q)
shares several properties with the cluster categories of types A, and AY. For
instance, a strictly additive subcategory of € (Q) is cluster-tilting if and only if it
is maximal rigid and functorially finite; see [48, (2.11)]. Moreover, the Auslander-
Reiten quiver I'4(g) of €' (Q) consists of a connecting component of shape ZD
and one regular component of shape ZA; see [48, (2.9)]. These inspire us to
attempt to address the following problems by applying the techniques introduced

in this thesis.

(1) Construct the maximal rigid subcategories of €' (Q).

(2) Give a criterion for a maximal rigid subcategory of € (Q)) to be cluster-

tilting.

(3) Construct all the cluster-tilting subcategories of € (Q).
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