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Président-rapporteur
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Abstract

The main objective of this thesis is to study the cluster-tilting subcategories

in a cluster category C (Q), where Q is a quiver with no infinite path of type A∞
or A∞∞.

We start this work with the τ -rigidity theory in an Auslander-Reiten k-

category A, where k is an algebraically closed field and τ is the Auslander-Reiten

translation of A. Given a standard Auslander-Reiten component of A which is

a finite wing or, of shape ZA∞ or ZA∞∞, we first characterize its maximal τ -rigid

sets and then produce a method to construct all of them. This technique also

allows us to obtain all the tilting modules over the path algebra of a linearly

oriented quiver ~An.

We then apply the above mentioned results to our main objective. Indeed, the

rigid subcategories of C (Q) are determined by the τ -rigid sets in its fundamental

domain F (Q), which consists of some standard Auslander-Reiten components of

shape ZA∞ or ZA∞∞ of the derived category of finite dimensional representations

of Q. The above results enable us to characterize and construct the maximal

rigid subcategories of C (Q).

Finally, combining these with the criteria by Holm-Jørgensen and Liu-Paquette

for maximal rigid subcategories to be cluster-tilting, we shall be able to obtain a

complete characterization of the cluster-tilting subcategories of C (Q) and provide

an explicit method to construct them all.
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Sommaire

L’objectif principal de cette thèse est d’étudier les sous-catégories inclinantes

amassées d’une catégorie amassée C (Q), où Q est un carquois sans chemins infinis

de type A∞ or A∞∞.

Nous commençons par la théorie de τ -rigidité dans une catégorie d’Auslander-

Reiten A, où τ est la translation d’Auslander-Reiten de A. Étant donnée une

composante standard d’Auslander-Reiten de A qui est une aile ou de la forme

ZA∞ ou ZA∞∞, nous caractérisons d’abord ses ensembles τ -rigides maximaux et

produisons ensuite une méthode pour les construire tous. Cette technique nous

permet également d’obtenir tous les modules inclinants sur une algèbre héréditaire

d’un carquois orienté linéairement de type An.

Nous appliquons ensuite les résultats mentionnés ci-dessus à notre objectif

principal. Effectivement, les sous-catégories rigides de C (Q) sont déterminées

par les ensembles τ -rigides dans son domaine fondamental F (Q), qui se com-

pose de certaines composantes d’Auslander-Reiten de la catégorie dérivée des

représentations de dimension finie de Q, qui sont toutes standards de type ZA∞
ou ZA∞∞. Les résultats ci-dessus nous permettent de caractériser et de construire

les sous-catégories maximales rigides de C (Q).

Enfin combinant nos résultats avec les critères d’Holm-Jørgensen and de Liu-

Paquette pour qu’une sous-catégorie maximale rigide soit inclinante amassée,

nous pourrons obtenir une caractérisation complète des sous-catégories incli-

nantes amassées de C (Q) et fournir une méthode explicite pour les construire.
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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [24, 25], whose

initial aim was to study the dual canonical basis and total positivity in Lie theory.

It has been revealed that the theory of cluster algebras is connected to various

subjects of mathematics, such as representation theory, algebraic geometry and

combinatorics.

Let Q be a finite quiver without loops or 2-cycles. Consider the rational

function field Q(x1, . . . , xn), where x1, . . . , xn are labeled by the vertices 1, 2, . . . , n

of Q. Using the local information of Q at some vertex k, one mutates {x1, . . . , xn}
at xk and obtains a new set {x′1, . . . , x′n} of elements of Q(x1, . . . , xk), which

corresponds to a new quiver Q′ of vertices 1, 2, . . . , n. Using information of Q′,

one mutates again {x′1, . . . , x′n}. The sets obtained by all possible mutations

are called clusters. An element of Q(x1, . . . , xn) is called a cluster variable if it

belongs to a cluster. The Z-subalgebra A(Q) of Q(x1, . . . , xn) generated by all

cluster variables is called the cluster algebra associated with Q.

A remarkable connection between representation theory and cluster algebras

was discovered by Buan, Marsh, Reineke, Reiten and Todorov in [20]. Indeed,

given a finite acyclic quiver Q, they constructed the so-called cluster category

C (Q) associated with Q, which is the orbit category of the derived category of

finite dimensional representations of Q by the composite of the Auslander-Reiten

translation and the shift functor. One calls C (Q) an additive categorification

of the cluster algebra A(Q) associated with Q, in the sense that cluster-tilting

objects correspond to clusters; direct summands of cluster-tilting objets corre-

spond to cluster variables; and replacing an indecomposable direct summand of

a cluster-tilting object corresponds to mutating the corresponding cluster at the

corresponding cluster variable.
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In a general 2-Calabi-Yau triangulated category, replacing cluster-tilting ob-

jects by cluster-tilting subcategories, Buan, Iyama, Reiten and Scott introduced

the notion of a general cluster structure; see [21]. This inspired a great interest

in generalizing the construction given in [20] to the infinite case. Indeed, let Q

be a locally finite quiver without infinite paths. As shown by Bautista, Liu and

Paquette; see [15], the category rep(Q) of finite dimensional representations of Q

over a field is a hereditary abelian category having Auslander-Reiten sequences,

and consequently, the derived category Db(rep(Q)) has Auslander-Reiten trian-

gles; see [53]. By Keller’s result in [39], the orbit category C (Q) of Db(rep(Q)),

constructed in the same fashion as in [20], is a 2-Calabi-Yau triangulated cat-

egory. Remarkably, it has been shown that the cluster-tilting subcategories in

C (Q) form a cluster structure; see [48, 62, 59]. For this reason, one calls C (Q)

the cluster category associated with Q.

As we can see, in order to study the cluster structure in C (Q), we shall

need to study its cluster-tilting subcategories. In case Q is finite of n vertices,

a cluster-tilting object in C (Q) is simply a rigid object of n non-isomorphic

indecomposable direct summands; see [20]. In case Q is infinite, it is more difficult

to recognize cluster tilting subcategories, not to mention to construct all of them.

The objective of this thesis is to deal with these two problems in the A∞-case

and the A∞∞-case.

Let Q be a quiver of type A∞ or A∞∞ without infinite paths. Holm-Jørgensen

and Liu-Paquette have shown in [34, 48] that the cluster-tilting subcategories in

C (Q) are the maximal rigid ones which are functorially finite in C (Q). Moreover,

a geometric model (that is, an infinite polygon with marked points in the A∞-case

and an infinite strip with marked points in the A∞∞-case) has been constructed in

such a way that the maximal rigid subcategories correspond to triangulations of

the geometric model. This enabled them to characterize the functorial finiteness

of a maximal rigid subcategory in terms of the geometric model, that is, they gave

a criterion for a maximal rigid subcategory to be cluster-tilting. Note, however,

these geometric descriptions do not provide any method to obtain cluster-tilting

subcategories. In this thesis, we shall study the cluster-tilting subcategories of

C (Q) from a purely categorical point of view. Recall that cluster-tilting subcate-

gories are strictly additive, that is, closed under isomorphisms, finite direct sums
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and taking direct summands; see [48, Section 1]. Since C (Q) is Krull-Schmidt,

every strictly additive subcategory T of C (Q) is determined by a set indT of ob-

jects in its Auslander-Reiten quiver Γ C (Q). Thus, we shall work in the framework

of Γ C (Q) in order to provide

(1) a characterization of maximal rigid subcategories, and

(2) a method to construct all the maximal rigid subcategories, as well as all

the cluster-tilting subcategories.

We should point out that our construction of maximal rigid subcategories is

based on an effective construction of all tilting modules over the path algebra of

a linearly oriented quiver ~An. We shall mention that Assem and Happel have

given an implicit method to construct the tilting modules of an algebra of type

An in [4].

For the rest of this introduction, we shall present more details. The clus-

ter category C (Q) admits a fundamental domain F (Q), which is a translation

subquiver of the Auslander-Reiten quiver ΓDb(rep(Q)) of Db(rep(Q)). The canon-

ical projection π : Db(rep(Q)) → C (Q) induces a translation quiver morphism

π : F (Q) → Γ C (Q), acting identically on the underlying quiver. In case Q is of

infinite Dynkin type, π : F (Q)→ Γ C (Q) is an isomorphism, and a set of objects

in Γ C (Q) is maximal rigid if and only if it is maximal τ
D

-rigid in F (Q), where

τ
D

is the Auslander-Reiten translation of Db(rep(Q)); see (5.1.7). Therefore, it

amounts to study the maximal τ
D

-rigid sets in F (Q). This is particularly advan-

tageous since in this case every connected component of ΓDb(rep(Q)) is standard,

that is, the morphisms between two objects can be described by the paths be-

tween them. Moreover, this approach allows us to work under a more general

setting, that is, to study maximal τ -rigid sets in a standard component of an

Auslander-Reiten category.

For this purpose, we shall need some combinatorial considerations. Let (Γ , τ)

be a translation quiver, which is a finite wing; see (1.4.4), or is of shape ZA∞
or ZA∞∞. A section-generator of Γ is a set of vertices of Γ whose convex hull

is a section, or equivalently, a set of vertices of a section containing its source

vertices and its sink vertices; see (4.1.15), (4.2.24) and (4.3.22). Since it is easy

to find all the sections in Γ , we shall be able to find all section-generators of Γ .
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To ease our work, we shall introduce a coordinate system for Γ so that we may

identify a vertex X ∈ Γ with a unique pair (i
X
, j

X
) of integers; see Chapter 4.

In particular, the coordinate system yields an order � over the vertices of Γ ; see

(4.1.6), (4.2.7) and (4.3.7). A set S of vertices of Γ is called a sectional chain if

it is a chain such that, for every minimal cover X ≺ Y in S, there is a path in Γ

connecting X and Y . Indeed, every section-generator of Γ is a sectional chain;

see (4.1.15), (4.2.24) and (4.3.23).

Assume that Γ is a finite wing or of shape ZA∞. Then, every vertex X ∈ Γ is

the wing vertex of a unique wingWX in Γ ; see (1.4.6). Fix two vertices X, Y ∈ Γ .

We have X � Y if and if only WX ⊆ WY . We say that WX ,WY are comparable

if X, Y are comparable. Moreover, we shall say that WX ,WY are separable if

there is a quasi-simple vertex between them but contained in neither of them; see

(1.4.8). If X ≺ Y and X, Y are connected by a path, then we define WX
Y to be

the maximal wing contained in WY such that WX ,WX
Y are separable. In case Γ

is of shape ZA∞, the quasi-simple vertices of Γ can be written as Si with i ∈ Z
such that Si+1 = τSi. We denote by R+

i (respectively, R−i ) the infinite sectional

path starting (respectively, ending) with Si. A set of vertices of Γ is called locally

finite if it contains at most finitely many vertices of each of the R+
i and the R−j .

Given any n ∈ Z, we define Γ +
<n =

⋃
i<nR

+
i , the full subquiver of Γ generated

by the successors of Sn−1, and Γ−>n =
⋃
j>nR

−
j , the full subquiver of Γ generated

by the predecessors of Sn+1.

Now, let A be an Auslander-Reiten category; see (2.1.2), with Auslander-

Reiten quiver ΓA and Auslander-Reiten translation τ . We are ready to describe

our construction of the maximal τ -rigid sets in a standard component Γ of ΓA,

which is a finite wing or is of shape A∞ or A∞∞. Roughly speaking, our construc-

tion consists of a choice of one or two section-generators of Γ and an addition of

some extra objects in some finite wings.

First, let W be a standard component of ΓA which is a wing of rank n;

see (1.4.4). In this case, a pair (X, Y ) in W is τ -rigid if and only if WX ,WY

are comparable or separable; see (5.2.1). Since addW ∼= modk~An; see (2.2.10),

the maximal τ -rigid sets in W correspond to the tilting modules in modH, and

consequently, a maximal τ -rigid set inW is a τ -rigid set of n objects. This allows
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us to construct inductively the maximal τ -rigid sets in W . Indeed, this is trivial

in case W of rank 1 or 2. In case n > 2, we shall take a section-generator S
of W . Being a sectional chain, S is of the form X1 ≺ X2 ≺ · · · ≺ Xm, where

Xt, Xt+1 with 1 ≤ t < m are connected by a path inW . As mentioned above, we

obtain wings WXt
Xt+1

with 1 ≤ t < m, which are pairwise separable of rank less

than n; see (5.2.8). Choosing a maximal τ -rigid set Θt in WXt
Xt+1

, which is doable

by the induction hypothesis, we obtain a maximal τ -rigid set S ∪Θ1∪ · · ·∪Θm−1

in W . Indeed, every maximal τ -rigid set in W can be obtained by this way; see

(5.2.9). Since we are able to obtain all the section generators of W , this provides

a method to obtain all the maximal τ -rigid sets in W .

Secondly, let Γ be a standard component of ΓA of shape ZA∞. Similarly, a

pair (X, Y ) in Γ is τ -rigid if and only if WX ,WY are comparable or separable;

see (5.3.1). The maximal τ -rigid sets in Γ are characterized in Theorem 5.3.17,

in particular, they always contain a section-generator. To construct a maximal

τ -rigid set, we start with a section-generator S of Γ , which is necessarily of the

form

X1 ≺ X2 ≺ · · · ≺ Xt ≺ · · · ,

where Xt, Xt+1 are connected by a path for all t ≥ 1. As mentioned in the finite

wing case, we obtain finite wings WXt
Xt+1

in Γ . Choosing a maximal τ -rigid set

Θt in WXt
Xt+1

for all t, we obtain a set Θ =
⋃∞
t=1 Θt, called an addend to S, such

that S ∪ Θ is τ -rigid; see (5.3.24). If S is locally finite; see (4.2.18), then S ∪ Θ

is maximal τ -rigid in Γ . Otherwise, say, S is almost contained in some R−m; see

(5.3.22). Then, we choose another section-generator S ′ of Γ almost contained in

R+
n with m ≥ n + 2, and an addend ΘS′ to S ′. Moreover, we choose a maximal

τ -rigid set Θ in the (possibly empty) finite wing Γ +
<m ∩ Γ−>n. Then

S ∪ΘS ∪ S ′ ∪ΘS′ ∪Θ

is a maximal τ -rigid set in Γ . More importantly, all maximal τ -rigid sets in Γ

are constructed by one of these two constructions; see (5.3.24).

For our later purpose, we should point out that every maximal τ -rigid set in

Γ−>n (respectively, Γ +
<n) is of the form S ∪ΘS ∪Θ, where S is a section-generator

almost contained in R−j with j > n (respectively, R+
i with i < n), ΘS is an
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addend to S, and Θ is a maximal τ -rigid set in the (possibly empty) finite wing

Γ +
<j ∩ Γ−>n (respectively, Γ +

<n ∩ Γ−>i); see (5.3.28) and (5.3.27).

Thirdly, let Γ be a standard component of ΓA of shape ZA∞∞. In this case,

a pair (X, Y ) in Γ is τ -rigid if and only if X, Y are comparable; see (5.4.1).

Thus, the maximal τ -rigid sets in Γ are simply the sections in Γ ; see (5.4.3) and

(4.3.19).

Finally, we go back to the cluster category C (Q) of type A∞ or A∞∞. In

case Q is of type A∞, the fundamental domain F (Q) for C (Q) is the connecting

component of ΓDb(rep(Q)), which is of shape ZA∞. As explained above, we shall be

able to characterize the maximal τ
D

-rigid sets in F (Q) and construct all of them.

Combining these results with Holm and Jørgensen’s criterion for a maximal rigid

subcategory (that is, a triangulation of the infinite-gon) to be cluster-tilting, we

obtain a complete characterization of the cluster-tilting subcategories in C (Q);

see (6.1.9), and a method to construct them all; see (6.1.8). Indeed, a strictly

additive subcategory T of C (Q) is cluster-tilting if and only if indT is a maximal

τ
D

-rigid set in F (Q) obtained by taking a locally finite section-generator of F (Q),

or taking two section-generators with one almost contained in R+
n and the other

almost contained the R−n+2 for some n.

Now, assume that Q is of type A∞∞. The fundamental domain F (Q) consists

of three connected components of ΓDb(rep(Q)), namely, the connecting component

CQ which is of shape ZA∞∞, and two regular components L,R of Γ rep(Q) which

are orthogonal of shape ZA∞. W shall choose the coordinate systems for L,R
to be related to the coordinate system for CQ in such a way that the τ -rigidity of

a pair of objects in two different components can be easily described; see (7.2.1).

As a consequence, every maximal τ
D

-rigid set in F (Q) without objects of CQ is

a union of a maximal τ
D

-rigid set in L and a maximal τ
D

-rigid set in R with at

least one of them being dense in its own component; see (7.2.3).

To obtain the maximal τ
D

-rigid sets in F (Q) intersecting CQ, we shall take

a sectional chain S in CQ, which is necessarily of the form {Xn}n∈I with I an

interval of Z such that Xn ≺ Xn+1 and Xn, Xn+1 are connected by a path pn,

for all non-maximal n ∈ I. For each non-maximal n ∈ I, we define a finite wing

WXn,Xn+1 , which lies in L or R depending on s(pn); see (7.1.2). Then, choosing
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a maximal τ -rigid set Θn in WXn,Xn+1 , we obtain an addend Θ =
⋃
n∈I Θn to S,

such that S ∪Θ is τ
D

-rigid.

Consider two coordinate sets IS = {i
X
| X ∈ S} and JS = {j

X
| X ∈ S}. We

define L+
<IS

to be L+
<i0

in case IS has a minimal element i0; and the empty set

otherwise, moreover, define L−>IS to be L−>i1 in case IS has a maximal element

i1; the empty set otherwise. In a similar fashion, we define two subquivers R+
<JS

and R−>JS of R. Then, we choose maximal τ
D

-rigid sets Φ<IS
L , Φ>IS

L , Φ<JS
R and

Φ>JS
R in L+

<IS
, L−>IS , R+

<JS
, and R−>JS , respectively, such that Φ<IS

L is dense in

L+
<IS

and Φ>JS
R is dense in R−>JS in case S has a minimal element, and Φ>IS

L is

dense in L−>IS and Φ<JS
R is dense in R+

<JS
in case S has a maximal element. This

yields a maximal τ
D

-rigid set

S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R

in F (Q). More importantly, every maximal τ -rigid set containing objects of CQ
can be obtained in this way.

As shown above, we obtain a complete description of the maximal τ
D

-rigid

sets in F (Q). Using our methods to construct maximal τ -rigid sets in a standard

Auslander-Reiten component of an Auslander-Reiten category, this description

allows us to construct all the maximal τ
D

-rigid sets in F (Q). Finally, combining

these results with Liu and Paquette’s criterion for a maximal rigid subcategory

(that is, a triangulation of the infinite strip) to be cluster-tilting, we obtain a

complete characterization of the cluster-tilting subcategories in C (Q) and an

effective method to construct them all; see (7.3.11). Indeed, a strictly additive

subcategory T of C (Q) is cluster-tilting if and only if indT is a maximal τ
D

-rigid

set in F (Q) obtained by taking a section-generator S (not just a sectional chain)

as follows:

S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where Θ is an addend to S, Φ<IS
L , Φ>IS

L , Φ<JS
R , Φ>JS

R are densely maximal τ
D

rigid

sets in L+
<IS

, L−>IS , R+
<JS

, and R−>JS , respectively.

7
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Chapter 1

Preliminaries

Throughout this thesis, k stands for an algebraically closed field. In this

chapter, we shall introduce some terminology of partially ordered sets, which will

be used throughout this thesis. We also collect some notions and basic facts

about k-linear categories, path categories and mesh categories. It comes mainly

from [5], [43], and [55].

1.1 The partially ordered sets

In this section, we shall introduce some terminology of partially ordered sets,

which will be frequently used later.

Let (P,�) be a partially ordered set, also called a poset. If a � b and a 6= b,

we write a ≺ b and call b a cover of a in P. We say that b is a minimal cover of a

in P provided that a ≺ b and there exists no element c ∈ P such that a ≺ c ≺ b.

A subset S of P is called a chain provided, for any a, b ∈ S, that a � b or

b � a. A chain S in P is called maximal if there is no such a chain S ′ in P that

S ( S ′.

Let Σ be a subset of P. A subset T of Σ is called dense in Σ if for any element

x ∈ Σ , there is an element a ∈ T such that x � a.
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1.2 Linear categories

A k-linear category or simply k-category is a category in which the morphisms

sets are k-vector spaces and the composition of morphisms is k-bilinear. Such a k-

category is said to be Hom-finite if all the morphisms spaces are finite dimensional

over k.

For the rest of this section, A stands for a Hom-finite k-category. Given an

object X in A, EndA(X) = HomA(X,X) is a finite dimensional k-algebra, called

the endomorphism algebra of X. Given an ideal I in A, as defined in [5, A.3(3.1)],

one defines a quotient category A/I as follows. The objects are those of A, and

given objects X, Y , we have HomA/I(X, Y ) = HomA(X, Y )/I(X, Y ), and the

composition of morphisms is induced from the composition of morphisms in A.

1.2.1 Definition. An object X ∈ A is called a direct sum of X1, . . . , Xn ∈ A if

there exist morphisms qi : Xi → X, called injections, and morphisms pi : X →
Xi, called projections, such that Σn

i=1qipi = 1X , and for 1 ≤ i, j ≤ n,

piqj =

{
1Xi , if i = j;

0, otherwise.

In this case, write X = X1 ⊕ · · · ⊕Xn.

A non-zero object X ∈ A is indecomposable provided that X = X1 ⊕ X2

implies X1 = 0 or X2 = 0.

Given X = X1 ⊕ · · · ⊕Xr with injections qj : Xj → X and Y = Y1 ⊕ · · · ⊕ Ys
with projections ui : Y → Yi, every morphism f : X → Y in A is identified

with a matrix f = (fij)s×r, where fij = uifqj ∈ HomA(Xj, Yi), for all i, j. In

particular,

HomA(X, Y ) =
⊕
i,j

HomA(Xi, Yj).

1.2.2 Definition. A k-category A is called additive if the following are satisfied.

(1) There is a zero object 0, that is, HomA(X, 0) = 0 and HomA(0, X) = 0 for

every object X ∈ A.
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(2) For any objects X1, · · · , Xn ∈ A, the direct sum X1⊕ · · · ⊕Xn exists in A.

1.2.3 Definition. An additive k-category is called a Krull-Schmidt category

provided that every object decomposes into a finite direct sum of objects having

local endomorphism rings.

Let A be a Hom-finite Krull-Schmidt k-category. Non-zero object decomposes

into a finite direct sum of indecomposable objects; see, for example, [43, (4.2)].

To conclude this section, assume that A is an abelian k-category, as defined

in [56]. We refer the notion of Yoneda Ext Groups Extn(X, Y ), with n ≥ 1, to

[61, §3.4]. An abelian category A is called hereditary if Ext2
A(X, Y ) = 0, for any

X, Y ∈ A.

1.3 Quivers and path categories

The objective of this section is to recall some notions and terminology from

quivers and path categories.

1.3.1 Definition. A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is a set

of vertices, Q1 is a set of arrows, and s, t : Q1 → Q0 are maps. Given an arrow

α ∈ Q1, one calls s(α) its source and t(α) its target; and writes α : s(α)→ t(α).

Throughout this section, we fix such a quiver Q = (Q0, Q1, s, t). The under-

lying graph of Q is obtained from Q by forgetting the orientation of the arrows.

The quiver Q is said to be connected if its underlying graph is connected. One

says that Q is finite if Q0 and Q1 are finite sets. Moreover, Q is called locally

finite if, for any a ∈ Q0, the number of arrows α with s(α) = a, as well as, the

number of arrows β with t(β) = a, is finite. In this thesis, we assume that all

quivers are locally finite.

A vertex a in Q is called a source vertex if Q has no arrow α with t(α) = a;

and a sink vertex if Q has no arrow α with s(α) = a.
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Let a, b ∈ Q0. A path p of length l(p) ≥ 1 from a to b is a sequence of arrows

denoted by p = αl(p) · · ·α2α1, where αi ∈ Q1 for all 1 ≤ i ≤ l(p) and s(α1) = a,

t(αi) = s(αi+1) for 1 ≤ i < l(p) and t(αl(p)) = b. In this case, a is called a

predecessor of b, and b is called a successor of a. In particular, if there exists an

arrow a→ b, then a is said to be an immediate predecessor of b, and b is said to

be an immediate successor of a. In the sequel, a path from a to b will be simply

denoted by a  b. Moreover, with each vertex a one associates a trivial path

εa, which is of length 0. A path of length greater than or equal to 1 is called a

cycle if its source and target coincide. A quiver is called acyclic if it contains no

cycles. The quiver Q is called strongly locally finite if it is locally finite and, for

any a, b ∈ Q0, Q contains only finitely many paths from a to b.

A quiver Q′ = (Q′0, Q
′
1, s
′, t′) is called subquiver of Q = (Q0, Q1, s, t) if Q′0 ⊆ Q0

and Q′1 ⊆ Q1 and s′ = s |Q′1 and t′ = t |Q′1 . A subquiver Q′ of Q is called full if

Q′1 = {α ∈ Q1 | s(α) ∈ Q′0 and t(α) ∈ Q′0}, and convex provided that every path

x0 → x1 → · · · → xn in Q with x0, xn ∈ Q′ lies entirely in Q′. In particular, a

convex subquiver of Q is always full.

Let T be a set of vertices of Q. The convex hull of T is the minimal convex

subquiver of Q containing T , that is the full subquiver of Q generated by the

vertices lying on a path in Q whose endpoints belong to T .

With each arrow α : a → b in Q, we associate a formal inverse α−1 : b → a,

with the source s(α−1) = b and the target t(α−1) = a. An edge in Q is an arrow

or the inverse of an arrow. A trivial path is called a trivial walk. A non-trivial

walk w in Q is a finite or infinite product of the form · · · ci+1ci · · · , where ci are

edges such that t(ci) = s(ci+1) for all i. Such a walk is called reduced if ci+1 6= c−1
i

for every i. We shall say that a vertex x appears in w if x = s(ci) or x = t(ci) for

some i; and an arrow α appears in w if cj = α or cj = α−1 for some j. Moreover,

one says that w is simple if every vertex appears in w at most once. Finally, we

shall say that a subquiver Q′ of a quiver Q is given by a simple walk w if Q′0
consists of the vertices appearing in w and Q′1 consists of the arrows appearing

in w.

Given a quiver Q = (Q0, Q1), one defines its path category k[Q] over k as

follows. Its objects are the vertices of Q, and given a, b ∈ Q0, the set of morphisms
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from a to b is given by the k-vector space with a basis the set of all paths from

a to b. The composition of morphisms is induced from the composition of paths.

Clearly, k[Q] is a k-category. Furthermore, the path algebra of Q over k is defined

by

kQ =
⊕
a,b∈Q0

Homk[Q](a, b),

whose multiplication is induced from the composition of morphisms in k[Q].

Recall that a k-algebraH is called hereditary if every submodule of a projective

H-module is projective.It is well known that if Q is finite and acyclic, then the

path algebra kQ is hereditary; see, for example, [5, (VII 1.7)]. For more details

on algebras and modules, we refer the reader to [3], [61] and [56].

1.4 Translation quivers and mesh categories

In this section, we shall collect some notions and facts about translation quiv-

ers and mesh categories. Moreover, we shall introduce some notions and termi-

nology in a translation quiver which is a wing or of shape ZA.

1.4.1 Definition. A translation quiver Γ = (Γ 0,Γ 1, τ) is given by an underlying

quiver (Γ 0,Γ 1), which is locally finite without multiple arrows, together with a

translation, that is an injective map τ : Γ ′0 → Γ 0, where Γ ′0 is a subset of Γ 0,

such, for any z ∈ Γ ′0 and any y ∈ Γ 0, that y → z is an arrow if and only if τz → y

is an arrow. The vertices in Γ 0 which do not belong to Γ ′0 are called projective,

those not belonging to the image of τ are called injective.

Throughout this section, let Γ = (Γ 0,Γ 1, τ) stand for a translation quiver.

Given x ∈ Γ 0, the τ -orbit of x is the set of all vertices of the form τnx with n ∈ Z.
A connected full subquiver of Γ is called a section in Γ if it is acyclic, it meets

each τ -orbit exactly once and it is convex in Γ .

1.4.2 Definition. A section-generator of Γ is a set of vertices whose convex

hull is a section of Γ .
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A path x0 → x1 → · · · → xn in Γ is called sectional if xi 6∼= τxi−1, for all

0 < i ≤ n.

A translation quiver (∆, τ
∆

) is a translation subquiver of (Γ , τ) provided that

∆ is a subquiver of Γ and τ
∆
x = τx, whenever x is a vertex of ∆ such that τx

belongs to ∆.

Next, we will recall some facts on mesh categories. Recall first that k[Γ ] is

the path category of the quiver Γ over k. Given a non-projective vertex z ∈ Γ , if

αi : τz → yi, i = 1, . . . , r are the arrows starting in τz and βi : yi → z, i = 1, . . . , r

are the arrows ending in z, then mz =
∑r

i=1 βiαi ∈ k[Γ ] is called a mesh relation.

The mesh ideal in k[Γ ] is the ideal generated by all the mesh relations. The

mesh category k(Γ ) is the quotient category of k[Γ ] modulo the mesh ideal; see,

[55, (2.1)]. There exists a canonical projection functor p : k[Γ ] → k(Γ ), acting

identically on the vertices. Given u ∈ k[Γ ], we shall write ū for the image of u

under p.

Let ∆ be a convex subquiver of Γ . Then ∆ is a translation quiver and we

denote its mesh category by k(∆).

1.4.3 Lemma. Let Γ be a translation quiver and let ∆ be a convex subquiver of

Γ . If k{∆} denotes the full subcategory of k(Γ ) generated by the vertices of ∆,

then there is an isomorphism F : k(∆)→ k{∆} acting identically on objects. In

particular, for any x, y ∈ ∆, we have

Homk(∆)(x, y) ∼= Homk(Γ )(x, y).

Proof. Let k{∆} be the full subcategory of k(Γ ) generated by the objects of ∆.

Restricting the canonical projection k[Γ ] → k(Γ ) to the path category k[∆], we

obtain a full dense functor F : k[∆]→ k{∆}. It remains to show that KerF = I∆,

the mesh ideal of ∆.

Indeed, let x, y be objects in ∆. Since ∆ is convex in Γ , every mesh in ∆ is

a mesh in Γ . In particular, I∆(x, y) ⊆ IΓ (x, y) = (KerF )(x, y). Conversely, let

γ be a non-zero element in (KerF )(x, y). Then γ = Σr
i=1uimivi, where mi is a

mesh in k[Γ ] starting with xi and ending with yi, and ui ∈ Homk[Γ ](yi, y) and

vi ∈ Homk[Γ ](x, xi). We may assume that the ui and the vi are non-zero. Then
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Γ contains a path x  xi  yi  y, for each 1 ≤ i ≤ r. Since ∆ is convex in

Γ , we see that xi, yi ∈ ∆, and hence, γ ∈ I∆(x, y). This shows that KerF = I∆.

The proof of the lemma is completed.

Given a quiver ∆ = (∆0,∆1) without oriented cycles, we can construct a

translation quiver Z∆ as follows. The set of vertices of Z∆ is Z × ∆0; given

an arrow α : x → y in ∆, there are arrows (n, α) : (n, x) → (n, y) and arrows

(n, α′) : (n + 1, y) → (n, x). Define τ(n, x) = (n + 1, x), for any x ∈ ∆0. One

says ∆ is of type A if the underlying graph of ∆ is An, with n ≥ 1, A∞ or A∞∞.
In this case, Z∆ will be simply written as ZA. A reduced walk w in ZA is called

sectional if the τ -orbits in w are pairwise distinct.

The following notion is well known; see, for example [55]. It shall play an

important role in our later investigation.

1.4.4 Definition. A wing W is a translation quiver of the following shape

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦

m

s t

In such a wing W , the vertex s is the unique source vertex, t is the unique

sink vertex, while m is called the wing vertex. The unique path from s to m is a

section formed by the projective vertices of W , called the left-most section; and

the unique path from m to t is a section formed by the injective vertices, called

the right-most section. Observe that the left-most section and the right-most

section have the same vertices, called the rank of W . For convenience, we define

a wing of rank 0 to be the empty set.

Let Γ be a translation quiver, which is a wing or of shape ZA. A monomial

mesh relation in Γ is a path τx → y → x, where y is the only immediate

predecessor of x in Γ . Given x ∈ Γ , one defines the forward rectangle Rx of x to
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be the full subquiver of Γ generated by its successors y such that no path x y

contains a monomial mesh relation. Dually, define the backward rectangle Rx of

x in Γ . In particular, if Γ is of shape ZA∞∞, then, by definition, Rx consists of all

successors of x and Rx consists of all predecessors of x.

The following lemma is a slight extension of Lemma 1.1 in [48].

1.4.5 Lemma. Let Γ be a translation quiver which is a wing or of shape ZA. If

x, y ∈ Γ , then Homk(Γ )(x, y) 6= 0 if and only if y ∈ Rx if and only if x ∈ Ry; and

in this case, the class of every path from x to y forms a k-basis of Homk(Γ )(x, y).

Proof. In case Γ is of shape ZA, the statement is Lemma 1.1 in [48]. LetW be a

wing of positive rank, which is considered as a convex subquiver of a translation

quiver Γ of shape ZA∞. Given x, y ∈ W , by Lemma 1.4.3, we have

Homk(W)(x, y) ∼= Homk(Γ )(x, y).

Since W is convex in Γ , by definition, y is in Rx in W if and only if y is in

forward rectangle of x in Γ . Thus, the statement follows immediately from the

previously considered case. The proof of the lemma is completed.

We conclude this section with more notions and terminology, which will be

used later. Let Γ stand for a translation quiver which is a wing or of shape ZA∞.
In case Γ is a wing of rank n, the vertices ti = τ i−1t, where t is the unique sink

vertex and 1 ≤ i ≤ n, are called quasi-simple. In case Γ is of shape ZA∞, then a

vertex is called quasi-simple if it has only one immediate predecessor. Moreover,

given a quasi-simple vertex s, there exists in Γ a unique infinite sectional path

starting in s, called the ray starting with s; and a unique infinite sectional path

ending in s, called the co-ray ending with s.

The following statement is evident.

1.4.6 Lemma. Let Γ be a translation quiver which is a wing or of shape ZA∞,

and let x be a vertex in Γ .

(1) There exists a sectional path x1 → · · · → xn = x with x1 quasi-simple.

(2) There exists a sectional path x = yn → · · · → y1 with y1 quasi-simple.
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(3) The convex hull Wx of x1, y1 in Γ is a wing of rank n, whose wing vertex

is x.

Let Γ be a translation quiver which is a wing or of shape ZA∞. Given a

vertex x ∈ Γ , the rank of Wx is called the quasi-length of x, written as `(x).

The following statement is easy to verify.

1.4.7 Lemma. Let Γ be a translation quiver which is a wing or of shape ZA∞.
There exists a partial order � over Γ 0 so that x � y if and only if Wx ⊆ Wy.

Remark. Given x, y ∈ Γ , it is evident that Wx ⊆ Wy if and only if x ∈ Wy.

The following definition is important to our later investigation.

1.4.8 Definition. Let Γ be a translation quiver which is a wing or of shape

ZA∞. Let Wx,Wy be wings in Γ with source vertices sx, sy and sink vertices

tx, ty, respectively. We shall say that Wx,Wy are

(1) comparable if Wx ⊆ Wy or Wy ⊆ Wx;

(2) separable if τ rsy = tx for some r ≥ 2, or τ rsx = ty for some r ≥ 2.

We illustrate Definition 1.4.8(2) by the following figure, where r ≥ 2.

τrsy sy

y
x

Wx Wy

The following statement gives some properties of paths between two compa-

rable vertices of Γ .

1.4.9 Lemma. Let Γ be a translation quiver which is a wing or of shape ZA∞,
and let x, y ∈ Γ be comparable. If Γ has a path between x and y, then it is

sectional and is the unique path in Γ between x and y.
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Proof. We shall consider only the case where Wx ⊆ Wy. In particular, x ∈ Wy.

Since Wy is convex in Γ , there exists a path in Γ between x and y if and only

if there exists a path in Wy between x and y. Since y is the wing vertex of Wy,

the latter statement holds if and only if x lies on the left-most or the right-most

section of Wy; and in this case, Wy contains a unique path between x and y,

which is sectional. The proof of the lemma is completed.

In view of Lemma 1.4.9, we have the following definition.

1.4.10 Definition. Let Γ be a translation quiver which is a wing or of shape

ZA∞. A chain S : x1 ≺ x2 · · · ≺ xm in Γ is called sectional if Γ contains a path

between xt and xt+1, t = 1, . . . ,m− 1.

The following statement will be used to characterize the τ -rigid pair, which

will be introduced in Chapter 5.

1.4.11 Proposition. Let Γ be a translation quiver which is a wing or of shape

ZA∞. Given x, y ∈ Γ , the following statements are equivalent.

(1) Wx,Wy are comparable or separable.

(2) y 6∈ Rτx and y 6∈ Rτ−x.

(3) x 6∈ Rτy and x 6∈ Rτ−y.

Proof. By definition, y ∈ Rτx if and only if τx ∈ Ry if and only if x ∈ Rτ−y.

Therefore, y 6∈ Rτx if and only x 6∈ Rτ−y. Similarly, y 6∈ Rτ−x if and only if

x 6∈ Rτy. This shows the equivalence of Statement (2) and Statement (3).

For proving the equivalence between Statements (1) and (2), we shall first

consider the case where Γ is of shape ZA∞. Fix x, y ∈ Γ . Let sx, sy be the

source vertices and tx, ty the sink vertices of the wings Wx and Wy, respectively.

Assume that the ray starting with sx has the form

sx = m1 → m2 → · · · → mr → mr+1 → · · · ,

where mr = x. Then the right-most section of Wx is

mr → τ−1mr−1 → · · · → τ−(r−i)mi → · · · → τ−(r−2)m2 → τ−(r−1)m1 = tx.
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On the other hand, since the above ray is a section, y = τnmi, for some n ∈ Z
and some i ≥ 1. In particular, ty = τntx.

Assume first that 1 ≤ i ≤ r. Suppose that −(r − i) ≤ n ≤ 0. Then

y ∈ Wx, and hence, Wy,Wx are comparable. In this situation, Statements (1)

and (2) both hold. Suppose now that n > 0. Then y is a predecessor of τx,

and in particular, y 6∈ Rτ−x and Wx,Wy are not comparable. If y 6∈ Rτx, then

Γ contains a path y  τs → z → s  τx, where s is quasi-simple. In this

case, s = τam1 for some a ≥ 1, and τs = τ−bty for some b ≥ 0. This yields

ty = τ b+1+asx with b + a + 1 ≥ 2, and hence, Wy,Wx are separable. Conversely,

if Wy,Wx are separable, then ty = τ pst with p ≥ 2. Thus, Γ contains a path

y  ty → z → τ−ty  τ−pty = sx  x. Hence, y 6∈ Rτx. This establishes the

equivalence of Statements (1) and (2) in this situation. Similarly, Statements (1)

and (2) are equivalent in case n < −(r− i). Assume now that i > r. It is similar

to show that Statements (1) and (2) are equivalent in this situation.

Now consider the case where Γ is a wing. It can be viewed as a convex

subquiver of a translation quiver of shape ZA∞. Then the statement follows from

the properties of forward rectangles and backward rectangles. The proof of the

proposition is completed.

We shall give the following sketch to illustrate the above proposition in case

Γ is a wing.

x

1

2

3 4

Rτx Rτ−x

In the above figure, a vertex y ∈ Γ lies in the region 1 if and only ifWy ⊆ Wx;

and y lies in the region 2 if and only if Wx ⊆ Wy; and y lies in the region 3 or 4

if and only if Wy and Wx are separable.

The following definition is essential for our later investigation.
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1.4.12 Definition. Let Γ be a translation quiver which is a wing or of shape

ZA∞. Let x, y ∈ Γ with x ≺ y such that x, y are connected by a path. We define

Wx
y to be the maximal wing contained in Wy so that Wx and Wx

y are separable.

Remark. If x, y with x ≺ y are connected by an arrow, then Wx
y = ∅.

Definition 1.4.12 can be illustrated by the following figures.

y

τ2s s

z
x

Wx Wx
y

Wy
x

x

t τ−2t

z

WxWx
y

Wy
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Chapter 2

Auslander-Reiten Theory

The notion of Auslander-Reiten sequences was first introduced by M. Auslan-

der and I. Reiten in [8, 9] in 1970s. Since then, it has been playing an important

role in the representation theory of artin algebras. Later on, it has been developed

in abelian categories; see [11, 13], and triangulated categories; see [31, 51]. Until

now the Auslander-Reiten theory has been extended to Krull-Schmidt categories;

see [12, 46].

2.1 Auslander-Reiten categories

The objective of this section is to recall the Auslander-Reiten theory in a

Krull-Schmidt category from [9, 10, 12, 46].

Throughout this section, A stands for a Hom-finite Krull-Schmidt k-category.

The Jacobson radical of A is the two-sided ideal radA such, for all X, Y ∈ A, that

rad(X, Y ) = {h ∈ HomA(X, Y ) | 1X − g ◦ h invertible for all g ∈ HomA(Y,X)}.
Define rad2(X, Y ) to be the k-subspace of rad(X, Y ) consisting of all finite sums

of morphisms of the form gf , where f ∈ rad(X,Z) and g ∈ rad(Z, Y ).

Let f : X → Y be a morphism in A. One says that f is a section if there is a

morphism g : Y → X such that gf = 1X ; and a retraction if there is a morphism

h : Y → X such that fh = 1Y . Moreover, f is called irreducible if f is neither

a section nor a retraction while every factorization f = hg implies that g is a

section or h is a retraction. Finally, f is left almost split if f is not a section and
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every non-section morphism g : X → L factors through f ; left minimal if any

endomorphism h : Y → Y such that hf = f is an automorphism; and source

morphism if it is left minimal and left almost split. Dually, one says that f is right

almost split, right minimal and a sink morphism. Note that a source morphism is

originally called a minimal left almost split morphism, whereas a sink morphism

is called a minimal right almost split morphism in [9, 10].

A sequence X
f // Y

g // Z of morphisms in A is called a short pseudo-

exact sequence if the following two conditions are satisfied:

(1) f is a pseudo-kernel of g, that is, for any object M ∈ A, we have an exact

sequence

HomA(M,X)
f∗ // HomA(M,Y )

g∗ // HomA(M,Z);

(2) g is a pseudo-cokernel of f , that is, for any object N ∈ A, we have an

exact sequence

HomA(Z,N)
g∗ // HomA(Y,N)

f∗ // HomA(X,N).

The next two definitions are quoted from [46].

2.1.1 Definition. A short pseudo-exact sequence X
f // Y

g // Z in A with

Y 6= 0 is called an Auslander-Reiten sequence if f is a source morphism and g is

a sink morphism.

Remark. If X
f // Y

g // Z is an Auslander-Reiten sequence in A, then it

is unique up to isomorphism for X and unique for Z. Write τAZ = X and

τ−
A
X = Z.

2.1.2 Definition. We shall say that A is an Auslander-Reiten category if, for

each indecomposable object X in A, the following two statements hold.

(1) Either X is the starting term of an Auslander-Reiten sequence or there is

a source epimorphism f : X → Y ;

(2) Either X is the ending term of an Auslander-Reiten sequence or there is a

sink monomorphism g : Y → X.
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The following result is quoted from [46, (1.5), (6.1)]. For more details on

Auslander-Reiten theory in abelian categories and in triangulated categories, we

refer the reader to [9] and [31].

2.1.3 Lemma. (1) If A is abelian, then X
f // Y

g // Z is an Auslander-

Reiten sequence if and only if 0 // X
f // Y

g // Z // 0 is an almost

split sequence as defined in [9].

(2) If A is triangulated with a shift functor [1], then X
f // Y

g // Z is an

Auslander-Reiten sequence in A if and only if it can be embedded in an

Auslander-Reiten triangle X
f // Y

g // Z
h // X[1].

The following lemma is well known; see, for example, [10, (V.1(1.7))].

2.1.4 Lemma. Let A be an Auslander-Reiten category.

(1) If f : X → Y is a source morphism in A, then X is indecomposable.

(2) If g : Y → Z is a sink morphism in A, then Z is indecomposable.

The following statement is well known; see, for example, [46, Section 1].

2.1.5 Lemma. Let A be an Auslander-Reiten category. If f : X → Y is a source

morphism or sink morphism in A, then f is irreducible if and only if f 6= 0.

We refer the following result to [12, (3.4)(3.8)].

2.1.6 Lemma. Let A be an Auslander-Reiten category. If
f1

...

fn

 : X → ⊕ni=1Yi

is a source morphism in A with Yi 6= 0, then
fi1
...

fis


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is irreducible for any subset {fi1 , · · · , fis} of {f1, · · · , fn}.

We conclude this section with the Auslander-Reiten quiver ΓA of A, which

is a translation quiver defined as follows. The vertex set is a chosen complete

set of representatives of the isomorphism classes of indecomposable objects in A.

Given vertices X, Y , the number of arrows from X to Y is the k-dimension of

Irr(X, Y ) := rad(X, Y )/rad2(X, Y ).

The translation τA , called the Auslander-Reiten translation, is such that τAZ = X

if and only if A has an Auslander-Reiten sequence X
f // Y

g // Z.

One says that X ∈ A is basic if X ∼= X1 ⊕ · · · ⊕ Xt, where X1, . . . , Xt are

pairwise different objects in ΓA; and in this case, {X1, . . . , Xt} is called the

corresponding set of X in ΓA.

Given two connected components Γ ,Ω of ΓA , we write HomA(Γ ,Ω) = 0, if

HomA(M,N) = 0 for all M ∈ Γ and N ∈ Ω ; and say that Γ ,Ω are orthogonal if

HomA(Γ ,Ω) = 0 = HomA(Ω ,Γ ).

2.2 Standard Auslander-Reiten components

The main objective of this section is to study subcategories of an Auslander-

Reiten category generated by the objects of a convex subquiver of a standard

component of its Auslander-Reiten quiver.

Throughout this section, let A stand for an Auslander-Reiten category. Let

ΓA be the Auslander-Reiten quiver, and τA be the Auslander-Reiten translation

of A. Let ∆ be a convex subquiver of ΓA. We shall denote by A(∆) the full

subcategory of A, whose objects are the vertices of ∆; and by add∆ the full sub-

category of A, whose objects are the finite direct sums of objects of ∆. Observe

that ∆ itself is a translation quiver with mesh category k(∆). One says that ∆ is

standard if there exists an isomorphism φ : k(∆) → A(∆), acting identically on

the objects; see, for example, [47, (1.2)]. A connected component of ΓA is called

standard if it is standard as a convex subquiver of ΓA.
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2.2.1 Lemma. Let A be an Auslander-Reiten category and Γ be a standard com-

ponent of ΓA. If ∆ is a convex subquiver of Γ , then ∆ is also standard.

Proof. Let φ : k(Γ ) → A(Γ ) be an isomorphism, acting identically on the

objects. Let ∆ be a convex subquiver of Γ . Denote by k{∆} the full subcategory

of k(Γ ) generated by the objects in ∆. Restricting φ yields an isomorphism

φ∆ : k{∆} → A(∆). By Lemma 1.4.3, there is an isomorphism F : k(∆)→ k{∆}
acting identically on objects of ∆. Thus, the composite of F and φ∆ is an

isomorphism from k(∆) to A(∆) acting identically on objects. The proof of the

lemma is completed.

2.2.2 Lemma. Let A be an Auslander-Reiten category and Γ be a standard com-

ponent of ΓA. If ∆ is a convex subquiver of Γ , then add∆ is an Auslander-Reiten

category.

Proof. First of all, every Auslander-Reiten sequence X // Y // Z in A with

X or Z in Γ is an Auslander-Reiten sequence in addΓ . Moreover, a source

epimorphism f : X → Y in A with X ∈ Γ is a source epimorphism in addΓ , a

sink monomorphism g : Y → Z in A with Z ∈ Γ is an sink monomorphism in

addΓ . This is, addΓ is also an Auslander-Reiten category and ΓaddΓ = Γ .

Now, assume that ∆ is a convex subquiver of Γ . Let ∆′ be the full subquiver

of Γ generated by the objects M 6∈ ∆. Let φ : add∆ → addΓ/add∆′ be the

composite functor of the canonical embeding add∆ → addΓ and the canonical

projection addΓ → addΓ/add∆′. We claim that φ is an equivalence. Indeed,

since the objects of add∆′ are zero objects in addΓ/add∆′, we see that φ is dense.

Since φ is evidently full, it remains to prove that φ is faithful. Suppose that this

is not the case. That is, there exists a non-zero morphism f : X → Y ∈ add∆

such that φ(f) = 0. Then, f = gh with morphisms h : X → Z and g : Z → Y ,

where Z is a non-zero object of add∆′. Write Z = ⊕ni=1Zi, where Z1, . . . , Zn ∈ ∆′,

and g = (g1, . . . , gn) and h = (h1, . . . , hn)T with gi : Zi → Y and hi : X → Zi,

for i = 1, · · · , n. Since f 6= 0, we have gihi 6= 0 for some 1 ≤ i ≤ n. Being

standard, Γ contains a path X  Zi  Y . Since ∆ is convex in Γ , we have

Zi ∈ ∆, which is a contradiction. This establishes our claim. By Proposition 2.9

in [46], it follows that add∆ is also an Auslander-Reiten category. The proof of

the lemma is completed.
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Let Γ be a translation quiver. Given a path p in the path category k[Γ ], we

denote by p̄ its image in the mesh category k(Γ ).

2.2.3 Lemma. Let A be an Auslander-Reiten category, and let ∆ be a convex

subquiver of a standard component Γ of ΓA. If σ : k(∆) → A(∆) is an iso-

morphism acting identically on objects, then σ(ᾱ) is in rad(X, Y ), for any arrow

α : X → Y ∈ ∆.

Proof. Let σ : k(∆) → A(∆) be an isomorphism acting identically on objects.

Let α : X → Y be an arrow in ∆. Set u = σ(ᾱ). Since X, Y are indecomposable,

we need only to show that u is not an isomorphism. Suppose that v : Y → X is

a morphism in add∆ such that vu = 1X . Then there are some pairwise different

paths qi : Y  X such that v = Σn
i=1λi σ(q̄i), where 0 6= λi ∈ k. Thus, σ(ε̄

X
) =

1X = vu = Σn
i=1σ(λiq̄iᾱ). That is, ε̄

X
= Σn

i=1λiq̄iᾱ, that is, ε
X
− Σn

i=1λiqiα ∈ I∆,

which is absurd. The proof of the lemma is completed.

Given an object X ∈ ∆, denote by X+ the set of the arrows in ∆ starting

with X and by X− the set of the arrows in ∆ ending with X.

2.2.4 Lemma. Let A be an Auslander-Reiten category, and let ∆ be a convex sub-

quiver of a standard component Γ of ΓA. If σ : k(∆)→ A(∆) is an isomorphism

acting identically on objects, then the following statements hold.

(1) Let X be an object of ∆. Then add∆ has a source morphism

σ(X+) =


σ(ᾱ1)
...

σ(ᾱn)

 : X //
⊕n

i=1 Yi ,

where αi : X → Yi, i = 1, . . . , n, are the arrows of X+.

(2) Let Z be an object of ∆. Then add∆ has a sink morphism

σ(Z−) = (σ(β̄1), · · · , σ(β̄n)) :
⊕n

i=1 Yi
// Z ,

where βi : Yi → Z, i = 1, . . . , n, are the arrows of Z−.

(3) If ∆ has a mesh starting at X and ending at Z, then A has an Auslander-

Reiten sequence X
σ(X+) // Y

σ(Z−) // Z .
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In particular, Γ add∆ = ∆, which is a translation subquiver of Γ .

Proof. Let σ : k(∆) → A(∆) be an isomorphism acting identically on objects.

We shall first prove Statement (3). Assume that ∆ contains a mesh as follows.

X

α1

αn

β1

βn

...

...
Z

Y1

Yn .

Set σ(X+) = (σ(ᾱ1), · · · , σ(ᾱn))T and σ(Z−) = (σ(β̄1), · · · , σ(β̄n)). We claim

that σ(X+) is a source morphism in A and σ(Z−) is a sink morphism in A. First

of all, by the property of Auslander-Reiten quiver, there is a source morphism

f : X → ⊕ni=1Yi in A. Then f 6= 0; see, [46, (1.1)]. Write f = (f1, · · · , fn).

By the equivalence, there are some paths γij : X  Yi, j = 1, · · · , nj, such that

fi = Σ
nj
j=1λijσ(γ̄ij), where 0 6= λij ∈ k, for all i = 1, · · · , n. Obviously, each

γij factors some arrows of X+. It gives us that fi factors through σ(X+), for

all i = 1, · · · , n. Hence, there is a morphism h : ⊕ni=1Yi → ⊕ni=1Yi such that

f = hσ(X+). By Lemma 2.1.5, f is irreducible. By Lemma 2.2.3, δ(X+) is not

a section. Thus, h is a retraction. Hence, h is an automorphism. It follows that

σ(X+) is a source morphism in A. Similarly, we could show that σ(Z−) is a non-

zero sink morphism in A. Thus, our claim is true. By the property of Auslander-

Reiten quiver, A has an Auslander-Reiten sequence X
σ(X+) //

⊕n
i=1 Yi

g′ // Z

with Z indecomposable. Note that σ(Z−)σ(X+) = σ(Σn
i=1β̄iᾱi) = 0. By the

pseudo exactness, there is a morphism h : Z → Z such that σ(Z−) = hg′. Thus

we have the following commutative diagram

X
σ(X+) //

⊕n
i=1 Yi

g′ // Z

h

��
X

σ(X+) //
⊕t

i=1 Yi
σ(Z−) // Z.

Since σ(Z−) is a non-zero sink morphism, by Lemma 2.1.5, it is also irreducible.

On the other hand, g′ is not a section. Thus, h is a retraction. Since Z is

indecomposable, h is an automorphism. Therefore,

X
σ(X+) //

⊕t
i=1 Yi

σ(Z−) // Z
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is an Auslander-Reiten sequence in A.

For proving statement (1), letX be an object of ∆ such thatX+ = {α1, · · · , αn},
where αi : X → Yi, for i = 1, · · · , n. Denote by X+

Γ the set of all the arrows

in Γ starting at X. Thus, X+ is a subset of X+
Γ . By Statement (3), σ(X+

Γ ) is

a source morphism in A. Set σ(X+) = (σ(ᾱ1), · · · , σ(ᾱn))T . By Lemma 2.1.6,

σ(X+) is irreducible. Then, by similar discussion as the proof of Statement (1),

σ(X+) is left almost split in add∆ and left minimal. Hence, σ(X+) is a source

morphism in add∆. The proof of Statement (2) is similar. Finally, it follows that

Γ add∆ = ∆, which is a translation subquiver of Γ . The proof of this lemma is

completed.

A connected subquiver ∆ of a translation quiver Γ is called sectional if ∆

meets each τ -orbit at most once.

2.2.5 Lemma. Let A be an Auslander-Reiten category, and let ∆ be a finite

convex sectional subquiver of a standard component of ΓA. If M is the direct sum

of the objects in ∆, then EndA(M) ∼= k∆.

Proof. Write H = EndA(M), where M is the direct sum of the objects of ∆.

By Lemma 2.2.2 and Lemma 2.2.4, add∆ is an Auslander-Reiten category with

Γadd∆ = ∆. Being a sectional subquiver of Γ , the translation quiver ∆ contains

no mesh. Therefore, k[∆] = k(∆). Since ∆ is standard by Lemma 2.2.1, we

obtain k[∆] ∼= A(∆). This yields the following isomorphisms:

k∆ =
⊕

X,Y ∈∆0
Homk[∆](X, Y )

∼=
⊕

X,Y ∈∆0
HomA(∆)(X, Y )

∼=
⊕

X,Y ∈∆0
HomA(X, Y )

∼= H,

where the first equation is the definition of a path algebra. The proof of the

lemma is completed.

2.2.6 Definition. Let Γ be a connected component of ΓA. A wing in Γ is a

convex translation subquiver of Γ which is a wing.

In the rest of this section, we shall study the additive subcategory addW of

A generated by the objects in a wing W in Γ .
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2.2.7 Lemma. Let A be an Auslander-Reiten category, and let W be a wing in

a standard component of ΓA. If X, Y ∈ W, then HomA(X, Y ) 6= 0 if and only

if X ∈ RY if and only if Y ∈ RX ; and in this case, every path of irreducible

morphisms in A from X to Y forms a k-basis of HomA(X, Y ).

Proof. By Lemma 2.2.1, W is standard. Then there exists an isomorphism

σ : k(W) → A(W), which acts identically on the objects. It follows that, for

any X, Y ∈ W , we have Homk(W)(X, Y ) ∼= HomA(W)(X, Y ) ∼= HomA(X, Y ). It

follows from Lemma 1.4.5 that HomA(X, Y ) 6= 0 if and only if X ∈ RY if and

only if Y ∈ RX . In this case, by Lemma 1.4.5 again, dimk Homk(W)(X, Y ) =

dimk HomA(X, Y ) = 1. Assume that we have a path of irreducible morphisms

X = X0
f1 // X1

f2 // · · · // Xn−1
fn // Xn = Y .

In particular, fi 6= 0, for each 1 ≤ i ≤ n. It is sufficient to show that fn · · · f1 6= 0.

Since σ is an isomorphism, for each 1 ≤ i ≤ n, there is a path pi : Xi−1  Xi ∈ W
such that fi = λiσ(p̄), for some 0 6= λi ∈ k. Since fi is irreducible, by Lemma

2.2.3, we deduce that pi is an arrow. Write pi = αi, for i = 1, · · · , n. By Lemma

1.4.5, we see that ᾱn · · · ᾱ1 forms a k-basis of Homk(W)(X, Y ). It follows that

fn · · · f1 = λ1 · · ·λnσ(ᾱn) · · ·σ(ᾱ1) 6= 0. The proof of this lemma is completed.

2.2.8 Lemma. Let A be an Auslander-Reiten category, and let W be a wing in a

standard component of ΓA. Let f : Y → X be an irreducible morphism in addW.

If there is a non-zero morphism u : Z → Y such that fu = 0, then Z 6∈ RX .

Proof. Suppose that Z ∈ RX . Since u 6= 0 and Lemma 2.2.7, we see that Z ∈ RY .

Moreover, there is a path of irreducible morphisms

Y = Y0
g1 // Y1

g2 // · · · // Yn−1
gn // Yn = Z

such that gn · · · g1 : Y → Z forms a basis of HomA(Y, Z). Thus, u = λgn · · · g1

for some λ ∈ k. Again by Lemma 2.2.7, we see that fgn · · · g1 forms a basis

of HomA(Z,X), and hence it is not zero. Thus, 0 = fu = λfgn · · · g1 gives us

that λ = 0. It follows that u = 0, a contradiction. The proof of the lemma is

completed.

For later use, we shall recall the following notions and terminology. Let H be a

finite dimensional k-algebra. Denote by modH the category of finitely generated
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left H-modules and by projH the full subcategory of finitely generated projec-

tive left H-modules. The following statement is well known. For the reader’s

convenience, we shall include a short proof.

2.2.9 Lemma. Let H be a hereditary algebra and f : P → Q a morphism in

projH. Then f is irreducible in projH if and only if f is irreducible in modH.

Proof. We need only to show the necessity. Assume that f : P → Q is irreducible

in projH. Let f = hg, where g : P →M,h : M → Q and M ∈ modH. Then we

have the following commutative diagram.

P
g

��

f // Q

M

h

<<

p // Im(h)

i

OO

where i is an injection, p is an epimorphism. Since H is hereditary and Im(h)

is a submodule of Q, Im(h) is projective. Since f is irreducible in projH, either

pg is a section or i is a retraction. If pg is a section, then there is a morphism

s : Im(h)→ P such that spg = 1P which yields g is a section. If i is a retraction,

then there is a morphism t : Q → Im(h) such that it = 1Q. Since p is also a

retraction, there is a morphism p′ : Im(h) → M such that pp′ = 1Im(h). Then

hp′t = ipp′t = 1Q, which yields that h is a retraction. Hence, f is irreducible in

mod H. The proof of the lemma is completed.

The following statement is crucial to our later investigation.

2.2.10 Theorem. Let A be an Auslander-Reiten category, and let W be a wing

in a standard component of ΓA with left-most section ∆. Set H = EndA(M),

where M is the direct sum of the objects on ∆. Then we have an equivalence

HomA(M,−) : addW → mod Hop

which induces an isomorphism W → ΓHop of translation quivers.

Proof. By Lemma 2.2.4, Γ addW = W . We shall need only to consider the case
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where W is of rank n > 1. Then, W can be depicted as follows.

X2,2

X3,2

Xn−1,2

Xn,2

Xn,3

X1,1

X2,1

Xn−1,1

Xn,1

Mn−2,1

Xn,n−1

Xn,n Xn−1,n−1

The arrows are denoted by αi,j : Xi,j → Xi,j−1, where 2 ≤ j ≤ i ≤ n and by

βi,j : Xi,j → Xi−1,j, where 1 ≤ j < i ≤ n. By Lemma 2.2.1, W is standard.

Hence, there exists an isomorphism σ : k(W)→ A(W), which acts identically on

objects. By Lemma 2.2.4 fi,j = σ(ᾱi,j) : Xi,j → Xi,j−1 with 2 ≤ j ≤ i ≤ n; and

gi,j = σ(β̄i,j) : Xi,j → Xi−1,j with 1 ≤ j < i ≤ n are irreducible morphisms in A,

which are fitted into the following Auslander-Reiten sequences:

Xi,i

fi,i // Xi,i−1

gi,i−1 // Xi−1,i−1, i = 2, . . . , n.

and

Xi,j

(fi,j ,gi,j)
T

// Xi,j−1 ⊕Xi−1,j

(gi,j−1,fi−1,j) // Xi−1,j−1 , 2 ≤ j < i ≤ n.

By the assumption, M = Xn,1 ⊕ · · · ⊕Xn,n. Note that, Xn,t ∈ RXi,j only if

t = i, i−1, · · · , j, for any Xi,j ∈ W . For simplicity, we write (−)∗ = HomA(M,−).

We shall split our proof into several statements.

(1) The morphism f ∗i,j : X∗i,j → X∗i,j−1 is a monomorphism, for 2 ≤ j ≤
i ≤ n. Indeed, assume that h ∈ X∗i,j such that f ∗i,j(h) = 0. We may write

h = (h1, · · · , hn), where hm ∈ HomA(Xn,t, Xi,j), for all t = 1, . . . , n. In particular,

fi,j ◦ ht = 0, for all t = 1, . . . , n. Assume that hp 6= 0, for some p = 1, · · · , n. By

Lemma 2.2.7, we have Xn,p ∈ RXi,j . Thus, j ≤ p ≤ i. In this case, Xn,p is also

in RXi,j−1 . By Lemma 2.2.8, it follows that hp = 0, a contradiction. Thus, h = 0

and hence, f ∗i,j is a monomorphism.

(2) The morphism g∗i,j : X∗i,j → X∗i−1,j is an epimorphism, for 1 ≤ j <

i ≤ n. Indeed, let h ∈ X∗i−1,j. We may write h = (h1, · · · , hn) where ht ∈
HomA(Xn,t, Xi−1,j), for all 1 ≤ t ≤ n. Suppose that hp 6= 0. Then by Lemma

2.2.7, we have Xn,p ∈ RXi−1,j . Thus, we see that p = i − 1, · · · , j. By Lemma

31



2.2.7, we see that gi,j ◦ gi+1,j · · · ◦ gn,j ◦ fn,j+1 ◦ · · · ◦ fn,p forms a k-basis of

HomA(Xn,p, Xi−1,j). Thus, we have the following equations

hp = λgi,j ◦ gi+1,j · · · ◦ gn,j ◦ fn,j+1 ◦ · · · ◦ fn,p
= g∗i,j(λgi+1,j · · · ◦ gn,j ◦ fn,j+1 ◦ · · · ◦ fn,p),

for some λ ∈ k. Hence, g∗i,j is an epimorphism.

(3) Ker(g∗i,j) ⊆ Im(f ∗i,j+1), for 1 ≤ j < i ≤ n. Indeed, let u = (u1, · · · , un)

be a morphism from M to Xi,j such that gi,j(u) = 0, where ut : Xn,t → Xi,j for

1 ≤ t ≤ n. Hence, we have gi,jut = 0, for 1 ≤ t ≤ n. Fix p with 1 ≤ p ≤ n. If

up = 0, then, trivially, the statement is true. Assume that up 6= 0. By Lemma

2.2.8, we see that Xn,p ∈ RXi,j\RXi−1,j . Thus, p = i. In this case, by Lemma 2.2.7,

we see that fi,j+1 · · · gi+1,i · · · gn−1,ign,i forms a k-basis of HomA(Xn,i, Xi,j). Hence,

ui = λfi,j+1 · · · gi+1,i · · · gn−1,ign,i for some λ ∈ k. Clearly, ui factors through fi,j.

Thus, we have

u = (0, · · · , ui, · · · , 0) ∈ Im(f ∗i,j+1).

(4) Ker(g∗i,j−1, f
∗
i−1,j) ⊆ Im(f ∗i,j, g

∗
i,j)

T , for 2 ≤ j < i ≤ n. Indeed, let[
u1 u2 · · · un

v1 v2 · · · vn

]
be a morphism from M → Xi,j−1 ⊕ Xi−1,j, where ut : Xn,t → Xi,j−1 and vt :

Xn,t → Xi−1,j, for t = 1, · · · , n, such that

(gi,j−1, fi−1,j) ◦

[
u1 u2 · · · un

v1 v2 · · · vn

]
= 0.

Hence, gi,j−1ut + fi−1,jvt = 0, for t = 1, · · · , n. It is sufficient to show that each[
ut

vt

]
factors trough

[
fi,j

gi,j

]
. For this purpose, we assume that

[
up

vp

]
6= 0, for some

1 ≤ p ≤ n. Thus, by Lemma 2.2.7, we see that Xn,p is in RXi,j−1 or in RXi−1,j .

Thus, p = i, i−1, · · · , j, j−1. Consider p = i or j−1. In this case, Xn,p 6∈ RXi−1,j .

By Lemma 2.2.7, we have vp = 0. It follows that gi,j−1up = 0. By Statement

(3), there is (h1, · · · , hn) : M → Xi,j, where ht : Xn,t → Xi,j, for t = 1, · · · , n,

such that (0, · · · , up, · · · , 0) = f ∗i,j(h1, · · · , hp, · · · , hn). In particular, up = fi,jhp.

Moreover, by Lemma 2.2.7, gi,jhp = 0. Thus,[
up

vp

]
=

[
fi,jhp

gi,jhp

]
∈ Im

[
f ∗i,j
g∗i,j

]
.
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Now consider p = i−1, · · · , j. By Lemma 2.2.7 agin, fi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p
forms a k-basis of HomA(Xn,p, Xi,j−1) and gi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p forms a

k-basis of HomA(Xn,p, Xi−1,j). Hence, we have

up = λpfi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p and vp = µpgi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p,

for some λp, µp ∈ k . Then the following equations hold.

0 = gi,j−1up + fi−1,jvp

= λpgi,j−1fi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p
+ µpfi−1,jgi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p
= (λpgi,j−1fi,j + µpfi−1,jgi,j)fi,j+1 · · · fi,pgi+1,p · · · gn,p
= (λp − µp)gi,j−1fi,jfi,j+1 · · · fi,pgi+1,p · · · gn,p,

where the last equation follows from that gi,j−1fi,j + fi−1,jgi,j = 0. Note that

fi,j+1 · · · fi,pgi+1,p · · · gn,p forms a basis of HomA(Xn,p, Xi,j), and in particular it is

non zero. This gives us λp = µp. Thus,[
up

vp

]
=

[
f ∗i,j
g∗i,j

]
(λpfi,j+1 · · · fi,pgi+1,p · · · gn,p) ∈ Im

[
f ∗i,j
g∗i,j

]
.

(5) The functor (−)∗ maps every Auslander-Reiten sequence in addW to

Auslander-Reiten sequences in modHop.

Indeed, first of all, since gi,i−1fi,i = 0, by the pseudo-exactness, we have

g∗i,i−1f
∗
i,i = 0. Then it follows immediately from Statement (1), (2) and (3) that,

for each 1 ≤ i ≤ n, we have a short exact sequence

0 // X∗i,i
f∗i,i // X∗i,i−1

g∗i,i−1 // X∗i−1,i−1
// 0 .

Again, by Statement (1) and (2), we see that (f ∗i,j, g
∗
i,j)

T is a monomorphism and

(g∗i,j−1, f
∗
i−1,j) is an epimorphism. Since (gi,j−1, fi−1,j) ◦ (fi,j, gi,j)

T = 0 by the

pseudo-exactness, we have (g∗i,j−1, f
∗
i−1,j) ◦ (f ∗i,j, g

∗
i,j)

T = 0. By Statement (4), we

see that, for each pair (i, j) with 2 ≤ j < i ≤ n, we have a short exact sequence

0 // X∗i,j
(f∗i,j ,g

∗
i,j)

T

// X∗i,j−1 ⊕X∗i−1,j

(g∗i,j−1,f
∗
i−1,j) // X∗i−1,j−1

// 0.

Secondly, we shall show that all the above exact sequences are Auslander-

Reiten sequences. By Lemma 2.2.5, we know that H = k∆, and consequently,
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Hop = k∆op. Hence, the Auslander-Reiten quiver of Hop is a wing having the

same rank as W . In view of Proposition 2.3 in [43], X∗n,n, X
∗
n,n−1, · · · , X∗n,1 are

the non-isomorphic indecomposable projective modules of modHop and the mor-

phisms f ∗n,n, f
∗
n,n−1, · · · , f ∗n,1 are irreducible monomorphism in proj Hop. More-

over, by Lemma 2.2.9, we see that f ∗n,n, f
∗
n,n−1, · · · , f ∗n,1 are also irreducible monomor-

phisms in modHop. This gives us a path of irreducible monomorphisms

X∗n,n
f∗n,n // X∗n,n−1

f∗n,n−1 // · · · // X∗n,2
f∗n,2 // X∗n,1,

with X∗n,n simple. Since X∗n,n is projective simple and f ∗n,n is irreducible, we see

that f ∗n,n is a source morphism. This gives us an Auslander-Reiten sequence

0 // X∗n,n
f∗n,n // X∗n,n−1

g∗n,n−1// X∗n−1,n−1
// 0.

In particular, g∗n,n−1 is irreducible and X∗n−,n−1 is indecomposable as well as sim-

ple. Since f ∗n,n−1 is a monomorphism and g∗n,n−1 is an epimorphism, we have

X∗n,n−2 6∼= X∗n−1,n−1. Hence,

[
f ∗n,n−1

g∗n,n−1

]
is irreducible. By the description of Γ modHop ,

we see that

[
f ∗n,n−1

g∗n,n−1

]
is a source morphism. Therefore,

0 // X∗n,n−1

f ∗n,n−1

g∗n,n−1


// X∗n,n−2 ⊕X∗n−1,n−1

(g∗n,n−2,f
∗
n−1,n−1)

// X∗n−1,n−2
// 0

is an Auslander-Reiten sequence. In particular, X∗n−1,n−2 is indecomposable and

g∗n,n−2 is irreducible. Thus, by induction on j where n− 1 ≥ j ≥ 2, we have that

0 // X∗n,j

f ∗n,j
g∗n,j


// X∗n,j−1 ⊕X∗n−1,j

(g∗n,j−1,f
∗
n−1,j)// X∗n−1,j−1

// 0

is Auslander-Reiten sequence, for n− 1 ≥ j ≥ 2. In particular, we obtain a path

of irreducible monomorphisms in modHop

X∗n−1,n−1

f∗n−1,n−1// X∗n−1,n−2

f∗n−1,n−2 // · · · // X∗n−1,2

f∗n−1,2 // X∗n−1,1
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with X∗n−1,n−1 simple. Thus, we complete the proof of Statement (5) by doing

the same discussion.

(6) The functor (−)∗ : addW → modHop is an equivalence. Indeed, by

Statement (5), we have an isomorphism of translation quivers G : W → ΓHop ,

where G(Xi,j) = X∗i,j and G(αi,j) = α∗i,j and G(βi,j) = β∗i,j for any Xi,j ∈ W and

αi,j, βi,j ∈ W . Now we define a functor σH : k(Γ Hop)→ indHop, acting identically

on objects, such that σH(ᾱ∗i,j) = f ∗i,j and σH(β̄∗i,j) = g∗i,j, for all α∗i,j, β
∗
i,j ∈ Γ Hop .

Since Γ Hop is also standard, we see that σH is an isomorphism. Thus, we have

the following commutative diagram

k(W)

σ

��

k(G) // k(ΓHop)

σH

��
A(W)

(−)∗ // indHop

,

where k(G) is an equivalence of mesh categories induced by G. It follows that

HomA(M,−) : A(W) → indHop is an equivalence. Moreover, it is natural to

define an additive functor HomA(M,−) : addW → modHop. By additivity,

HomA(M,−) is dense and fully faithful. Hence, HomA(M,−) is an equivalence.

From the proof, we see that HomA(M,−) induces an isomorphism from W to

ΓHop . The proof of the theorem is completed.
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Chapter 3

Cluster Categories

The aim of this chapter is to recall briefly the definition of the cluster category

C (Q) associated with a strongly locally finite quiver Q. In the finite case, it was

defined by Buan, Marsh, Reineke, Reiten and Todorov in [20], by taking a partic-

ular orbit category of the derived category of finite dimensional representations

of Q. In the infinite Dynkin case, Liu-Paquette and Yang have showed in [48]

and [62] that the same construction yields a triangulated category, whose cluster

tilting subcategories form a cluster structure as defined in [21]. More recently,

Št’ov́ıcěk and Roosmalen proved in [59] that the same result holds in the general

strongly locally finite case.

3.1 Cluster categories in the general sense

The objective of this section is to recall from [21] and [48] some basic notions

and terminology for general cluster categories.

Throughout this section, A shall stand for a Hom-finite Krull-Schmidt tri-

angulated category with a shift functor [1]. Denote by D = Homk(−, k) the

standard duality for the category of finite dimensional k-vector spaces. Let T be

a full subcategory of A and X be an object in A. A morphism f : X → T with

T ∈ T is called a left T -approximation of X if f induces an epimorphism

HomA(f,M) : HomT (T,M)→ HomA(X,M),
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for any M ∈ T ; a morphism g : T → X with T ∈ T is called a right T -

approximation of X if g induces an epimorphism

HomA(M, g) : HomA(M,T )→ HomA(M,X),

for any M ∈ T . One says that T is covariantly finite in A if every object in A
admits a left T -approximation; dually, one says that T is contravariantly finite

in A if every object in A admits a right T -approximation; and functorially finite

in A if it is covariantly and contravariantly finite in A.

A Serre functor for A is an auto-equivalence S of A such that, for any objects

X, Y ∈ A, there exists a natural isomorphism HomA(X, Y ) ∼= DHomA(Y, SX). If

A has a Serre functor S, then it is an Auslander-Reiten category whose Auslander-

Reiten translation is given by S ◦ [−1]; see [53]. Moreover, one says that A is

2-Calabi-Yau if [2] is a Serre functor.

Now let A be a 2-Calabi-Yau triangulated category. One says that a full

subcategory of A is strictly additive if it is closed under isomorphisms, taking

finite direct sums and taking direct summands. Let T be a strictly additive

subcategory of A. In particular, T is Krull-Schmidt. The quiver of T is defined

to be the underlying quiver of its Auslander-Reiten quiver. Moreover, given an

indecomposable object M of T , denote by TM the full additive subcategory of

T generated by the indecomposable objects not isomorphic to M . Observe that

TM is also strictly additive in A.

3.1.1 Definition. [21] Let A be a 2-Calabi-Yau triangulated k-category. A

non-empty collection C of strictly additive subcategories of A is called a cluster

structure if, for each subcategory T ∈ C and each indecomposable objectM ∈ T ,

the following conditions are verified.

(1) There exists a unique (up to isomorphism) indecomposable object M∗ of A,

with M∗ 6∼= M , such that the additive subcategory µM(T ) of A generated

by TM and M∗ belongs to C.

(2) There exist two exact triangles in A as follows :

M
f // N

g //M∗ //M [1] and M∗ u // L v //M //M∗[1]
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where f, u are minimal left TM -approximations, and g, v are minimal right

TM -approximations in A.

(3) The quiver of T contains no oriented cycle of length one or two, from which

the quiver of µM(T ) is obtained by the Fomin-Zelevinsky mutation at M

as described in [24, (1.1)].

Let A be a 2-Calabi-Yau triangulated category with a strictly additive sub-

category T . Given X ∈ A, write HomA(T , X[1]) = 0 if HomA(Y,X[1]) = 0 for

any Y ∈ T . One says that T is weakly cluster-tilting provided, for every X ∈ A,

that HomA(T , X[1]) = 0 if and only if X ∈ T ; and cluster-tilting provided that

T is weakly cluster-tilting and functorially finite in A.

3.1.2 Definition. [48] A 2-Calabi-Yau triangulated k-category is called a cluster

category if its cluster-tilting subcategories form a cluster structure.

3.2 Derived categories of finite dimensional rep-

resentations of quivers

The objective of this section is to recall briefly the derived category of finite

dimensional representations of a quiver. For more details, we refer to [10, 5, 15].

Throughout this section, Q stands for a connected locally finite quiver without

infinite paths. Under this assumption, by König’s Lemma; see [42], Q is strongly

locally finite.

3.2.1 Definition. A k-representation M of Q consists of

(1) a family of k-vector spaces M(a) with a ∈ Q0;

(2) a family of k-linear maps M(α) : M(a)→M(b) with α : a→ b in Q1.

Given two representations M,N of Q, a morphism f : M → N is a family

{fa : M(a) → N(a)}a∈Q0 of k-linear maps such that for each arrow α : a → b
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in Q1, we have N(α)fa = fbM(α). Let f : M → N and g : N → L be two

morphisms of representations of Q. Their composition gf is defined to be the

family {gafa : M(a) → L(a)}a∈Q0 . This yields the category of k-representations

of Q, denoted by Rep(Q). Moreover, one says that a representation M is finite

dimensional if Σa∈Q0 dimkM(a) is finite. We shall denote by rep(Q) the full

subcategory of Rep(Q) of finite dimensional representations.

Let a ∈ Q0. The simple representation Sa at a is defined by Sa(a) = kεa and

Sa(b) = 0 for all vertices b 6= a. The projective representation Pa at a is defined

as follows. For any vertex b ∈ Q0, Pa(b) is a k-vector space spanned by the paths

from a to b; and for each arrow α : b→ c, Pa(α) : Pa(b)→ Pa(c) is a k-linear map

sending every path p to αp. Finally, the injective representation Ia at a is a k-

representation such that for each vertex b ∈ Q0, Ia(b) is a k-vector spaces spanned

by the paths from b to a; and for each arrow α : b→ c, Ia(α) : Ia(b)→ Ia(c) is a

k-linear map sending every path pα to p and vanishing on the paths which not

factor through α.

Since Q has no infinite paths, rep(Q) is a Hom-finite Krull-Schmidt hereditary

abelian k-category; see [26, (8.2)] and has Auslander-Reiten sequences; see, [15,

(3.7)]. That is, rep(Q) is an Auslander-Reiten category, whose Auslander-Reiten

translation is denoted by τ
Q

. We define the Auslander-Reiten quiver Γ rep(Q) of

rep(Q) in such a way that its vertex set contains the indecomposable projective

representations Pa, the indecomposable injective representations Ia and the sim-

ple representations Sa, for all a ∈ Q0. A connected component of Γ rep(Q) is called

preprojective if it contains some Pa with a ∈ Q0, preinjective if it contains some

Ia with a ∈ Q0, and regular if it contains neither Pa nor Ia, for any a ∈ Q0. Since

Q is assumed to be connected, Γ rep(Q) has a unique preprojective component and

a unique preinjective component; see [15, 26].

A quiver Q is said to be of infinite Dynkin type if its underlying graph is one

of the following infinite graphs.

A∞ : ◦ ◦ · · · ◦ ◦ · · ·

A∞∞ : ◦ ◦ · · · ◦ ◦ · · ·· · ·
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D∞ : ◦
◦

◦
◦ · · · ◦ ◦ · · ·

In this case, the Auslander-Reiten quiver Γ rep(Q) of rep(Q) has been explicitly

described by Bautista, Liu and Paquette in [15, 48].

3.2.2 Theorem. Let Q be a quiver of infinite Dynkin type with no infinite path.

(1) Every connected component of Γ rep(Q) is standard.

(2) The preprojective component P is of shape NQop and the preinjective com-

ponent I is of shape N−Qop such that Homrep(Q)(I,P) = 0.

(3) Every regular component R is of shape ZA∞ such that Homrep(Q)(I,R) = 0

and Homrep(Q)(R,P) = 0.

(4) There are r regular components, where

(a) r = 0 if Q is of type A∞;

(b) r = 1 if Q is of type D∞;

(c) r = 2 if Q is of type A∞∞, and in this case, the two regular components

are orthogonal.

Now we shall study the derived category Db(rep(Q)) of rep(Q). For more de-

tails about derived categories, we refer to [49, 60]. As usual, considering an object

M ∈ rep(Q) as a stalk complex concentrated at degree 0, we shall regard rep(Q)

as a full subcategory of Db(rep(Q)). It is well known that Db(rep(Q)) is a Hom-

finite Krull-Schmidt triangulated category having Auslander-Reiten triangles; see

[15, 31]. That is, Db(rep(Q)) is an Auslander-Reiten category, whose Auslander-

Reiten translation is denoted by τ
D

. Observe that Db(rep(Q)) admits a Serre

functor S = τ
D
◦ [1]; see [53]. One defines the Auslander-Reiten quiver ΓDb(rep(Q))

of Db(rep(Q)) such that its vertices are the shifts of the vertices of Γ rep(Q). In

this way, Γ rep(Q) becomes a full translation subquiver of ΓDb(rep(Q)). Recall that

ΓDb(rep(Q)) has a connecting component CQ obtained by gluing the preprojective

component P of Γ rep(Q) with the shift by -1 of the preinjective component I of
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Γ rep(Q) in such a way that each arrow a→ b ∈ Q1 induces an arrow Ia[−1]→ Pb

in CQ; see [15, 31].

The following statement gives some properties of connected components of

ΓDb(rep(Q)), for which we refer to [15, Section 7].

3.2.3 Theorem. Let Q be an infinite Dynkin quiver without infinite paths.

(1) Every connected components of ΓDb(rep(Q)) is standard.

(2) The connecting component CQ of ΓDb(rep(Q)) is of shape ZQop.

(3) The connected components of ΓDb(rep(Q)) are the shifts of CQ and the shifts

of the regular components of Γ rep(Q).

3.3 Cluster categories associated with a quiver

The objective of this section is to recall from [20, 48] the cluster category

associated with a quiver. For this purpose, let Q be a connected locally finite

quiver with no infinite path. Recall that rep(Q) is an Auslander-Reiten category,

whose Auslander-Reiten quiver is Γ rep(Q) and whose Auslander-Reiten translation

is τ
Q

. The derived category Db(rep(Q)) is an Auslander-Reiten category, whose

Auslander-Reiten translation is merely an auto-equivalence of Db(rep(Q)). In

order to obtain Auslander-Reiten category whose Auslander-Reiten translation

is an automorphism, we shall choose a skeleton D b(Q) of Db(rep(Q)), that is the

additive subcategory of Db(rep(Q)) generated by the objects which are the shifts

of the objects in Γ rep(Q). Then D b(Q) is an Auslander-Reiten category, whose

Auslander-Reiten quiver Γ D b(Q) coincides with the Auslnader-Reiten quiver of

Db(rep(Q)), and whose Auslander-Reiten translation τ
D

is an automorphism of

D b(Q). Considering the automorphism F = τ−1
D
◦ [1] of D b(Q), one defines the

orbit category

C (Q) := D b(Q)/F

as follows. The objects are the same as those of D b(Q); for any pair of objects

X, Y ∈ C (Q), the morphisms are given by

HomC (Q)(X, Y ) = ⊕i∈ZHomD b(Q)(X,F
iY ).
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The composition of morphisms is given by (gi)i∈Z ◦ (fi)i∈Z = (hi)i∈Z, where hi =

Σp+q=iF
p(gp)fq. The canonical projection functor

π : D b(Q)→ C (Q)

is defined by X 7→ X and f 7→ (fi)i∈Z where f0 = f and fi = 0 while i 6= 0.

The following result is due to [20, 39, 48, 59, 62].

3.3.1 Theorem. Let Q be a connected locally finite quiver without infinite paths.

(1) The orbit category C (Q) is a cluster category.

(2) The canonical projection functor π : D b(Q)→ C (Q) sends indecomposable

objects to indecomposable objects.

(3) The canonical projection functor π : D b(Q) → C (Q) sends exact triangles

in Db(rep(Q)) to exact triangles in C (Q).

(4) The canonical projection functor π : D b(Q) → C (Q) sends Auslander-

Reiten triangles in Db(rep(Q)) to Auslander-Reiten triangles in C (Q).

Remark. Denote by τ
C

the Auslander-Reiten translation of C (Q). In view

of Theorem 3.3.1(4), we have the following observation. If X ∈ Γ rep(Q) which

is non-projective, then τ
Q
X = τ

D
X = τ

C
X; and for any Y ∈ Γ D b(Q), we have

τ
D
Y = τ

C
Y , while for any Z ∈ C (Q), we have τ

C
Z = Z[1].

3.3.2 Definition. Let Q be a connected locally finite quiver without infinite

paths. The fundamental domain F (Q) of the cluster category C (Q) is defined as

follows. If Q is of finite Dynkin type, then F (Q) is the full subquiver of Γ D b(Q)

generated by the representations in Γ rep(Q) and the shifts by -1 of the injective

representation in Γ rep(Q); otherwise, F (Q) is the subquiver of Γ D b(Q) consisting

of the connecting component CQ of Γ Db(Q) and the regular components of Γ rep(Q).

Remark. (1) It is well known that every indecomposable object of C (Q) is iso-

morphic to a unique object in F (Q). In particular, we shall define the Auslander-

Reiten quiver Γ C (Q) of C (Q) so that its vertices are the vertices of F (Q).

43



(2) If Q is an infinite quiver without infinite paths, then the canonical functor

π : D b(Q)→ C (Q) induces a translation-quiver-isomorphism π : F (Q)→ Γ C (Q),

acting identically on the underlying quiver. We shall say that the image of the

connecting component in F (Q) under π is the connecting component of Γ C (Q);

and the image of a regular component in F (Q) under π is a regular component

of Γ C (Q). Note, however, that none of the connected components of Γ C (Q) is

standard in C (Q).

The following statement describes the morphisms in C (Q) between objects in

fundamental domain in case Q is of infinite Dynkin type.

3.3.3 Lemma. Let Q be an infinite Dynkin quiver with no infinite path. Then,

for any two objects X, Y ∈ F (Q), we have

HomC (Q)(X, Y ) ∼= HomD b(Q)(X, Y )⊕DHomD b(Q)(Y, τ
2
D
X).

Proof. Now let X, Y ∈ F (Q). There exists an integer n ≥ 0 such that M = τ−n
D
X

and N = τ−n
D
Y are representations. Since τ

D
is an equivalence, in view of Lemma

2.6(1) in [48], we have

HomC (Q)(X, Y ) ∼= HomC (Q)(τ
−n
D
X, τ−n

D
Y )

= HomC (Q)(M,N)
∼= HomD b(Q)(M,N)⊕DHomD b(Q)(N, τ

2
D
M)

∼= HomDb(Q)(τ
n
D
M, τn

D
N)⊕DHomDb(Q)(τ

n
D
N, τ 2+n

D
M)

= HomDb(Q)(X, Y )⊕DHomDb(Q)(Y, τ
2
D
X).

The proof of the lemma is completed.

We conclude this section with a description of the Auslander-Reiten quiver

Γ C (Q) of C (Q) in case Q is of infinite Dynkin type; see [48, (2.9)].

3.3.4 Theorem. Let Q be an infinite Dynkin quiver without infinite paths. Then

Γ C (Q) consists of the connecting component of shape ZQop and r regular compo-

nent of shape ZA∞, where

(1) r = 0, in case Q is of type A∞;

(2) r = 1, in case Q is of type D∞;
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(3) r = 2, in case Q is of type A∞∞; and in this case, the two regular components

are orthogonal.
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Chapter 4

Coordinate systems for some

special translation quivers

In this chapter, we shall introduce a coordinate system for a translation quiver

which is a wing, or of shape ZA∞ or ZA∞∞, in order to characterize wings, sections

and section-generators in these types of translation quivers. The results will be

used later to study the τ -rigidity theory, which is an essential topic of this thesis.

4.1 Coordinate system for a wing

The objective of this section is to introduce a coordinate system for a wing,

which will enable us to describe sub-wings, sections and section-generators in

such a wing.

Throughout this section, let W stand for a wing of rank n, whose translation

is written as τ . Let T be the unique sink vertex of W . The quasi-simple vertices

of W are Ti = τ i−1T, i = 1, . . . , n. For each 1 ≤ i ≤ n, denote by R+
i the longest

sectional path inW starting with Ti, and by R−i the longest sectional path ending

with Ti.

4.1.1 Lemma. For any vertex X ∈ W, there exists a unique pair (i
X
, j

X
) of

integers with n ≥ i
X
≥ j

X
≥ 1 such that R+

i
X
∩R−j

X
= X.

Proof. Let X ∈ W0. Clearly, X ∈ R+
i
X

for some unique 1 ≤ i
X
≤ n. Then, R+

i
X

has a subpath Ti
X
→ · · · → X of length l ≥ 0. Observe that W has a sectional
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path X → · · · → Tj
X

of length l, for some 1 ≤ j
X
≤ n. Thus, X ∈ R−j

X
, and

hence, X = R+
i
X
∩ R−j

X
. Observing that Tj

X
= τ−lTi

X
= τ iX−l−1T = Ti

X
−l, we

see that j
X

= i
X
− l. Therefore, 1 ≤ j

X
≤ i

X
≤ n. The proof of the lemma is

completed.

Writing X = (i
X
, j

X
), we obtain a coordinate system for W as follows.

(2, 2)

(3, 2)

(n− 1, 2)

(n, 2)

(n− 1, n− 2)

(n, 3)

(1, 1)

(2, 1)

(n− 1, 1)

(n, 1)

(n− 2, 1)

(n, n− 1)

(n, n) (n− 1, n− 1)

Observe that the quasi-simple vertices are (i, i), i = 1, . . . , n. In particular,

(n, n) is the source vertex and (1, 1) is the sink vertex.

The following easy statement describes the arrows, the translation and the

paths in W .

4.1.2 Lemma. Let X, Y be vertices in W.

(1) There exists an arrow X → Y in W if and only if (i
Y
, j

Y
) = (i

X
, j

X
− 1) or

(i
Y
, j

Y
) = (i

X
− 1, j

X
).

(2) X = τY if and only if (i
X
, j

X
) = (i

Y
+ 1, j

Y
+ 1).

(3) There exists a path p : X  Y in W if and only if i
X
≥ i

Y
and j

X
≥ j

Y
.

In this case, l(p) = (i
X
− i

Y
) + (j

X
− j

Y
).

Proof. Statement (1) and Statement (2) are obvious from our coordinate system.

Since a path is a composition of arrows, Statement (3) follows from the Statement

(1). The proof of the lemma is completed.

The following statement is a description of the sectional paths in W .
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4.1.3 Lemma. Let p : X1 → X2 → · · · → Xm be a sectional path in W. Then

exactly one of the following statements is true.

(1) (i
Xt
, j

Xt
) = (i

X1
, j

X1
− t+ 1), for t = 1, . . . ,m.

(2) (i
Xt
, j

Xt
) = (i

X1
− t+ 1, j

X1
), for t = 1, . . . ,m.

Proof. Write (i
X1
, j

X1
) = (s, t). By Lemma 4.1.2(1), the statement is evident for

m = 2. Assume now that m > 2. By the induction hypothesis, we may assume

that i
Xt

= s and j
Xt

= r− t+1, for all 1 ≤ t ≤ m−1. In view of Lemma 4.1.2(1),

we see that (i
Xm
, j

Xm
) = (i

Xm−1
, j

Xm−1
− 1) = (s, r −m+ 1) or

(i
Xm
, j

Xm
) = (i

Xm−1
− 1, j

Xm−1
) = (i− 1, j − n+ 2) = (i

Xm−2
− 1, j

Xm−2
− 1).

Since p is sectional, by Lemma 4.1.2(2), the second case does not occur. The

proof of the lemma is completed.

As an application of the preceding statement, we obtain the following descrip-

tion of a sub-wing in W in terms of the coordinates.

4.1.4 Lemma. Let X,M be vertices in W.

(1) The source vertex of WX is (i
X
, i
X

), and the sink vertex is (j
X
, j

X
).

(2) M ∈ WX if and only if i
X
≥ i

M
and j

M
≥ j

X
.

(3) The quasi-length of X ∈ W is given by `(X) = i
X
− j

X
+ 1.

Proof. Let SX be the source vertex of WX . Then there is a sectional path

SX = X1 → X2 → · · · → Xm = X in W . Since X1 is quasi-simple, i
X1

= j
X1
.

Since i
Xm
≥ j

Xm
by Lemma 4.1.1, we deduce from Lemma 4.1.3 that (i

Xm
, j

Xm
) =

(i
X1
, j

X1
− m + 1). In particular, i

X1
= i

Xm
= i

X
. Then, SX = (i

X
, i
X

) and

`(X) = m = i
X
− j

X
+ 1. Similarly, we see that the sink vertex TX = (j

X
, j

X
).

Now, let M ∈ WX . Then M � X if and only if M ∈ WX . This is, by Lemma

1.4.6, equivalent to the existence of a path SX = (i
X
, i
X

)  M and a path

M  TX = (j
X
, j

X
). By Lemma 4.1.2(3), this is equivalent to i

X
≥ i

M
, i

X
≥ j

M

and i
M
≥ j

X
, j

M
≥ j

X
. That is, i

X
≥ max{i

M
, j

M
} and min{i

M
, j

M
} ≥ j

X
. Since

i
M
≥ j

M
, the latter condition is equivalent to i

X
≥ i

M
and j

M
≥ j

X
. The proof

of the lemma is completed.
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4.1.5 Remark. Let X, Y ∈ W . By Lemma 4.1.2(2) and Lemma 4.1.4(3), we

see that X, Y are in the same τ -orbit if and if only `(X) = `(Y ). Moreover,

1 ≤ `(X) ≤ n, for any X ∈ W

Recall from Lemma 1.4.7 that the vertex setW0 is a partially ordered set. The

following statement characterizes the partial order � in terms of the coordinates.

4.1.6 Lemma. If X,M ∈ W0, then M � X if and only if i
M
≤ i

X
and j

M
≥ j

X
.

Proof. Let X,M ∈ W0. Then M � X if and only if M ∈ WX . The statement

follows immediately from Lemma 4.1.4(2). The proof of the lemma is completed.

Recall that we have defined two wings in W to be separable in Definition

1.4.8(2). The following statement gives a description of two separable wings in

terms of the coordinates.

4.1.7 Lemma. If X, Y ∈ W, thenWX ,WY are separable if and only if j
X
≥ i

Y
+2

or j
Y
≥ i

X
+ 2; and in this case, WM ,WN are separable for any M ∈ WX and

N ∈ WY .

Proof. Let X, Y be vertices in W . Let SX , SY be the source vertices in WX

and in WY , respectively, while let TX , TY be the sink vertices in WX and in WY ,

respectively. Clearly, we have SX = (i
X
, i
X

) and TX = (j
X
, j

X
) while SY =

(i
Y
, i
Y

) and TY = (j
Y
, j

Y
). By definition, WX ,WY are separable if and only if

τ tSY = TX for some t ≥ 2, or τ rSX = TY for some r ≥ 2. Indeed, by Lemma

4.1.2(2), the first condition is equivalent to j
X
≥ i

Y
+ 2 and the second condition

is equivalent to j
Y
≥ i

X
+ 2. The rest of the statement is trivially to see. The

proof of the lemma is completed.

Let X, Y ∈ W with X ≺ Y . Recall from Definition 1.4.12 that if X, Y are

connected by a path, then we defined a wingWX
Y inWY . The following statement

describes WX
Y in terms of the coordinates.

4.1.8 Lemma. Let X, Y ∈ W with X ≺ Y . If X, Y are connected by a path p,

then WX
Y = ∅ in case `(p) = 1; and otherwise, WX

Y =WZ, where Z ∈ WY with

(i
Z
, j

Z
) =

{
(j
X
− 2, j

Y
), if s(p) = X;

(i
X
, i
Y

+ 2), if t(p) = X.
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In particular, WX
Y is a wing of rank `(Y )− `(X)− 1.

Proof. Assume that X, Y are connected by a path p in W . If l(p) = 1, then p is

an arrow. Thus, WX
Y = ∅. Now consider l(p) > 1. Suppose that s(p) = X. That

is, p : X  Y . By Lemma 1.4.9, p is sectional. Since X ≺ Y , by Lemma 4.1.3

and Lemma 4.1.6, i
X

= i
Y

and j
X
> j

Y
. By Lemma 4.1.2(3), l(p) = j

X
− j

Y
≥ 2.

Hence, by Lemma 4.1.1, Z = (j
X
−2, j

Y
) ∈ W0. Moreover, since i

Z
= i

X
−2 < i

Y

and j
Z

= j
Y

, by Lemma 4.1.6, WZ ⊆ WY , and by Lemma 4.1.7, WZ ,WX are

separable. This shows that WZ ⊆ WX
Y .

Now let M ∈ WX
Y . In particular, M ∈ WY , by Lemma 4.1.6, i

M
≤ i

Y
and

j
M
≥ j

Y
. SinceWX ,WX

Y are separable, by Lemma 4.1.7, WX ,WM are separable.

By Lemma 4.1.7, consider first j
M
≥ i

X
+ 2. Then j

M
> i

Y
. Hence, by Lemma

4.1.6, M 6∈ WY , contradiction. Hence, i
M
≤ j

X
−2. By Lemma 4.1.6,WM ⊆ WZ .

Hence, WX
Y ⊆ WZ . Thus, WX

Y = WZ . We deduce from Lemma 4.1.4(3) that

`(Z) = `(Y )− `(X)− 1. That is, WX
Y is of rank `(Y )− `(X)− 1. The case that

t(p) = X is similar to show. The proof of the lemma is completed.

In the rest of this section, we study sections and section-generators inW . We

shall start with the following lemma.

4.1.9 Lemma. Let X, Y be two vertices in W.

(1) If X, Y are comparable, then X ≺ Y if and only if `(X) < `(Y ).

(2) There is an edge X — Y in W if and only if X ≺ Y with `(Y ) = `(X) + 1

or Y ≺ X with `(Y ) = `(X)− 1.

Proof. Assume that X, Y are comparable. It is easy to see that X ≺ Y if and

only if the rank of WX is smaller than the rank of WY . The latter is equivalent

to `(X) < `(Y ). This shows Statement (1).

For proving the necessity of Statement (2), we consider only the case where

there is an arrow X → Y in W . By Lemma 4.1.2(1), (i
Y
, j

Y
) = (i

X
− 1, j

X
) or

(i
Y
, j

Y
) = (i

X
, j

X
− 1). In the first case, Y ≺ X with `(Y ) = `(X) − 1; and in

the second case, X ≺ Y with `(Y ) = `(X) + 1.

For proving the sufficiency of Statement (2), we consider only the case where

X ≺ Y with `(Y ) = `(X) + 1. Then, 1 = `(Y ) − `(X) = (i
Y
− i

X
) + (j

X
− j

Y
).
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Since i
Y
≥ i

X
and j

X
≥ j

Y
, we have i

Y
= i

X
and j

X
= j

Y
+ 1 or i

Y
= i

X
+ 1 and

j
X

= j
Y

. By Lemma 4.1.2 (1), W has an arrow X → Y in the first case; and an

arrow Y → X in the second case. The proof of the lemma is completed.

Recall that W0 is a poset. By abuse of language, we shall say that W is a

poset. Let S be a subset of W0. We shall write `(S) = {`(X) |X ∈ S}. As a

subset of integers, `(S) is a totally ordered set.

4.1.10 Lemma. Given a chain S in W, we have an isomorphism of posets

` : S → `(S) : X 7→ `(X).

Proof. It is evident that the map ` is surjective. Given X, Y ∈ S, by Lemma

4.1.9(1), X ≺ Y if and only if `(X) < `(Y ). This implies that ` is injective and

preserves the order. The proof of the lemma is completed.

The following statement describes the maximal chains in W .

4.1.11 Lemma. A chain S in W is maximal if and only if `(S) = {1, 2, . . . , n}.
Proof. Let S be a chain inW . Assume first that `(S) = {1, 2, . . . , n}. Let Y ∈ W
be such that S ∪ {Y } is a chain in W . By assumption, there is a vertex X ∈ S
such that `(X) = `(Y ). If X 6= Y , then X ≺ Y or Y ≺ X. By Lemma 4.1.10,

`(X) < `(Y ) in the first case and `(X) > `(Y ) in the second case, a contradiction.

Thus, X = Y . Therefore, S is a maximal chain.

Conversely, assume that S is a maximal chain inW . Suppose on the contrary

that m ∈ {1, 2, . . . , n} but m 6∈ `(S). Observe that the wing vertex Z of W
is a maximal element in W . By the maximality of S, we see that Z ∈ S, and

hence n = `(Z) ∈ `(S). Now, let N be the minimal element in S. We claim

that `(N) = 1. Otherwise, `(N) = t > 1. Let S be the source vertex of WN . In

particular, S � N. Since `(S) = 1 < t = `(N), we have S ≺ N . Hence, S ∪ {S}
is a chain, a contradiction. Therefore, {1, n} ⊆ `(S). In particular, 1 < m < n.

Now let s be the maximal integer in `(S) such that s < m and let t be the

minimal integer in `(S) such that m < t. In particular, t is a minimal cover of s

in `(S). By Lemma 4.1.10, there exist X, Y ∈ S such that Y is a minimal cover

of X with `(X) = s and `(Y ) = t. By Lemma 4.1.6, i
X
< i

Y
and j

X
≥ j

Y
, or

else, i
X
≤ i

Y
and j

X
> j

Y
.
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In the first case, by Lemma 4.1.4(3), i
Y
≥ j

Y
−m + `(Y ). By Lemma 4.1.1,

The vertex M with (i
M
, j

M
) = (i

Y
, j

Y
− m + `(Y )) belongs to W . By Lemma

4.1.6, M ≺ Y . Moreover, since i
M

= i
Y
> i

X
and j

M
= j

Y
− m + `(Y ) <

j
Y
− `(X) + `(Y ) = j

X
− (i

Y
− i

X
) < j

X
, by Lemma 4.1.6 again, X ≺ M .

Since Y is a minimal cover of X, we see that S ∪ {M} is a chain in W . Since

`(M) = m 6∈ `(S), we have M 6∈ S, a contradiction. Similarly, we shall obtain

a contradiction in the second case. Thus, `(S) = {1, 2, · · · , n}. The proof of the

lemma is completed.

Recall that a reduced walk w is called sectional if the τ -orbits in w are pairwise

distinct.

4.1.12 Lemma. Let X1 — X2 — · · · — Xm be a sectional walk in W.

(1) Either `(Xi) = `(X1) + i − 1, for all 1 ≤ i ≤ m or `(Xi) = `(X1) − i + 1,

for all 1 ≤ i ≤ m.

(2) For 1 ≤ i, j ≤ m, we have `(Xi) < `(Xj) if and only if Xi ≺ Xj.

Proof. We first show Statement (1) by induction. It is trivial when m = 1. Now

we may assume that m > 1 and `(Xi) = `(X1)+ i−1 for 1 ≤ i ≤ m−1. There is

an edge Xm−1 — Xm. By Lemma 4.1.9(2), we know that `(Xm) = `(Xm−1)− 1

or `(Xm) = `(Xm−1) + 1. Assume that `(Xm) = `(Xm−1) + 1. Then, `(Xm) =

`(Xm−2). Thus, by Remark 4.1.5, Xm and Xm−2 are in the same τ -orbit. Since

w is reduced, Xm 6= Xm−2. It is a contradiction, since w is a sectional walk.

Therefore, `(Xm) = `(X1) +m− 1. Thus, we establish Statement (1). Statement

(2) follows easily from Statement (1) and Lemma 4.1.9(2). The proof of the

lemma is completed.

Remark : Let p : X1 — X2 — · · · —Xm, with m ≤ n, be a sectional path in

W . Since the Xi are in different τ -orbits, by Remark 4.1.5, the `(Xi) are pairwise

distinct. Hence, p satisfies Lemma 4.1.12.

4.1.13 Lemma. If p : X1 → X2 → · · · → Xm, with m ≤ n, is a sectional path in

W, then p is the unique sectional walk from X1 to Xm in W.
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Proof. Let p : X1
α1 // X2

α2 // · · · αm−1 // Xm be a sectional path in W . We shall

consider only the case where `(Xm) > `(X1). In view of Lemma 4.1.12(1), we

deduce that `(Xi) = `(X1) + (i − 1), for i = 1, . . . ,m. Moreover, by Lemma

4.1.3, there is some integer i such that i = i
Xp

for 1 ≤ p ≤ m. We shall show the

lemma by induction. It is trivial when m = 1. We assume that m > 1 and the

statement holds for m− 1. Assume that

X1 = Y1
c1

Y2
c2 · · · cr−1

Yr = Xm

is a sectional walk in W from X1 to Xm. Applying Lemma 4.1.12(1) again,

we obtain `(Yi) = `(Y1) + (i − 1), for i = 1, . . . , r. In particular, r = m and

`(Xm−1) = `(Ym−1). Moreover, by Lemma 4.1.12(2), X1 ≺ Ym−1, and then

i
Ym−1

≥ i
X1

= i. We claim that cm−1 is an arrow. Otherwise, it is the inverse

of an arrow Ym → Ym−1. Thus, Ym−1 = τ−Xm−1. Then, i
Ym−1

= i
Xm−1

− 1 < i,

which is a contradiction. Hence, cm−1 is an arrow. Since `(Ym−1) = `(Xm−1), we

obtain cm−1 = αm−1. Moreover, by the induction hypothesis, we have cp = αp,

for p = 1, . . . ,m− 1. The proof of the lemma is completed.

The following is a description of sections in W .

4.1.14 Proposition. Let Σ be a full subquiver of W. The following statements

are equivalent.

(1) Σ is a section in W .

(2) Σ 0 is a maximal chain in W .

(3) Σ is given by a sectional walk X1 — X2 — · · · — Xn, with `(Xt) = t for

t = 1, . . . , n.

Proof. Suppose that Σ is a section. Since Σ meets every τ -orbit exactly once, by

Remark 4.1.5, we may assume that Σ0 = {X1, X2, · · · , Xn} with `(Xt) = t, for

t = 1, . . . , n. Indeed, for each t ∈ {1, 2, · · · , n − 1}, Σ contains a walk Xt = Y0

— Y1 — · · · — Yr = Xt+1, which is sectional since Σ is a section. By Lemma

4.1.12(1), `(Xt+1) = `(Xt) + r, and since `(Xt+1) = t+ 1, we obtain r = 1. That

is, Γ contains an edge Xt — Xt+1 for every t ∈ {1, 2, · · · , n − 1}. This shows

that Σ is given by a sectional walk as stated in Statement (3).
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Assume now that Σ 0 is a maximal chain in Γ . By Lemma 4.1.11, we have

`(Σ 0) = {1, 2, · · · , n}. Then in view of Lemma 4.1.10, Σ 0 may be written as

X1 ≺ X2 ≺ · · · ≺ Xn

with `(Xt) = t, for t = 1, . . . , n.. By Lemma 4.1.9(2), Γ contains an edge Xt

— Xt+1, for each t ∈ {1, 2, · · · , n − 1}. Thus, Σ is given by a sectional walk as

stated in Statement (3).

Finally, assume that Σ can be given by a sectional walk X1 — X2 — · · · —

Xn with `(Xt) = t, for t = 1, . . . , n. In view of Lemma 4.1.12(2), Σ 0 is a chain in

W . Since `(Σ 0) = {1, 2, · · · , n}, by Lemma 4.1.11, Σ 0 is a maximal chain in W .

Thus, Statement (2) holds. It remains to show that Statement (1) holds. Indeed,

Σ meets every τ -orbit exactly once. Let, moreover,

p : Xs = Y0 → Y1 → · · · → Yr = Xt

be a non-trivial path in W with Xs, Xt ∈ Σ . We may consider only the case

where `(Xs) < `(Xt). Suppose that p is not sectional. Then there is a path from

τ−Xs to Xt. By Lemma 4.1.2(3), i
Xs
−1 = iτ−Xs ≥ iXt and jXs−1 = jτ−Xs ≥ jXt .

By Lemma 4.1.6, Xs and Xt are not comparable. On the other hand, Σ contains

a subwalk w : Xs — Xs+1 — · · · — Xt, which is a sectional walk. By Lemma

4.1.12(2), Xs ≺ Xt, a contradiction. Hence, p is sectional. By the uniqueness

stated in Lemma 4.1.13, p = w. In particular, p lies in Σ . Thus, Σ is a section

in W . The proof of the proposition is completed.

Recall that a set of vertices of W is a section-generator of W if its convex

hull is a section in W . The following statement gives a description of section-

generators in W and also provides a way to obtain them. We refer the notion of

a sectional chain in W to Definition 1.4.10.

4.1.15 Proposition. Let S be a set of vertices in W . Then the following state-

ments are equivalent.

(1) S is a section-generator of W .

(2) S is a sectional chain such that {1, n} ⊆ `(S).
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(3) S is a subset of vertices of a section Σ in W containing all the source

vertices and all the sink vertices of Σ.

Proof. Assume that S is a section-generator ofW . That is, its convex hull Σ is a

section inW . In particular, S ⊆ Σ 0. By Proposition 4.1.14(2), S is a chain. Then

we may assume that S is of the form X1 ≺ X2 ≺ · · · ≺ Xm. By Lemma 4.1.10,

we have `(X1) < · · · < `(Xm). On the other hand, by Proposition 4.1.14(3),

Σ is given by a sectional walk M1 — M2 — · · · — Mn with `(Mt) = t with

1 ≤ t ≤ n. By the definition of the convex hull, M1 lies on a path p in Σ from

Xs to Xr for some 1 ≤ s, r ≤ m. Since p is a sectional walk, by Lemma 4.1.12(1),

`(Xs) ≤ `(M1) ≤ `(Xr) or `(Xr) ≤ `(M1) ≤ `(Xs). Hence, `(Xs) = `(M1) = 1

or `(Xr) = `(M1) = 1. In either case, since `(X1) is the smallest in `(S), we see

`(X1) = 1. In a similar fashion, we may show that `(Xm) = `(Mn) = n.

We claim, for each 1 ≤ t < m, that W contains a path between Xt and Xt+1.

Indeed, being a section, Σ contains a sectional walk

Xt = Y0—Y1— · · ·—Yi = Xt+1,

where i ≥ 1. If i = 1, then our claim is evident. Assume that i > 1. Since

`(Xt) < `(Xt+1), by Lemma 4.1.12(1), we have `(Xt) ≤ `(Y1) ≤ `(Xt+1). On the

other hand, since Σ is the convex hull of S, we see that Y1 lies on a path p in Σ

between two vertices M,N ∈ S. We may assume that `(M) ≤ `(N). Then in view

of Proposition 4.1.14(3), `(M) ≤ `(Y1) ≤ `(N). By Lemma 4.1.10, `(Xt+1) is a

minimal cover of `(Xt) in `(S). Thus, `(M) ≤ `(Xt) ≤ `(Y1) ≤ `(Xt+1) ≤ `(N).

In view of Proposition 4.1.14(3), Σ contains a sectional walk

M — · · · — Xt — · · · — Y1 — · · · — Xt+1 — · · · — N.

By Lemma 4.1.13, this walk coincides with p or p−1. In particular, there is a path

between Xt and Xt+1. Hence, S is a sectional chain. This shows that Statement

(1) implies Statement (2).

Now assume that S is a sectional chain such that {1, n} ⊆ `(S). Then we

may assume that S is of the form X1 ≺ X2 ≺ · · · ≺ Xm. In view of Lemma

4.1.10, we see that `(X1) = 1 and `(Xm) = n. By Lemma 1.4.9, assume that ρp

is the sectional path between Xp and Xp+1, for each 1 ≤ p < m. In particular, ρp

is a sectional walk Xp = Xp,0 — Xp,1 — · · · — Xp,tp = Xp+1. Since Xp ≺ Xp+1,
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by Lemma 4.1.9(1), we have `(Xp) < `(Xp+1), and hence, by Lemma 4.1.12

(1), the `(Xp) = `(Xp,0) < `(Xp,1) < · · · < `(Xp,tp) = `(Xp+1). Therefore, the

walks ρp with 1 ≤ p ≤ m can be composed to form a sectional walk Σ . By

Proposition 4.1.14(3), Σ is a section in W . Since the ρp are paths, we see that

S = {X1, . . . , Xm} contains all the sink vertices and the source vertices of Σ. This

shows that Statement (2) implies Statement (3). Moreover, since Σ is generated

by the paths ρp, we see that Σ is contained in the convex hull of S. Since Σ is

convex, it is the convex hull of S. Thus, S is a section-generator. This shows

that Statement (2) implies Statement (1).

Finally, assume that S = {X1, · · · , Xm} is a subset of vertices of a section

Σ in W containing all the source vertices and all the sink vertices of Σ . Since

S ⊆ Σ , by Proposition 4.1.14(2), S is a chain. Again, by Proposition 4.1.14(3), Σ

is given by a sectional walk of form M1 — M2 — · · · — Mn with `(M1) = 1 and

`(Mn) = n. Therefore, M1 and Mn are sink or source vertices in Σ . Apparently,

M1,Mn ∈ S. In particular, the `(Xp) with 1 ≤ p ≤ m are pairwise distinct. We

may assume that `(X1) < `(X2) < · · · < `(Xm). In this case, X1 = M1 and

Xm = Mn. Hence, `(X1) = 1 and `(Xm) = n. Fix p with 1 ≤ p < m. Being

connected, Σ contains a reduced walk

ρp : Xp = Y0 — Y1 — · · · — Yr−1 — Yr = Xp+1.

By Lemma 4.1.12, `(Xp) = `(Y0) < `(Y1) < · · · < `(Yr) = `(Xp+1). If ρp is not a

path or the inverse of a path, then r > 1 and some Yj with 1 ≤ j < r is a sink

vertex or a source vertex in Σ . Observing that `(Yj) 6= `(Xi) for all 1 ≤ i ≤ m,

we see that Yj 6∈ S, a contradiction. Therefore, S is a sectional chain. The proof

of the proposition is completed.

4.2 Coordinate system for a translation quiver

of shape ZA∞
The main objective of this section is to introduce a coordinate system for a

translation quiver of shape ZA∞, which is slightly different from the one consid-

ered in [34] and has been implicitly used in [48]. It allows us to describe some

essential combinatorial notions such as the partial order, the section-generators

and the sectional chains in such a translation quiver.
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Throughout this section, Γ stands for a translation quiver of shape ZA∞ with

translation τ . Fixing a quasi-simple vertex S0, we obtain the quasi-simple vertices

Si = τ iS0 with i ∈ Z in Γ . For each i ∈ Z, denote by R+
i the ray in Γ starting

with Si, that is, the unique infinite sectional path starting with Si; and by R−i
the co-ray ending with Si, that is, the unique infinite sectional path ending with

Si. Then, Γ 0 =
⋃
i∈Z (R+

i )0 =
⋃
j∈Z (R−j )0.

4.2.1 Lemma. Writing ZΓ = {(i, j) ∈ Z× Z | i ≥ j}, we obtain a bijection

Φ : Γ 0 → ZΓ : X 7→ (i
X
, j

X
)

so that R+
i
X
∩R−j

X
= {X}, for every X ∈ Γ 0.

Proof. Let X ∈ Γ 0. There exists a unique integer i
X

such that X ∈ R+
i
X

.

Then, R+
i
X

has a subpath τ iXS0 → · · · → X of length l ≥ 0. Observe that

Γ has a sectional path X → · · · → τ jXS0 of length l. Thus, X ∈ R−j
X

, and

hence, X = R+
i
X
∩ R−j

X
. Since τ jXS0 = τ−l(τ iXS0) = τ iX−lS0, we see that j

X
=

i
X
− l ≤ i

X
. Therefore, (i

X
, j

X
) ∈ ZΓ with i

X
≥ j

X
. In particular, Φ is injective.

Assume conversely that (i, j) ∈ ZΓ . Since l = j − i ≥ 0, the ray R+
i has

a subpath τ iS0 → · · · → Y of length l. Then, Γ contains a sectional path

Y → · · · → τ i+lS0 = τ jS0. That is, Y ∈ Γ 0 is such that Φ(Y ) = (i, j). The proof

of the lemma is completed.

In view of Lemma 4.2.1, for every X ∈ Γ 0, we shall write X = (i
X
, j

X
). This

yields a coordinate system for Γ as follows.

(0,0)

(1,0)

(2,0)

(3,0)

(1,1)

(2,1)

(3,1)

(4,1)

(-1,-1)

(1,-1)

(2,-1)

(0,-1)

(0,-2)

(0,-3)(1,-2)

(2,2)

(3,2) (-1,-2)

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
...

...
...

...
...

The following statement is an explanation of the coordinates of a vertex in

terms of the rays and co-rays in Γ .
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4.2.2 Lemma. Let i, j be integers. If X is a vertex of Γ , then

(1) i
X

= i if and only if X ∈ R+
i ;

(2) j
X

= j if and only if X ∈ R−j .

The following statements is similar to Lemma 4.1.2, whose proof is omitted.

4.2.3 Lemma. Let X, Y be two vertices in Γ .

(1) There exists an arrow α : X → Y in Γ if and only if (i
Y
, j

Y
) = (i

X
, j

X
− 1)

or (i
Y
, j

Y
) = (i

X
− 1, j

X
).

(2) X = τY if and only if (i
X
, j

X
) = (i

Y
+ 1, j

Y
+ 1).

(3) There exists a path p : X  Y in W if and only if i
X
≥ i

Y
and j

X
≥ j

Y
.

In this case, l(p) = (i
X
− i

Y
) + (j

X
− j

Y
).

The following result describes the sectional paths in Γ , whose proof can be

translated word-by-word from the proof of Lemma 4.1.3.

4.2.4 Lemma. Let p : X1 → X2 → · · · → Xn be a sectional path in Γ . Then one

of the following statements is true.

(1) (i
Xt
, j

Xt
) = (i

X1
, j

X1
− t+ 1), for t = 1, . . . , n.

(2) (i
Xt
, j

Xt
) = (i

X1
− t+ 1, j

X1
), for t = 1, . . . , n.

Recall that every vertex X ∈ Γ is the wing vertex of a wing WX in Γ as

defined in Definition 1.4.6. The following statement is similar to Lemma 4.1.4,

whose proof will be omitted.

4.2.5 Lemma. Let X,M be two vertices in Γ .

(1) The source vertex of WX is (i
X
, i
X

), and the sink vertex is (j
X
, j

X
).

(2) M ∈ WX if and only if i
X
≥ i

M
and j

M
≥ j

X
.
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(3) The quasi-length of X ∈ Γ is given by `(X) = i
X
− j

X
+ 1.

4.2.6 Remark. By Lemma 4.2.3(2) and Lemma 4.2.5(3), we see that X, Y ∈ Γ

belong to the same τ -orbit if and if only `(X) = `(Y ). Observe that the `(X),

with X ∈ Γ , may run over all the positive integers.

Recall from Lemma 1.4.7 that there is a partial order � over Γ 0. By abuse of

language, we shall say that Γ is partially ordered by �. The following statement

is an analogue to Lemma 4.1.6, whose proof is omitted.

4.2.7 Lemma. If X,M ∈ Γ 0, then M � X if and only if i
M
≤ i

X
and j

M
≥ j

X
.

We describe the separability of two wings in Γ as defined Definition 1.4.8 in

terms of the coordinates in the following statement, which is similar to Lemma

4.1.7.

4.2.8 Lemma. Given X, Y ∈ Γ 0, the wings WX ,WY are separable if and only

if j
X
≥ i

Y
+ 2 or j

Y
≥ i

X
+ 2; and in this case, WM ,WN are separable for any

M ∈ WX and N ∈ WY .

Let X, Y ∈ Γ with X ≺ Y . Recall from Definition 1.4.12 that if X, Y are

connected by a path, then we have defined a wing WX
Y in WY . The following

statement describes WX
Y in terms of the coordinates which is similar to Lemma

4.1.8.

4.2.9 Lemma. Let X, Y ∈ Γ with X ≺ Y . If X, Y are connected by a path p,

then WX
Y = ∅ in case `(p) = 1; and otherwise, WX

Y =WZ, where Z ∈ WY with

(i
Z
, j

Z
) =

{
(j
X
− 2, j

Y
), if s(p) = X;

(i
X
, i
Y

+ 2), if t(p) = X.

In particular, WX
Y is a wing of rank `(Y )− `(X)− 1.

The partial order � over Γ plays an essential role in this section. Compare

the following statement with Lemma 4.1.9.
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4.2.10 Lemma. Let X, Y be two vertices in Γ .

(1) If X, Y are comparable, then X ≺ Y if and only if `(X) < `(Y ).

(2) There is an edge X — Y in Γ if and only if X ≺ Y with `(Y ) = `(X) + 1

or Y ≺ X with `(Y ) = `(X)− 1.

Next, we shall study the chains in Γ . The following observation is evident.

4.2.11 Lemma. Every vertex in Γ is a cover of only finitely many vertices.

Given a set S of vertices in Γ , we shall write `(S) = {`(X) |X ∈ S}. The

following statement is similar to Lemma 4.1.10.

4.2.12 Lemma. Given a chain S in Γ , we have an isomorphism of posets

` : S → `(S) : X 7→ `(X).

The following statement describes the infinite chains in Γ .

4.2.13 Lemma. An infinite chain S in Γ is of the form

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

Proof. Let S be an infinite chain. By Lemma 4.2.12, `(S) is an infinite set of

positive integers, and hence, it is of the following form

`(X1) < `(X2) < · · · < `(Xn) < · · · .

Applying Lemma 4.2.12 again, S is of the form as stated in the lemma. The

proof of the lemma is completed.

The following statement describes the maximal chains in Γ . By N+ we denote

the set of the positive integers. Compare it with Lemma 4.1.11.

4.2.14 Lemma. A chain S in Γ is maximal if and only if `(S) = N+.
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Proof. Let S be a chain in Γ . Assume first that `(S) = N+. Suppose that there

is a vertex Y such that S ∪ {Y } is a chain in Γ . Then there is a vertex X ∈ S
such that `(X) = `(Y ). If X 6= Y , then X ≺ Y or Y ≺ X. By Lemma 4.2.12,

`(X) < `(Y ) in the first case and `(X) > `(Y ) in the second case, a contradiction.

Thus, X = Y . Therefore, S is a maximal chain in Γ .

Conversely, assume that S is a maximal chain in Γ . We claim that S is an

infinite chain and contains a minimal element of quasi-length 1. Suppose first

that S has a maximal element X. Take Z = (i
X

+ 1, j
X

). By Lemma 4.2.7,

X ≺ Z, and hence, Z 6∈ S, which is a contradiction. Thus, S is infinite. By

Lemma 4.2.13, S has a minimal element Y . Suppose secondly that `(Y ) > 1. Let

S be the source vertex of WY . Then, S � Y . Since `(S) = 1 < `(Y ), we have

S ≺ Y , and in particular S 6∈ S, which is a contradiction. Our claim is true.

Suppose now on the contrary that there is an integer n such that n 6∈ `(S).

In particular, n > 1. Since S is infinite, by Lemma 4.2.12, there are M,N ∈ S
such that `(M) < n < `(N). It is evident that we may assume that `(N) is

the minimal cover of `(M) in `(S). Then by Lemma 4.2.12, N is a minimal

cover of M in S. By Lemma 4.2.7, i
M
< i

N
and j

M
≥ j

N
, or else, i

M
≤ i

N

and j
M
> j

N
. In the first case, by Lemma 4.2.5(3), i

N
≥ j

N
− n + `(N). By

Lemma 4.2.1, Γ contains a vertex L with (i
L
, j

L
) = (i

N
, j

N
− n+ `(N)) ∈ Γ . By

Lemma 4.2.7, L ≺ N . Moreover, since i
L

= i
N
> i

M
and j

L
= j

N
− n + `(N) ≤

j
N
− `(M) + `(N) = j

M
− (i

N
− i

M
) < j

M
, By Lemma 4.2.7, M ≺ L. Since N is a

minimal cover of M , we see that S ∪ {L} is a chain in Γ . Since `(L) = n 6∈ `(S),

we have L 6∈ S, a contradiction. Similarly, we shall obtain a contradiction in the

second case. Thus, `(S) = N+. The proof of the lemma is completed.

The following definition gives us two convex subquivers of Γ , which will play

an important role on the study of cluster categories of type ZA∞∞.

4.2.15 Definition. Given an integer n, define

Γ +
<n =

⋃
i<n
R+
i and Γ−>n =

⋃
j>n

R−j .

Remark. Let m,n be integers.

(1) If m > n, then Γ +
<n ⊆ Γ +

<m and Γ−>m ⊆ Γ−>n.
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(2) If X ∈ Γ , then X ∈ Γ +
<n if and only if i

X
< n, whereas X ∈ Γ−>n if and

only if j
X
> n.

(3) It will be useful to observe that Γ +
<n is the full subquiver of Γ generated

by the successors of the quasi-simple vertex Sn−1, and Γ−>n is the full subquiver

of Γ generated by the predecessors of the quasi-simple vertex Sn+1.

The following easy lemma describes the intersection of two subquivers defined

in Definition 4.2.15.

4.2.16 Lemma. Let m,n be two integers.

(1) If m ≤ n+ 1 then Γ +
<m ∩ Γ−>n = ∅.

(2) If m ≥ n+ 2, then Γ +
<m ∩ Γ−>n =WZ with (i

Z
, j

Z
) = (m− 1, n+ 1) .

Proof. Let X ∈ Γ +
<m ∩ Γ−>n. Thus, n < j

X
≤ i

X
< m. We deduce from Lemma

4.2.1 that m ≥ n + 2. This shows Statement (1). Consider the vertex Z ∈ Γ

with (i
Z
, j

Z
) = (m − 1, n + 1). Obviously, X ∈ WZ . Hence, Γ +

<m ∩ Γ−>n ⊆ WZ .

On the other hand, Z ∈ Γ +
<m ∩ Γ−>n. The proof of the lemma is completed.

The following easy statement follows immediately from Lemmas 4.2.2 and

4.2.7.

4.2.17 Lemma. Consider a ray R+
i and a co-ray R−j in Γ .

(1) The vertices in R+
i form a chain such, for X, Y ∈ R+

i , that X ≺ Y if and

only if j
X
> j

Y
.

(2) The vertices in R−j form a chain such, for X, Y ∈ R−j , that X ≺ Y if and

only if i
X
< i

Y
.

4.2.18 Definition. A set of vertices in Γ is called locally finite if it contains at

most finitely many vertices of each of the rays R+
i and each of the co-rays R−j in

Γ .

The following statement collects some properties of infinite chains in Γ . We

refer the notion of the density in a poset to Section 1.4.
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4.2.19 Lemma. Let S be an infinite chain in Γ , and let i, j be two integers.

(1) If S is locally finite, then S is dense in Γ .

(2) If S has infinitely many vertices of R+
i , then S is a dense subset of Γ +

<i+1.

(3) If S has infinitely many vertices of R−j , then S is a dense subset of Γ−>j−1.

Proof. Assume that S contains finitely many vertices of each ray and each co-ray

in Γ and X1 is the minimal element in S. Since S ∩ R+
i
X1

and S ∩ R−j
X1

both

are finite, the chain S2 = S\(R+
i
X1

∪ R−j
X1

) is infinite. Then, take X2 to be the

minimal element in S2. Thus, we have X1 ≺ X2 with j
X2
< j

X1
≤ i

X1
< i

X2
. By

induction, since S is infinite, we obtain an infinite subchain

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

of S such that i
Xn

< i
Xn+1

and j
Xn

> j
Xn+1

, for n ≥ 1. Now let M ∈ Γ . There

is some Xn such that i
M
< i

Xn
and j

M
< j

Xn
. That is, M ≺ Xn. This shows

Statement (1).

Assume now that S contains infinitely many vertices of R+
i . In particular,

S ∩R+
i is an infinite chain. Let X ∈ S. Then, by Lemma 4.2.11, there is a vertex

Y ∈ S ∩ R+
i such that X ≺ Y . Thus, by Lemma 4.2.7, i

X
≤ i

Y
= i. Hence, S is

a subset of Γ +
<i+1. Now let M ∈ Γ +

<i+1. Being infinite, S ∩R+
i contains an object

Z such that j
Z
< j

M
. Moreover, since i

M
≤ i

Z
and j

M
> j

Z
, by Lemma 4.2.7,

M ≺ Z. This shows Statement (2). The proof of Statement (3) is similar.The

proof of the lemma is completed.

The following statement will be used in the study of cluster-tilting subcate-

gories of cluster categories of type A∞∞.

4.2.20 Lemma. Let T be a set of vertices of Γ +
<n(respectivley, Γ−>n) for some

n ∈ Z. Then T is dense in Γ +
<n(respectively, Γ−>n) if and only if T contains

infinitely many vertices of R+
n−1(respectively, R−n+1).

Proof. We shall consider only the case where T ⊆ Γ +
<n. The sufficiency follows

from Lemma 4.2.19(2). Assume now that T contains finitely many vertices of

R+
n−1. Then there is a vertices X ∈ R+

n−1 which does not belong to T . Apparently

X has no cover in T . Hence, T is not dense. The proof of the lemma is completed.
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In the following, we shall focus on the sections and section-generators in Γ .

Comparing the following statement with Lemma 4.1.12, we shall omit the proof.

4.2.21 Lemma. Let X1 — X2 — · · · — Xn be a sectional walk in Γ , where

n ∈ Z.

(1) Either `(Xi) = `(X1)− i+ 1 for all 1 ≤ i ≤ n− 1 or `(Xi) = `(X1) + i− 1

for all 1 ≤ i ≤ n.

(2) `(Xi) < `(Xj) if and only if Xi ≺ Xj, for all i, j ≥ 1.

The following statement describes the sectional paths in Γ , whose proof is

similar to that of Lemma 4.1.13.

4.2.22 Lemma. If p : X1 → X2 → · · · → Xm is a sectional path in Γ , then p is

the unique sectional walk from X1 to Xm in Γ .

The following statement is a characterization of sections of Γ . Compare it to

Proposition 4.1.14.

4.2.23 Proposition. Let Σ be a full subquiver of Γ . The following statements

are equivalent.

(1) Σ is a section in Σ .

(2) Σ 0 is a maximal chain in Γ .

(3) Σ is given by an infinite sectional walk as follows :

X1 — X2 — · · · — Xn — · · ·

with `(X1) = 1.

Proof. Assume first that Σ is a section in Γ . Since Σ meets every τ -orbit exactly

once, we may write Σ 0 = {X1, X2, . . . , Xn, . . .} with `(Xn) = n for all n ≥ 1.

For each n, Σ contains a walk Xn = Y0 — Y1 — · · · — Yr = Xn+1, which is

sectional since Σ is a section. By Lemma 4.2.21(1), `(Xn+1) = `(Xn) + r, and
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since `(Xn+1) = n+ 1, we obtain r = 1. That is, Γ contains an edge Xn — Xn+1

for every n. This shows that Σ is given by an infinite sectional walk as stated in

Statement (3).

Assume now that Σ 0 is a maximal chain in Γ . By Lemma 4.2.14, `(Σ 0) = N+.

Thus, Σ 0 is an infinite chain of the form

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

with `(Xn) = n, for all n ≥ 1. By Lemma 4.2.10(2), we see that Γ contains an

edge Xn — Xn+1, for each n ≥ 1. Thus, Σ is given by an infinite sectional walk

as stated in Statement (3).

Assume now that Σ is given by an infinite sectional walk

X1 — X2 — · · · — Xn — · · ·

with `(X1) = 1. By Lemma 4.2.21(1), we have `(Xn) = n for n ≥ 1. By Lemma

4.2.21(2) and Lemma 4.2.14, Σ 0 is a maximal chain in Γ . This shows Statement

(2). It remains to shows Statement (3). Indeed, Σ meets every τ -orbit in Γ

exactly once. Now, consider a non-trivial path p : Xm = Y0 → Y1 → · · · → Yr =

Xn in Γ for some m,n. We shall consider only the case where `(Xm) < `(Xn).

Suppose that p is not sectional. Then there is a path from τ−Xm to Xn. By

Lemma 4.2.3, iτ−Xm ≥ iXn and jτ−Xm ≥ j
Xn

. Since iXm − 1 = iτ−Xm and

jXm − 1 = jτ−Xm , we see that iXm > i
Xn

and j
Xm

> j
Xn

. That is, Xm and Xn

are not comparable, a contradiction. Hence, p is sectional. Since Σ contains a

sectional subwalk w : Xm — Xm+1 — · · · — Xn, by the uniqueness stated in

Lemma 4.2.22, p = w. In particular, p lies in Σ . That is, Σ is a section in Γ .

The proof of the proposition is completed.

We refer the notion of a section-generator of Γ to Definition 1.4.2 and the

notion of a sectional chain in Γ to Definition 1.4.10. The following statement

gives a description of section-generators in Γ .

4.2.24 Proposition. Let S be a set of vertices of Γ . The following statements

are equivalent.

(1) S is a section-generator of Γ .
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(2) S is an infinite sectional chain containing a vertex of quasi-length 1.

(3) S is an infinite set of vertices of a section Σ of Γ containing all the source

vertices and all the sink vertices of Σ.

Proof. Assume that S is a section-generator of Γ . That is, the convex hull Σ

of S is a section in Γ . By proposition 4.2.23(3), Σ is given by a sectional walk

starting with a vertex M of quasi-length 1. Moreover, by Proposition 4.2.23(2),

Σ is a chain in Γ . Since S ⊆ Σ , we see that S is also a chain in Γ . Assume that

S has a maximal element Y . By Lemma 4.2.7, S is contained in WY . Since WY

is convex, Σ is contained in WY . Therefore, Σ is finite by Lemma 4.2.11, which

is absurd. Thus, S is an infinite chain. Write

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

By definition, M lies on a path p in Σ from Xs to Xr for some s, r ≥ 1. Since

p is a sectional walk, by Lemma 4.2.21(2), we have `(Xs) ≤ `(M) ≤ `(Xr) or

`(Xr) ≤ `(M) ≤ `(Xs). Hence, `(Xs) = `(M) = 1 or `(Xr) = `(M) = 1. In

either case, since `(X1) is the smallest in `(S), we see `(X1) = 1.

We claim, for each t ≥ 1, that Γ contains a path between Xt and Xt+1.

Indeed, being a section, Σ contains a sectional walk

Xt = Y0—Y1— · · ·—Yi = Xt+1,

where i ≥ 1. Since `(Xt) < `(Xt+1), by Lemma 4.2.21(1), we have `(Xt) ≤
`(Y1) ≤ `(Xt+1). Since Σ is the convex hull of S, on the other hand, Y1 lies on a

path p in Σ between two vertices M,N ∈ S. We may assume that `(M) ≤ `(N).

Then `(M) ≤ `(Y1) ≤ `(N). Since `(Xt+1) is a minimal cover of `(Xt) in `(S), we

obtain `(M) ≤ `(Xt) ≤ `(Y1) ≤ `(Xt+1) ≤ `(N). In view of Proposition 4.2.23

and Lemma 4.2.21, we see that Σ contains a sectional walk

M — · · · — Xt — · · · — Y1 — · · · — Xt+1 — · · · — N.

By Lemma 4.1.13, this walk coincides with p or p−1. In particular, there is a path

between Xt and Xt+1. Hence, S is a sectional chain. This shows that Statement

(1) implies Statement (2).
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Now assume that S is an infinite chain, with 1 ∈ `(S), of the form

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

In view of Lemma 4.2.12, we have `(X1) = 1. By Lemma 1.4.9, assume that pn

is the sectional path between Xn and Xn+1, for each n ≥ 1. In particular, pn is a

sectional walk Xn = Xn,0 — Xn,1 — · · · — Xn,tn = Xn+1. Since Xn ≺ Xn+1, by

Lemma 4.2.10(1), we have `(Xn) < `(Xn+1), and hence, by Lemma 4.2.21(1), the

`(Xn) = `(Xn,0) < `(Xn,1) < · · · < `(Xn,tn) = `(Xn+1). Therefore, the walks pn

with n ≥ 1 can be composed to form an infinite sectional walk Σ with `(X1) = 1.

By Proposition 4.2.23(3), Σ is a section in Γ . Since the pn are paths, we see that

S = {X1, . . . , Xn, . . .} contains all the sink vertices and the source vertices of Σ .

This shows that Statement (2) implies Statement (3).

Finally, suppose that S = {X1, · · · , Xn, · · · } is a subset of vertices of a section

Σ in Γ containing all the source vertices and sink vertices of Σ . Since Σ is a

section, by Proposition 4.2.23(3), Σ is given by an infinite sectional walk of form

M1 — M2 — · · · — Mn — · · · with `(M1) = 1. Therefore, M1 is sink or source

vertex in Σ . Apparently, M1 ∈ S. In particular, the `(Xn) with n ≥ 1 are

pairwise distinct. We may assume that `(X1) < `(X2) < · · · < `(Xn) < · · · . In

this case, X1 = M1. Hence, `(X1) = 1. Fix n with n ≥ 1. Being connected, Σ

contains a reduced walk pn : Xn = Y0 — Y1 — · · · — Yr−1 — Yr = Xn+1. By

Lemma 4.2.21(1), `(Xn) = `(Y0) < `(Y1) < · · · < `(Yr) = `(Xn+1). If pn is not

a path or the inverse of a path, then r > 1 and some Yj with 1 ≤ j < r is a

sink vertex or a source vertex in Σ . Observing that `(Yj) 6= `(Xi) for all i ≥ 1,

we see that Yj 6∈ S, a contradiction. Thus, pn is a path in Γ for all n ≥ 1, and

hence, Σ is contained in the convex hull of S. Being convex, Σ is the convex

hull of S. Hence, S is a section-generator. This shows that Statement (3) implies

Statement (1). The proof of the proposition is completed.

The following result states some properties of section-generators of Γ .

4.2.25 Corollary. Let S be a section-generator of Γ and Σ be its convex hull.

(1) If S contains at most finitely many vertices of each ray and each co-ray,

then Σ has no infinite path.
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(2) If S contains infinitely many vertices of some ray R+
i , then Σ has an infinite

path p such that p lies in R+
i .

(3) If S contains infinitely many vertices of some co-ray R−j , then Σ has an

infinite path p such that p lies in R−i .

Proof. By Proposition 4.2.24(2), S is infinite. By Proposition 4.2.23, Σ is given

by an infinite sectional walk of the form M1 — M2 — · · · — Mn — · · · with

`(M1) = 1. Moreover, by Lemma 4.2.21(1) and (2), Σ is such that Mn ≺ Mn+1

for n ≥ 1.

Assume first that S contains at most finitely many vertices of each ray and

each co-ray. Suppose on the contrary that Σ contains an infinite path p starting

or ending at some Mn in Σ . We shall only consider the first case. Since Σ is

a section, p is a sectional path. Then p entirely lies in R+
i , for some i ∈ Z.

By Lemma 4.2.12, there are finitely many X ∈ S such that X ≺ Mn. Since

S is infinite, p contains infinitely many vertices of S, which is a contradiction.

Therefore, p is finite. This shows Statement (1). Suppose now that S ∩ R+
i is

infinite. Then, we may write S ∩R+
i as follows.

N1 ≺ N2 ≺ · · · ≺ Nn ≺ · · · .

Observe that there is a pn : Nn  Nn+1 lying entirely in R+
i , for n ≥ 1. Then,

the pn can be composed to an infinite path p which lies in R+
i . Moreover, by

the definition of convex hull, p is contained in Σ . This shows Statement (2).

Statement (3) is similar to show. The proof of the corollary is completed.

We conclude this section by introducing infinite co-wings in Γ , which will be

used in Chapter 7.

4.2.26 Definition. Given a quasi-simple vertex S ∈ Γ , we define the infinite

co-wing W(S) with co-wing vertex S to be the full subquiver of Γ generated by

the vertices X for which there exists a path N  X  M , where M belongs to

the ray starting with S and N belongs to the co-ray ending with S.

We give a description of infinite co-wings in Γ in terms of the coordinates.
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4.2.27 Lemma. Let S be a quasi-simple vertex of Γ . If X ∈ Γ , then X ∈ W(S)

if and only if i
X
≥ i

S
= j

S
≥ j

X
if and only if S ∈ WX .

Proof. Since S is quasi-simple, i
S

= j
S
. Thus, R+

i
S

is the ray starting with

S and R−i
S

is the co-ray ending with S. Now assume that X ∈ W(S). By

definition, there exists a path N  X  M , where M ∈ R+
i
S

and N ∈ R−i
S
. In

particular, i
M

= j
N

= i
S
. By Lemma 4.2.3 (3), j

X
≤ j

N
and i

X
≥ i

M
. Thus,

i
X
≥ i

S
= j

S
≥ j

X
.

Conversely, suppose that X ∈ Γ such that i
X
≥ i

S
= j

S
≥ j

X
. By Lemma

4.2.1, the vertices N,M with (i
N
, j

N
) = (i

X
, i
S
) and (i

M
, j

M
) = (i

S
, j

X
) belong

to Γ . Clearly, M ∈ R+
i
S

and N ∈ R−i
S
. In view of Lemma 4.1.2(3), Γ contains

a path N  X  M . Therefore, X ∈ W(S). The rest of the statement follows

immediately from Lemma 4.2.7. The proof of the lemma is completed.

4.3 Coordinate system for a translation quiver

of shape ZA∞∞

The objective of this section is to introduce a coordinate system for a transla-

tion quiver of shape ZA∞∞ in order to describe its sections and section-generators.

Throughout this section, let Γ stand for a translation quiver of shape ZA∞∞,

whose translation is written as τ . We fix two double infinite sectional paths R0

and L0 in Γ , whose intersection consists of one vertex. Writing Ri = τ iR0 and

Li = τ iL0 for i ∈ Z, we can picture Γ as follows.

R1

R0·· ···

··· ··
·····

··· ··

R−1

L0

L−1

L1
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Thus, for any vertex X ∈ Γ , there is a unique pair (i
X
, j

X
) of integers such

that X = Li
X
∩ Rj

X
. In the sequel, for convenience, we shall identify X with

(i
X
, j

X
). In this way, Γ is endowed with a coordinate system as follows.

(-2,0)

(-1,0)

(0,0)

(1,0)

(2,0)

(-1,1)

(0,1)

(1,1)

(2,1)

(3,1)

(-1,-1)

(-2,-1)

(0,-1)

(1,-1)

(-1,-1)

(-1,-2)

(-1,-3)(0,-2)

(1,2)

(1,3) (0,2)

(2,2) (-2,-2)

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
...

...
...

...
...

...
...

...
...

...

The following easy statement relates the coordinates of a vertex and the double

infinite sectional paths Li and Rj in Γ .

4.3.1 Lemma. If X ∈ Γ , then the following statements hold.

(1) If i ∈ Z, then i
X

= i if and only if X ∈ Li;

(2) If j ∈ Z, then j
X

= j if and only if X ∈ Rj.

Using the coordinate system for Γ , the arrows and the translation can be

described as follows.

4.3.2 Lemma. Let X, Y be two vertices in Γ .

(1) There exists an arrow X → Y if and only if (i
Y
, j

Y
) = (i

X
, j

X
− 1) or

(i
Y
, j

Y
) = (i

X
− 1, j

X
).

(2) X = τY if and only if (i
X
, j

X
) = (i

Y
+ 1, j

Y
+ 1).

Remark. In view of Lemma 4.3.2(1), every vertex X ∈ Γ has exactly four

neighbors as follows:
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Y1

  

Y2

X

==

!!
Y3

>>

Y4,

where (i
Y1
, j

Y1
) = (i

X
, j

X
+ 1), (i

Y2
, j

Y2
) = (i

X
− 1, j

X
), (i

Y3
, j

Y3
) = (i

X
+ 1, j

X
)

and (i
Y4
, j

Y4
) = (i

X
, j

X
− 1).

The following statement is an easy consequence of Lemma 4.3.2(1).

4.3.3 Lemma. Given vertices X, Y ∈ Γ , there exists a path X  Y if and only if

i
X
≥ i

Y
and j

X
≥ j

Y
; and in this case, the path is sectional if and only if i

X
= i

Y

or j
X

= j
Y
.

The following statement describes the sectional paths in Γ .

4.3.4 Lemma. Let X1 → X2 → · · · → Xn be a sectional path in Γ . Then

(1) (i
Xp
, j

Xp
) = (i

X1
, j

X1
− p+ 1), for p = 1, . . . , n; or

(2) (i
Xp
, j

Xp
) = (i

X1
− p+ 1, j

X1
), for p = 1, . . . , n.

Proof. Write (i
X1
, j

X1
) = (s, t). By Lemma 4.3.2(1), the statement is evident for

n = 2. Assume now that n > 2. By the induction hypothesis, we may assume

that i
Xp

= s and j
Xp

= t−p+1, for all 1 ≤ p ≤ n−1. In view of Lemma 4.3.2(1),

we see that (i
Xn
, j

Xn
) = (i

Xn−1
, j

Xn−1
− 1) = (s, t− n+ 1) or

(i
Xn
, j

Xn
) = (i

Xn−1
− 1, j

Xn−1
) = (s− 1, t− n+ 2) = (i

Xn−2
− 1, j

Xn−2
− 1).

Since this path is sectional, by Lemma 4.3.2(2), the second case does not occur.

The proof of the lemma is completed.

4.3.5 Definition. Given a vertex X ∈ Γ , its level `(X) is defined by

`(X) = i
X
− j

X
.

The following statement is an easy consequence of Lemma 4.3.2(2).
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4.3.6 Lemma. Two vertices X, Y ∈ Γ lie in the same τ -orbit if and only if

`(X) = `(Y ).

Remark. Observe that the levels of vertices in the double infinite sectional path

L0 run over the integers. Thus, in view of Lemma 4.3.2(2), we have a bijection

between the levels of vertices in Γ and the integers.

The following statement is easy to verify.

4.3.7 Lemma. The vertex set of Γ is partially ordered in such a way that X � Y

if and only if i
X
≤ i

Y
and j

X
≥ j

Y
.

Remark. For convenience we shall say, by abuse of language, that Γ is a poset.

The partial order introduced in Lemma 4.3.7 plays an essential role in this

section.

4.3.8 Lemma. Let X, Y be two vertices in Γ .

(1) If X, Y are comparable, then X ≺ Y if and only if `(X) < `(Y ).

(2) There is an edge X — Y in Γ if and only if X ≺ Y with `(Y ) = `(X) + 1

or Y ≺ X with `(Y ) = `(X)− 1.

Proof. By definition, `(Y ) − `(X) = (i
Y
− i

X
) + (j

X
− j

Y
). If X ≺ Y , then

`(Y ) − `(X) > 0. Assume now that X, Y comparable with `(X) < `(Y ). We

claim that X ≺ Y . Otherwise, Y � X. In view of the equation, we see that

`(Y )− `(X) ≤ 0, a contradiction. This shows Statement (1).

For proving the necessity of Statement (2), we consider only the case where

there is an arrow X → Y in Γ . By Lemma 4.3.2(1), (i
Y
, j

Y
) = (i

X
− 1, j

X
) or

(i
Y
, j

Y
) = (i

X
, j

X
− 1). In the first case, Y ≺ X with `(Y ) = `(X) − 1; and in

the second case, X ≺ Y with `(Y ) = `(X) + 1.

For proving the sufficiency of Statement (2), we consider only the case where

X ≺ Y with `(Y ) = `(X) + 1. Then, 1 = `(Y ) − `(X) = (i
Y
− i

X
) + (j

X
− j

Y
).

Since i
Y
≥ i

X
and j

X
≥ j

Y
, we have i

Y
= i

X
and j

X
= j

Y
+ 1 or i

Y
= i

X
+ 1 and

j
X

= j
Y

. By Lemma 4.3.2(1), Γ has an arrow X → Y in the first case; and an
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arrow Y → X in the second case. This shows Statement (2). The proof of the

lemma is completed.

The following statement gives some properties of paths between comparable

vertices.

4.3.9 Lemma. Let X, Y ∈ Γ be comparable. If Γ has a path p between X and

Y , then p is sectional and is the unique path between X and Y .

Proof. We shall only prove the case where Γ has a path p from X to Y . Write

p : X = M1 → · · · →Mr−1 →Mr = Y

with r ≥ 1. By Lemma 4.3.3, we have i
X
≥ i

Mt
≥ i

Y
and j

X
≥ j

Mt
≥ j

Y
for

t = 1, . . . , r. Assume first that X � Y . Then i
X
≤ i

Y
and j

X
≥ j

Y
. This implies

that either i
Mt

= i
X

, for t = 1, . . . , r, or j
Mt

= j
X

for t = 1, . . . , r. By Lemma

4.3.2(1), in the first case, we have (i
Mt
, j

Mt
) = (i

X
, j

X
− t + 1), for t = 1, . . . , r;

and in the second case, we have (i
Mt
, j

Mt
) = (i

X
− t + 1, j

X
), for t = 1, . . . , r.

In particular, p is the unique path from X to Y , and it is sectional by Lemma

4.3.4. It is similar to show that the lemma holds in case Y � X. The proof of

the lemma is completed.

Given a set S of vertices of Γ , we shall write `(S) = {`(X) |X ∈ S}. The

following statement is similar to Lemma 4.1.10 and Lemma 4.2.12, whose proof

will be omitted.

4.3.10 Lemma. Given a chain S in Γ , we have an isomorphism of posets

` : S → `(S) : X 7→ `(X).

Observe that Γ contains infinite chains; for instance, given any integer i,

the vertices of Ri form an infinite chain. The following statements collect some

properties of infinite chains in Γ .

4.3.11 Lemma. If S is an infinite chain in Γ , then it is of one of the following

three forms :
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(1) X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

(2) · · · ≺ Xn ≺ · · · ≺ X2 ≺ X1.

(3) · · · ≺ Xn−1 ≺ Xn ≺ Xn+1 ≺ · · · .

Proof. By Lemma 4.3.10, `(S) is an infinite set of integers. Thus, `(S) is of one

of the following form

(1) `(X1) < `(X2) < · · · < `(Xn) < · · · .
(2) · · · < `(Xn) < · · · < `(X2) < `(X1).

(3) · · · < `(Xn−1) < `(Xn) < `(Xn+1) < · · · .
Applying Lemma 4.3.10 again, S is of one of the forms stated in the lemma. The

proof of the lemma is completed.

Remark. A chain S in Γ is called double infinite if it is of the form · · · ≺ Xn−1 ≺
Xn ≺ Xn+1 ≺ · · · . That is, S has neither maximal nor minimal element.

The following statement is a description of maximal chains in Γ .

4.3.12 Lemma. A chain S is maximal in Γ if and only if `(S) = Z.

Proof. Let S be a chain such that `(S) = Z. Assume that there is a vertex Y

such that S ∪ {Y } is a chain in Γ . Then there is a vertex X ∈ S such that

`(X) = `(Y ). If X 6= Y , then X ≺ Y or Y ≺ X. By Lemma 4.3.10, `(X) < `(Y )

in the first case and `(X) > `(Y ) in the second case, a contradiction. Thus,

X = Y . The necessity is established.

Conversely, assume that S is a maximal chain in Γ . Suppose first that S
has a minimal element X. Take Z = (i

X
− 1, j

X
). Clearly, Z ≺ X, and hence,

Z 6∈ S. Then, we obtain a chain S ∪ {Z}, which contradicts the maximality

of S. Similarly, we can show that S has no maximal element. Thus, S is a

double infinite chain. Suppose on the contrary that there is an integer n such

that n 6∈ `(S). By Lemma 4.3.10, `(S) has neither a lower bound nor an upper

bound, and hence, there are X, Y ∈ S such that `(X) < n < `(Y ). It is evident

that we may assume that Y is a minimal cover of X in S. Then, either i
X
< i

Y

and j
X
≥ j

Y
, or else, i

X
≤ i

Y
and j

X
> j

Y
. In the first case, consider the vertex

M = (i
Y
, j

Y
− n+ `(Y )) ∈ Γ . Then, M ≺ Y . Moreover, since i

M
= i

Y
> i

X
and

j
M

= j
Y
− n+ `(Y ) ≤ j

Y
− `(X) + `(Y ) = j

X
− (i

Y
− i

X
) < j

X
, we have X ≺M .
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As a consequence, S ∪ {M} is a chain. Since `(M) = n 6∈ `(S), we have M 6∈ S,

a contradiction to the maximality of S. Similarly, we shall obtain a contradiction

in the second case. Hence, `(S) = Z. The proof of the lemma is completed.

4.3.13 Definition. Let S be a chain in Γ . We shall write

IS = {i ∈ Z | S ∩ Li 6= ∅} = {i
X
| X ∈ S}.

and

JS = {j ∈ Z | S ∩Rj 6= ∅} = {j
X
| X ∈ S}.

Let S be a chain in Γ with X ∈ Γ . By the definition of the partial order, we

clearly see that if X is a minimal element in Γ , then i
X

is a minimal element in

IS and j
X

is a maximal element in JS ; if X is a maximal element in Γ , then i
X

is

a maximal element in IS and j
X

is a minimal element in JS . We shall now state

more properties of IS and JS .

4.3.14 Lemma. Let S be an infinite chain in Γ , and let i, j be integers.

(1) If S ∩ Li is a double infinite chain, then S ⊆ Li, that is, IS = {i}.

(2) If S ∩Rj is a double infinite chain, then S ⊆ Rj, that is, JS = {j}.

(3) If S ∩ Li is an infinite chain having a minimal (respectively, maximal)

element, then i is the largest (respectively, smallest) integer in IS , while JS

has no minimal (respectively, maximal) element.

(4) If S ∩ Rj is an infinite chain having a minimal (respectively, maximal)

element, then j is the smallest (respectively, largest) integer in JS , while IS

has no maximal (respectively, minimal) element.

Proof. Assume that S ∩Li is a double infinite chain. By Lemma 4.3.10, `(S ∩Li)
is an infinite set of integers having neither minimal nor maximal element. Thus,

for any Z ∈ S, there exist X, Y ∈ S ∩ Li such that `(X) ≤ `(Z) ≤ `(Y ). By

Lemma 4.3.10, X � Z � Y . Therefore, i = i
X
≤ i

Z
≤ i

Y
= i, and hence,

i
Z

= i. Hence, IS = {i}. This establishes Statement (1). Similarly, we can prove

Statement (2).
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For proving Statement (3), we shall consider only the case where S ∩Li is an

infinite chain with a minimal element. That is, S ∩ Li is of the form

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

Since the Xi have the same i-coordinate, j
X1

> j
X2

> · · · > j
Xn

> · · · . In

particular, JS∩Li has no minimal element, and consequently, neither does JS .

Moreover, since S ∩ Li has no maximal element, by Lemma 4.3.10, neither

does `(S ∩ Li). Thus, for any Y ∈ S, there is some Xn such that `(Y ) ≤ `(Xn).

By Lemma 4.3.10, Y � Xn, and hence, i
Y
≤ i

Xn
= i. This implies that i is the

maximal element in IS . This establishes Statement (3). Similarly, we can show

Statement (4). The proof of the lemma is completed.

4.3.15 Lemma. Let S be a double infinite chain in Γ .

(1) If IS has a minimal (respectively, maximal) element i, then S∩Li is a chain

having no minimal (respectively, maximal ) element.

(2) If JS has a minimal (respectively, maximal) element j, then S ∩ Rj is a

chain having no maximal (respectively, minimal ) element.

Proof. For proving Statement (1), we shall only prove the case where IS has a

minimal element i. Suppose on the contrary that S ∩ Li has a minimal element

X. We claim that X is a minimal element in S. Let Y ∈ S be such that Y ≺ X.

That is, i
Y
≤ i

X
= i and j

Y
≥ j

X
. Since i is the minimal in IS , we have i

Y
= i.

That is, Y ∈ S ∩ Li. By the minimality of X, we have Y = X, a contradiction.

This establishes Statement (1). The proof of Statement (2) is similar. The proof

of the lemma is completed.

4.3.16 Lemma. Let S be a chain in Γ .

(1) If i0, i1 ∈ IS with i0 < i1, then i1 is the minimal cover of i0 in IS if and

only if there are X, Y ∈ S, with Y a minimal cover of X, such that i
X

= i0

and i
Y

= i1.

(2) If j0, j1 ∈ JS with j0 < j1, then j1 is the minimal cover j0 in JS if and only

if there are X, Y ∈ S, with Y a minimal cover of X, such that j
Y

= j0 and

j
X

= j1.
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Proof. We shall prove only Statement (1). Let i0, i1 ∈ IS with i0 < i1. Assume

first that X, Y ∈ S, with Y a minimal cover of X, such that i
X

= i0 and

i
Y

= i1. Let i ∈ IS , that is, S ∩ Li contains a vertex Z. Observe that either

Z � X or Y � Z. In the first case, i = i
Z
≤ i

X
= i0; and in the second case,

i = i
Z
≥ i

Y
= i1. Thus, i1 is the minimal cover of i0 in IS .

Conversely, assume that i1 is the minimal cover of i0 in IS . By definition,

S ∩Li0 and S ∩Li1 are non-empty. We claim that S ∩Li0 has a maximal element

X. Indeed, if this was not the case, S ∩ Li0 is either a right infinite chain or a

double infinite chain. By Lemma 4.3.14, i0 is the largest integer in IS , which is

contrary to the fact that i0 < i1. Thus, our claim is true. Similarly, S ∩ Li1 has

a minimal element Y . Since X, Y are comparable with i
X

= i0 < i1 = i
Y

, we see

that X ≺ Y . Given a vertex Z ∈ S, if X ≺ Z ≺ Y , then i0 = i
X
≤ i

Z
≤ i

Y
= i1.

Since X is maximal in S∩Li0 and Y is minimal in S∩Li1 , we see that Z 6∈ S∩Li0
and Z 6∈ S ∩ Li1 . That is, i

Z
6= i0 and i

Z
6= i1. This yields that i0 < i

Z
< i1,

which is a contradiction. Hence, Y is a minimal cover of X in S. The proof of

the lemma is completed.

From now on, we shall start to study sections and section-generators in Γ .

First recall that a reduced walk X1 — X2 — · · · —Xn in a translation quiver is

called sectional if the τ -orbits of Xi with 1 ≤ i ≤ n are pairwise different.

4.3.17 Lemma. Let X1 — X2 — · · · —Xn be a sectional walk in Γ .

(1) Either `(Xi) = `(X1) + i− 1 for all 1 ≤ i ≤ n, or `(Xi) = `(X1)− i+ 1 for

all 1 ≤ i ≤ n.

(2) For any 1 ≤ i, j ≤ n, we have `(Xi) < `(Xj) if and only if Xi ≺ Xj.

Proof. We show Statement (1) by induction. It is trivial when n = 1. We may

assume that `(Xi) = `(X1) + i − 1 for 1 ≤ i ≤ n − 1. Consider n. There is an

edge Xn−1 — Xn. By Lemma 4.3.8 (2), we know that `(Xn) = `(X1) + n− 1 or

`(Xn) = `(Xn) + n− 2. Since `(Xn−2) = `(Xn) + n− 2, by assumption, we have

`(Xn) = `(Xn) + n − 1. Statement (2) follows from Statement (1) and Lemma

4.3.8(2). The proof of the lemma is completed.
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Remark : Let p : X1 → X2 → · · · → Xn be a sectional path in Γ . Since the Xi

are in different τ -orbits, by Lemma 4.3.6, the `(Xi) with 1 ≤ i ≤ n are pairwise

distinct. Hence, p satisfies Lemma 4.3.17.

4.3.18 Lemma. If p : X1 → X2 → · · · → Xn is a sectional path in Γ , then p is

the unique sectional walk from X1 to Xn in Γ .

Proof. Let X1
α1 // X2

α2 // · · · α
n−1
// Xn be a sectional path in Γ . We shall

consider only the case where `(Xn) > `(X1). In view of Lemma 4.3.17(1), we

deduce that `(Xi) = `(X1) + (i− 1), for i = 1, . . . , n. Moreover, by Lemma 4.3.3

and 4.3.4, there is some integer i such that i = i
Xt

for 1 ≤ t ≤ n. We shall show

the lemma by induction. It is trivial when n = 1. We assume that n > 1 and the

statement holds for n− 1. Assume that

X1 = Y1
c1

Y2
c2 · · · cr−1

Yr = Xn

is a sectional walk in Γ from X1 to Xn. Applying Lemma 4.3.17(1) again, we

obtain `(Yi) = `(Y1)+(i−1), for i = 1, . . . , r. In particular, r = n and `(Xn−1) =

`(Yn−1). Moreover, by Lemma 4.3.17(2), X1 ≺ Yn−1, and then i
Yn−1

≥ i
X1

= i.

We claim that cn−1 is an arrow. Otherwise, it is the inverse of an arrow Xn →
Yn−1. Then, Yn−1 = τ−Xn−1. Then, i

Yn−1
= i

Xn−1
−1 < i which is a contradiction.

Hence, cn−1 is an arrow. Since `(Yn−1) = `(Xn−1), we obtain cn−1 = αn−1. By

the induction hypothesis, we have ct = αt, for t = 1, . . . , n− 1. The proof of the

lemma is completed.

The following statement describes the sections in Γ .

4.3.19 Proposition. Let Σ be a full subquiver of Γ . The following statements

are equivalent.

(1) Σ is a section in Γ .

(2) Σ 0 is a maximal chain in Γ .

(3) Σ is given by a double infinite sectional walk as follows :

· · · — Xn−1 — Xn — Xn+1 — · · · ,

with `(Xn+1) = `(Xn) + 1 for all n ∈ Z.
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Proof. Assume first that Σ is a section in Γ . Since Σ meets every τ -orbit exactly

once, we may write Σ 0 = {· · · , Xn, Xn+1, · · · } with `(Xn) = n for all n ∈ Z.

For each n, Σ contains a walk Xn = Y0 — Y1 — · · · — Yr = Xn+1, which is

sectional since Σ is a section. By Lemma 4.3.17(1), `(Xn+1) = `(Xn) + r, and

since `(Xn+1) = n+ 1, we obtain r = 1. That is, Γ contains an edge Xn — Xn+1

for every n. This shows that Σ is given by a double infinite sectional walk as

stated in Statement (3).

Assume now that Σ 0 is a maximal chain in Γ . By Lemma 4.3.12, `(Σ 0) = Z.

Thus, Σ 0 is a double infinite chain of the form

· · · ≺ Xn−1 ≺ Xn ≺ Xn+1 ≺ · · ·

with `(Xn) = n, for all n ∈ Z. By Lemma 4.3.8(2), we see that Γ contains an

edge Xn — Xn+1, for each n ∈ Z. Thus, Σ is given by a double infinite sectional

walk as stated in Statement (3).

Finally, assume that Σ is given by a double infinite sectional walk

· · · — Xn−1 — Xn — Xn+1 — · · · ,

with `(Xn) = n for n ∈ Z. In view of Lemma 4.3.17(2), Σ 0 is a double infinite

chain in Γ . Since `(Σ 0) = Z, by Lemma 4.3.12, Σ 0 is a maximal chain in

Γ . That is, Statement (2) holds. It remains to show that Statement (1) holds.

Indeed, Σ meets every τ -orbit in Γ exactly once. Now, consider a non-trivial path

p : Xm = Y0 → Y1 → · · · → Yr = Xn in Γ for some m,n ∈ Z. We shall consider

only the case where `(Xm) < `(Xn). Suppose that p is not sectional. Then there

is a path from τ−Xm to Xn. By Lemma 4.3.2, iτ−Xm ≥ iXn and jτ−Xm ≥ j
Xn

.

Since iXm−1 = iτ−Xm and jXm−1 = jτ−Xm , we see that iXm > i
Xn

and j
Xm

> j
Xn

.

That is, Xm and Xn are not comparable, a contradiction. Hence, p is sectional.

Since Σ contains a sectional subwalk w : Xm — Xm+1 — · · · — Xn, by the

uniqueness stated in Lemma 4.3.18, p = w. In particular, p lies in Σ . That is, Σ

is a section in Γ . The proof of the proposition is completed.

The following statement is about the sections in Γ containing no infinite path.

4.3.20 Lemma. A section of Γ contains no infinite path if and only if it passes

Li and Rj for all i, j ∈ Z.
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Proof. Let Σ be a section of Γ . Assume that Σ passes every Li and every Rj,

where i, j ∈ Z. That is, IΣ0 = JΣ0 = Z. Suppose on the contrary that Σ contains

an infinite path p. In view of Lemma 4.3.3, we may assume that p is a subpath

of some Li. That is, Σ ∩Li is an infinite chain. By Lemma 4.3.14(1) and (3), i is

either minimal or maximal in IΣ0 , a contradiction. The sufficiency is established.

Conversely, assume that Σ contains no infinite path. By Proposition 4.3.19,

Σ 0 is a maximal chain in Γ , and by Lemma 4.3.12, `(Σ 0) = Z. Given i ∈ IΣ ,

we claim that i + 1, i − 1 ∈ IΣ0 . Indeed, by the convexity of Σ in Γ , we see

that Σ ∩ Li is a finite chain. Let Y0 be the maximal element in Σ ∩ Li. By

Proposition 4.3.19(3), there is a vertex Y1 ∈ Σ such that `(Y1) = `(Y0)+1. Then,

Y0 ≺ Y1. In particular, Y1 6∈ Li. That is, i
Y1
6= i. Since i

Y1
≥ i

Y0
, we obtain

i
Y1
> i and j

Y1
≤ j

Y0
. Since 1 = `(Y1) − `(Y0) = (i

Y1
− i

Y0
) + (j

Y0
− j

Y1
), we

obtain i
Y1

= i
Y0

+ 1 = i+ 1. Thus, i+ 1 ∈ IΣ0 . Considering the minimal element

of Σ ∩Li, we see that i− 1 ∈ IΣ0 . This establishes our claim. As a consequence,

IΣ0 = Z. In a similar fashion, we can show that JΣ0 = Z. The proof of the lemma

is completed.

We give the following definition. Compare it with Definition 1.4.10.

4.3.21 Definition. A chain S in Γ is called a sectional chain if any two vertices

X, Y ∈ S, with Y a minimal cover of X in S, are connected by a path in Γ .

The following is a description of a sectional chain in Γ .

4.3.22 Proposition. A set S of vertices of Γ is a sectional chain if and only

if its convex hull is a connected subquiver Σ of a section of Γ such that S is

contained in Σ 0 and contains all the sink vertices and all the source vertices of

Σ.

Proof. Suppose that S is a sectional chain in Γ . By Lemma 4.3.11, we can

write S = {Xn}n∈I , where I is some interval of Z, such that Xn ≺ Xn+1 for

every non-maximal n ∈ I. In view of Lemma 4.3.9, Xn, Xn+1 are connected by

a sectional path pn, for each non-maximal n ∈ I. In particular, pn is a sectional

walk Xn = Xn,0 — Xn,1 — · · · — Xn,tn = Xn+1. Since Xn ≺ Xn+1, by Lemma

4.3.8(1), we have `(Xn) < `(Xn+1), and hence, by Lemma 4.3.17(1),

`(Xn) = `(Xn,0) < `(Xn,1) < · · · < `(Xn,tn) = `(Xn+1).
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Therefore, the Xn,j with n ∈ I and 1 ≤ j ≤ tn generate a connected subquiver

Σ of Γ . In view of Proposition 4.3.19(3), Σ is a subquiver of a section in Γ . In

particular, Σ is convex. On the other hand, Σ is contained in the convex hull

of S. Therefore, Σ is the convex hull of S. Since the pn are paths, we see that

S = {Xn}n∈I contains all the sink vertices and all the source vertices of Σ . The

necessity is established.

Conversely, let S be a subset of vertices of Σ of Γ , containing all the source

vertices and sink vertices of Σ . Since Σ is a subquiver of a section, in view of

Proposition 4.3.19, S is a chain. By Lemma 4.3.10, we may write S = {Xn}n∈I ,
where I is some interval of Z such that `(Xn) < `(Xn+1) for each non-maximal

n ∈ I. Fix n ∈ I. Since Σ is a connected subquiver of a section of Γ , it contains

a sectional walk pn : Xn = Y0 — Y1 — · · · — Yr−1 — Yr = Xn+1. Since `(Xn) <

`(Xn+1), by Lemma 4.3.17(1), `(Xn) = `(Y0) < `(Y1) < · · · < `(Yr) = `(Xn+1).

If pn is neither a path nor the inverse of a path, then r > 1 and some Ys with

1 < s < r is a sink vertex or a source vertex in Σ . Observing that `(Ys) 6= `(Xn)

for all n ∈ I, we see that Ys 6∈ S, a contradiction. The proof of the proposition

is completed.

The following is a description of section-generators in Γ .

4.3.23 Proposition. A set of vertices in Γ is a section-generator if and only if

it is a double infinite sectional chain.

Proof. Let S be a set of vertices in Γ . Assume first that the convex hull Σ of S
is a section. Since S ⊆ Σ 0, by Proposition 4.3.19(2), S is a chain. Suppose that

S has a maximal element X. By Lemma 4.3.10, `(X) is the maximal element in

`(S). Let M ∈ Σ . Then, M lies on a path p in Σ between two vertices Y, Z ∈ S.

We may assume that `(Y ) ≤ `(Z). Since Σ is a section, p is a sectional walk. By

Lemma 4.3.17(1), `(Y ) ≤ `(M) ≤ `(Z), and thus, `(M) ≤ `(X). That is, `(X)

is the maximal element of `(Σ ), a contradiction to Proposition 4.3.19(2). Thus,

S has no maximal element. Similarly, S has no minimal element. Thus, S is a

double infinite chain. Assume now that X, Y ∈ S such that Y is a minimal cover

of X. Then Σ contains a sectional walk

X = X1 — X2 — · · · — Xn = Y.
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We claim that there is a path between X and Y . This is evident if i = 1. Assume

that i > 1. Then, `(X) ≤ `(X2) ≤ `(Y ) by Lemma 4.3.17(1) . Moreover, X2

lies on a path p in Σ between two vertices M,N ∈ S. We may assume that

`(M) ≤ `(N). Then `(M) ≤ `(X2) ≤ `(N). Since `(Y ) is a minimal cover of

`(X) in `(S) by Lemma 4.3.8 , we obtain `(M) ≤ `(X) ≤ `(X2) ≤ `(Y ) ≤ `(N).

In view of Proposition 4.3.19(3), Σ contains a sectional walk

M — · · · — X — · · · — X2 — · · · — Y — · · · — N.

By Lemma 4.3.18, this walk coincides with p or p−1. In particular, there is a path

between X and Y . Hence, S is a sectional chain.

Conversely, assume that S is a double infinite chain of the form

· · · ≺ X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

such that Xn and Xn+1 are connected by a path pn, for every n ∈ Z. By Lemma

4.3.10, we have

· · · < `(X1) < `(X2) < · · · < `(Xn) < · · · .

By Lemma 4.3.9, pn is a sectional path, which is a sectional walk of the form

Xn = Xn,0 — Xn,1 — · · · — Xn,tn = Xn+1.

In particular, the full subquiver Σ of Γ generated by the vertices Xn,i with

n ∈ Z and 1 ≤ i ≤ tn is connected and contained in the convex hull of S.

On the other hand, since `(Xn) < `(Xn+1), in view of Lemma 4.3.17, we have

`(Xn,i+1) = `(Xn,i) + 1 and Xn,i ≺ Xn,i+1, for 0 ≤ i ≤ tn− 1. Thus, Σ 0 is a chain

with `(Σ 0) = Z. By Lemma 4.3.12, Σ 0 is a maximal chain in Γ . By Proposition

4.3.19, Σ is a section in Γ . Being convex, Σ is the convex hull of S. The proof

of the proposition is completed.

Remark. We can easily deduce from Proposition 4.3.22 that S is a section-

generator of Γ if and only if its is a subset of vertices of a section Σ in Γ

containing all the sink vertices and all the source vertices of Σ .

The following result states a property of sectional chains in Γ .
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4.3.24 Proposition. Let S be a sectional chain in Γ , and let Σ be its convex

hull in Γ . Then Σ is a section in Γ without infinite paths if and only if neither

of IS and JS has an upper or lower bound.

Proof. Assume first that Σ is a section containing no infinite path. Then S,

by definition, is a section-generator of Γ . By Proposition 4.3.23, S is a double

infinite chain. Suppose on the contrary that IS has a smallest integer i0. Since Σ

is a section, by Lemma 4.3.19, Σ 0 is a chain and S ⊆ Σ 0. In particular, IS ⊆ IΣ0

and JS ⊆ JΣ0 . We shall show that i0 is also the smallest integer IΣ0 . Indeed,

let X ∈ Σ . By definition, there exist M,N ∈ S such that X lies on a path p

between M and N . Since Σ is a section, p is a sectional path lying entirely in

Σ . By Lemma 4.3.18, p is a sectional walk. In view of Lemma 4.3.17(2), either

M � X � N or N � X � M . We may assume that the first case occurs. Since

i
M
∈ IS , we obtain i0 ≤ i

M
≤ i

X
. Thus, i0 is indeed the smallest integer in IΣ0 .

On the other hand, since Σ contains no infinite path, IΣ0 = Z by Lemma 4.3.20,

a contradiction. Similarly, we shall obtain a contradiction if IS has a largest

integer. In a similar fashion, we can show that JS has neither upper bound nor

lower bound.

Conversely, assume that neither of IS and JS has an upper or lower bound.

Then, by the definition of the partial order over Γ we see that S has neither a

minimal element nor a maximal element, that is, S is a double infinite chain.

Since S is also a sectional chain, by Proposition 4.3.23, S is a section-generator

of Γ , that is, Σ is a section in Γ . By Lemma 4.3.19, Σ 0 is a chain. Since S ⊆ Σ 0,

we have IS ⊆ IΣ0 and JS ⊆ JΣ0 . Suppose that Σ contains an infinite path p.

Being sectional, p is contained in some Li or in some Rj. Consider only the first

case. In particular, Σ 0 ∩ Li is infinite. By Lemma 4.3.14(3), i is the largest

or the smallest integer in IΣ0 , a contradiction. The proof of the proposition is

completed.

We shall conclude this section by the following two lemmas, which will be used

to characterize the τ -rigidity in Chapter 5. Recall that, given X ∈ Γ , denote RX

the forward rectangle of X and RX the backward rectangle of X. The following

statement describes RX and RX in terms of the coordinates.

4.3.25 Lemma. Let X, Y be vertices in Γ . The following statements hold.
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(1) Y ∈ RX if and only i
Y
≥ i

X
and j

Y
≥ j

X
.

(2) Y ∈ RX if and only if i
Y
≤ i

X
and j

Y
≤ j

X
.

Proof. We shall prove only (1). Consider a vertex Y ∈ Γ . By definition, Y ∈ RX

if and only if Y is a predecessor of X. By Lemma 4.3.3, the latter is equivalent

to i
Y
≥ i

X
and j

Y
≥ j

X
. The proof of the lemma is completed.

We have the following useful observation. Compare it with Lemma 1.4.11.

4.3.26 Lemma. Let X, Y ∈ Γ . The following statements are equivalent.

(1) X, Y are comparable.

(2) X 6∈ RτY and X 6∈ Rτ−Y .

(3) Y 6∈ RτX and Y 6∈ Rτ−X .

Proof. First, we shall show the equivalence of Statements (2) and (3). By def-

inition, X ∈ RτY if and only if τY ∈ RX if and only if Y ∈ Rτ−X . Similarly,

X ∈ Rτ−Y if and only if Y ∈ RτX . It remains to show the equivalence of State-

ments (1) and (2).

Assume first that X � Y . That is, i
X
≤ i

Y
and j

X
≥ j

Y
. Hence, we have

i
X
< i

Y
+ 1 = i

τY
and j

X
> j

Y
− 1 = j

τ−Y
. By Lemma 4.3.25, the first inequality

shows that X 6∈ RτY and the second inequality shows that X 6∈ Rτ−Y . Similarly,

if Y � X, then Y 6∈ RτX and Y 6∈ Rτ−X , and by the equivalence of Statements

(2) an (3), we also have X 6∈ RτY and X 6∈ Rτ−Y . This shows that Statement (1)

implies Statement (2).

Assume, conversely, that X, Y not comparable. In particular, i
Y
6= i

X
and

j
Y
6= j

X
. Suppose first that i

Y
> i

X
. Then j

Y
> j

X
. Thus, we have i

Y
≥ i

X
+1 =

i
τX

and j
Y
≥ j

X
+ 1 = j

τX
. That is, Y ∈ RτX , and in particular, Statement (2)

does not hold. Similarly, if i
X
> i

Y
, then X ∈ RτY , that is, τY ∈ RX . This

implies that Y ∈ Rτ−X . This shows that Statement (2) implies Statement (1).

The proof of the lemma is completed.
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Chapter 5

The τ-rigidity theory in an

Auslander-Reiten category

The aim of this chapter is to study the τ -rigidity theory in an Auslander-

Reiten category, one of the essential topics in this thesis. The τ -rigidity theory

first appeared in the representation theory of artin algebras in connection with

tilting modules; see, for example, [45, 58], while a systematic study in the rep-

resentation theory was first carried out by Adachi, Iyama and Reiten in their

introduction of τ -tilting theory; see [1]. Observe that the τ -tilting theory was

actually inspired by the cluster tilting theory; see, for example, [20].

Throughout this chapter, let A stand for an Auslander-Reiten category, whose

Auslander-Reiten quiver is denoted by ΓA and whose Auslander-Reiten transla-

tion will be written as τA .

5.1 The τ-rigidity

The objective of this section is to introduce the notion of τA-rigidity in A.

We shall start with the following definition.

5.1.1 Definition. An object X ∈ A is called τA-rigid if HomA(X, τAX) = 0,

and an additive subcategory of A is called τA-rigid if each of its objects is τA-rigid.

Since every non-zero object of A is a finite direct sum of objects in ΓA, it is
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natural for us to introduce the notion of τA-rigid set in ΓA as follows.

5.1.2 Definition. (1) A pair (X, Y ) of objects in ΓA is called a τA-rigid pair

if X ⊕ Y is a τA-rigid object in A.

(2) A set T of objects in ΓA is called τA-rigid if every pair (X, Y ) in T × T is

τA-rigid.

(3) Given a subquiver ∆ of ΓA, a τA-rigid set T of objects in ∆ is called

maximal τA-rigid in ∆ provided, for any X ∈ ∆, that T ∪ {X} is τA-rigid

if and only if X ∈ T .

Remark. Let ∆ be a subquiver of ΓA. A maximal τA-rigid set in ∆ is not

necessarily a maximal τA-rigid set in ΓA.

Let T be an additive subcategory of A. We shall denote by indT the set of

objects of ΓA which lie in T . The following statement is evident.

5.1.3 Lemma. An additive subcategory T of A is τA-rigid if and only if indT

is a τA-rigid set in ΓA.

Now, let ∆ be a convex subquiver of a standard component of ΓA. By Lemma

2.2.2, add∆ is an Auslander-Reiten category, whose Auslander-Reiten translation

will be denoted by τ
∆

. The following easy observation is important for our later

investigation.

5.1.4 Lemma. Let A be an Auslander-Reiten category, and let ∆ be a convex

subquiver of a standard component Γ of ΓA. If X, Y ∈ ∆ are τA-rigid, then the

pair (X, Y ) is τA-rigid if and only if it is τ
∆

-rigid.

Proof. Let X, Y be two τA-rigid objects lying in ∆. By Lemma 2.2.4, Γ add∆

is a translation subquiver of Γ . In particular, for any object X ∈ ∆, either

τ
∆
X = τAX, or else, τ

∆
X = 0. Thus, the necessity is trivial.

Assume that (X, Y ) is a τ
∆

-rigid pair in add∆. If HomA(X, τAY ) 6= 0, then

τAY 6= 0 and τAY 6∈ ∆. Being standard, Γ contains a path X  τAY , and

hence, a path X  τAY  Y . Since ∆ is convex in Γ , we obtain τAY ∈ ∆,

a contradiction. Hence, HomA(X, τAY ) = 0. Similarly, HomA(Y, τAX) = 0.
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Since HomA(X, τAX) = HomA(Y, τAY ) = 0 by the assumption, X ⊕ Y is a τA-

rigid object, that is, (X, Y ) is a τA-rigid pair in A. The proof of the lemma is

completed.

Remark. Let ∆ be a convex subquiver of a standard component of ΓA. If every

object in ∆ is τA-rigid, then the τA-rigid sets in ∆ are the τ
∆

-rigid sets in ∆.

We shall remark that the τ -rigidity theory is closely related to the tilting

theory over a finite dimensional hereditary algebra and the cluster tilting theory

in a cluster category; see, for example, [32, 35, 20]. Indeed, consider a path

algebra H = kQ, where Q a finite acyclic quiver with n vertices. It is well known

that the category modH of finitely generated H-modules is an Auslander-Reiten

category; see [9]. We denote by ΓH its Auslander-Reiten quiver and by τ
H

its

Auslander-Reiten translation. A module M in modH is called tilting if it is τ
H

-

rigid with n non-isomorphic indecomposable direct summands; see [32]. We refer

to [18] for the definition of a tilting module over a general finite dimensional

k-algebra.

The following statement is well known; see, for example, [35, (14)].

5.1.5 Lemma. A basic module in modH is tilting if and only if its corresponding

set in ΓH is maximal τ
H

-rigid.

Next, we recall the τ -rigidity theory in cluster categories. Fix Q a locally finite

quiver without infinite paths. Recall that the skeleton D b(Q) of the derived

category Db(rep(Q)), chosen in Section 3.3, is an Auslander-Reiten category,

whose Auslander-Reiten quiver is denoted by Γ D b(Q) and the Auslander-Reiten

translation is denoted by τ
D

. Furthermore, the cluster category C (Q) is an

Auslander-Reiten category, whose Auslander-Reiten quiver Γ C (Q) has as vertices

the objects of the fundamental domain F (Q).

An object X in C (Q) is said to be rigid if HomC (Q)(X,X[1]) = 0; and a pair

of objects (X, Y ) in C (Q) is called a rigid pair in C (Q) if X ⊕ Y is rigid. A set

of objects in C (Q) is rigid if every pair of its objects is rigid.

The following result is very important to our study.
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5.1.6 Lemma. Let Q be an infinite Dynkin quiver with no infinite path. If X, Y

are indecomposable objects in C (Q), then the following statements are equivalent.

(1) The pair (X, Y ) is rigid in C (Q).

(2) The pair (X, Y ) is τ
C

-rigid in C (Q)

(3) The pair (X, Y ) is τ
D

-rigid in D b(Q).

Proof. Since C (Q) is 2-Calabi-Yau, the equivalence of Statement (1) and State-

ment (2) is trivial. Let X, Y be two indecomposable objects of C (Q). We may

assume that X, Y are in the fundamental domain F (Q). Suppose first that X

and τ
D
Y are representations. By Lemma 2.6(1) in [48], we have

HomC (Q)(X, Y [1]) ∼= HomC (Q)(X, τC
Y )

∼= HomC (Q)(X, τDY )
∼= HomD b(Q)(X, τDY )⊕DHomD b(Q)(τDY, τ

2
D
X)

∼= HomD b(Q)(X, τDY )⊕DHomD b(Q)(Y, τDX).

Since C (Q) is 2-Calabi-Yau in which every indecomposable object is rigid; see

[48, Corollary 2.10], (X, Y ) is rigid in C (Q) if and only if HomC (Q)(X, Y [1]) = 0.

In view of the above isomorphisms, this is equivalent to HomD b(Q)(X, τDY ) = 0

and HomD b(Q)(Y, τDX) = 0. Since every connected component in F (Q) is stan-

dard, every object in F (Q) is τ
D

-rigid. Thus, the latter condition is equivalent

to (X, Y ) being τ
D

-rigid in F (Q).

In general, there is an integer n ≥ 0 such that τ−n
C
X and τ−n+1

C
Y are repre-

sentations. Set M = τ−n
C
X and N = τ−n

C
Y . Since τ

C
is an equivalence, (X, Y )

is a rigid pair in C (Q) if and only if (M,N) is a rigid pair in C (Q). As we have

just shown, this is equivalent to (M,N) is a τ
D

-rigid pair in F (Q). Since τ
D

is

an equivalence, the latter is equivalent to (X, Y ) being τ
D

-rigid pair in F (Q).

The proof of the lemma is completed.

Given a strictly additive subcategory T of C (Q), we shall denote by indT the

set of objects of Γ C (Q) which lie in T . Observe that the objects in indT form a

complete set of representatives of the isomorphism classes of the indecomposable

objects of T .
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5.1.7 Proposition. Let Q be an infinite Dynkin quiver with no infinite path,

and let T be a strictly additive subcategory of C (Q). The following statements

are equivalent.

(1) T is weakly cluster-tilting in C (Q).

(2) indT is a maximal rigid set in Γ C (Q).

(3) indT is a maximal τ
D

-rigid set in F (Q).

Proof. By Lemma 2.11 in [48], T is weakly cluster-tilting in C (Q) if and only

if T is maximal rigid in C (Q). Since C (Q) is Krull-Schmidt, the equivalence

of Statement (1) and Statement (2) holds. The equivalence of Statement (2)

and Statement (3) follows immediately from Lemma 5.1.6. The proof of the

proposition is completed.

5.2 Maximal τ-rigid sets in a standard wing

Throughout this section, assume that A is an Auslander-Reiten category such

that its Auslander-Reiten quiver is a standard wing of positive rank n, which is

denoted by W . The Auslander-Reiten translation of A will be simply written as

τ . Our objective of this section is to study the maximal τ -rigid sets in W .

As seen in Lemma 1.4.6, each object X ∈ W is a wing vertex of a unique wing

WX of rank `(X) in W . In Definition 1.4.8, we have defined two wings WX ,WY

in W to be comparable or separable. These notions enable us to describe the

τ -rigidity of a pair of objects in W .

5.2.1 Lemma. If X, Y ∈ W, then (X, Y ) is a τ -rigid pair if and only if WX ,WY

are comparable or separable.

Proof. Let X, Y be objects in W . Since W is standard, by Lemma 2.2.7,

HomA(X, τY ) 6= 0 if and only if τY ∈ RX if and only if Y ∈ Rτ−X . Simi-

larly, HomA(Y, τX) 6= 0 if and only if Y ∈ RτX . Since X 6∈ Rτ−X , we have

HomA(X, τX) = 0, and also, HomA(Y, τY ) = 0. Therefore, (X, Y ) is a τ -rigid

pair if and only if HomA(X, τY ) = 0 and HomA(Y, τX) = 0, if and only if

Y 6∈ Rτ−X and Y 6∈ RτX . By Proposition 1.4.11, the latter is equivalent to

WX ,WY are comparable or separable. The proof of the lemma is completed.
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5.2.2 Remark. (1) In view of Lemma 5.2.1, every object in W is τ -rigid.

(2) Let WX be a wing in W . By Lemma 2.2.2, addWX is an Auslander-Reiten

category with Γ addWX
= WX , whose Auslander-Reiten translation is writ-

ten as τ
X

. By Lemma 5.1.4, a set of objects in WX is τ -rigid if and only if

it is τ
X

-rigid.

Recall thatW0 is a poset in such a way that X � Y if and only ifWX ⊆ WY .

As an immediate consequence of Lemma 5.2.1, we obtain the following statement.

5.2.3 Corollary. Every chain S in W is a τ -rigid set.

The following lemma is useful in our future investigation.

5.2.4 Lemma. Let X,Z ∈ W with X 6∈ WZ. Then (X,Z) is a τ -rigid pair if

and only if (X, Y ) is a τ -rigid pair, for every Y ∈ WZ .

Proof. We shall only need to prove the necessity. Assume that (X,Z) is a τ -rigid

pair. Since X 6∈ WZ , by Lemma 5.2.1,WZ ⊆ WX , or else,WX ,WZ are separable.

Let Y ∈ WZ . In particular, WY ⊆ WZ . If WZ ⊆ WX , then WY ⊆ WX . If

WX ,WZ are separable, then by Lemma 4.1.7,WX ,WY are separable. By Lemma

5.2.1, (X, Y ) is a τ -rigid pair. The proof of the lemma is completed.

From now on, we shall study the maximal τ -rigid sets in W . Given a set T
of objects in W , denote by |T | its cardinality.

5.2.5 Lemma. A τ -rigid set T in W is maximal τ -rigid if and only if |T | = n.

Proof. By Theorem 2.2.10, there is an isomorphism F : addW → modH, where

H = k~An the path algebra of a linearly oriented quiver of type An. In particular,

F induces a translation quiver isomorphism F ′ : W → ΓH . Then, TH = F ′(T )

is a τ
H

-rigid set in ΓH , which is maximal τ
H

-rigid if and only if T is maximal

τ -rigid in W . Now, by Lemma 5.1.5, TH is maximal τ
H

-rigid in ΓH if and only if

⊕M∈THM is tilting in modH. The latter is equivalent to |TH | = n. The proof of

the lemma is completed.

The following result states more properties of a maximal τ -rigid set in W .
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5.2.6 Lemma. Let T be a maximal τ -rigid set in W.

(1) The wing vertex of W is in T .

(2) If X ∈ T , then T ∩ WX is maximal τ -rigid in WX , and consequently,

|T ∩WX | = `(X).

Proof. Let M be the wing vertex of W . Given any X ∈ T , since WX ⊆ WM ,

we deduce from Lemma 5.2.1 that (X,M) is a τ -rigid pair. Hence, T ∪ {M} is

τ -rigid. By the τ -rigid maximality of T , we obtain M ∈ T .

Now, we fix X ∈ T . Let Y ∈ WX be such that (T ∩WX)∪{Y } is τ -rigid. We

claim that (Z, Y ) is a τ -rigid pair for any Z ∈ T . Indeed, the claim is obvious

if Z ∈ WX , and otherwise, since (Z,X) is τ -rigid, it follows from Lemma 5.2.4.

That is, T ∪ {Y } is τ -rigid. By the τ -rigid maximality of T , we obtain Y ∈ T ,

and hence, Y ∈ T ∩ WX . This shows that T ∩ WX is maximal τ -rigid in WX .

By Lemma 5.2.5, |T ∩WX | = `(X). The proof of the lemma is completed.

Remark. If n = 1, then W is the only maximal τ -rigid set in W . If n = 2, then

W has exactly two maximal τ -rigid sets, namely, the vertex set of the left-most

section and that of right-most section.

Our main objective is to show that the maximal τ -rigid sets in W can be

constructed from section-generators of W , which are defined in Definition 1.4.2.

For this purpose, we shall need to recall the coordinate system for W . As seen

in Section 4.1, we shall identify an object X ∈ W with a pair (i
X
, j

X
) of integers,

where n ≥ i
X
≥ j

X
≥ 1. In this way, W can be pictured as follows:

(2, 2)

(3, 2)

(n− 1, 2)

(n, 2)

(n− 1, n− 2)

(n, 3)

(1, 1)

(2, 1)

(n− 1, 1)

(n, 1).

(n− 2, 1)

(n, n− 1)

(n, n) (n− 1, n− 1)
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5.2.7 Proposition. Let T be a maximal τ -rigid set in W. Then every maximal

chain in T is a section-generator of W.

Proof. Let S be a maximal chain in T . If the rank n of W is equal to 1, then

trivially our statement is true. Now assume n ≥ 2. By Lemma 5.2.6(1), the

wing vertex M of W lies in T . Since M is the maximal element in W , we may

enumerate the objects of S in such a way that X1 ≺ X2 ≺ · · · ≺ Xm, where

m ≥ 2 and Xm = M . If `(X1) > 1, then |T ∩ WX1 | > 1 by Lemma 5.2.6 (2).

Thus, T contains some X0 with `(X0) < `(X1). This yields a chain S ∪ {X0} in

T , a contradiction. This shows that `(X1) = 1.

By Proposition 4.1.15(2), it remains to show that W has a path between

Xp, Xp+1, for every 1 ≤ p < m. If W has no path connecting Xp and Xp+1, for

some 1 ≤ p < m, then by Lemma 4.1.2(3) and Lemma 4.1.6, i
Xp

< i
Xp+1

and

j
Xp
> j

Xp+1
. In view of Lemma 4.1.1, i

Xp
≥ j

Xp
> j

Xp+1
, and hence, W contains

the object Y ∈ W with (i
Y
, j

Y
) = (i

Xp
, j

Xp+1
). Then, Xp ≺ Y ≺ Xp+1 by Lemma

4.1.6. Since S is a maximal chain in T , we obtain Y /∈ T .

Let Z ∈ T . We claim that (Y, Z) is τ -rigid. Suppose that WY ,WZ are

not comparable. Then, Xp+1 6∈ WZ , Z 6∈ WY and Z 6∈ WXp . In particular,

Z 6∈ {Xp, Xp+1}. By Lemma 5.2.1, it suffices to show thatWY ,WZ are separable.

If WXp+1 ,WZ are separable, then WY and WZ are separable by Lemma 4.1.7.

It remains to consider the case where Z ∈ WXp+1 . Then j
Z
≥ j

Xp+1
. Since

S is a maximal chain in T , we see that Xp 6∈ WZ . Since (Z,Xp) is τ -rigid, WZ

and WXp are separable. By Lemma 4.1.7, consider first j
Xp
≥ i

Z
+ 2. Then

i
Y

= i
Xp
≥ j

Xp
> i

Z
≥ j

Z
≥ j

Xp+1
= j

Y
. This implies that WZ ⊆ WY , a

contradiction. Thus, i
Xp
≤ j

Z
−2, and hence, i

Y
= i

Xp
≤ j

Z
−2. This shows that

WZ ,WY are separable. Thus, our claim is true. Hence, T ∪ {Y } is τ -rigid which

contradicts the maximality of T . Therefore,W has a path between Xp, Xp+1, for

every 1 ≤ p < m. The proof of the proposition is completed.

We now give some properties of a section-generator S ofW . First, by Proposi-

tion 4.1.15, S is a sectional chain. That is, S is of form X1 ≺ X2 ≺ · · · ≺ Xm, with

m ≤ n, such that Xt, Xt+1 are connected by a path in W , for t = 1, 2, . . . ,m− 1.

As seen in Definition 1.4.12, every pair (Xt, Xt+1) determines a wing WXt
Xt+1

in

W , for t = 1, . . . ,m− 1.
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5.2.8 Lemma. Let S be a section-generator of W of form X1 ≺ X2 ≺ · · · ≺ Xm.

(1) The wings WXt
Xt+1

with 1 ≤ t < m are pairwise separable.

(2) If M ∈ WXt
Xt+1

with 1 ≤ t < m, then M 6∈ S and S ∪ {M} is τ -rigid.

Proof. Assume that WXt
Xt+1

6= ∅ and WXp
Xp+1

6= ∅ with 1 ≤ t < p < m. Since

Xt+1 � Xp, we obtain WXt+1 ⊆ WXp . By Definition 1.4.12, WXt
Xt+1

⊆ WXt+1

and WXp
Xp+1

,WXp are separable. Since WXt
Xt+1
⊆ WXp , Statement (1) follows from

Lemma 4.1.7.

Now let Xp ∈ S with 1 ≤ p ≤ m and let M ∈ WXt
Xt+1

with 1 ≤ t < m. If t < p,

thenWXt+1 ⊆ WXp . We deduce from Definition 1.4.12 thatWM ⊆ WXt
Xt+1

(WXp .

Hence, M 6= Xp, and (M,Xp) is τ -rigid by Lemma 5.2.1. If t ≥ p, then Xp ∈ WXt .

By definition, WXt
Xt+1

,WXt are separable. Thus, by Lemma 4.1.7, WXp ,WM are

separable. Therefore, M 6= Xp, and (Xp,M) is a τ -rigid pair by Lemma 5.2.1.

Moreover, since S is τ -rigid by Corollary 5.2.3, S ∪ {M} is τ -rigid. The proof of

the lemma is completed.

The following statement is our main result of this section.

5.2.9 Theorem. Let T be a set of objects of W. Then T is maximal τ -rigid if

and only if there exists a section-generator

S : X1 ≺ X2 ≺ · · · ≺ Xm

of W such that

T = S ∪Θ1 ∪ · · · ∪Θm−1,

where Θt is a maximal τ -rigid set in WXt
Xt+1

, for t = 1, . . . ,m− 1.

Proof. Assume that S : X1 ≺ X2 ≺ · · · ≺ Xm is a section-generator of W and Θt

is a maximal τ -rigid set in WXt
Xt+1

, for t = 1, . . . ,m− 1. By Proposition 4.1.15(2)

and Lemma 4.1.10, `(X1) = 1 and `(Xm) = n. Set

T = S ∪Θ1 ∪ · · · ∪Θm−1.

In view of Lemma 5.2.8 and Lemma 5.2.1, T is a τ -rigid set in W . By Lemma

5.2.8(2), the Θt with 1 ≤ t < m are pairwise disjoint. Moreover, by Lemma 5.2.5
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and Lemma 4.1.8, we have |Θt| = `(Xt+1)− `(Xt)− 1. Thus,

|T | = |S|+ |Θ1|+ · · ·+ |Θm−1|
= m+ (`(X2)− `(X1)− 1) + · · ·+ (`(Xm)− `(Xm−1)− 1)

= `(Xm)− `(X1) + 1

= n.

By Lemma 5.2.5, T is maximal τ -rigid in W .

Conversely, assume that T is a maximal τ -rigid set in W . Let

S : X1 ≺ X2 ≺ · · · ≺ Xm

be a maximal chain in T . By Proposition 5.2.7, S is a section-generator. Set

Θt = T ∩WXt
Xt+1

, for each 1 ≤ t < m. Let 1 ≤ t < m. We claim that

T ∩WXt+1 = (T ∩WXt) ∪ (T ∩WXt
Xt+1

) ∪ {Xt+1}.

Let M ∈ T ∩WXt+1 . Since (M,Xt) is a τ -rigid pair, by Lemma 5.2.1, WM ,WXt

are comparable or separable. This gives us that M � Xt or Xt ≺ M � Xt+1 or

M ∈ WXt
Xt+1

. Since S is a maximal chain in T , we have M � Xt or M = Xt+1

or M ∈ WXt
Xt+1

. Hence, our claim is true. Since T is maximal τ -rigid, by Lemma

5.2.6(2), we have

|Θt| = |T ∩WXt+1| − |T ∩WXt | − 1 = `(Xt+1)− `(Xt)− 1,

which is equal to the rank of WXt
Xt+1

. Thus, by Lemma 5.2.5, Θt is a maximal

τ -rigid set in WXt
Xt+1

. By sufficiency, S ∪Θ1 ∪ · · · ∪Θm−1 ⊆ T is maximal τ -rigid

in W . Hence,

T = S ∪Θ1 ∪ · · · ∪Θm−1.

The proof of the theorem is completed.

Remark. We should point out that Theorem 5.2.9 enables us to construct all

the maximal τ -rigid sets in W by induction. As we have seen, this is trivial if W
is of rank one or two. Given a wing of rank n > 2, applying Proposition 4.1.15,

we are able to obtain all the section-generators of W . Next, let S be a section-

generator of W of the form X1 ≺ X2 ≺ · · · ≺ Xm. For each 1 ≤ t < m, in view
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of Lemma 4.1.8, WXt
Xt+1

is a wing of rank smaller than n, and by the induction

hypothesis, its maximal τ -rigid sets can be found using Theorem 5.2.9.

In particular, consider the hereditary algebra H = k~An, where ~An, with n ≥ 1,

a linearly oriented quiver of type An. Since ΓH is a standard wing of rank n, in

view of Lemma 5.1.5, we see that Theorem 5.2.9 provides a method to construct

all the basic tilting modules in modH.

Example. Let H = k~A6. The Auslander-Reiten quiver ΓH is shown as below.

We easily see that {X1, X2, X3} is a section-generator of ΓH such that X1 ≺ X2 ≺
X3, and {Y1, Y2} is maximal τ

H
-rigid in WX1

X2
, and {Z1} is maximal τ

H
-rigid in

WX2
X3
. By Theorem 5.2.9, X1 ⊕X2 ⊕X3 ⊕ Y1 ⊕ Y2 ⊕ Z1 is a tilting module.

X1

X2

X3

Y1

Y2

Z1

◦
◦

◦
◦

◦
◦◦ ◦ ◦ ◦ ◦

◦
◦

◦
◦

◦
◦

◦
◦

◦ ◦

5.3 Maximal τ-rigid sets in a standard compo-

nent of shape ZA∞

Throughout this section, A stands for an Auslander-Reiten category, whose

Auslander-Reiten translation will be simply written as τ . Let Γ be a standard

component of ΓA of shape ZA∞. In this section, we shall first characterize the

maximal τ -rigid sets in Γ and then give a method to construct all of them.

For this purpose, recall first from Lemma 1.4.6 that each object X in Γ is a

wing vertex of a unique wingWX of rank `(X) in Γ . In Definition 1.4.8, we have

defined the notion of comparable or separable wings. In terms of these notions,

the following statement describes the τ -rigidity of a pair of objects of Γ . We shall

omit its proof since it is similar to the proof of Lemma 5.2.1.
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5.3.1 Lemma. If X, Y ∈ Γ , then (X, Y ) is a τ -rigid pair if and only if WX ,WY

are comparable or separable.

We shall give the following remark. Compare it with Remark 5.2.2.

5.3.2 Remark. (1) In view of Lemma 5.3.1, every object in Γ is τ -rigid.

(2) Let WX be a wing in Γ . By Lemma 2.2.2, addWX is an Auslander-Reiten

category with Γ addWX
= WX , whose Auslander-Reiten translation is writ-

ten as τ
X

. By Lemma 5.1.4, a set of objects in WX is τ -rigid if and only if

it is τ
X

-rigid.

Next, we shall recall a coordinate system for Γ as defined in Section 4.2.

Indeed, fix a quasi-simple object S in Γ . Then the quasi-simple objects in Γ are

Si = τ iS, with i ∈ Z. The ray starting with Si is denoted by R+
i , and the co-ray

ending with Si is denoted by R−i . Given an object X ∈ Γ , by Lemma 4.2.1, there

is a unique pair (i
X
, j

X
) of integers with i

X
≥ j

X
, such that X = R+

i
X
∩R−j

X
. For

simplicity, we write X = (i
X
, j

X
). In this way, Γ can be pictured as follows.

(0,0)

(1,0)

(2,0)

(3,0)

(1,1)

(2,1)

(3,1)

(4,1)

(-1,-1)

(1,-1)

(2,-1)

(0,-1)

(0,-2)

(0,-3)(1,-2)

(2,2)

(3,2) (-1,-2)

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
...

...
...

...
...

Moreover, by Lemma 1.4.7, (Γ 0,�) is a partially ordered set; and, as seen

in Definition 4.2.15, every integer n determines two convex subquivers Γ +
<n and

Γ−>n of Γ . We have the following observation.

5.3.3 Corollary. (1) A chain S in Γ is a τ -rigid set.

(2) If M ∈ Γ +
<n and N ∈ Γ−>n for some n ∈ Z, then (M,N) is τ -rigid.

Proof. Statement (1) follows immediately from Lemma 5.3.1. Now fix n ∈ Z.

Let M ∈ Γ +
<n and N ∈ Γ−>n, that is, i

M
≤ n − 1 and j

N
≥ n + 1. Therefore,
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i
M
≤ j

N
− 2. By Lemma 4.2.8, WM ,WN are separable. By Lemma 5.3.1, (M,N)

is τ -rigid. The proof of the corollary is completed.

Now we shall state some properties of τ -rigid sets in Γ .

5.3.4 Lemma. Let T be a τ -rigid set in Γ .

(1) There exists at most one integer i such that T contains infinitely many

objects of R+
i . If such i exists and T ∪ {M} is τ -rigid for some M ∈ Γ ,

then M ∈ Γ +
<i+1 or M ∈ Γ−>i+1.

(2) There exists at most one integer j such that T contains infinitely many

objects of R−j . If such j exists and T ∪ {M} is τ -rigid for some M ∈ Γ ,

then M ∈ Γ−>j−1 or M ∈ Γ +
<j−1.

Proof. We shall prove only Statement (1). The proof of Statement (2) is similar.

Assume that there are i, j ∈ Z such that T contains infinitely many objects

of each of R+
i and R+

j . We may assume that j > i. By Lemma 4.2.17, both

T ∩ R+
i and T ∩ R+

j are infinite chains. Then there exists X ∈ T ∩ R+
j with

j
X
< i. Moreover, there exists Y ∈ T ∩ R+

i such that j
Y
< j

X
. That is,

j = i
X
> i = i

Y
> j

X
> j

Y
. Hence, in view of Lemma 4.2.7 and Lemma 4.2.8,

WX ,WY are neither comparable nor separable. By Lemma 5.3.1, (X, Y ) is not

τ -rigid, which is a contradiction. Therefore, there exists at most one i ∈ Z such

that T contains infinitely many objects of ray R+
i .

Now assume that T ∩R+
i is infinite. Let M ∈ Γ such that T ∪{M} is τ -rigid.

Since T ∩ R+
i is infinite, by Lemma 4.2.11, there is an object X ∈ T ∩ R+

i such

that X is not less than M . Since (X,M) is τ -rigid, by Lemma 5.3.1, WM ,WX

are comparable or separable. In the first case, by Lemma 4.2.7, i
M
≤ i

X
≤ i, that

is, M ∈ Γ +
<i+1. In the second case, by Lemma 4.2.8, i

M
≤ j

X
− 2 ≤ i

X
− 2 < i or

j
M
≥ i

X
+ 2 = i+ 2. That is, M ∈ Γ +

<i+1 or M ∈ Γ−>i+1. The proof of the lemma

is completed.

We introduce the following notion to simplify the later statements.

5.3.5 Definition. A convex subquiver ∆ of Γ is called wing-complete provided

the wing WX is contained in ∆, for all X ∈ ∆.
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Observe that every wing in Γ is wing-complete. Moreover, given an integer n,

the subquivers Γ +
<n and Γ−>n are wing-complete. In the following, we shall give

some properties of τ -rigid sets in a wing-complete subquiver of Γ . The proof is

similar to that of Lemma 5.2.4.

5.3.6 Lemma. Let ∆ be a wing-complete subquiver of Γ . If X,Z ∈ ∆ with

X 6∈ WZ, then (X,Z) is τ -rigid if and only if (X, Y ) is τ -rigid, for all Y ∈ WZ.

Given a wing-complete subquiver ∆ of Γ , a τ -rigid set T in ∆ is called locally

maximal if T ∩WX is maximal τ -rigid in WX , for all X ∈ T . By Lemma 5.2.5,

this is equivalent to say that |T ∩WX | = `(X), for all X ∈ T .

The following statement gives a property of a maximal τ -rigid set in a wing-

complete subquiver of Γ , whose proof can be translated word-by-word from that

of Lemma 5.2.6(2).

5.3.7 Lemma. If ∆ is a wing-complete subquiver of Γ , then every maximal τ -

rigid set in ∆ is locally maximal.

In the following, we shall focus on the maximal τ -rigid sets in Γ +
<n and those

in Γ−>n, for some n ∈ Z. This is very important for our later study.

5.3.8 Lemma. Let n be an integer.

(1) A maximal τ -rigid set in Γ +
<n is infinite.

(2) A maximal τ -rigid set in Γ−>n is infinite.

Proof. We shall only prove Statement (1). Let T be a maximal τ -rigid set in Γ +
<n.

Assume that T is finite. Then there is X ∈ R+
n−1 with j

X
< j

M
, for any M ∈ T .

Thus, X ∈ Γ +
<n and X 6∈ T . Since i

M
≤ i

X
= i, by Lemma 4.2.7, WM ( WX ,

for any M ∈ T . By Lemma 5.3.1, T ∪ {X} is τ -rigid, a contradiction. Hence, T
is infinite. The proof of the lemma is completed.

5.3.9 Lemma. Let n be an integer.
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(1) If T is a maximal τ -rigid set in Γ +
<n, then T contains infinitely many objects

of R+
i , for some i < n.

(2) If T is a maximal τ -rigid set in Γ−>n, then T contains infinitely many objects

of R−j , for some j > n.

Proof. We shall only prove Statement (1). Let T be a maximal τ -rigid set in

Γ +
<n. Suppose that T contains only finitely many objects of R+

i , for each i < n.

Let i0 < n be the largest integer such that T ∩ R+
i0
6= ∅. Take N0 ∈ T ∩ R+

i0

with `(N0) being maximal. We claim that N0 has no cover in T . Suppose on

the contrary that N0 ≺ N for some N ∈ T . Then, j
N
≤ j

N0
≤ i

N0
≤ i

N
< n.

Since i0 = i
N0

, by the maximality of i0, we have i
N

= i0, that is, N ∈ R+
i0
. Since

N0 is the object in R+
j0

with the biggest quasi-length, in view of Lemma 4.2.5(3),

j
N

= j
N0

. It follows that N = N0, a contradiction. Our claim is true. Now let

i1 < j
N0

be the biggest integer such that T ∩ R+
i1
6= ∅. The existence of i1 is

deduced from Lemma 5.3.8(1). Again, take the object N1 in T ∩ R+
i1

with the

biggest quasi-length. By similar discussion, N1 has no cover in T .

Consider now the object M with (i
M
, j

M
) = (i0, jN1

). Since n > i0 ≥ j
N1

, by

Lemma 4.2.1, M ∈ Γ +
<n. Observe that N0 ≺ M and N1 ≺ M . Thus, M 6∈ T .

Let Z ∈ T . If Z ∈ WM , then by Lemma 5.3.1, (Z,M) is τ -rigid. Suppose

now that Z 6∈ WM . In particular, Z 6∈ WN1 . Since N1 has no cover in T , we

have N1 6∈ WZ . That is, WZ ,WN1 are not comparable. Since (N1, Z) is τ -rigid,

WN1 ,WZ are separable with i
Z

+ 2 ≤ j
N1

. Since j
N1

= j
M

, we see that WM ,WZ

are separable. Hence, (M,Z) is τ -rigid. This shows that T ∪{M} is τ -rigid, which

is a contradiction to the τ -rigid maximality of T . Therefore, T contains infinitely

many objects of R+
i , for some i < n. The proof of the lemma is completed.

The following statement is a characterization of maximal τ -rigid sets in Γ +
<n.

5.3.10 Proposition. Let T be a locally maximal τ -rigid set in Γ +
<n, which con-

tains infinitely many objects of R+
i for some i < n.

(1) If i = n− 1, then T is maximal τ -rigid in Γ +
<n.

(2) If i = n− 2, then T is maximal τ -rigid in Γ +
<n and contained in Γ +

<n−1.
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(3) If i < n− 2, then T is maximal τ -rigid in Γ +
<n if and only if

T = (T ∩ Γ +
<i+1) ∪ (T ∩WZ),

where Z = (n− 1, i+ 2) ∈ T .

Proof. Let M ∈ Γ +
<n such that T ∪ {M} is τ -rigid. By Lemma 5.3.4(1), M ∈

Γ +
<i+1 or M ∈ Γ−>i+1.

If i = n− 1 or i = n− 2, then by Lemma 4.2.16(1), Γ +
<n ∩ Γ−>i+1 = ∅. That

is, M ∈ Γ +
<i+1. In particular, T is contained in Γ +

<i+1. Since T ∩ R+
i is an

infinite chain, by Lemma 4.2.19(2), there is an object X ∈ T ∩ R+
i such that

M ≺ X. That is M ∈ WX . In particular, (T ∩ WX) ∪ {M} is τ -rigid. By the

local maximality of T , we see that M ∈ T . Therefore, T is maximal τ -rigid in

Γ +
<n. This shows Statement (1) and (2).

Consider now that i < n− 2. By Lemma 4.2.16(2), Γ +
<n ∩ Γ−>i+1 =WZ with

(i
Z
, j

Z
) = (n− 1, i+ 2). Thus, M ∈ Γ +

<i+1 or M ∈ WZ . In particular, we have

T = (T ∩ Γ +
<i+1) ∪ (T ∩WZ).

Assume that Z ∈ T . Thus, in view of Lemma 4.2.19(2), M has a cover X in

T . That is, M ∈ WX . Then, similarly, by the local maximality of T , we deduce

that M ∈ T . Hence, T is maximal τ -rigid in Γ +
<n. Conversely, assume that T is

maximal τ -rigid in Γ +
<n. It remains to show that Z ∈ T . We may assume that

M ∈ T . Then WM ,WZ are comparable in case M ∈ T ∩ Γ +
<i+1; and WM ⊆ WZ

in case M ∈ WZ . This shows that (M,Z) is a τ -rigid pair. By the τ -rigid

maximality of T , we see that Z ∈ T . The proof of the proposition is completed.

We shall state a characterization of maximal τ -rigid sets in Γ−>n without proof.

5.3.11 Proposition. Let T be a locally maximal τ -rigid set in Γ−>n, containing

infinitely many objects of R−j , for some j > n.

(1) If j = n+ 1, then T is maximal τ -rigid in Γ−>n.

(2) If j = n+ 2, then T is maximal τ -rigid in Γ−>n and contained in Γ−>n+1.
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(3) If j > n+ 2, then T is maximal τ -rigid in Γ−>n if and only if

T = (T ∩ Γ−>j−1) ∪ (T ∩WZ),

where Z = (j − 2, n+ 1) ∈ T .

Given an integer n, let T1 be a maximal τ -rigid set in Γ +
<n and T2 be a maximal

τ -rigid set in Γ−>n. The following gives us a sufficient and necessary condition for

T1 ∪ T2 being a maximal τ -rigid set in Γ . We refer the notion of the density in a

poset to Section 1.4.

5.3.12 Proposition. Let T1 be a maximal τ -rigid set in Γ +
<n and T2 be a max-

imal τ -rigid set in Γ−>n, for some n ∈ Z. Then T1 ∪ T2 is a maximal τ -rigid set

in Γ if and only if T1 is dense in Γ +
<n or T2 is dense in Γ−>n.

Proof. Set T = T1∪T2. By Corollary 5.3.3(2), T is a τ -rigid set in Γ . By Lemma

5.3.9, T1∩R+
i0

and T2∩R−j0 both are infinite, for some i0, j0 ∈ Z with i0 < n < j0.

For proving sufficiency, we may assume that T1 is dense. By Lemma 4.2.20,

we have i0 = n− 1. Let M ∈ Γ such that T ∪ {M} is τ -rigid. Since T1 ∪ {M} is

τ -rigid, by Lemma 5.3.4, we have M ∈ Γ +
<i0+1 or M ∈ Γ−>i0+1. That is, M ∈ Γ +

<n

or M ∈ Γ−>n. By the maximality of T1 and T2, the first case implies that M ∈ T1

and the second case implies that M ∈ T2. Therefore, M ∈ T , and T is maximal

τ -rigid in Γ .

Conversely, assume that T is maximal τ -rigid in Γ but T1 is not dense in

Γ +
<n and T2 is not dense in Γ−>n. Then, by Lemma 4.2.20, we have i0 < n − 1

and j0 > n + 1. Assume that i0 = n − 2. By Proposition 5.3.10(2), T1 is

contained in Γ +
<n−1. If j0 = n+ 2, then by Proposition 5.3.11(2), T2 is contained

in Γ−>n+1. Observe that the quasi-simple object S with (i
S
, j

S
) = (n, n) belongs to

Γ +
<n+1∩Γ−>n−1. Hence, by Corollary 5.3.3(2), T ∪{S} is τ -rigid, which contradicts

the maximality of T . If j0 > n + 2, then, by Proposition 5.3.11(3) T contains

an object Z ∈ Γ with (i
Z
, j

Z
) = (j0 − 2, n + 1) having no cover in T . Take the

object X with (i
X
, j

X
) = (j0 − 2, n). Observe that X ∈ Γ−>n−1 and Z ≺ X.

Hence, X 6∈ T2. Let M ∈ T . If M ∈ T1, then M ∈ Γ +
<n−1. By Corollary 5.3.3(2),

(M,X) is τ -rigid. If M ∈ T2, then, by Proposition 5.3.11(3), M ∈ WZ ⊆ WX

or M ∈ Γ−>j0−1. This shows that (M,X) is τ -rigid. Thus, T ∪ {X} is τ -rigid,
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which contradicts the τ -rigid maximality of T . If i0 < n−2, then we have similar

discussion. This shows the necessity. The proof of the proposition is completed.

From now on, we come back to our main objective of this section, which is to

study the maximal τ -rigid sets in Γ .

5.3.13 Proposition. Let T be a maximal τ -rigid set in Γ . Then T contains

infinitely many objects of some ray R+
i if and only if T contains infinitely many

objects of some coray R−j , where j ≥ i+ 2.

Proof. Assume that T contains infinitely many objects of R+
i , for some i ∈ Z. Let

X ∈ T . By Lemma 5.3.4(2), we have X ∈ Γ +
<i+1 or X ∈ Γ−>i+1. SinceΓ +

<i+1 and

Γ−>i+1 are disjoint, T = (T ∩Γ +
<i+1)∪(T ∩Γ−>i+1). In view of Corollary 5.3.3(2), we

deduce that T ∩Γ−>i+1 is maximal τ -rigid in Γ−>i+1. By Lemma 5.3.9(2), T ∩Γ−>i+1

contains infinitely many objects of some co-ray R−j , with j > i+ 1. Similarly, we

can show the other direction. The proof of the proposition is completed.

Let T be a set of objects in Γ with Z ∈ T . We say that Z is a maximal object

in T if Z has no cover in T .

5.3.14 Proposition. Let T be a maximal τ -rigid set in Γ . If Z ∈ Γ , then Z is

a maximal object in T if and only if T contains infinitely many objects of each

of the co-ray R−i
Z

+2 and the ray R+
j
Z
−2.

Proof. Let Z be an object in Γ . In particular, i
Z
≥ j

Z
. Suppose that T contains

infinitely many objects of each of R−i
Z

+2 and R+
j
Z
−2. Let N be an arbitrary object

in T . We deduce from Lemma 5.3.4 that N ∈ Γ +
<j

Z
−1 or N ∈ Γ−>i

Z
+1 or N ∈

Γ +
<i
Z

+1 ∩ Γ−>j
Z
−1. That is, N ∈ Γ +

<j
Z
−1 or N ∈ Γ−>i

Z
+1 or N � Z by Lemma

4.2.16(2). In particular, Z has no cover in T . It remains to show that Z ∈ T .

Indeed, by Corollary 5.3.3, (N,Z) is τ -rigid. Hence, T ∪ {Z} is τ -rigid. By the

τ -rigid maximality of T , we have Z ∈ T .
Conversely, assume that Z ∈ T is a maximal object. Let M ∈ T . Since

(Z,M) is τ -rigid, by Lemma 5.3.1, WM ⊆ WZ or WM ,WZ are separable. In the

first case, we have i
Z
≥ i

M
≥ j

M
≥ j

Z
. In second case, we have j

M
≥ i

Z
+ 2 or

i
M
≤ j

Z
− 2. Thus, we see that M ∈ Γ−>j

Z
−1 or M ∈ Γ +

<j
Z
−1. Therefore, we have

T = (T ∩ Γ−>j
Z
−1) ∪ (T ∩ Γ +

<j
Z
−1).
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Since T is maximal τ -rigid in Γ , and Γ−>j
Z
−1,Γ

+
<j

Z
−1 are disjoint, in view of

Corollary 5.3.3(2), T ∩ Γ−>j
Z
−1 is maximal τ -rigid in Γ−>j

Z
−1 and T ∩ Γ +

<j
Z
−1 is

maximal τ -rigid in Γ +
<j

Z
−1. By Lemma 5.3.9, T ∩Γ−>j

Z
−1 contains infinitely many

of some co-ray R−j with j > j
Z
− 1 and T ∩ Γ +

<j
Z
−1 contains infinitely many of

some ray R+
i with i < j

Z
− 1. Since T is maximal τ -rigid in Γ , by Proposition

5.3.12, T ∩ Γ−>j
Z
−1 is dense in Γ−>j

Z
−1 or T ∩ Γ +

<j
Z
−1 is dense in Γ +

<j
Z
−1. By

Lemma 4.2.20, j = j
Z

or i = j
Z
− 2. In case j = j

Z
, since T ∩ R−j

Z
is infinite, T

has an object X lying in R−j
Z

such that Z ≺ X, which is a contradiction. Hence,

i = j
Z
− 2. That is, T contains infinitely many objects of the ray R+

j
Z
−2.

Observe that we also have

T = (T ∩ Γ +
<i
Z

+1) ∪ (T ∩ Γ−>i
Z

+1).

In a similar fashion, we can show that T contains infinitely many objects of the

co-ray R−i
Z

+2. The proof of the proposition is completed.

The following statement gives some properties of a maximal τ -rigid set in Γ .

5.3.15 Corollary. If T is a maximal τ -rigid set in Γ , then T contains at most

one maximal object and at least one infinite maximal chain.

Proof. Let T be a maximal τ -rigid set in Γ . It follows from Proposition 5.3.14

and Lemma 5.3.4 that T has at most one maximal object.

For proving the second part, we first claim that T contains an infinite chain.

Indeed, if T has a maximal object Z, then, by Proposition 5.3.14, T ∩ R+
j
Z

+2 is

infinite, which is an infinite chain. Otherwise, every object of T has a cover in

T ; and consequently, T contains an infinite chain. Our claim is established. Now

let S be an infinite chain in T . By Lemma 4.2.13, S is of the following form:

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

Since Γ is interval-finite, we may assume without loss of generality that Xn is a

minimal cover of Xn−1 for every n > 1. Thus, by Lemma 4.2.12,

`(X1) < `(X2) < · · · < `(Xn) < · · · .

Now assume that Y ∈ T is such that S ∪ {Y } is a chain. Then, we have

`(Xn) < `(Y ) ≤ `(Xn+1) for some n. This gives us that Xn ≺ Y � Xn+1.
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By the assumption, Y = Xn+1. Therefore, S is a maximal chain in T . The proof

of the corollary is completed.

Recall that a set of objects in Γ is locally finite if it contains only finitely

many objects of every ray and every co-ray in Γ .

5.3.16 Lemma. Let T be a maximal τ -rigid set in Γ . The following statements

are equivalent.

(1) T is dense in Γ .

(2) T is locally finite in Γ .

(3) T has an infinite chain which is locally finite in Γ .

Proof. First, assume that T is dense in Γ . Suppose on the contrary that T is

not locally finite. Then we may assume that T contains infinitely many objects

of some ray R+
i . By Lemma 5.3.4, every object in T lies in Γ +

<i+1 or Γ−>i+1. As a

consequence, the quasi-simple object S with (i
S
, j

S
) = (i+ 1, i+ 1) has no cover

in T . That is, T is not dense in Γ . This contradiction shows that Statement (1)

implies (2).

Now, by Corollary 5.3.15, T contains an infinite chain S. Assume that T
is locally finite. In particular, S is locally finite. Hence, Statement (2) implies

Statement (3). Finally, assume that T contains an infinite chain S which is

locally finite . By Lemma 4.2.19(1), S is dense in Γ , and so is T . This shows

that Statement (3) implies Statement (1). The proof of the lemma is completed.

The following statement gives a complete description of the maximal τ -rigid

sets in Γ .

5.3.17 Theorem. If T is a locally maximal τ -rigid set in Γ , then it is maximal

τ -rigid in Γ if and only if one of the following situations occurs.

(1) T contains an infinite chain which is locally finite.

(2) T contains infinitely many objects of some ray R+
i and infinitely many

objects of some co-ray R−j with j ≥ i + 2; and it contains the object Z =

(j − 2, i+ 2) whenever j ≥ i+ 4.
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Proof. Let T be a locally maximal τ -rigid set in Γ . Assume that T is maximal

τ -rigid in Γ . By Corollary 5.3.15, T contains an infinite chain S. Suppose that

Statement (1) does not hold. Then we may assume that S ∩ R−j is infinite, for

some j. Then T ∩R−j is infinite, and by Proposition 5.3.13, T ∩R+
i is infinite, for

some integer i with i ≤ j − 2. Moreover, in case j ≥ i+ 4, by Propostion 5.3.14,

the object Z = (j − 2, i+ 2) is a maximal object in T . This shows the necessity.

For proving the sufficiency, let M ∈ Γ such that T ∪{M} is τ -rigid. We claim

that M has a cover in T . If Statement (1) holds, then our claim follows from

Lemma 4.2.19(1). Now assume that Statement (2) holds. Since both T ∩R+
i and

T ∩ R−j are infinite chains, by Lemma 5.3.4, we have M ∈ Γ +
<i+1 or M ∈ Γ−>j−1

or M ∈ Γ +
<j−1∩Γ−>i+1. In case M ∈ Γ +

<i+1 or M ∈ Γ−>j−1, our claim follows from

Lemma 4.2.19(2) and (3). Otherwise, M ∈ Γ +
<j−1 ∩Γ−>i+1. By Lemma 4.2.16(2),

we have Γ +
<j−1 ∩ Γ−>i+1 =WZ where Z = (j − 2, i+ 2). In particular, j ≥ i+ 4,

and hence, by assumption, Z ∈ T . Obviously, Z is a cover of M in T . Our

claim is established. Now let X be a cover of M in T . That is, M ∈ WX . Since

(T ∩WX)∪{M} is τ -rigid, by the local maximality of T , we have M ∈ T ∩WX ,

and hence M ∈ T . Therefore, T is maximal τ -rigid in Γ . The proof of the

theorem is completed.

The following statement shows some properties of the infinite maximal chains

in a maximal τ -rigid set in Γ . For this, we refer the notion of section-generators

of Γ to Definition 1.4.2. Let S be a section-generator of Γ . By Proposition

4.2.24(2), S is an infinite sectional chain of form

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

such that there is a path between Xn and Xn+1, for all n ≥ 1. For each n, we

define a wing WXn
Xn+1

in Γ as indicated in Definition 1.4.12.

5.3.18 Proposition. Let T be a maximal τ -rigid set in Γ . If

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

is an infinite maximal chain in T , then

(1) S is a section-generator of Γ ;
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(2) T ∩WXn

Xn+1
is maximal τ -rigid in WXn

Xn+1
, for every n ≥ 1.

Proof. Let S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · be an infinite maximal chain in T . If

`(X1) > 1, then |T ∩WX1| > 1 by Lemma 5.3.7. Thus, T contains some X0 with

`(X0) < `(X1). This yields a chain S ∪ {X0} in T , a contradiction. This shows

that `(X1) = 1.

By Proposition 4.2.24, it remains to show that Γ has a path betweenXn, Xn+1,

for every n ≥ 1. Let n ≥ 1. Consider the wing WXn+1 . By Lemma 5.3.7, T is

locally maximal. Then T ∩WXn+1 is maximal τ -rigid in WXn+1 . In particular,

S ∩WXn+1 : X1 ≺ X2 · · · ≺ Xn+1

is a maximal chain in T ∩WXn+1 . By Proposition 5.2.7, S ∩WXn+1 is a section-

generator of WXn+1 . By Proposition 4.1.15, it is a sectional chain. Hence, Xn

and Xn+1 is connected by a path in Γ . Statement (1) is established.

For proving Statement (2), we claim that

T ∩WXn+1 = (T ∩WXn) ∪ (T ∩WXn
Xn+1

) ∪ {Xn+1},

for n ≥ 1. Now let M ∈ T ∩ WXn+1 . Since (M,Xn) is a τ -rigid pair, by

Lemma 5.3.1, WM ,WXn are comparable or separable. In the first case, we have

M ∈ WXn or M = Xn+1 since S is a maximal chain in T ; in the second case,

we have M ∈ WXn
Xn+1

. Observe that T is locally maximal and WXn ,WXn
Xn+1

are

separable, we have

|T ∩WXn

Xn+1
| = |T ∩WXn+1 | − |T ∩WXn| − 1 = `(Xn+1)− `(Xn)− 1,

which is equal to the rank ofWXn
Xn+1

by Lemma 4.2.9. Therefore, by Lemma 5.2.5,

T ∩ WXn

Xn+1
is a maximal τ -rigid set in WXn

Xn+1
. The proof of the proposition is

completed.

The following statement is essential to our main purpose, which is to construct

the maximal τ -rigid sets in Γ . Compare it with Lemma 5.2.8.

5.3.19 Lemma. Let Γ have a section-generator

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .
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(1) The wings WXt
Xt+1

with t ≥ 1 are pairwise separable.

(2) If M ∈ WXt
Xt+1

, then M 6∈ S. Moreover, WM ,WXp are separable in case

p ≤ t; and WM ⊆ WXp in case p > t.

Proof. The proof of Statement (1) is similar to that of Lemma 5.2.8. For proving

Statement (2), let Xp ∈ S and let M ∈ WXt
Xt+1

with p, t ≥ 1. If p ≤ t, then

Xp ∈ WXt . By definition, WXt
Xt+1

,WXt are separable. Therefore, WM ,WXp are

separable. If p > t, then WXt+1 ⊆ WXp . We deduce from Definition 1.4.12 that

WM ⊆ WXt
Xt+1

(WXp . The proof of the lemma is completed.

The following definition is essential to our main result of this section.

5.3.20 Definition. Let Γ have a section-generator

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · .

If Θn is a maximal τ -rigid set in the wing WXn
Xn+1

for each n ≥ 1, then the union

Θ =
⋃∞
n=1 Θn is called an addend to S in Γ .

5.3.21 Example. Given an integer n, the ray R+
n and the co-ray R−n both are

section-generators. And both of them admit only the empty addend in Γ .

5.3.22 Definition. Given an infinite chain S in Γ , we say that S is almost

contained in R+
i if all but finitely many objects of S are contained in some ray

R+
i ; almost contained in R−j if all but finitely many objects of S are contained in

some co-ray R−j .

5.3.23 Lemma. Let S be an infinite chain in Γ . Then S is almost contained in

some ray R+
i (respectively, co-ray R−j ) if and only if S ∩ R+

i ( respectively, R−j )

is infinite.

Proof. We shall only show the sufficiency. Assume that S ∩ R+
i is infinite, for

some integer i. In view of Lemma 4.2.13, the chain S∩R+
i has a minimal element

X. Let Y ∈ S such that X ≺ Y . Being infinite, S ∩ R+
i contains an object Z

such that Y ≺ Z. Obviously, i = i
X
≤ i

Y
≤ i

Z
= i. Hence, i

Y
= i, that is,
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Y ∈ R+
i . By Lemma 4.2.11, S contains finitely many object covered by X. Thus,

S is almost contained in R+
i . The proof of the lemma is completed.

Let ∆ be a convex subquiver of Γ with a set T of objects in ∆. Then T is

called densely maximal τ -rigid in ∆ if it is dense in ∆ and maximal τ -rigid in ∆.

The following statement provides a way to construct a τ -rigid set in Γ .

5.3.24 Theorem. Let S be a section-generator of Γ , and let ΘS be an addend

to S in Γ .

(1) The set S ∪ΘS is locally maximal τ -rigid.

(2) If S is almost contained in some ray R+
i , then S ∪ ΘS is densely maximal

τ -rigid in Γ +
<i+1.

(3) If S is almost contained in some co-ray R−j , then S∪ΘS is densely maximal

τ -rigid in Γ−>j−1.

(4) If S is locally finite, then S ∪ΘS is densely maximal τ -rigid in Γ .

Proof. Assume that S is of form X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · and ΘS =
⋃∞
n=1 Θn,

where Θn is a maximal τ -rigid set in WXn
Xn+1

for all n ≥ 1. By Lemma 5.2.5 and

Lemma 4.2.9, we have |Θn| = `(Xn+1)−`(Xn)−1, for all n ≥ 1. Set T = S ∪ΘS .

In view of Lemma 5.3.19 and Lemma 5.3.1, T is a τ -rigid set.

Now we claim that |T ∩ WXn| = `(Xn), for all n ≥ 1. Since `(X1) = 1, then

our claim is true. Assume that the claim is true for n− 1. Now consider n ≥ 2.

By Lemma 5.3.19(2), we see that

T ∩WXn = Θ1 ∪ · · · ∪Θn−1 ∪ {X1, · · · , Xn}
= Θn−1 ∪ (T ∩WXn−1) ∪ {Xn}.

SinceWXn−1

Xn
andWXn−1 are disjoint and Θn−1 ⊆ WXn−1

Xn
, so are Θn−1 andWXn−1 .

Thus, we have

|T ∩WXn| = `(Xn)− `(Xn−1)− 1 + `(Xn−1) + 1 = `(Xn).

Hence, our claim is true. Now let M ∈ Θn, for some n ≥ 1. Since WM ⊆ WXn
Xn+1

,

in view of Lemma 5.3.19(2), we have

|T ∩WM | = |T ∩WXn
Xn+1

∩WM | = |Θn ∩WM | = `(M),
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where the last equality follows from Lemma 5.2.6(2) since Θn is a maximal τ -rigid

set in WXn
Xn+1

. This shows that T is locally maximal τ -rigid. Statement (1) is

established.

Next, Statement (2) follows from Proposition 5.3.10(1) and Lemma 4.2.19(2)

while Statement (3) follows from Proposition 5.3.11(1) and Lemma 4.2.19(3).

Finally, Statement (4) follows from Theorem 5.3.17(1) and Lemma 4.2.19(1).

The proof of the theorem is completed.

The following statement is our main result of this section.

5.3.25 Theorem. Let Γ be a standard component of ΓA of shape ZA∞. A set

T of objects of Γ is maximal τ -rigid if and only if one of the following situations

occurs.

(1) T = S ∪ ΘS , where S is a locally finite section-generator of Γ with an

addend ΘS .

(2) T = S ∪ ΘS ∪ S ′ ∪ ΘS′, where S is a section-generator of Γ almost

contained in some R+
i with an addend ΘS , and S ′ is a section-generator

almost contained in R−j , for some i+ 2 ≤ j ≤ i+ 3, with an addend Θ′S .

(3) T = S ∪ ΘS ∪ S ′ ∪ ΘS′ ∪ Θ, where S is a section-generator of Γ almost

contained in some R+
i with an addend ΘS , and S ′ is a section-generator

almost contained in R−j , for some j ≥ i + 4, with an addend Θ′S , and Θ is

a maximal τ -rigid set in WZ with Z = (j − 2, i+ 2).

Proof. Let T be a set of objects in Γ . If Statement (1) occurs, then by Theorem

5.3.24(4), T is maximal τ -rigid in Γ . Assume that Statement (2) occurs. By

Theorem 5.3.24(2) and (3), S ∪ ΘS is a τ -rigid set in Γ +
<i+1 and S ′ ∪ ΘS′ is a

τ -rigid set in Γ−>j−1. Since j ≥ i+ 2, by Corollary 5.3.3(2),

T = S ∪ΘS ∪ S ′ ∪ΘS′

is τ -rigid. Moreover, by Theorem 5.3.24(1), T is locally maximal. Since j ≤ i+3,

in view of Theorem 5.3.17(2), T is maximal τ -rigid in Γ . Now assume that

Statement (3) occurs. Similarly, S ∪ΘS ∪S ′∪ΘS′ is τ -rigid and locally maximal.

Since Θ is a maximal τ -rigid set in WZ , by Lemma 5.2.6, we see that Z belongs
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to Θ and Θ is locally maximal. Since WZ ⊆ Γ +
<j−1 ∩Γ−>i+1, S ∪ΘS ⊆ Γ +

<i+1 and

S ′ ∪ ΘS′ ⊆ Γ−j−1, by Corollary 5.3.3(2), T = S ∪ ΘS ∪ S ′ ∪ ΘS′ ∪ Θ is τ -rigid.

Observing that T is locally maximal, by Theorem 5.3.17(2), T is maximal τ -rigid

in Γ . This shows the sufficiency.

Conversely, let T be maximal τ -rigid in Γ . By Lemma 5.3.7, T is locally

maximal. In view of Theorem 5.3.17, first we assume that T contains an infinite

maximal chain

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

which is locally finite in Γ . By Proposition 5.3.18(1) and (2), S is a locally finite

section-generator of Γ and Θn = T ∩ WXn
Xn+1

is maximal τ -rigid in WXn
Xn+1

. By

definition, ΘS =
⋃∞
n=1 Θn is an addend to S in Γ . Therefore, by the sufficiency,

S ∪ ΘS is a maximal τ -rigid set in Γ . Moreover, since S ∪ ΘS ⊆ T , we have

T = S ∪ΘS .

Second assume that T contains infinitely many objects of R+
i and infinitely

many objects of R−j , where j ≥ i + 2. Then we deduce that T contains two

infinite maximal chains S and S ′ such that T ∩ R+
i ⊆ S and T ∩ R−j ⊆ S ′.

In view of Proposition 5.3.18(1) and Lemma 5.3.23, S is a section-generator of

Γ which is almost contained in R+
i and S ′ is a section-generator of Γ which is

almost contained in R−j . Write

S : X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · ·

and

S ′ : Y1 ≺ Y2 ≺ · · · ≺ Yn ≺ · · · .

Set Θt = T ∩WXt
Xt+1

, for each t ≥ 1 and Θ′s = T ∩WYs
Ys+1

, for each s ≥ 1. In view of

Proposition 5.3.18(2), ΘS =
⋃∞
t=1 Θt is an addend to S in Γ and ΘS′ =

⋃∞
s=1 Θ′s

is an addend to S ′ in Γ . In case i+ 2 ≤ j ≤ i+ 3, by the sufficiency

T ′ = S ∪ΘS ∪ S ′ ∪ΘS′

is maximal τ -rigid in Γ . Since T ′ ⊆ T , we have T = T ′. In case j ≥ i + 4, by

Theorem 5.3.17(2), the object Z with (i
Z
, j

Z
) = (j − 2, i + 2) belongs to T . Set

Θ = T ∩WZ , and by the local maximality of T , we have Θ is a maximal τ -rigid

set in WZ . Again, by the sufficiency,

T ′′ = S ∪ΘS ∪ S ′ ∪ΘS′ ∪Θ
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is maximal τ -rigid in Γ . Since T ′′ ⊆ T , we have T = T ′′. The proof of the

theorem is completed.

Remark. In view of Proposition 5.3.16, a set of objects in Γ is densely maximal

τ -rigid in Γ if and only if it is of the form as stated in Theorem 5.3.25(1).

5.3.26 Remark. We should point out that our results enable us to construct

all the maximal τ -rigid sets in Γ . Indeed, using Proposition 4.2.24 and Corollary

4.2.25, we are able to construct all the section-generators in Γ , which are locally

finite or almost contained in some ray or some co-ray. By applying Theorem 5.2.9,

we are able to construct all the maximal τ -rigid set in a finite wing; and moreover,

in view of Define 5.3.20, we are also able to construct all possible addends to a

given section-generator of Γ .

To conclude this section, we shall give a method to construct all the maximal

τ -rigid sets in Γ +
<n or in Γ−>n, respectively, for some n ∈ Γ . This will be used in

Chapter 7.

5.3.27 Proposition. Let Γ be a standard component of ΓA of shape ZA∞.

Given an integer n, a set T of objects in Γ +
<n is maximal τ -rigid in Γ +

<n if and

only if one of the following situations occurs.

(1) T = S∪ΘS , where S is a section-generator of Γ , which is almost contained

in R+
i with n− 2 ≤ i ≤ n− 1, and ΘS is an addend to S in Γ .

(2) T = S ∪ ΘS ∪ Θ, where S is a section-generator of Γ , which is almost

contained in R+
i with i ≤ n− 3, ΘS is an addend to S, and Θ is maximal

τ -rigid set in WZ with (i
Z
, j

Z
) = (n− 1, i+ 2).

Proof. Let T be a set of objects in Γ +
<n. Let S be a section-generator of Γ

almost contained in R+
i for some i < n. In particular, S ∩ R+

i is infinite. Let

ΘS be an addend to S in Γ . By Theorem 5.3.24(1), S ∪ ΘS is locally maximal

τ -rigid and contained in Γ +
<i+1. Assume first that Statement (1) occurs. That

is, T = S ∪ ΘS with i = n − 1 or i = n − 2. By Proposition 5.3.10(1) and (2),

T is maximal τ -rigid in Γ +
<n. Assume now that Statement (2) occurs. That is,

T = S ∪ ΘS ∪ Θ with n ≥ i + 3, where Θ is a maximal τ -rigid set in WZ with
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(i
Z
, j

Z
) = (n − 1, i + 2). Since S ∪ ΘS ⊆ Γ +

<i+1 and Θ ⊆ Γ−>i+1, by Corollary

5.3.3(2), T is τ -rigid. By Lemma 5.3.7, Θ is locally maximal, and, hence, T is

locally maximal. Observe that T = (T ∩ Γ +
<i+1) ∪ (T ∩ WZ). By Proposition

5.3.10(3), T is maximal τ -rigid in Γ +
<n. The sufficiency is established.

Conversely, let T be a maximal τ -rigid set in Γ +
<n. Consider the co-ray R−n+1.

We claim that T ∪ R−n+1 is maximal τ -rigid in Γ . Since R−n+1 is a section, in

particular, it is a section-generator of Γ and has only the empty addend. By

Theorem 5.3.24(2), R−n+1 is densely maximal τ -rigid in Γ−>n. By Proposition

5.3.12, our claim is true.

Since T ∪ R−n+1 is not locally finite, in view of Theorem 5.3.25 and Lemma

5.3.16, T ∪ R−n+1 satisfies Statement (2) or (3) in Theorem 5.3.25. Consider the

first case. That is,

T ∪R−n+1 = S ′ ∪ΘS′ ∪ S ∪ΘS ,

where ΘS′ is an addend to a section-generator S ′ which is almost contained in

some R−j and ΘS is an addend to a section-generator S which is almost contained

in some R+
i with i + 3 ≥ j ≥ i + 2. In particular, T ∪ R−n+1 contains infinitely

many objects of R−j . Since T ∪ R−n+1 contains infinite may objects of R−n+1,

by Lemma 5.3.4(2), we have j = n + 1. Thus, i = j − 2 = n − 1 or i =

j − 3 = n − 2. By Theorem 5.3.24(2) and (3), S ∪ ΘS ⊆ Γ +
<i+1 ⊆ Γ +

<n and

S ′ ∪ΘS′ ⊆ Γ−>n. Therefore, we have T = S ∪ ΘS . That is, T verifies Statement

(1) in the proposition. Considering the second, similarly we can show that T
verifies Statement (2) in the proposition. This establishes the necessity. The

proof of the proposition is completed.

Remark. A set of objects in Γ +
<n is densely maximal τ -rigid in Γ +

<n only if it is

of the form as stated in Proposition 5.3.27(1) with i = n− 1. In view of Remark

5.3.26, we are able to construct all the maximal τ -rigid sets in Γ +
<n.

The following statement is similar to show.

5.3.28 Proposition. Let Γ be a standard component of ΓA of shape ZA∞.

Given an integer n, a set T of objects in Γ−>n is maximal τ -rigid in Γ−>n if and

only if one of the following situations occurs.

(1) T = S∪ΘS , where S is a section-generator of Γ , which is almost contained

in R−j with n < j < n+ 3, with an addend ΘS .
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(2) T = S ∪ ΘS ∪ Θ, where S is a section-generator of Γ , which is almost

contained in R−j with j ≤ n + 3, with an addend ΘS ; and Θ is maximal

τ -rigid set in WZ with (i
Z
, j

Z
) = (j − 2, n+ 1).

Remark. A set of objects in Γ−>n is densely maximal τ -rigid in Γ−>n only if it is

of the form as stated in Proposition 5.3.28(1) with j = n+ 1.

5.4 Maximal τ-rigid sets in a standard compo-

nent of shape ZA∞∞
The main objective of this section is to study maximal the τ -rigid sets in

a standard component of shape ZA∞∞ of ΓA , where τ is the Auslander-Reiten

translation of A. For this purpose, we shall fix throughout this section a standard

component Γ of ΓA of shape ZA∞∞. Recall that we have defined a coordinate

system for Γ in Section 4.3. This yields a partial order over Γ ; see Lemma 4.3.7.

As shown in the following statement, the τ -rigidity in Γ is completely determined

by this order.

5.4.1 Lemma. If X, Y ∈ Γ , then (X, Y ) is a τ -rigid pair in Γ if and only if

X, Y are comparable.

Proof. Let X, Y be objects in Γ . Since Γ is standard, by Lemma 2.2.7, we

have HomA(X, τY ) 6= 0 if and only if τY ∈ RX if and only if Y ∈ Rτ−X .

Similarly, HomA(Y, τX) 6= 0 if and only if Y ∈ RτX . Since X 6∈ Rτ−X , we

have HomA(X, τX) = 0, and also, HomA(Y, τY ) = 0. Therefore, (X, Y ) is a

τ -rigid pair if and only if HomA(X, τY ) = 0 and HomA(Y, τX) = 0, if and only

if Y 6∈ Rτ−X and Y 6∈ RτX . By Lemma 4.3.26, the latter is equivalent to X, Y

are comparable . The proof of the lemma is completed.

5.4.2 Remark. In particular, Lemma 5.4.1 implies that every object in Γ is

τ -rigid.

Immediately, we are able to characterize the maximal τ -rigid sets in Γ .
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5.4.3 Proposition. Let Γ be a standard component of ΓA of shape ZA∞∞. A

set T of objects in Γ is maximal τ -rigid if and only if it is the vertex set of a

section in Γ .

Proof. Let T be a set of objects of Γ . In view of Lemma 5.4.1, T is maximal

τ -rigid in Γ if and only if it is a maximal chain in Γ . By Proposition 4.3.19, the

latter is equivalent to T being the vertex set of a section in Γ . The proof of the

proposition is completed.
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Chapter 6

Cluster-tilting subcategories of a

cluster category of type A∞

The objective of this chapter is to give a characterization of the cluster-tilting

subcategories of a cluster category of type A∞, and to provide a method to

construct all of them. Throughout this chapter, let Q be a quiver of type A∞
with no infinite paths.

6.1 Cluster-tilting subcategories of a cluster cat-

egory of type A∞

Recall that the skeleton D b(Q) of Db(rep(Q)) chosen in Section 3.3, is an

Auslander-Reiten category, whose Auslander-Reiten translation is written as τ
D

.

The connecting component CQ of Γ Db(Q) is standard of shape ZA∞, which is ob-

tained by gluing the preprojective component of Γ rep(Q) and the shift by −1 of the

preinjective component of Γ rep(Q). The cluster category C (Q) is an Auslander-

Reiten category, whose Auslander-Reiten translation is denoted by τ
C

. Since CQ
is the fundamental domain for C (Q), the canonical functor π : D b(Q) → C (Q)

induces a translation-quiver-isomorphism π : CQ → Γ C (Q), which acts identically

on the underlying quiver. In particular, Γ C (Q) is of shape ZA∞.

Observe that CQ is a standard component of shape ZA∞. By applying The-

orem 5.3.17 and Theorem 5.3.25, we are able to characterize and construct all
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the maximal τ
D

-rigid sets in CQ. Recall that Holm and Jørgensen have given a

geometric characterization of the functorial finiteness of maximal rigid subcat-

egories of C (Q) in [34]. By using these results, in this section, we shall give a

characterization of cluster-tilting subcategories of C (Q), and more importantly,

provide a method to construct all of them.

Let Γ be a translation quiver of shape ZA. Given a vertex X ∈ Γ , we have

the forward rectangle RX and the backward rectangle RX in Γ defined in Section

1.2. These enable us to describe the morphisms between objects in Γ C (Q) in the

following statement.

6.1.1 Lemma. Let Q be a quiver of type A∞ with no infinite path. Given X, Y ∈
Γ C (Q), we have

HomC (Q)(X, Y ) =

{
k, if Y ∈ RX ∪Rτ2

C
X ;

0, otherwise.

Proof. Let X, Y ∈ Γ C (Q). Since π : CQ → Γ C (Q) is an isomorphism of translation

quivers acting identically on the underlying quiver, we have Y ∈ RX ∪ Rτ2
C
X ⊆

Γ C (Q) if and only if Y ∈ RX ∪Rτ2
D
X ⊆ CQ. Since CQ is standard, by Lemma 1.4.5,

the latter is equivalent to

HomDb(Q)(X, Y ) 6= 0 or HomDb(Q)(Y, τ
2
D
X) 6= 0.

That is,

HomDb(Q)(X, Y )⊕DHomDb(Q)(Y, τ
2
D
X) 6= 0.

In view of Lemma 3.3.3, it is equivalent to HomC (Q)(X, Y ) 6= 0. Moreover, by

Proposition 2.12 in [48], HomC (Q)(X, Y ) is at most of dimension 1. The proof of

the lemma is completed.

On the other hand, the cluster category used by Holm and Jørgensen in [34]

is constructed as follows. Consider the polynomial k-algebra R = k[t], which is

a DG-algebra with zero differential and t placed in homological degree 1. Let

Df (R) be the derived category of DG-modules over R with finite dimensional

homology over k. This is a Hom-finite Krull-Schmidt 2-Calabi-Yau triangulated

category with a Serre functor S = [2], where [1] is the shift functor of Df (R) as

a triangulated category. In particular, Df (R) is an Auslander-Reiten category,

118



whose Auslander-Reitn quiver ΓDf (R) is of shape ZA∞ with Auslander-Reiten

translation τ
R

= S ◦ [−1] = [1]. Given an object X ∈ ΓDf (R), the backward

rectangle Rτ−RX
and the forward rectangle Rτ

R
X in ΓDf (R) are precisely H+(X)

and H−(X), respectively, as defined in Definition 2.1 in [34]. Given X, Y ∈
ΓDf (R), by Proposition 2.2 in [34], we obtain

HomDf (R)(X, Y ) =

{
k, if Y ∈ RX ∪Rτ2

R
X ;

0, otherwise.

The following statement says that the two cluster categories C (Q) and Df (R)

are indeed equivalent.

6.1.2 Lemma. Let Q be a quiver of type A∞ without infinite paths. Then there is

an equivalence from C (Q) to Df (R), which commutes with the Auslander-Reiten

translations.

Proof. First there is a translation-quiver-isomorphism φ : ΓDf (R) → Γ C (Q). In

particular, φ(τ
R
X) = τ

C
φ(X), for all X ∈ ΓDf (R). Given X, Y ∈ ΓDf (R), we have

HomDf (R)(X, Y ) 6= 0 if and only if Y ∈ RX ∪Rτ2
R
X

if and only if φ(Y ) ∈ Rφ(X) ∪Rτ2
C
φ(X)

In view of Lemma 6.1.1, we see that φ induces an isomorphism

φX,Y : HomDf (R)(X, Y )→ HomC (Q)(φ(X), φ(Y )).

It is easy to check that φX,Y is natural in both X and Y . It is evident that φ in-

duces an equivalence from Df (R) to C (Q). The proof of the lemma is completed.

Now for our main purpose, we shall need to recall some geometric notions and

terminology from [34]. Let A∞ stand for an ∞-gon with marked points, that is

the upper half plane in the plane R2 with marked points which are denoted by

n ∈ Z, as shown below.

-4 -3 -2 -1 0 1 2 3 4

Figure 6.1: An ∞-gon with marked points.
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A simple curve in A∞ is a curve which does not cross itself and joins two

(maybe identical) marked points, called endpoints of the curve. A simple curve

is called internal if it intersects the boundary of A∞ only at the endpoints. Two

distinct simple curves in A∞ are said to cross if they have a common point which

is not an endpoint of any of the two curves.

Given two marked points m,n with m−n ≥ 2, the isotopy class of the internal

simple curves in A∞ connecting m and n is called the arc in A∞ with end-points

m,n, which is denoted by [m,n] with m > n. We shall denote by arc(A∞) the

set of all arcs in A∞, that is,

arc(A∞) = {[m,n] | (m,n) ∈ Z× Z with m ≥ n+ 2}.

Two arcs α = [m,n] and β = [p, q] in A∞ are said to be crossing if every curve

in α crosses each of the curves in β. It is easy to see that this is equivalent to the

condition that either m > p > n > q or p > m > q > n. In the following figure,

only α, β are crossing.

-4 -3 -2 -1 0 1 2 3 4

α β γ

δ

6.1.3 Definition. A triangulation of A∞ is a maximal set of pairwise non-

crossing arcs in A∞.

Let S be a set of arcs of A∞. One says that S is locally finite if every marked

point of A∞ is an endpoint of at most finitely many arcs in S. Given a marked

point n in A∞, if both the set of arcs [m,n] ∈ S with m > n and that of arcs

[n, p] ∈ S with n > p are infinite, then the union of these two sets is called a

fountain in S with fountain base n. Moreover, given two marked points m,n in

A∞ with m > n, if both the set of arcs [p,m] ∈ S with p > m and that of arcs

[n, q] ∈ S with n > q are infinite, then the union of these two sets is called a

splitting fountain in S.

The following figures show three types of triangulations of A∞.
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-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 6.2: A triangulation of A∞ having a fountain

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 6.3: A triangulation of A∞ having a splitting fountain

-4 -3 -1 0 1 2 3 4 5

Figure 6.4: A locally finite triangulation of A∞

Note that Γ C (Q) is a translation quiver of shape ZA∞. As we did in Section

4.2, we may give a coordinate system for Γ C (Q). Indeed, the quasi-simple objects

in Γ C (Q) will be denoted as Sn with n ∈ Z such that τ
C
Sn = Sn+1. The ray

starting with Sn is denoted by R+
n , and the co-ray ending with Sn is denoted by

R−n . Given an object X ∈ Γ C (Q), there is a unique pair of integers (i
X
, j

X
) with

i
X
≥ j

X
, such that R+

i
X
∩R−j

X
= {X}.

6.1.4 Lemma. There is a bijection

Ψ : Γ C (Q) → arc(A∞) : X 7→ α
X

= [i
X

+ 1, j
X
− 1].

Proof. By definition, arc(A∞) = {[m,n] | m−n ≥ 2}. Clearly, we have a bijection

θ : ZΓ → arc(A∞) : (i, j) 7→ [i+ 1, j − 1],
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where ZΓ = {(i, j) ∈ Z × Z | i ≥ j}. Thus, the statement follows from Lemma

4.2.1. The proof of the lemma is completed.

Given a set T of objects in Γ C (Q), denote by arc(T ) the image of T under Ψ.

Then immediately, we have the following statement.

6.1.5 Lemma. Let T be a set of objects in Γ C (Q).

(1) arc(T ) is locally finite if and only both T ∩ R+
i and T ∩ R−i are finite, for

every integer i.

(2) arc(T ) has a fountain if and only if there is some i such that both T ∩R+
i−1

and T ∩R−i+1 are infinite.

(3) arc(T ) has a splitting fountain if and only if T ∩R+
i and T ∩R−j are infinite

for some integers i, j with j > i+ 2.

Proof. Given an integer i, we see that

arc(T ∩R+
i−1) = {[i, p] ∈ arc(T ) | i− 1 > p}

and

arc(T ∩R−i+1) = {[q, i] ∈ arc(T ) | q > i+ 1}.

Firstly, arc(T ) is locally finite if and only if both {[i, p] ∈ arc(T ) | i− 1 > p}
and {[q, i] ∈ arc(T ) | q > i+ 1} are finite for all i ∈ Z if and only if arc(T ∩R+

i−1)

and arc(T ∩ R−i+1) are finite for all i ∈ Z. Since Ψ is a bijection, the latter is

equivalent to T ∩ R+
i−1 and T ∩ R−i+1 are finite, for all i ∈ Z. This establishes

Statement (1).

Secondly, arc(T ) has a fountain if and only if both {[i, p] ∈ arc(T ) | i−1 > p}
and {[q, i] ∈ arc(T ) | q > i+ 1} are infinite for some i if and only if arc(T ∩R+

i−1)

and arc(T ∩R−i+1) are infinite for some i if and only if T ∩R+
i−1 and T ∩R−i+1 are

infinite for some i. This establishes Statement (2). Similarly, we can establish

Statement (3). The proof of this lemma is completed.

Let T be a strictly additive subcategory of C (Q). Denote by indT the set

of objects in Γ C (Q) which lie in T . Moreover, denote by arc(T ) the set of arcs

Ψ(X) with X ∈ indT .
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Observe that the maximal rigid subcategories of C (Q) are precisely the 1-

maximal orthogonal subcategories as defined in [34, (4.1)]. We have the following

result.

6.1.6 Proposition. Let Q be a quiver of type A∞ without infinite paths. A

strictly additive subcategory T of C (Q) is weakly cluster-tilting if and only if

arc(T ) is a triangulation of A∞.

Proof. By Lemma 2.1 in [48], T is weakly cluster-tilting if and only if indT

is a maximal rigid set in Γ C (Q). Since C (Q) ∼= Df (R) by Lemma 6.1.2, the

proposition follows immediately from Theorem 4.3 stated in [34]. The proof of

the proposition is completed.

The following statement gives a criterion for a weakly cluster-tilting subcate-

gory of C (Q) to be a cluster-tilting subcategory.

6.1.7 Theorem ([34]). Let Q be a quiver of type A∞ without infinite paths. A

weakly cluster-tilting subcategory T of C (Q) is a cluster-tilting subcategory if and

only if arc(T ) is a triangulation of A∞ which is locally finite or has a fountain.

Proof. The statement follows immediately from Theorem 4.4 in [34] and Lemma

6.1.2. The proof of the theorem is completed.

Recall that π : CQ → Γ C (Q) is an isomorphism of translation quivers acting

identically on the underlying quiver. Let S be a section-generator of Γ C (Q).

Observe that S is also a section-generator of CQ. Let Θ be an addend to S in CQ
as defined in Definition 5.3.20. Considering Θ as a set of objects in Γ C (Q), we

shall call it an addend to S in Γ C (Q).

The following statement is our main result of this section.

6.1.8 Theorem. Let C (Q) be the cluster category associated with a quiver Q

of type A∞ without infinite paths. A strictly additive subcategory T of C (Q) is

cluster-tilting if and only if one of the following situations occurs.

(1) indT = S ∪ΘS , where S is a locally finite section-generator of Γ C (Q) with

an addend ΘS .
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(2) indT = S ∪ ΘS ∪ S ′ ∪ ΘS′, where S is a section-generator of Γ C (Q) which

is almost contained in some ray R+
i and has an addend ΘS , while S ′ is a

section-generator of Γ C (Q) which is almost contained in the co-ray R−i+2 and

has an addend ΘS′.

Proof. Let T be a strictly additive subcategory of C (Q). Observe that indT is

a set of objects in Γ C (Q), as well as, a set of objects in CQ.

Assume first that indT verifies Statement (1). Considered as a set of objects

in CQ, indT satisfies Statement (1) stated in Theorem 5.3.25. Therefore, indT is

a maximal τ
D

-rigid set in CQ. By Proposition 5.1.7, T is a weakly cluster-tilting

subcategory of C (Q). By Proposition 6.1.6, arc(T ) is a triangulation of A∞.

Moreover, by Statement (1), indT contains a locally finite section-generator S
of Γ C (Q). By Lemma 5.3.16, indT is locally finite in Γ C (Q). That is, indT ∩R+

i

and indT ∩R−i are finite, for i ∈ Z. By Lemma 6.1.5(1), arc(T ) is locally finite,

and by Theorem 6.1.7, T is a cluster-tilting subcategory of C (Q).

Assume next that indT verifies Statement (2). Considered as a set of objects

in CQ, indT satisfies Statement (2) with j = i + 2 stated in Theorem 5.3.25.

Therefore, indT is a maximal τ
D

-rigid set in CQ. By Proposition 5.1.7, T is a

weakly cluster-tilting subcategory of C (Q). By Proposition 6.1.6, arc(T ) is a tri-

angulation of A∞. Moreover, by Statement (2), indT contains section-generators

S and S ′ of Γ C (Q) with S almost contained in some ray R+
i and S ′ almost con-

tained in co-ray R−i+2. Since S and S ′ are infinite, indT ∩ R+
i and indT ∩ R−i+2

are infinite. By Lemma 6.1.5(2), arc(T ) has a fountain, and by Theorem 6.1.7,

T is cluster-tilting in C (Q). This establishes the sufficiency.

Conversely, assume that T is cluster-tilting in C (Q). As a set of objects CQ,

by Proposition 5.1.7, indT is maximal τ
D

-rigid. That is, indT verifies one of the

three conditions stated in Theorem 5.3.25.

Suppose that indT verifies Statement (2) stated in Theorem 5.3.25 with

j > i + 2. That is, indT contains section-generators S and S ′ of CQ with S
almost contained in the ray R+

i and S ′ almost contained in the co-ray R−j . Since

S and S ′ are infinite, indT ∩R+
i and indT ∩R−j are infinite. By Lemma 6.1.5(3),

arc(T ) has a splitting fountain. By Theorem 6.1.7, T is not cluster-tilting, a

contradiction. Similarly, we shall obtain a contradiction if indT verifies State-

ment (3) stated in Theorem 5.3.25. Therefore, indT verifies either Statement (1)

or Statement (2) with j = i + 2 stated in Theorem 5.3.25. Considered as a set
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of objects in Γ C (Q), indT verifies Statement (1) or Statement (2) stated in the

theorem. This establishes the necessity. The proof of the theorem is completed.

Remark. Let Q be a quiver of type A∞ without infinite paths. We should point

out that our results will enable us to construct all the cluster-tilting subcategories

of C (Q). Indeed, using Proposition 4.2.24 and Corollary 4.2.25, we are able to

construct all the section-generators in Γ C (Q) which are locally finite or almost

contained in some ray or some co-ray. Given a section-generator S in Γ C (Q), as

indicated in Define 5.3.20, we shall apply Theorem 5.2.9 to construct all possible

addends Θ to S in Γ C (Q).

To conclude this section, we shall give a complete description of the cluster-

tilting subcategories of C (Q). A rigid set T of objects in Γ C (Q) is called locally

maximal in Γ C (Q) if |T ∩WX | = `(X), for every X ∈ T .

6.1.9 Theorem. Let C (Q) be the cluster category associated with a quiver Q

of type A∞ without infinite paths, and let T be a strictly additive subcategory of

C (Q). Then T is cluster-tilting in C (Q) if and only if indT is locally maximal

rigid satisfying one the following conditions.

(1) T contains an infinite chain which is locally finite in Γ C (Q).

(2) T contains infinitely many objects of some ray R+
i and infinitely many

objects of the co-ray R−i+2 in Γ C (Q).

Proof. Let T be a strictly additive subcategory of C (Q). Observe that indT is

a set of objects in Γ C (Q), as well as, a set of objects in CQ.

Assume that T is cluster-tilting. Then indT verifies Theorem 6.1.8. Since

every section-generator of Γ C (Q) is a chain by Proposition 4.2.24(2), indT verifies

Statement (1) or (2) stated in the theorem. Considering indT as a set of objects

in CQ, by Proposition 5.1.7, indT is maximal τ
D

-rigid in CQ. By Lemma 5.3.6,

indT is locally maximal in CQ. Thus, as a set of objects in Γ C (Q), indT is locally

maximal in Γ C (Q). The necessity is established.

Conversely, assume first that indT is locally maximal verifying Statement (1)

stated in the theorem. Considering indT as a set of objects in CQ, by Theorem

5.3.17(1), indT is maximal τ
D

-rigid in CQ. Therefore, indT is of one of the
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three forms stated in Theorem 5.3.25. Since indT contains an infinite chain in

CQ which is locally finite, by Lemma 5.3.16, it is locally finite. Hence, indT is

of the form stated in Statement (1) in Theorem 5.3.25. Therefore, as objects of

Γ C (Q), indT is of the form stated in Statement (1) in Theorem 6.1.8. Thus, T

is cluster-tilting.

Assume secondly that indT is locally maximal verifying Statement (2) stated

in the theorem. Similarly, considering indT as a set of objects in CQ, by Theorem

5.3.17(2), indT is maximal τ
D

-rigid in CQ. Since indT contain infinitely many

objects of some ray R+
i and the co-ray R−i+2 in CQ, it is not locally finite. By

Lemma 5.3.16, indT contains no infinite chain which is locally finite in CQ.

Hence, indT verifies Statement (2) or (3) in Theorem 5.3.25. Since i is unique

by Lemma 5.3.4, indT verifies Statement (2) in Theorem 5.3.25. Therefore,

as objects of Γ C (Q), indT verifies Statement (2) in Theorem 6.1.8. Thus, T

is cluster-tilting. The sufficiency is established. The proof of the theorem is

completed.
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Chapter 7

Cluster-tilting subcategories of a

cluster category of type A∞∞

The main objective of this chapter is to provide a way to construct all the

cluster-tilting subcategories of a cluster category of type A∞∞. Throughout this

chapter, Q stands for a quiver of type A∞∞ without infinite paths.

7.1 The coordinate systems for the fundamental

domain

The objective of this section is to introduce the coordinate systems for the

fundamental domain F (Q). Recall that the skeleton D b(Q) of Db(rep(Q)) chosen

in Section 3.3 is an Auslander-Reiten category, whose Auslander-Reiten transla-

tion will be simply written as τ . The fundamental domain F (Q) for the cluster

category C (Q) consists of three standard components of Γ Db(Q), namely, the con-

necting component CQ and two orthogonal regular components R and L. Each

of these three components will be equipped with a coordinate system, which will

be used throughout this chapter.

Let us start with a coordinate system for the connecting component CQ. Recall

that CQ is of shape ZA∞∞. As in Section 4.3, we fix two double infinite sectional

paths L0 and R0, whose intersection contains exactly one object. Write Li = τ iL0

and Rj = τ jR0, for i, j ∈ Z. For each X ∈ CQ, there exists a unique pair (i
X
, j

X
) of
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integers such that {X} = Li
X
∩Rj

X
. For convenience, we shall write X = (i

X
, j

X
).

By Lemma 4.3.7, (CQ,�) is partially ordered in such a way that X � Y if i
X
≤ i

Y

and j
X
≥ j

Y
.

Next, observe that L and R are of shape ZA∞. In order to fix a coordinate

system for each of them, we need to reformulate a result stated in [48, (4.1)].

For this purpose, recall from Definition 4.2.26 that, for a quasi-simple object S

in L or in R, the infinite co-wing W(S) is the full subquiver generated by the

object X for which there exist paths N  X  M , where M belongs to the ray

starting with S and N belongs to the co-ray ending with S.

7.1.1 Lemma. Let Li and Rj with i, j ∈ Z be the previously fixed double infinite

sectional paths in CQ. There is a unique quasi-simple object SL ∈ L and a unique

quasi-simple object TR ∈ R such that the following statements hold.

(1) If X ∈ CQ and i ∈ Z, then X ∈ Li if and only if HomDb(Q)(X, τ
iSL) 6= 0;

and in this case, for each N ∈ L, one has HomDb(Q)(X,N) 6= 0 if and only

if N ∈ W(τ iSL).

(2) If Y ∈ CQ and j ∈ Z, then Y ∈ Rj if and only if HomDb(Q)(Y, τ
jTR) 6= 0;

and in this case, for each M ∈ R, one has HomDb(Q)(Y,M) 6= 0 if and only

if M ∈ W(τ jTR).

Proof. We shall prove only Statement (1). Let X ∈ CQ and N ∈ L. We claim

that HomC (Q)(X,N) ∼= HomDb(Q)(X,N). By Lemma 3.3.3,

HomC (Q)(X,N) ∼= HomDb(Q)(X,N)⊕DHomDb(Q)(N, τ
2X).

By the property of CQ, there exists an integer n ≥ 0 such that τ−n+2X is a

representation. That is, τ−n+2X lies in the preprojective component P of Γ rep(Q).

Since τ−nN ∈ L is a representation, we have

HomDb(Q)(N, τ
2X) ∼= HomDb(Q)(τ

−nN, τ−n+2X)
∼= Homrep(Q)(τ

−nN, τ−n+2X)

= 0.

The last equality holds since Homrep(Q)(L,P) = 0. This establishes our claim.

Compare the Li and Ri chosen above with those chosen in Section 4 in [48].
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Since π : F (Q) → Γ C (Q) is a translation-quiver-isomorphism acting identically

on underlying quiver, our statement follows immediately from Lemma 4.1 in [48].

The proof of the lemma is completed.

Now, we are ready to fix a coordinate system for L. Set S0 = τ−SL ∈ L. Let

L+
i with i ∈ Z stand for the ray in L starting with τ iS0 and L−j with j ∈ Z for

the co-ray in L ending with τ jS0. For each M ∈ L, by Lemma 4.2.1, there is a

unique pair (i
M
, j

M
) of integers, with i

M
≥ j

M
, such that {M} = L+

i
M
∩L−j

M
. For

simplicity, we write M = (i
M
, j

M
). Given an integer n, write L+

<n =
⋃
i<n L

+
i and

L−>n =
⋃
j>n L

−
j . By Lemma 4.2.16(2), if m > n+ 1, then L+

<m ∩L−>n is a wing in

L with a wing vertex Z = (m− 1, n+ 1).

To fix a coordinate system for R, we set T0 = τ−TR and denote by R+
i with

i ∈ Z the ray inR starting with τ iT0 and by R−j with j ∈ Z the co-ray inR ending

with τ jT0. For each N ∈ R, by Lemma 4.2.1, there is a unique pair (i
N
, j

N
) of

integers, with i
N
≥ j

N
, such that {N} = R+

i
N
∩ R−j

N
. For simplicity, we write

N = (i
N
, j

N
). Given an integer n, write R+

<n =
⋃
i<nR

+
i and R−>n =

⋃
j>nR

−
j .

By Lemma 4.2.16(2), if m > n+ 1, then R+
<m ∩R−>n is a wing in R with a wing

vertex Z = (m− 1, n+ 1).

Let X, Y be objects in CQ with X ≺ Y connected by a path p. By Lemma

4.3.9, p is a sectional path. Thus, by Lemma 4.3.4, if s(p) = X, then i
X

= i
Y

and j
X
> j

Y
; if t(p) = X, then i

X
< i

Y
and j

X
= j

Y
. The following definition is

important in our later investigation.

7.1.2 Definition. Let X, Y be two objects in CQ with X ≺ Y and connected

by a path p. Define

WX,Y =

{
R+
<j

X
∩R−>j

Y
, if s(p) = X;

L+
<i
Y
∩ L−>i

X
, if t(p) = X.

7.1.3 Lemma. Let X, Y ∈ CQ, with X ≺ Y , be connected by a path p.

(1) If l(p) = 1, then WX,Y = ∅.
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(2) If l(p) > 1 and s(p) = X, then WX,Y = WZ, where Z ∈ R with (i
Z
, j

Z
) =

(j
X
− 1, j

Y
+ 1).

(3) If l(p) > 1 and t(p) = X, then WX,Y = WZ, where Z ∈ L with (i
Z
, j

Z
) =

(i
Y
− 1, i

X
+ 1).

Proof. We shall consider only the case where t(p) = X. By definition,WX,Y lies in

R. If l(p) = 1, then (i
X
, j

X
) = (i

Y
, j

Y
+1) by Lemma 4.3.2(2). Since j

X
= j

Y
+1,

by Lemma 4.2.16(1), WX,Y = ∅. If l(p) > 1 then, by Lemma 4.3.3, i
X

= i
Y

and

j
X
> j

Y
+ 1. By Lemma 4.2.16(2), WX,Y = WZ with (i

Z
, j

Z
) = (j

X
− 1, j

Y
+ 1).

The proof of the lemma is completed.

7.2 Maximal τ-rigid sets in the fundamental do-

main

The main objective of this section is to give a method to construct all the

maximal τ -rigid sets in the fundamental domain F (Q). For this purpose, we

shall make a frequent use of the double infinite sectional paths Li and Rj which

determine the coordinate system for CQ. Recall, moreover, that the quasi-simple

objects in L are Si = τ i−1SL with i ∈ Z and those in R are Tj = τ j−1TR with

j ∈ Z, where SL and TR are as stated in Lemma 7.1.1.

Recall that an object X in L (respectively, R) determines a wing WX in L
(respectively, R) formed by the objects M with j

X
≤ j

M
≤ i

M
≤ i

X
. Moreover,

let m,n ∈ Z with m ≤ n, we shall denote by [m,n] the interval of the integers

i with m ≤ i ≤ n. The following is a criterion for two objects from different

components forming a τ -rigid pair.

7.2.1 Lemma. Let X ∈ CQ, M ∈ L, and N ∈ R.

(1) (X,M) is a τ -rigid pair if and only if S i
X
6∈ WM if and only if i

X
6∈ [j

M
, i
M

].

(2) (X,N) is a τ -rigid pair if and only if Tj
X
6∈ WN if and only if j

X
6∈ [j

N
, i
N

].

Proof. We shall prove only Statement (1). Since τ is an automorphism of D b(Q),

in view of Theorem 3.2.2(2), HomDb(Q)(M, τX) = 0. Write i
X

= i, that is,
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X ∈ Li. By Lemma 7.1.1, HomDb(Q)(X, τM) 6= 0 if and only if τM ∈ W(τ iSL)

if and only if M ∈ W(τ i−1SL) =W(Si). Therefore, (X,M) is τ -rigid if and only

if M 6∈ W(Si). In view of Lemma 4.2.27, the latter is equivalent to Si 6∈ WM .

Then our statement follows from Lemma 4.2.7 and Lemma 4.2.1. The proof of

the lemma is completed.

The following statement follows immediately from Lemma 7.2.1.

7.2.2 Corollary. Let X ∈ CQ, M ∈ L, and N ∈ R.

(1) If (X,M) is a τ -rigid pair, then (Y,M) is a τ -rigid pair, for any Y with

i
Y

= i
X

.

(2) If (X,N) is a τ -rigid pair, then (Z,N) is a τ -rigid pair, for any Z with

j
Z

= j
X

.

We start with maximal τ -rigid sets in F (Q) which contain no objects of the

connecting components CQ.

7.2.3 Theorem. Let T be a set of objects in F (Q) with T ∩ CQ = ∅. Then T
is maximal τ -rigid in F (Q) if and only if the following statements are satisfied.

(1) T ∩ L is maximal τ -rigid in L.

(2) T ∩ R is maximal τ -rigid in R.

(3) T ∩ L is dense in L or T ∩ R is dense in R.

Proof. Suppose that T is maximal τ -rigid in F (Q). Since T has no object in CQ
and L,R are orthogonal, T ∩ L is maximal τ -rigid in L and T ∩ R is maximal

τ -rigid in R. If Statement (3) is not true, then there is a quasi-simple object S in

L which is not covered by any object in T ∩ L and a quasi-simple object T in R
which is not covered by any object in T ∩ R. Consider the object X ∈ CQ with

(i
X
, j

X
) = (iS, iT ). By the definition of the coordinate systems, we have Si

X
= S

and Tj
X

= T . Let M ∈ T ∩ L. Since S is not covered by M , that is, Si
X
6∈ WM .

By Lemma 7.2.1(1), (X,M) is τ -rigid in F (Q). Therefore, (T ∩ L) ∪ {X} is

τ -rigid. Similarly, (T ∩R) ∪ {X} is τ -rigid. Hence, T ∪ {X} is τ -rigid, which is
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a contradiction to the τ -rigid maximality of T . Thus, Statement (3) holds. The

necessity is established.

Conversely, we assume that T ∩L is densely maximal τ -rigid in L, and T ∩R is

maximal τ -rigid in R. Since L and R are orthogonal, T is τ -rigid. Let X ∈ CQ.

By the density of T ∩ L in L, the quasi-simple object Si
X
∈ L is covered by

some object M ∈ T ∩ L, that is, Si
X
∈ WM . By Lemma 7.2.1(1), (M,X) is

not a τ -rigid pair. Therefore, T is maximal τ -rigid in F (Q). The proof of the

proposition is completed.

For the rest of this section, we shall focus on the τ -rigid sets in F (Q) which

contain some objects in CQ. Recall that CQ is a poset. The following statement

decribes the τ -rigid sets in CQ.

7.2.4 Lemma. A set of objects in CQ is τ -rigid if and only if it is a chain.

Proof. Since CQ is a standard component of ΓDb(rep(Q)) of shape ZA∞∞, by Lemma

5.4.1, a pair of objects in CQ is τ -rigid if and only if they are comparable. Imme-

diately, our statement holds. The proof of the lemma is completed.

7.2.5 Lemma. Let S be a chain in CQ.

(1) If M ∈ L, then S ∪ {M} is τ -rigid if and only if i
X
6∈ [j

M
, i
M

] for every

X ∈ S; and in this case, S ∪ {L} is τ -rigid for every L ∈ WM .

(2) If N ∈ R, then S ∪ {N} is τ -rigid if and only if j
X
6∈ [j

N
, i
N

] for every

X ∈ S; and in this case, S ∪ {L} is τ -rigid for every L ∈ WN .

Proof. We shall prove only Statement (1). Let M ∈ L. Since S is τ -rigid, the

first part of the statement follows immediately from Lemma 7.2.1(1).

Now, assume that S∪{M} is τ -rigid. Let L ∈ WM . Then j
M
≤ j

L
≤ i

L
≤ i

M
.

In particular, i
X
6∈ [j

L
, i
L
] for every X ∈ S. This in turn implies that S ∪ {L} is

τ -rigid. The proof of the lemma is completed.

Recall that a τ -rigid set T of objects in L (respectively, R) is said to be locally

maximal if T ∩WX is a maximal τ -rigid set in WX , for each X ∈ T .

7.2.6 Corollary. Let T be a maximal τ -rigid set in F (Q).
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(1) T ∩ L = ∅ if and only if T ∩ Li 6= ∅ for every i ∈ Z; and otherwise, T ∩ L
is locally maximal in L.

(2) T ∩R = ∅ if and only if T ∩Rj 6= ∅ for every j ∈ Z; and otherwise, T ∩R
is locally maximal in R.

Proof. We shall prove only Statement (1). Assume that T ∩ Li 6= ∅ for every

i ∈ Z. That is, for any integer i, there is an object X ∈ T ∩ CQ such that

i
X

= i. Then, by Lemma 7.2.5(1), T ∪{M} is not τ -rigid, for any object M ∈ L.

Therefore, T ∩ L = ∅.
Assume, conversely, that T ∩ L = ∅ but T ∩ Li = ∅ for some integer i. That

is, for any X ∈ T ∩ CQ, we have i
X
6= i. Since T ∩ CQ is a chain by Lemma 7.2.4,

applying Lemma 7.2.5(1) to the quasi-simple object Si ∈ L, we conclude that

(T ∩CQ)∪{Si} is τ -rigid. Moreover, since R and L are orthogonal, (T ∩R)∪{Si}
is τ -rigid, and consequently, T ∪{Si} is τ -rigid. This contradiction to the τ -rigid

maximality of T establishes the first part of Statement (1).

Next, assume that T ∩ L 6= ∅. Fix M ∈ T ∩ L. We claim that T ∩ WM is

maximal τ -rigid in WM . Indeed, assume that N ∈ WM is such that (T ∩WM)∪
{N} is τ -rigid. Let X ∈ T ∩ L. If X ∈ WM , then (N,X) is trivially τ -rigid.

Otherwise, since (M,X) is τ -rigid, we deduce from Lemma 5.3.6 that (N,X) is

τ -rigid. Hence, (T ∩ L) ∪ {N} is τ -rigid. Moreover, since (T ∩ CQ) ∪ {M} is

τ -rigid, by Lemma 7.2.5(1), (T ∩ CQ) ∪ {N} is τ -rigid. Since (T ∩ R) ∪ {N} is

τ -rigid, we conclude that T ∪ {N} is τ -rigid. By the τ -rigid maximality, N ∈ T ,

that is, N ∈ T ∩WM . This establishes our claim. The proof of the corollary is

completed.

The following statement describes when a maximal τ -rigid set in CQ is also a

maximal τ -rigid set in F (Q).

7.2.7 Proposition. A set S of objects in CQ is a maximal τ -rigid set in F (Q)

if and only if it is the vertex set of a section in CQ containing no infinite path.

Proof. Let S be a set of objects in CQ. Assume that S is a maximal τ -rigid set

in F (Q). In view of Corollary 7.2.6, S passes through every Li and every Rj

for i, j ∈ Z. Observe that S is maximal τ -rigid in CQ. By Theorem 5.4.3 and

Lemma 4.3.20, there is a section Σ in CQ containing no infinite path such that
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S = Σ 0. Conversely, assume that there is a section Σ of CQ containing no infinite

path such that S = Σ 0. By Theorem 5.4.3 , S is maximal τ -rigid in CQ; and by

Lemma 4.3.20, S passes every Li and every Rj for i, j ∈ Z. That is, S ∩ Li 6= ∅
and S ∩Rj 6= ∅ for all i, j ∈ Z. By Lemma 7.2.5, S ∪ {M} is not τ -rigid, for any

object M ∈ L ∪ R. Therefore, S is maximal τ -rigid in F (Q). The proof of the

proposition is completed.

Recall now that a chain S in CQ is called a sectional chain if, every two objects

of S, with one being a minimal cover of the other, are connected by a path in

CQ; and if X, Y ∈ CQ with X ≺ Y are connected by a path, then they determine

a (possibly empty) wing WX,Y in L or in R as shown in Definition 7.1.2.

7.2.8 Lemma. Let S be a sectional chain in CQ, and let X, Y ∈ S with Y being

a minimal cover of X.

(1) If Z ∈ WX,Y , then S ∪ {Z} is τ -rigid.

(2) If M,N ∈ S with N being a minimal cover of M such that N � X, then

(L,Z) is a τ -rigid pair, for any L ∈ WM,N and Z ∈ WX,Y .

Proof. We shall only consider the case where ∅ 6=WX,Y ⊆ L. By Lemma 7.1.3(3),

WX,Y =WU , where U ∈ L with (i
U
, j

U
) = (i

Y
− 1, i

X
+ 1).

First, we claim that S∪{U} is τ -rigid. By Lemma 7.2.5(1), it suffices to show

that S contains no object lying in Li, for every i with j
U
≤ i ≤ i

U
. If this was

not the case, then there exists some V ∈ S such that i
V

= i with j
U
≤ i ≤ i

U
. In

particular, V 6∈ {X, Y }. Since S is a chain, we obtain V ≺ X or V � Y . In the

first case, i = i
V
≤ i

X
= j

U
− 1; and in the second case, i = i

V
≥ i

Y
= i

U
+ 1,

a contradiction. Our claim is true. Then, by Lemma 7.2.5(1), S ∪ {Z} is τ -rigid

for every Z ∈ WU . Statement (1) is established.

For proving Statement (2), let M,N ∈ S with N being a minimal cover of

M such that N � X. In particular, i
N
≤ i

X
. Assume that L ∈ WM,N and

Z ∈ WX,Y . If WM,N ⊆ R, since R,L are orthogonal, (L,Z) trivially is a τ -rigid

pair. Assume now that WM,N ⊆ L. By Lemma 7.1.3(3), WM,N = WV , where

V = (i
N
−1, i

M
+1). Observe that i

V
= i

N
−1 and j

U
= i

X
+1. Since i

N
≤ i

X
, we

obtain i
V
≤ j

U
+ 2. That is, WV and WU are separable by Lemma 4.2.8. Thus,

for any L ∈ WM,N = WV and Z ∈ WX,Y = WU , we have WL,WZ are separable
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and hence, (L,Z) is a τ -rigid pair by Lemma 5.3.1. The proof of the lemma is

completed.

In Proposition 7.2.3, we have characterized the maximal τ -rigid sets of F (Q)

without objects of CQ; and in Proposition 7.2.7, we have characterized the maxi-

mal τ -rigid sets of F (Q) containing only objects of CQ. In the following, we shall

study general maximal τ -rigid sets of F (Q).

Given a chain S in CQ, recall that the coordinates of the objects of S determine

two integer sets IS = {i
X
| X ∈ S} and JS = {j

X
| X ∈ S}. Moreover, given

n ∈ Z, we have L+
<n =

⋃
i<n L

+
i and L−>n =

⋃
j>n L

−
j , which are subquivers of L.

Similarly, R+
<n =

⋃
i<nR

+
i and R−>n =

⋃
j>nR

−
j , which are subquivers of R. The

following statement collects some properties of maximal τ -rigid sets in F (Q),

which contains some objects of CQ.

7.2.9 Proposition. Let T be a maximal τ -rigid set in F (Q) with T ∩ CQ 6= ∅.

(1) T ∩ CQ is a sectional chain in CQ.

(2) If WX,Y 6= ∅ for some X, Y ∈ T ∩ CQ with Y a minimal cover of X, then

T ∩WX,Y is maximal τ -rigid in WX,Y .

(3) If IT ∩CQ has a minimal (respectively, maximal) element i0, then T ∩ L+
<i0

(respectively, T ∩ L−>i0 ) is maximal τ -rigid in L+
<i0

(respectively, L−>i0).

(4) If JT ∩CQ has a minimal (respectively, maximal) element j0, then T ∩ R+
<j0

(respectively, T ∩ R−>j0) is maximal τ -rigid in R+
<j0

(respectively, R−>j0).

Proof. Being τ -rigid, by Lemma 7.2.4, T ∩CQ is a chain in CQ. Now, assume that

X, Y ∈ T ∩ CQ, where Y is a minimal cover of X. We need to show that X, Y

are connected by a path in CQ. Since X � Y , we have i
X
≤ i

Y
and j

X
≥ j

Y
.

If i
X

= i
Y

or j
X

= j
Y
, we deduce from Lemma 4.3.1 that X, Y lie on Li

X
or

Rj
X

. Otherwise, we have i
X
< i

Y
and j

X
> j

Y
. Consider the object Z ∈ CQ

with (i
Z
, j

Z
) = (i

X
, j

Y
). Then, X ≺ Z ≺ Y . Since Y is the minimal cover of

X in T ∩ CQ, we see that Z 6∈ T . We claim that T ∪ {Z} is τ -rigid. Since

(T ∩ CQ) ∪ {Z} is a chain, by Lemma 7.2.4, it is τ -rigid. Now let M ∈ T ∩ L.

Since (X,M) is τ -rigid with i
Z

= i
X

, by Corollary 7.2.2(1), (Z,M) is τ -rigid. This
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shows that (T ∩ L) ∪ {Z} is τ -rigid. Similarly, (T ∩ R) ∪ {Z} is τ -rigid. This

establishes our claim, which contradicts the τ -rigid maximality of T . Statement

(1) is established.

For proving Statement (2), let X, Y ∈ T ∩ CQ with Y a minimal cover of X

such that WX,Y 6= ∅. In view of Lemma 7.1.3(3), we may assume that WX,Y =

WZ , where Z ∈ L with (i
Z
, j

Z
) = (i

Y
− 1, i

X
+ 1). Since T ∩ L is locally

maximal in L by Lemma 7.2.6, it suffices to show that Z ∈ T . Indeed, by

Lemma 7.2.8(1), we see that (T ∩ CQ) ∪ {Z} is τ -rigid. Since L and R are

orthogonal, (T ∩ R) ∪ {Z} is τ -rigid. Finally, take an object M ∈ T ∩ L. Since

(X,M) and (Y,M) are τ -rigid pairs, by Lemma 7.2.1(1), i
X
, i
Y
6∈ [j

M
, i
M

]. Since

i
X
≤ i

Y
, we conclude that i

X
< j

M
≤ i

M
< i

Y
, or i

X
> i

M
, or i

Y
< j

M
. In the

first case, j
Z

= i
X

+ 1 ≤ j
M
≤ i

M
≤ i

Y
− 1 = i

Z
. Then, WM ⊆ WZ , and hence,

(M,Z) is τ -rigid by Lemma 5.3.1. In the second case, j
Z

= i
X

+ 1 ≥ i
M

+ 2; and

in the third case, i
Z

= i
Y
− 1 ≤ j

M
− 2. In both cases, WM ,WZ are separable;

and by Lemma 5.3.1, (M,Z) is τ -rigid. This shows that (T ∩L)∪{Z} is τ -rigid.

Consequently, T ∪ {Z} is τ -rigid. By the τ -rigid maximality of T , we obtain

Z ∈ T . Statement (2) is established.

For proving Statement (3), we shall consider only the case where IT ∩CQ has

a minimal element i0. Let N ∈ L+
<i0

be such that (T ∩ L+
<i0

) ∪ {N} is τ -rigid.

In particular, i
N
< i0. We claim that N ∈ T , or equivalently, T ∪ {N} is τ -

rigid. Indeed, since L and R are orthogonal, (T ∩R) ∪ {N} is τ -rigid. Next, let

X ∈ T ∩CQ. Since i
X
∈ IT ∩CQ , by the minimality of i0, we have i

X
≥ i0 > i

N
≥ j

N
,

and in particular, i
X
6∈ [j

N
, i
N

]. By Lemma 7.2.5(1), (T ∩ CQ) ∪ {N} is τ -rigid.

Finally, since i0 ∈ IT ∩CQ , we have i
X

= i0 for some X ∈ T ∩ CQ. Take an

object M ∈ T ∩L. Since (X,M) is τ -rigid, by Lemma 7.2.1, i0 6∈ [j
M
, i
M

]. Then,

i
M
< i0 or j

M
> i0. That is, either M ∈ L+

<i0
or M ∈ L−>i0 . In the first case,

(M,N) is τ -rigid by our assumption. In the second case, by Corollary 5.3.3(2),

(M,N) is τ -rigid. This shows that (T ∩L)∪{N} is τ -rigid. This establishes our

claim. By the τ -rigid maximality of T , we have N ∈ T , and hence, N ∈ T ∩L+
<i0
.

Therefore, T ∩L+
<i0

is maximal τ -rigid in L+
<i0
. By a similar discussion, Statement

(4) holds. The proof of the lemma is completed.

The following statement collects of some properties of a maximal τ -rigid set

T in F (Q) with T ∩ CQ a double infinite chain.
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7.2.10 Lemma. Let T be a maximal τ -rigid set in F (Q) such that T ∩ CQ is a

double infinite chain.

(1) If T ∩ Li has a minimal (respectively, maximal) element , for some i ∈ Z,

then T ∩ L+
i−1 (respectively, T ∩ L−i+1) is finite.

(2) If T ∩ Ri has a minimal (respectively, maximal) element , for some i ∈ Z,

then T ∩R−i+1 (respectively, T ∩R+
i−1) is finite.

(3) If T ∩Li and T ∩Rj are both finite, for all i, j ∈ Z, then IT ∩CQ has neither

minimal nor maximal element and JT ∩CQ has neither minimal nor maximal

element.

Proof. We shall only prove Statements (1) and (3). Assume that T ∩ Li has

a minimal element X, for some i ∈ Z. Obviously, T ∩ Li ⊆ T ∩ CQ. Being a

double infinite chain, T ∩ CQ contains an object M such that M ≺ X. That is,

i
M
≤ i

X
= i. Since X is the minimal element in T ∩ Li, we have i

M
≤ i − 1.

Assume that T ∩ L+
i−1 is infinite. Then it contains an object Z with i

Z
= i − 1

and j
Z
< i

M
. Thus, i

M
∈ [j

Z
, i
Z
]. By Lemma 7.2.1, (M,Z) is not a τ -rigid pair,

a contradiction. Hence, T ∩ L+
i−1 is finite. Similarly, if T ∩ Li has a maximal

element, then T ∩ L−i+1 is finite. This establishes Statement (1).

For proving Statement (3), assume that T ∩Li and T ∩Rj are both finite, for

all i, j ∈ Z. We shall consider only the case that IT ∩CQ has a minimal element i0.

Since T ∩ Li0 is finite, it has a minimal element N . Now let X ∈ T ∩ CQ such

that X � N . Then i
X
≤ i

N
= i0. By the minimality of i0, we see that i

X
= i0.

That is, X ∈ Li0 . By the minimality of N , we see that X = N . Thus, N is a

minimal element in T ∩ CQ which is a contradicts our assumption that T ∩ CQ
is a double infinite chain. Thus, Statement (3) is established. The proof of the

lemma is completed.

In view of Proposition 7.2.9(1), given a maximal τ -rigid set T in F (Q), if

T ∩ CQ 6= ∅, then it is a sectional chain in CQ. Next we shall extend a sectional

chain in CQ to a maximal τ -rigid set in F (Q). We start with the following

definition.
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7.2.11 Definition. Let S = {Xn}n∈I be a sectional chain in CQ, where I is

some interval of Z such that Xn ≺ Xn+1 for every non-maximal integer n ∈ I.

Let Θn be a maximal τ -rigid set in WXn,Xn+1 , for every non-maximal n ∈ I. By

Lemma 7.2.8(2), the set

Θ =
⋃

n,n+1∈I
Θn

is τ -rigid. Moreover, by Lemma 7.2.8(1), S ∪ Θ is τ -rigid. Therefore, we shall

call Θ an addend to S in F (Q).

Observe that S∪Θ is not necessarily a maximal τ -rigid set in F (Q), as shown

below.

7.2.12 Example. Let

S : · · · ≺ Xn−1 ≺ Xn ≺ Xn+1 ≺ · · ·

be a chain in CQ contained in the double infinite section path R0 such that

(i
Xn
, j

Xn
) = (2n, 0) for n ∈ Z. Obviously, S is a sectional chain. By definition,

WXn,Xn+1 = WZ , where Z = (2n + 1, 2n + 1) is the quasi-simple object S2n+1 in

L, for every n ∈ Z. That is, the addend Θ to S is the set

{· · · , S−1, S1, S3, · · · , S2n−1 · · · }.

Since S ∪ Θ ∪ {T1} is τ -rigid, where T1 is the quasi-simple object in R, we see

that S ∪Θ is not maximal τ -rigid in F (Q).

The following result shows some properties of an addend to a sectional chain

in F (Q).

7.2.13 Lemma. Let S be a sectional chain in CQ, and let Θ be an addend to S
in F (Q).

(1) If IS has a smallest (respectively, largest) integer i0, then Θ∩L is contained

in L−>i0 (repectively, L+
<i0

).

(2) If JS has a smallest (respectively, largest) integer j0, then Θ∩R is contained

in R−>j0 (repectively, R+
<j0

).
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Proof. We shall only prove Statement (1) in case IS has a smallest integer i0.

Take an object M ∈ Θ ∩ L. By definition, M ∈ WX,Y for some X, Y ∈ S with

Y a minimal cover of X. By Lemma 7.1.3(3), WX,Y = WZ , where Z ∈ L with

(i
Z
, j

Z
) = (i

Y
− 1, i

X
+ 1). Since M ∈ WZ and i

X
∈ IS , we have j

M
≥ j

Z
=

i
X

+ 1 > i0. That is, M ∈ L−>i0 . This shows that Θ ∩ L ⊆ L−>i0 . The proof of the

lemma is completed.

Let S be a sectional chain in CQ, and let Θ be an addend to S in F (Q). The

following lemma shows how to complete S ∪Θ to a maximal τ -rigid set in F (Q).

7.2.14 Lemma. Let S be a sectional chain in CQ, and let Θ be an addend to S
in F (Q). If M ∈ F (Q)\(S ∪Θ), then S ∪Θ∪ {M} is τ -rigid if and only if one

of the following statements holds.

(1) M ∈ CQ is either a lower bound or an upper bound for S.

(2) M ∈ L is such that either i
M
< i for all i ∈ IS or j

M
> i for all i ∈ IS .

(3) M ∈ R is such that either i
M
< i for all j ∈ JS or j

M
> j, for all j ∈ JS .

Proof. Fix an object M ∈ F (Q)\(S ∪Θ). Suppose first that S ∪Θ ∪ {M} is τ -

rigid. Firstly, assume that M ∈ CQ. Being τ -rigid, S ∪{M} is a chain by Lemma

7.2.4. We shall need to show that Statement (1) holds. Indeed, suppose on the

contrary that M is neither a lower bound nor an upper bound for S. Since S is

interval-finite, there are X, Y ∈ S with Y being the minimal cover of X such that

X ≺M ≺ Y . By the assumption, X, Y are connected by a path p. Consider first

the case that t(p) = X. By Lemma 4.3.9, p is the unique sectional path in CQ from

Y to X. Then, by Lemma 4.3.4, i
X
< i

Y
and j

X
= j

Y
. By the definition of the

partial order in CQ, we have i
X
< i

M
< i

Y
and j

X
= j

M
= j

Y
. Therefore, M lies

on p by Lemma 4.3.4, In particular, l(p) > 1. By Lemma 7.1.3(3), WX,Y =WZ ,

where Z ∈ L with (iZ , jZ ) = (i
Y
− 1, i

X
+ 1). In view of Lemma 5.1.4 and Lemma

5.2.6(2), Z lies in every maximal τ -rigid set in WZ . In view of the definition of

Θ, we see that Z ∈ Θ. Since j
Z

= i
X

+ 1 ≤ i
M
≤ i

Y
− 1 = i

Z
, by Lemma 7.2.1,

(M,Z) is not τ -rigid, a contradiction to Θ ∪ {M} being τ -rigid. Similarly, we

will obtain a contradiction if s(p) = X. This establishes Statement (1).
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Secondly, assume that M ∈ L. We need to show that Statement (2) holds.

Suppose on the contrary that there exist some i0, i1 ∈ IS such that i
M
≥ i0

and j
M
≤ i1. Since S ∪ {M} is τ -rigid, by Lemma 7.2.5, i does not lie in the

interval [j
M
, i
M

], for every i ∈ IS . In particular, i0, i1 6∈ [j
M
, i
M

], and therefore,

i0 < j
M
≤ i

M
< i1. Moreover, we may assume that i0 is the largest integer in IS

such that i0 < j
M

and i1 is the smallest integer in IS such that i
M
< i1. Then,

i1 is the minimal cover of i0 in IS . By Lemma 4.3.16(1), there exist X, Y ∈ S
with Y being a minimal cover of X such that i

X
= i0 and i

Y
= i1. Let p be

a path in CQ between X and Y . Since X, Y are comparable, Lemma 4.3.9, p

is sectional. Since i
X
< i

Y
, by Lemma 4.3.4(2), s(p) = Y . Therefore, WX,Y is

contained in L. By Lemma 7.1.3(3), WX,Y =WZ with (i
Z
, j

Z
) = (i1 − 1, i0 + 1).

Since i0 + 1 ≤ j
M
≤ i

M
≤ i1− 1, we have M ∈ WX,Y . By definition, Θ contains a

maximal τ -rigid set ΘX,Y in WX,Y . In particular, ΘX,Y ∪ {M} is τ -rigid. By the

τ -rigid maximality of ΘX,Y , we have M ∈ ΘX,Y . In particular, M ∈ Θ. This is a

contradiction. Hence, Statement (2) holds. Similarly, if M ∈ R, then Statement

(3) holds. The necessity is established.

Next, we shall prove the sufficiency, that is, each of the three statements stated

in the lemma implies that S ∪ Θ ∪ {M} is τ -rigid. Assume first that Statement

(1) is true. Then M ∈ CQ, which is either a lower bound or an upper bound for

S. We shall consider only the case where the first situation occurs. In view of

Lemma 4.3.10, S has a minimal element X. By the definition of the partial order

in CQ, we deduce that i
X

is the smallest integer in IS and j
X

is the largest integer

in JS . Since M ≺ X, we have i
M
≤ i

X
and j

M
≥ j

X
. Take N ∈ Θ. Assume that

N ∈ L. By Lemma 7.2.13(1), N ∈ L−>i
X

. Observe that i
N
≥ j

N
> i

X
. That is,

i
M
6∈ [j

N
, i
N

]. By Lemma 7.2.1(1), (M,N) is τ -rigid. In case N ∈ R, we similarly

have (M,N) is τ -rigid. This shows that Θ ∪ {M} is τ -rigid. Furthermore, since

M is lower bound of S, the set S ∪ {M} is a chain in CQ. By Lemma 7.2.4,

S ∪ {M} is τ -rigid. This proves that S ∪Θ ∪ {M} is τ -rigid.

Assume now that Statement (2) holds. Then M ∈ L such that either i
M
< i

for all i ∈ IS or j
M
> i for all i ∈ IS . We shall consider only the case where

the first situation occurs. In particular, [j
M
, i
M

] ∩ IS = ∅ and IS has a smallest

integer i0. That is, S ∩ Li = ∅ for every i ∈ [j
M
, i
M

]. By Lemma 7.2.5(1),

S ∪ {M} is τ -rigid. Next, take N ∈ Θ. If N ∈ R, since L,R are orthogonal,

then (M,N) is τ -rigid. Otherwise, N ∈ L. Since IS has minimal element i0, by
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Lemma 7.2.13(1), N ∈ L−>i0 . Since i
M
< i0, we have M ∈ L+

<i0
. By Corollary

5.3.3(2), (M,N) is τ -rigid. This shows that S ∪ Θ ∪ {M} is τ -rigid. Finally, in

case Statement (3) holds, we may show in a similar fashion that S ∪Θ ∪ {M} is

τ -rigid. The sufficiency is established. The proof of the lemma is completed.

Recall that a set of object in CQ is a section-generator of CQ if its convex hull

in CQ is a section in CQ.

7.2.15 Proposition. Let S be a sectional chain in CQ, and let Θ be an addend

to S in F (Q). Then S ∪Θ is a maximal τ -rigid set in F (Q) if and only if S is

a section-generator of CQ such that its convex hull has no infinite path.

Proof. Let Σ be the convex hull of S in CQ. Assume that S ∪ Θ is a maximal

τ -rigid set in F (Q). We claim that neither of IS and JS has an upper or lower

bound. Otherwise, assume first that IS has a smallest integer i0. Choose some

object M ∈ L with i
M
≤ i0. In particular, j

M
≤ i0. By Lemma 7.2.13(1),

M 6∈ Θ. By Lemma 7.2.14(2), S ∪ Θ ∪ {M} is τ -rigid. This contradicts the

τ -rigid maximality of S ∪ Θ. Thus, IS has no lower bound. Similarly, we could

show that IS has no upper bound. In a similar fashion, we can show that JS has

neither an upper bound nor a lower bound. By Proposition 4.3.24, Σ is a section

of CQ having no infinite path. In particular, S is a section-generator of CQ.

Now assume that S is a section-generator of CQ and Σ is a section in CQ
containing no infinite path. By Proposition 4.3.23, S is a double infinite chain.

Moreover, by Proposition 4.3.24, neither of IS and JS has an upper or lower

bound. Suppose that S ∪ Θ is not maximal τ -rigid in F (Q). Then, there exists

an object M ∈ F (Q)\(S ∪Θ) such that S ∪Θ∪{M} is τ -rigid. If M ∈ CQ, then

Lemma 7.2.14(1), M is a lower bound or an upper bound of S, contradiction to

the fact that S is double infinite. If M ∈ L then, by Lemma 7.2.14(2), i
M

is a

lower bound or an upper bound of IS , contradiction. If M ∈ R, then, by Lemma

7.2.14(3), j
M

is a lower bound or an upper bound of JS , a contradiction again.

The proof of the proposition is completed.

The following definitions will be used in our main result of this section.

7.2.16 Definition. Let S be a chain in CQ.
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(1) Let L+
<IS

= L+
<i0

in case IS has a smallest integer i0; and otherwise, the

empty set. Moreover, let L−>IS = L−>i1 in case IS has a largest integer i1;

and otherwise, the empty set.

(2) Let R+
<JS

= R+
<j0

in case JS has a smallest integer j0; and otherwise, the

empty set. Moreover, let R−>JS = R−>j1 in case JS has a largest integer j1;

and otherwise, the empty set.

Fix an integer i. Let Φ be a set of objects in L+
<i (respectively, L−>i). Recall

that Φ is dense in L+
<i (respectively, L−>i) if, for any M ∈ L+

<i (respectively, L−>i),
there exists N ∈ Φ such that WM ⊆ WN . We have the same fashion for R+

<i and

R−>i.

The following is the main result of this chapter, which gives a description of

all the maximal τ -rigid sets in F (Q) containing some objects in CQ.

7.2.17 Theorem. Let T be a set of objects of F (Q). Then T is a maximal

τ -rigid set in F (Q) with T ∩ CQ 6= ∅ if and only if there is a sectional chain S
in CQ such that

T = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where

(1) Θ is an addend to S in F (Q);

(2) Φ<IS
L is a maximal τ -rigid set in L+

<IS
, which is dense in L+

<IS
in case S

has a minimal element;

(3) Φ>IS
L is a maximal τ -rigid set in L−>IS , which is dense in L−>IS in case S

has a maximal element;

(4) Φ<JS
R is a maximal τ -rigid set in R+

<JS
, which is dense in R+

<JS
in case S

has a maximal element;

(5) Φ>JS
R is a maximal τ -rigid set in R−>JS , which is dense in R−>JS in case S

has a minimal element.
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Proof. Assume first that S is a sectional chain in CQ such that

T = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R

as stated in the theorem. Consider an object M ∈ Φ
<IS
L . Then, IS has a minimal

element i0 with L+
<IS

= L+
<i0
. By Lemma 7.2.13(1), Θ ∩ L ⊆ L−>i0 . In particular,

M 6∈ Θ ∩ L, and hence, M 6∈ S ∪ Θ. Since i
M
< i0 ≤ i for all i ∈ IS , by

Lemma 7.2.14(2), S ∪ Θ ∪ {M} is τ -rigid. That is, (M,N) is τ -rigid, for any

N ∈ S ∪Θ. Now, assume that N ∈ Φ
>IS
L . Then, IS has a a maximal element i1

with L−>IS = L−>i1 . Since i0 ≤ i1, we have N ∈ L−>i1 ⊆ L
−
>i0
. Since M ∈ Φ

<IS
L ⊆

L+
<i0

, by Corollary 5.3.3(2), (M,N) is τ -rigid. Since L,R are orthogonal, (M,N)

is τ -rigid, for every N ∈ Φ>JS
R ∪Φ<JS

R . Since Φ<IS
L is τ -rigid, we have shown that

(M,N) is τ -rigid, for every N ∈ T . If M ∈ Φ<IS
L ∪ Φ>JS

R ∪ Φ<JS
R , using a similar

argument, we may show that (M,N) is τ -rigid, for every N in T . This shows

that T is τ -rigid in F (Q).

For proving the maximal τ -rigidity of T in F (Q), let M ∈ F (Q) be such that

T ∪ {M} is τ -rigid. We shall show that M ∈ T . Suppose that M 6∈ S ∪ Θ. In

view of Lemma 7.2.14, we need to consider three possibilities. Assume first that

M ∈ CQ, which is either a lower or upper bound of S. We shall consider only

the case where M is a lower bound of S. In particular, S has a minimal element

X. Then, i
X

is the minimal element IS and j
X

is the maximal element in JS .

By Statement (2), Φ<IS
L is dense in L+

<IS
= L+

<i
X

, and by Statement (5), Φ>JS
R is

dense in R−>IS = R−>j
X
. Since M ≺ X, we have i

M
< i

X
or j

M
> j

X
. Assume first

that i
M
< i

X
. Consider the quasi-simple object S ∈ L with (i

S
, j

S
) = (i

M
, i
M

).

Since i
S

= i
M
< i

X
, we have S ∈ L+

<i
X

. Since Φ<IS
L is dense in L+

<i
X

, there

exists some N ∈ Φ<IS
L such that S ∈ WN . Then, i

M
= i

S
∈ [j

N
, i
N

]. By Lemma

7.2.1(1), (M,N) is not τ -rigid, a contradiction. In case j
M
> j

X
, a dual argument

will yield a contradiction.

Assume now that the second case stated in Lemma 7.2.14 occurs, that is,

M ∈ L such that i
M
< i for all i ∈ IS or j

M
> i for all i ∈ IS . We shall consider

only the first case. Then, IS has a minimal integer i0. Since i
M
< i0, we have

M ∈ L+
<i0

= L+
<IS

. Since Φ<IS
L is maximal τ -rigid in L+

<IS
and Φ<IS

L ∪ {M} is

τ -rigid by our assumption, we obtain M ∈ Φ<IS
L . Similarly, if the third case

stated in Lemma 7.2.14 occurs, then M ∈ Φ>JS
R . This establishes the sufficiency.

Conversely, assume that T is a maximal τ -rigid set in F (Q) with T ∩ CQ 6= ∅.
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By Lemma 7.2.9(1), S = T ∩ CQ is a sectional chain in CQ. We may write

S = {Xn}n∈I , where I is an interval of Z, such that Xn ≺ Xn+1, for any

non-maximal n ∈ I. Given a non-maximal integer n ∈ I, by Lemma 7.2.9(2),

ΘXn,Xn+1 = T ∩ WXn,Xn+1 is a maximal τ -rigid set in WXn,Xn+1 . By definition,

Θ = ∪n,n+1∈I ΘXn,Xn+1 is an addend to S in F (Q). In view of Definition 7.2.16

and Lemma 7.2.9(3), we see that Φ<IS
L = T ∩ L+

<IS
is a maximal τ -rigid set in

L+
<IS

. We shall verify the second part of Statement (2). Assume that S has a

minimal element X. Then, L+
<IS

= L+
<i
X

with i
X

the minimal element in IS .

By Proposition 5.3.9(1), Φ<IS
L contains infinitly many objects of the ray L+

i0
for

some i0 < i
X

. Suppose on the contrary that Φ<IS
L is not dense in L+

<i
X
. Then,

i0 < i
X
− 1 by Lemma 4.2.20. Consider the quasi-simple object S ∈ L with

(i
S
, j

S
) = (i0+1, i0+1). We claim that S has no cover in T ∩L. Indeed, let N ∈ L

be such that S ≺ N . Then j
N
≤ j

S
= i0 + 1 = i

S
≤ i

N
. That is, N 6∈ L+

<i0+1 and

N 6∈ L−>i0+1. By Lemma 5.3.4(1), Φ<IS
L ∪ {N} is not τ -rigid. Since Φ<IS

L ⊆ T , we

have T ∪ {N} is not τ -rigid. In particular, N 6∈ T , that is, N 6∈ T ∩ L. Thus,

our claim is true. Therefore, i0 + 1 6∈ [j
M
, i
M

] for every M ∈ T ∩L. Consider now

Z ∈ CQ with (i
Z
, j

Z
) = (i0 + 1, j

X
). Since i

Z
= i0 + 1 < i

X
and j

Z
= j

X
, we have

Z ≺ X. Since X is the minimal element in S, we see that Z 6∈ S, and hence,

Z 6∈ T . Observing that S∪{Z} is a chain, by Lemma 7.2.14(1), S∪{Z} is τ -rigid.

Since i
Z

= i0 +1 6∈ [j
M
, i
M

] for every M ∈ T ∩L, we deduce from Lemma 7.2.1(1)

that (T ∩ L) ∪ {Z} is τ -rigid. Furthermore, since (T ∩ R) ∪ {X} is τ -rigid and

j
X

= j
Z
, we conclude from by Corollary 7.2.2(2) that (T ∩ R) ∪ {Z} is τ -rigid.

As a consequence, T ∪ {Z} is τ -rigid. Since Z 6∈ T , we obtain a contradiction to

the maximality of T . Thus, Statement (2) holds.

Similarly, Φ>IS
L = T ∩ L−>IS verifies Statement (3), Φ<JS

R = T ∩ R+
<JS

verifies

Statement (4), and Φ>IS
L = T ∩ R−<JS verifies Statement (5). Thus,

T ′ = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R

is a maximal τ -rigid set in F (Q). Since T ′ ⊆ T , we have T ′ = T . The proof of

the theorem is completed.

7.2.18 Remark. To conclude this section, we should point out that our results

enable us to construct all the maximal τ -rigid sets in F (Q). Indeed, applying

Theorem 5.3.25 enables us to construct all (densely) maximal τ -rigid sets in each
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of the regular components L and R. Thus, Theorem 7.2.3 tells us how to find all

the maximal τ -rigid sets in F (Q) containing no objects of CQ. Next, applying

Theorem 7.2.17, we shall be able to construct all the maximal τ -rigid sets in

F (Q) containing some objects in the connecting component CQ. Indeed, using

Proposition 4.3.22, we are able to construct all the sectional chains in CQ. Given

a sectional chain S in CQ, as indicated in Define 7.2.11, we shall apply Theorem

5.2.9 to construct all possible addends Θ to S in F (Q). Moreover, using Theorem

5.3.27 and 5.3.28, we are able to construct all the (densely) maximal τ -rigid sets

Φ<IS
L , Φ>IS

L , Φ>JS
R and Φ<JS

R in L+
<IS

, L−>IS , R
+
<JS

and R−>JS , respectively.

7.3 Cluster-tilting subcategories of a cluster cat-

egory of type A∞∞
The objective of this section is to give a method to construct all the cluster-

tilting subcategories of a cluster category C (Q) of type A∞∞.

In view of Theorem 7.2.17, we are able to characterize and construct all the

maximal rigid subcategories of C (Q). Indeed, Liu and Paquette have given a

geometric criterion for a maximal rigid subcategory of C (Q) to be cluster-tilting;

see [48]. Next, combining these results, we shall provide a method to construct

all the cluster-tilting subcategories of C (Q).

For this purpose, we shall recall some geometric notions and terminology

from [48]. Denote by B∞ the infinite strip in the plane of the points (x, y) with

0 ≤ y ≤ 1. The points li = (i, 1), i ∈ Z, are called the upper marked points; and

ri = (−i, 0), i ∈ Z, the lower marked points. An upper or lower marked point will

be simply called a marked point.

l−4• l−3• l−2• l−1• l0• l1• l2• l3• l4•

r−4
• r−3
• r−2
• r−1
•

r0
•

r1
•

r2
•

r3
•

r4
•

Figure 7.1: An infinite strip with marked points.
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A simple curve in B∞ is a curve which does not cross itself and joins two

(maybe identical) marked points called endpoints. A simple curve is called in-

ternal if it intersects the boundary of B∞ only at the endpoints. Two distinct

simple curves in B∞ are said to cross if they have a common point which is not

an endpoint of any of the curves. Let p, q be two distinct marked points. There

is an isotopy class of internal simple curves in B∞ connecting p and q, which is

called a segment of endpoints p, q; denoted by [p, q] or [q, p]. A segment α in B∞

is called a connecting arc if α = [li, rj] with i, j ∈ Z; an upper arc if α = [li, lj]

with j − i ≥ 2, and a lower arc if α = [rp, rq] with p − q ≥ 2. A segment is

called an arc in B∞ if it is a connecting, upper or lower arc. We shall denote by

arc(B∞) all the arcs in B∞. One says that two arcs α, β cross if every curve in

α crosses each of the curves in β.

Remark. It is easy to see that two upper arcs [li, lj] with j − i ≥ 2 and [lp, lq]

with q − p ≥ 2 cross if j > q > i > p or q > j > p > i. Similarly, two lower

arcs [ri, rj] with i − j ≥ 2 and [rp, rq] with p − q ≥ 2 cross if i > p > j > q or

p > i > q > j. Moreover, two connecting arcs [li, rj] and [lp, rq] cross if i < p and

j < q or p < i and q < j. Furthermore, an upper arc [li, lj] with j − i ≥ 2 and a

connecting arc [lp, rq] cross if j > p > i. Finally, a lower arc [ri, rj] with i− j ≥ 2

and a connecting arc [lp, rq] cross if i > q > j. An upper arc and a lower arc

never cross.

7.3.1 Definition. A maximal set of pairwise non-crossing arcs of B∞ is called

a triangulation.

l−4• l−3• l−2• l−1• l0• l1• l2• l3• l4•

r−4
• r−3
• r−2
• r−1
•

r0
•

r1
•

r2
•

r3
•

r4
•

· · ·· · ·

· · ·· · ·

Figure 7.2: A triangulation T of B∞.

Let T be a triangulation of B∞. A marked point in B∞ is called T-bounded

if it is an endpoint of at most finitely many arcs in T. An upper marked point lp

is called
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(1) a left T-fountain base provided that the set {j ∈ Z | [lp, rj] ∈ T} has a

minimal integer but no maximal integer, and there exist infinitely integers

i < p− 1 such that [li, lp] ∈ T but at most finitely many integers j > p+ 1

such that [lp, lj] ∈ T ;

(2) a right T-fountain base provided that the set {j ∈ Z | [lp, rj] ∈ T} has a

maximal integer but no minimal integer, and there exist infinitely integers

i > p+ 1 such that [lp, li] ∈ T but at most finitely many integers j < p− 1

such that [lj, lp] ∈ T ;

Similarly, a lower marked point rp is called

(1) a left T-fountain base if provided that the set {j ∈ Z | [lj, rp] ∈ T} has a

minimal integer but no maximal integer, and there exist infinitely integers

i > p+ 1 such that [ri, rp] ∈ T but at most finitely many integers j < p− 1

such that [rp, rj] ∈ T ;

(2) a right T-fountain base provided that the set {j ∈ Z | [lp, rj] ∈ T} has a

maximal integer but no minimal integer, and there exist infinitely integers

i < p− 1 such that [rp, ri] ∈ T but at most finitely many integers j > p+ 1

such that [rj, rp] ∈ T ;

Moreover, an upper marked point in B∞ is called a full T-fountain base provided

that the set {j ∈ Z | [lp, rj] ∈ T} has neither minimal nor maximal integer, and

there exist infinitely integers i < p − 1 such that [li, lp] ∈ T and infinitely many

integers j > p + 1 such that [lp, lj] ∈ T ; a lower marked point rp is called a full

T-fountain base provided that the set the set {j ∈ Z | [lj, rp] ∈ T} has neither

minimal nor maximal integer, and there exist infinitely integers i > p + 1 such

that [ri, rp] ∈ T and infinitely many integers j < p− 1 such that [rp, rj] ∈ T .

For brevity, a left, right or full T-fountain base will be simply called a T-

fountain base. It is easy to see that the above definitions are equivalent to those

given in [48, Section 3]. In Figure 7.2, the upper marked point l0 is neither T-

bounded nor a T-fountain base. In Figure 7.3 below, the upper marked point l0

is a full T-fountain base.

147



l−4•
l−3•

l−2•
l−1• l0• l1• l2• l3• l4•

r−4
•

r−3
•

r−2
•

r−1
•

r0
•

r1
•

r2
•

r3
•

r4
•

· · ·· · ·

· · ·· · ·

Figure 7.3: A triangulation T of B∞ with a T-fountain base.

Recall that by Q we denote a quiver of type A∞∞ having no infinite path. The

skeleton D b(Q) of the derived category Db(rep(Q)) chosen in Section 3.3 is an

Auslander-Reiten category, whose Auslander-Reiten quiver and Auslander-Reiten

translation are denoted by Γ Db(Q) and τ . Moreover, Γ Db(Q) contains three con-

nected components: the connecting component CQ of shape ZA∞∞, and two regular

components L and R which are of shape ZA∞. On the other hand, the cluster

category C (Q) is also an Auslander-Reiten category, whose Auslander-Reiten

quiver and Auslander-Reiten translation are denoted by Γ C (Q) and τ
C

. Since

CQ, L and R form a fundamental domain F (Q) for C (Q), the canonical functor

π : D b(Q)→ C (Q) induces a translation-quiver-isomorphism π : F (Q)→ Γ C (Q),

which acts identically on the objects. Moreover, π restricted to CQ, L or R is a

translation-quiver-isomorphism, respectively. Thus, Γ C (Q) consists of three con-

nected components, namely, CC = π(CQ) which is of shape ZA∞∞, and LC = π(L)

and RC = π(R) which are of shape ZA∞.

As in Section 7.1, we shall give a coordinate system for each of the three

components of Γ C (Q) in such a way that the three coordinate systems are related

to each other. To start with, we fix two double infinite sectional path L0 and R0

in CC , whose intersection contains a unique object U0. Then, for any i, j ∈ Z,

write Li = τ i
C
L0 and Rj = τ j

C
R0. Thus, given an object X ∈ CC , there is a

unique pair (i
X
, j

X
) of integers such that Li

X
∩Rj

X
= {X}. For convenience, we

shall write X = (i
X
, j

X
). This yields a coordinate system for CC , which coincides

with the coordinate system CQ.

Now, we shall give a coordinate system for each of LC and RC . Consider U0

as an object in ΓDb(rep(Q)), there is a unique quasi-simple object SL ∈ LC such

that HomDb(Q)(U0, SL) 6= 0. The quasi-simple objects in LC are Si = τ i−1
C

SL,
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with i ∈ Z. The ray starting with Si is denoted by L+
i , and the co-ray ending

with Si is denoted by L−i . Given an object M ∈ LC , by Lemma 4.2.1, there is a

unique pair of integers (i
M
, j

M
) with i

M
≥ j

M
, such that M = L+

i
M
∩ L−j

M
. We

shall write M = (i
M
, j

M
). This yields a coordinate system for LC , which coincides

with the coordinate system for L.

Similarly, HomDb(Q)(U0, TR) 6= 0 for a unique quasi-simple object TR ∈ RC .

The quasi-simple objects in RC are Ti with Ti = τ i−1
C

TR, with i ∈ Z. The ray

starting with Ti is denoted by R+
i , and the co-ray ending with Ti is denoted by

R−i . Given an object N ∈ RC , by Lemma 4.2.1, there is a unique pair of integers

(i
N
, j

N
) with i

N
≥ j

N
, such that N = R+

i
N
∩ R−j

N
. We shall write N = (i

N
, j

N
).

This yields a coordinate system for RC , which coincides with the coordinate

system for R.

The following result is a reformation of some facts stated in [48, Section 4].

7.3.2 Lemma. There is a bijection Ψ : (Γ C (Q))0 → arc(B∞), defined by

Ψ(X) =


[li
X
, rj

X
], if X ∈ CC ;

[lj
X
−1, li

X
+1], if X ∈ LC ;

[ri
X

+1, rj
X
−1], if X ∈ RC .

Given a strictly additive subcategory T of C (Q), denote by indT the set

of objects of Γ C (Q) which lie in T . Moreover, denote by arc(T ) the set of arcs

Ψ(X) with X ∈ indT .

7.3.3 Theorem ([48]). Let Q be a quiver of type A∞∞ having no infinite path.

A strictly additive subcategory T of C (Q) is weakly cluster-tilting if and only if

arc(T ) is a triangulation of B∞.

The following statement gives a condition for a weakly cluster-tilting subcat-

egory of C (Q) being cluster-tilting.

7.3.4 Theorem ([48]). Let Q be a quiver of type A∞∞ having no infinite path. A

strictly additive subcategory T of C (Q) is cluster-tilting if and only if arc(T )

is a triangulation of B∞ with infinitely many connecting arcs, and every marked

point in B∞ is either an arc(T )-fountain base or arc(T )-bounded.
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Given a weakly cluster-tilting subcategory, the following statement gives a

combinatorial interpretation of the arc(T )-bounded marked points and the left

(right) arc(T )-fountain bases in B∞.

7.3.5 Lemma. Let T be a weakly cluster-tilting subcategory of C (Q). Consider

an upper marked point li and a lower marked point rj in B∞ with i, j ∈ Z.

(1) The upper marked point li is arc(T )-bounded if and only if Li ∩ indT ,

L+
i−1 ∩ indT and L−i+1 ∩ indT are finite.

(2) The lower marked point rj is arc(T )-bounded if and only if Rj ∩ indT ,

R+
j−1 ∩ indT and R−j+1 ∩ indT are finite.

Proof. Consider the bijection Ψ : (Γ C (Q))0 → arc(B∞), stated in Lemma 7.3.2.

We obtain
Φ(Li ∩ indT ) = {[li, rp] ∈ arc(T )},
Φ(L+

i−1 ∩ indT ) = {[lp, li] ∈ arc(T ) | p < i− 1},
Φ(L−i+1 ∩ indT ) = {[li, lq] ∈ arc(T ) | q > i+ 1}.

By definition, li is arc(T )-bounded if and only if the sets {[li, rj] ∈ arc(T )},
{[lp, li] ∈ arc(T ) | p < i − 1} and {[li, lq] ∈ arc(T ) | q > i + 1} are all finite.

This is evidently equivalent to that Ri ∩ indT , L+
i−1 ∩ indT and L−i+1 ∩ indT

are finite. This establishes Statement (1). Statement(2) is similar to show. The

proof of the lemma is completed.

Given a weakly cluster-tilting subcategory, the following statement gives a

combinatorial interpretation of the left (right) arc(T )-fountain bases in B∞.

7.3.6 Lemma. Let T be a weakly cluster-tilting subcategory of C (Q). Consider

an upper marked point li and a lower marked point rj in B∞ with i, j ∈ Z.

(1) The upper marked point li is a left arc(T )-fountain base if and only if

Li ∩ indT is a chain having a maximal element but no minimal element,

and L+
i−1 ∩ indT is infinite but L−i+1 ∩ indT is finite.

(2) The upper marked point li is a right arc(T )-fountain base if and only if

Li ∩ indT is a chain having a minimal element but no maximal element,

and L−i+1 ∩ indT is infinite but L+
i−1 ∩ indT is finite.
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(3) The lower marked point rj in B∞ is a left arc(T )-fountain base if and only

if Rj ∩ indT is a chain having a maximal element but no minimal element,

and R−j+1 ∩ indT is infinite but R+
j−1 ∩ indT is finite.

(4) The lower marked point rj in B∞ is a right arc(T )-fountain base if and

only if Rj ∩ indT is a chain having a maximal element but no minimal

element, and R+
j−1 ∩ indT is infinite but R−j+1 ∩ indT is finite.

Proof. Considering the bijection Ψ : (Γ C (Q))0 → arc(B∞), stated in Lemma

7.3.2, we obtain

Φ(Li ∩ indT ) = {[li, rp] ∈ arc(T )},

Φ(L+
i−1 ∩ indT ) = {[lp, li] ∈ arc(T ) | p < i− 1},

Φ(L−i+1 ∩ indT ) = {[li, lq] ∈ arc(T ) | q > i+ 1}.

By definition, li is a left arc(T )-fountain base if and only if the following

conditions hold.

(a) {p ∈ Z | [li, rp] ∈ arc(T )} has a minimal integer but no maximal one.

(b) There exist infinitely integers p < i− 1 such that [lp, li] ∈ arc(T ).

(c) There exist at most finitely many integers p > i + 1 such that [li, lp] ∈
arc(T ).

Since Li is a chain by Proposition 4.3.19(2), Li∩ indT is a chain with respect

to the partial order over CC . Condition (a) is equivalent to the fact that Li∩indT

has a maximal element but no minimal element. Condition (b) is equivalent to

the fact that L+
i−1 ∩ indT is infinite, while Condition (c) is equivalent to the fact

that L+
i+1 ∩ indT is finite. This establishes Statement (1). The other statements

can be verified similarly. The proof of the lemma is completed.

Given a weakly cluster-tilting subcategory T , the following statement gives

a combinatorial interpretation of the full arc(T )-fountain bases in B∞. We shall

omit the proof, since it is similar to the ones of the two preceding lemmas.

7.3.7 Lemma. Let T be a weakly cluster-tilting subcategory of C (Q). Consider

an upper marked point li and a lower marked point rj in B∞ with i, j ∈ Z.
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(1) The upper marked point li is a full arc(T )-fountain base if and only if

Li ∩ indT is a double infinite chain, while L+
i−1 ∩ indT and L−i+1 ∩ indT

are infinite.

(2) The lower marked point rj is a full arc(T )-fountain base if and only if

Rj ∩ indT is a double infinite chain, while R+
j−1 ∩ indT and R−j+1 ∩ indT

are infinite.

Recall that the restricted map π : L → LC is also an isomorphism of trans-

lation quivers acting identically on the underlying quiver. Thus, L and LC may

share the same coordinate system as defined in Section 2.2. Let S be a section-

generator of LC . Thus, S is also a section-generator of L. Since L is a standard

component of Γ Db(Q) and is of shape ZA∞, we see that S admits an addend Θ of

S in L as defined in Definition 5.3.20. Considering Θ as a set of objects in LC (Q),

we shall call it an addend to S in LC . We may have the same discussion for RC .

Given i ∈ Z, write

L+
<i =

⋃
m<i

L+
m and L−>i =

⋃
m>i

L−m,

which are convex subquivers of LC . Similarly, write

R+
<i =

⋃
m<i

R+
m and R−>i =

⋃
m>i

R−m,

which are convex subquivers of RC .

The following statement shall enable us to construct all the densely maximal

rigid sets in L+
<n or L−>n, for any n ∈ Z.

7.3.8 Proposition. Let n be an integer.

(1) A set T of objects in L+
<n is densely maximal rigid in L+

<n if and only if

there is a section-generator S of LC which is almost contained in L+
n−1 such

that T = S ∪Θ, where Θ is an addend to S in LC .

(2) A set T of objects in L−>n is densely maximal rigid in L−>n if and only if

there is a section-generator S of LC which is almost contained in L−n+1 such

that T = S ∪Θ, where Θ is an addend to S in LC .
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Proof. Let T be a set of objects in LC . Assume that there is a section-generator

S of LC which is almost contained in L+
n−1 such that T = S ∪Θ, where Θ is an

addend to S in LC . Consider T as a set of objects of L. Then S is a section-

generator of L, which is almost contained in the ray π−(L+
n−1) in L and Θ is an

addend to S in L. Since L is of shape ZA∞, by Proposition 5.3.27, T is densely

maximal τ -rigid in π−(L+
<n). Considering T as objects of LC , by Lemma 5.1.6,

T is densely maximal rigid in L+
<n.

Conversely, assume that T is a densely maximal rigid set in L+
<n. Now con-

sider T as a set of objects in F (Q). In particular, T is contained in π−(L+
<n) a

subquiver of L. By Lemma 5.1.6, T is a densely maximal τ -rigid set in π−(L+
<n).

By Proposition 5.3.27, there is a section-generator S of L which is almost con-

tained in a ray L+
n−1 in L such that T = S ∪ Θ, where Θ is an addend to S in

L. Consider T as a set of objects in LC . In particular, S is a section-generator

of LC which is almost contained in the ray L+
n−1 in LC , and Θ an addend to S

in LC . The proof of the proposition is completed.

The following statement shall enable us to construct all the densely maximal

rigid sets in R+
<n or R−>n, for any n ∈ Z. We shall omit the proof, since it is

similar to that of Proposition 7.3.8.

7.3.9 Proposition. Let n be an integer.

(1) A set T of objects in R+
<n is densely maximal rigid if and only if there is

a section-generator S in RC , which is almost contained in R+
n−1, such that

T = S ∪Θ, where Θ is an addend to S in RC .

(2) A set T of objects in R−>n is densely maximal rigid if and only if there is

a section-generator S in RC , which is almost contained in R−n+1, such that

T = S ∪Θ, where Θ is an addend to S in RC .

Recall that (CC ,�) is a partially ordered set as defined in Section 4.3. Let S
be a chain in CC . Writing IS = {i ∈ Z | S ∩Li 6= ∅}, we have L+

<IS
= L+

<i0
in case

IS has a smallest integer i0; and the empty set otherwise; and L−>IS = L−>i1 in

case IS has a largest integer i1; and the empty set otherwise. Similarly, writing

JS = {j ∈ Z | S ∩ Rj 6= ∅}, we have R+
<JS

= R+
<j0

in case JS has a smallest
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integer j0; and the empty set otherwise; andR−>JS = R−>j1 in case JS has a largest

integer j1; and the empty set otherwise.

The following is a necessary condition for a weakly cluster-tilting subcategory

of C (Q) to be a cluster-tilting subcategory.

7.3.10 Lemma. If T is a cluster-tilting subcategory of C (Q), then CC ∩ indT is

a section-generator of CC .

Proof. Assume that T is a cluster-tilting subcategory of C (Q). By Theorem

7.3.4(2), arc(T ) contains infinitely many connecting arcs. By Lemma 7.3.2,

indT ∩ CC is infinite. Since Γ C (Q) and F (Q) have the same set of objects,

indT ∩ CQ is infinite.

Since T is a maximal rigid subcategory in C (Q), by Proposition 5.1.7, indT

is a maximal τ -rigid set in F (Q). By Theorem 7.2.17, there is a sectional chain

S in CQ such that

indT = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where Θ,Φ<IS
L ,Φ>IS

L ,Φ<JS
R and Φ>JS

R are as stated in Theorem 7.2.17. Obviously,

S = CQ ∩ indT = CC ∩ indT .

To show that CC ∩ indT is a section-generator of CC , by Proposition 4.3.23,

it remains to show that S has neither maximal nor minimal elements. Assume

on the contrary that S has a minimal element X. In this case, i
X

is the minimal

element in IS , and hence, L+
<IS

= L+
<i
X
. By Theorem 7.2.17(2), Φ<IS

L is dense

in L+
<i
X

, and by Lemma 4.2.20, Φ<IS
L contains infinitely many objects of the ray

L+
i
X
−1 in L. In particular, L+

i
X
−1 ∩ indT is infinite. By Lemma 7.3.5(1), the

upper marked point li
X

is not arc(T )-bounded; and by Lemma 7.3.6(3), li
X

is

not a right arc(T )-fountain base. On the other hand, since S is an interval-finite

chain with a minimal element, its subchain S ∩Li
X

= indT ∩Li
X

has a minimal

element. By Lemma 7.3.6(1), li
X

is not a left arc(T )-fountain base; and by

Lemma 7.3.7(1), li
X

is not a full arc(T )-fountain base. By Theorem 7.3.4, T is

not cluster-tilting, a contradiction. Hence, S has no minimal element. Similarly,

S has no maximal element. The proof of the lemma is completed.

Recall that π : F (Q)→ Γ C (Q) is an isomorphism of translation quivers acting

identically on the underlying quiver. Let S be a section-generator of CC . Observe
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that S is also a section-generator of CQ. Let Θ be an addend to S in F (Q) as

defined in Definition 7.2.11. Considering Θ as a set of objects in Γ C (Q), we shall

call it an addend to S in Γ C (Q).

The following statement is one of our main results, which enables us to con-

struct all the cluster-tilting subcategories of a cluster category of type A∞∞. We

should mention that, for convenience, the empty set is considered as a dense

subset of itself.

7.3.11 Theorem. Let C (Q) be the cluster category associated with a quiver Q

of type A∞∞ without infinite paths. A strictly additive subcategory T of C (Q) is

cluster-tilting if and only if there is a section-generator S of CC such that

indT = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where

(1) Θ is an addend to S in Γ C (Q);

(2) Φ<IS
L is a densely maximal rigid set in L+

<IS
; while Φ>IS

L is a densely maximal

rigid set in L−>IS ;

(3) Φ<JS
R is a densely maximal rigid set in R+

<JS
, while Φ>JS

R is a densely max-

imal rigid set in R−>JS .

Proof. Let T be a strictly additive subcategory T of C (Q). Suppose that there

is a section-generator S of CC such that

indT = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where Θ,Φ<IS
L ,Φ>IS

L ,Φ<JS
R and Φ>JS

R are as in Statements (1), (2) and (3) stated

in the theorem. By Proposition 4.3.23, S is a double infinite chain.

Now, we consider indT as a set of objects of F (Q). Then S is a section-

generator of CQ and Θ is an addend to S in F (Q). In view of Lemma 5.1.6,

Φ<IS
L , Φ>IS

L ,Φ<JS
R and Φ>JS

R verify respectively the Statements (2), (3), (4) and

(5) stated in Theorem 7.2.17. Therefore, indT is a maximal τ -rigid set in F (Q).

By Proposition 5.1.7, T is a weakly cluster-tilting subcategory of C (Q). By
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Theorem 7.3.3, arc(T ) is a triangulation of B∞. We shall show that arc(T )

verifies the conditions stated in Theorem 7.3.4.

Fix an integer i ∈ Z. Consider first the case where Li∩indT is finite. Observe

that indT is a maximal τ -rigid set in F (Q) and indT ∩ CQ = S is a double

infinite chain. As a finite chain, Li ∩ indT has a minimal element as well a

maximal element. By Lemma 7.2.10(1), L+
i−1 ∩ indT and L−i+1 ∩ indT are both

finite. By Lemma 7.3.5(1), li is arc(T )-bounded.

Suppose now that indT ∩ Li is infinite. First, assume that indT ∩ Li is a

double infinite chain. That is, S ∩ Li = indT ∩ Li is a double infinite chain. By

Lemma 4.3.14(1), IS = {i}. That is, i is the minimal element in IS . In particular,

L+
<IS

= L+
<i 6= ∅. Being dense in L+

<i, by Lemma 4.2.20, Φ<IS
L ∩ L+

i−1 is infinite,

and hence L+
i−1 ∩ indT is infinite. Since i is the maximal element in IS , we

similarly show that L−i+1 ∩ indT is infinite. Therefore, by Lemma 7.3.7(1), li is a

full fountain.

Secondly, assume that Li ∩ indT has a minimal element. That is, S ∩ Li =

Li ∩ indT has a minimal element. By Lemma 4.3.14(3), i is the largest integer

in IS . Thus, L−>IS = L−>i 6= ∅. Since Φ>IS
L is dense in L−>i, by Lemma 4.2.20,

Φ>IS
L ∩L−i+1 is infinite. Hence, indT ∩L−i+1 is infinite. On the other hand, observe

that indT is a maximal τ -rigid set in F (Q) and S = indT ∩ CQ is a double

infinite chain. Since Li ∩ indT has a minimal element, by Lemma 7.2.10(1),

L+
i−1∩ indT is finite. Therefore, by Lemma 7.3.6(2), li is a right arc(T )-fountain

base. Finally, assume that Li∩indT has a maximal element. Then it is similar to

show that li is a left arc(T )-fountain base. This shows that every upper marked

point is either arc(T )-bounded or an arc(T )-fountain base. Similarly, we can

show that every lower marked point is either arc(T )-bounded or an arc(T )-

fountain base. By Theorem 7.3.4, T is cluster-tilting in C (Q).

Conversely, assume that T is a cluster-tilting subcategory of C (Q). By The-

orem 7.3.3, arc(T ) is a triangulation of B∞. Consider indT as a set of objects

of F (Q). By Proposition 5.1.7, indT is maximal τ -rigid in F (Q). By Theorem

7.2.17, there is a sectional chain S in CQ such that

indT = S ∪Θ ∪ Φ<IS
L ∪ Φ>IS

L ∪ Φ<JS
R ∪ Φ>JS

R ,

where Θ,Φ<IS
L ,Φ>IS

L ,Φ<JS
R and Φ>JS

R satisfy the conditions stated in Theorem

7.2.17. Consider indT as a set of objects in Γ C (Q). Since S = CC ∩ indT , by
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Lemma 7.3.10, S is a section-generator of CC . By our definition, Θ is an addend

to S in Γ C (Q). Moreover, in view of Lemma 5.1.6, Φ<IS
L is a maximal rigid set in

L+
<IS

. We claim that Φ<IS
L is dense in L+

<IS
. Indeed, we may assume that L+

<IS
6= ∅.

Then, L+
<IS

= L+
<i, where i is a minimal element in IS . Since S is a double

infinite sectional chain by Proposition 4.3.23, we deduce from Lemma 4.3.15(1)

that S ∩ Li is a chain having no minimal element. Then, Li ∩ indT = S ∩ Li is

infinite. Hence, by Lemma 7.3.5(1), li is not arc(T )-bounded. By Theorem 7.3.4

and Lemma 7.3.6(2), li is either a left arc(T )-fountain base or a full arc(T )-

fountain base. By Lemmas 7.3.5(3) and 7.3.7(1), L+
i−1 ∩ indT is infinite. Since

Φ<IS
L is maximal rigid in L+

<IS
and L+

i−1 ⊆ L+
<IS

, we have L+
i−1 ∩ indT ⊆ Φ<IS

L .

That is, Φ<IS
L contains infinitely many objects of L+

i−1. By Proposition 4.2.20,

Φ<IS
L is dense in L+

<IS
. Similarly, we can show that Φ>IS

L is a densely maximal

rigid set in L−>IS . This shows that Statement (2) holds. In a similar fashion, we

may show that Statement (3) holds. The proof of the theorem is completed.

Remark. Let Q be a quiver of type A∞∞ without infinite paths. We point out

that our results enable us to construct all the cluster-tilting subcategories of

the cluster category C (Q). Indeed, by Proposition 4.3.23, we are able to obtain

all the section-generators of CC . Given a section-generator S, as indicated in

Definition 7.2.11, by applying Theorem 5.2.9, we are enable to obtain all possible

addends Θ to S in Γ C (Q). Finally, applying Proposition 7.3.8 and 7.3.9 enables us

to construct all the densely maximal rigid sets in L+
<IS

, L−>IS , R+
<JS

, and R−>JS ,

respectively.
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Conclusion

Let Q be a locally finite quiver without infinite path. The orbit category

C (Q) is a cluster category in the sense that its cluster-tilting subcategories form

a cluster structure. Particularly, it is true if Q is of infinite Dynkin type, that is,

Q is of type A∞, A∞∞ or D∞. In this thesis, we provide an effective method to

construct all the maximal rigid subcategories and cluster-tilting subcategories of

C (Q) in case Q is of type A∞ or A∞∞.

Now let Q be a quiver of type D∞ without infinite paths. Observe that C (Q)

shares several properties with the cluster categories of types A∞ and A∞∞. For

instance, a strictly additive subcategory of C (Q) is cluster-tilting if and only if it

is maximal rigid and functorially finite; see [48, (2.11)]. Moreover, the Auslander-

Reiten quiver Γ C (Q) of C (Q) consists of a connecting component of shape ZD∞
and one regular component of shape ZA∞; see [48, (2.9)]. These inspire us to

attempt to address the following problems by applying the techniques introduced

in this thesis.

(1) Construct the maximal rigid subcategories of C (Q).

(2) Give a criterion for a maximal rigid subcategory of C (Q) to be cluster-

tilting.

(3) Construct all the cluster-tilting subcategories of C (Q).
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