LA THEORIE DES REPRESENTATIONS DES ALGEBRES GRADUEES
ET DES ALGEBRES DE KOSZUL

THE REPRESENTATION THEORY OF GRADED ALGEBRAS
AND K0SzZUL ALGEBRAS

par

Zetao Lin

These présentée au Département de mathématiques
en vue de l'obtention du grade de docteur es sciences (Ph.D.)

FACULTE DES SCIENCES
UNIVERSITE DE SHERBROOKE

Sherbrooke, Québec, Canada, mars 2024



Le 31 mars 2024,

le jury a accepté la these de Monsieur Zetao Lin
dans sa version finale.

Membres du jury :

Professeur Shiping Liu
Directeur de recherche
Département de mathématiques

Professeur Ibrahim Assem
Président-rapporteur
Département de mathématiques

Professeur Thomas Bristle
Membre interne
Département de mathématiques

Professeur Dan Zacharia

Membre externe
Département de mathématiques, University of Syracuse

i



Abstract

In this thesis, we give a novel proof of Auslander-Reiten formulas and describe
a new connection between Koszul theory and representation theory.

Let A be a graded algebra defined by a locally finite quiver with relations.
We construct a graded Nakayama functor for A, essential for our new proof of
Auslander-Reiten formulas and the existence of almost split triangles in their
graded derived categories. In case A is quadratic, we first give a combinatorial
description for the local Koszul complexes and the quadratic dual A'.

As applications, we obtain a new class of Koszul algebras and prove the Ex-
tension Conjecture for finite dimensional Koszul algebras with a left noetherian
Koszul dual. Then, we construct a left and a right Koszul functor for A, which
respectively induce a 2-real-parameter family of left and right derived Koszul
functors from categories derived from graded A-modules into those derived from
graded A'-modules. A left or right derived Koszul functor for A is paired with a
unique right or left Koszul functor for A', respectively. In case A is Koszul, any
two paired derived Koszul functors are mutually quasi-inverse, and the Koszul
duality of Beilinson, Ginzburg and Soergel is one of these pairs. If A and A' are
locally bounded on opposite sides, then the Koszul functors induce two equiv-
alences of bounded derived categories: one for finitely piece-supported graded
modules, and one for finite dimensional graded modules.

Finally, if 4 and A' are locally bounded, then the bounded derived cate-
gory of finite dimensional graded A-modules has almost split triangles, and the
Auslander-Reiten translations and the Serre functors are composite functors of
the derived Koszul functors.
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Sommaire

Dans cette these, nous donnons une nouvelle preuve des formules d’Auslander-
Reiten et décrivons une nouvelle connexion entre la théorie de Koszul et la théorie
des représentations.

Soit A une algebre graduée définie par un carquois localement fini avec des
relations. Nous construisons un foncteur de Nakayama gradué pour A, essentiel
pour notre nouvelle preuve des formules d’Auslander-Reiten et 'existence de
triangles presque scindés dans leurs catégories dérivées graduées. Dans le cas
ou A est quadratique, nous donnons d’abord une description combinatoire des
complexes locaux de Koszul et du dual quadratique A'.

Comme applications, nous obtenons une nouvelle classe d’algebres de Koszul
et prouvons la conjecture d’extension pour les algebres de Koszul de dimension
finie avec un dual de Koszul noethérien gauche. Ensuite, nous construisons un
foncteur Koszul a gauche et a droite pour A, qui induisent respectivement une
famille paramétrée par 2 parametres réels de foncteurs Koszul dérivés a gauche
et a droite des catégories dérivées des A-module gradués vers celles dérivées de
A-modules gradués. Un foncteur Koszul dérivé a gauche ou a droite pour A est
associé & un foncteur Koszul unique & droite ou & gauche pour A', respective-
ment. Dans le cas ou A est Koszul, deux foncteurs Koszul dérivés appariés sont
mutuellement quasi-inverses, et la dualité de Koszul de Beilinson, Ginzburg et
Soergel est 'une de ces paires. Si A et A' sont localement délimités sur des cotés
opposés, alors les foncteurs de Koszul induisent deux équivalences de catégories
dérivées limitées : une pour les modules gradués a support par pieces finies et
une pour les modules gradués de dimension finie.

Enfin, si 4 et A" sont localement bornés, alors la catégorie dérivée bornée
des modules A gradués de dimension finie a des triangles presque scindés, et
les translations d’Auslander-Reiten et les foncteurs de Serre sont des foncteurs
composés des foncteurs Koszul dérivés.

v
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Introduction

The history of Koszul theory traces back to Cartan and Eilenberg’s comput-
ing the cohomology groups of a Lie algebra using the Koszul resolution; see [I8]
Section 8.7]. It is connected to many branches of mathematics such as algebraic
topology; see [21], 54], algebraic geometry; see [13], Hopf algebras and Lie theory;
see [I3], 47, 48]. Beilinson, Ginzburg and Soergel described the Koszul duality
between a Koszul algebra A and its Koszul dual A' at the level of derived cate-
gories; see [13]. More precisely, they constructed a pair of mutually quasi-inverse
equivalences between a category derived from complexes of graded A-modules
and a category derived from complexes of graded A'-modules. In case A is finite
dimensional and A' is left noetherian, they obtained equivalences of the bounded
derived categories of finitely generated graded modules. Later, the Koszul duality
has been generalized to positively graded Koszul categories in [48]; see also [45].
Moreover, finite dimensional Koszul algebras have been studied extensively by
many representation theorists from other aspects; see [22), 24], [42] 43| [44], [46].

The main objective of this thesis is to study Koszul algebras defined by a
locally finite quiver with relations from a novel viewpoint of connecting the Koszul
theory with the representation theory. Our contribution is twofold. As to Koszul
theory, not only our Koszul algebras have infinitely many graded simple modules
up to grading shifts, but we shall also extend Beilinson, Ginzburg and Soergel’s
Koszul duality to a 2-real-parameter family of equivalence pairs. Moreover, under
a hypothesis weaker than theirs, we shall obtain two equivalences of bounded
derived categories, one for finitely piece-supported graded modules and one for
finite dimensional graded modules. Moreover, in contrast to their technique of
spectral sequences, ours is elementary.

As to the representation theory, we shall extract some homological properties
of Koszul algebras and study almost split triangles in their graded derived cate-
gories. Indeed, our combinatorial description of the local Koszul complexes and
the quadratic dual enables us not only to obtain a new class of Koszul algebras,



but also to describe the linear projective resolution and the colinear injective
coresolution, if they exist, of a graded simple module in terms of subspaces of the
quadratic dual. This description allows us to establish the Extension Conjecture
for finite dimensional Koszul algebra with a left noetherian Koszul dual. More
generally, we use the Koszul functors to describe explicitly a graded projective
resolution and a graded injective coresolution for any finite dimensional graded
module over a Koszul algebra. This could be applied to study more homological
properties, for instance, to prove or disprove the Generalized Nakayama Con-
jecture; see [6] and the Finitistic Dimensional Conjecture, of finite dimensional
Koszul algebras. Finally, our graded Nakayama functor provides an indispens-
able tool for studying almost split sequences in graded module categories and
almost split triangles in graded derived categories in general. Using the graded
Nakayama functor, we give a new proof of graded Aslander-Reiten formulas. An
immediate consequence is to establish the existence of almost split sequences in
graded module categories. In the locally bounded Koszul case, we shall establish
the existence of almost split triangles in the bounded derived category of finite
dimensional graded modules, and describe the Auslander-Reiten translations and
the Serre functors in terms of the derived Koszul functors. This may stimulate fu-
ture work on the graded Auslander-Reiten components of a hereditary or radical
squared zero algebra, as is done under the non-graded setting; see [10, [11].

Now, we outline the content section by section. Let A be a graded algebra
defined by a locally finite quiver with relations. It is important to note that our
algebras do not necessarily have an identity. We denote by GModA the cate-
gory of unitary graded left A-modules, and by GMod4, gmodA and gmod¥ its
subcategories of finitely piece-supported modules, of piecewise finite dimensional
modules and of finite dimensional modules, respectively. If A is an additive cat-
egory, then C(A), K(A), D(A) and D’(A) stand for the category of complexes,
the homotopy category, the derived category and the bounded derived category
of A, respectively.

We shall lay down the foundation of this thesis in Chapters 1 and 2. For this
purpose, we collect some basic notions and preliminary results related to k-linear
categories and k-linear algebras.

In Chapter 3, we shall investigate the graded module categories over a graded
algebra given by a quiver with relations. In Section 3, we shall construct a
contravariant functor ® : GModA — GModA°, which restricts to a duality
D : gmodA — gmodA° In Sections 4 and 5, we shall provide explicit descrip-
tions of the morphisms in GProj4 and GInjA; see, and ; and study



the graded radical and graded socle of graded modules, especially to generalize
some classical results under the non-graded setting; compare [1] and [2]. More-
over, we show how to construct the graded projective cover of a finitely gener-
ated module and the graded injective envelope of a finitely cogenerated module,
respectively; see . For this purpose, we shall first describe the finitely gen-
erated graded modules and the finitely cogenerated graded modules; see ([3.6.6));
and, superfluous graded epimorphisms and essential graded monomorphisms; see
. In the final section, we shall introduce several Hom-finite Krull-Schmidt
k-subcategories of GModA.

In Chapter 4, we shall construct a Nakayama functor for GModA; see ,
which ensures the existence of almost split triangles in D(GModA) for bounded
complexes of finitely generated projective modules and for those of finitely co-
generated injective modules; see . More importantly, using the Nakayama
functor, we provide a new method to prove the Auslander-Reiten formulas; see
(4.2.10f). The classical approach to this well known formula consists of the follow-
ing two identifications; see [4, (1.3.4)] and the corollary to [44], (1.6.3)]. First, the
covariant stable Hom functor given by a finitely presented module is identified
with the Tor! functor given by its transpose; see [4, (1.3.2)] and [44, (1.6.3)].
Secondly, the dual of the Tor' functor given by a module is identified by the ad-
junction isomorphism with the contravariant Ext!' functor given by its dual; see
[4, (1.3.3)], [18, (VI.5.1)] and |44} (1.6.1)]. Our approach is to apply the Nakayama
functor; see , which does not pass through the Tor' functor and does not
involve the tensor product over the algebra or the adjunction isomorphism. As a
consequence, we shall study the existence of almost split sequences in GModA.
Furthermore, if A is locally left noetherian, then an indecomposable complex of
finitely generated graded A-modules is the ending term of an almost split trian-
gle in D(gmodA) if and only if it has a finite graded projective resolution; see
(14.3.4]).

In Chapter 5, we shall give a combinatorial description of the local Koszul
complexes and the quadratic dual A" for a quadratic algebra A; see (5.2.3)). This
allows us to obtain a new class of Koszul algebras; see and to describe the
linear projective resolution and the colinear injective co-resolution of a graded

simple module, if they exist, in terms of subspaces of A'; see (5.4.1) and (5.4.2).
Using this description, we shall show that A is Koszul if and only if A' or A°P is

Koszul if and only if every graded simple module has a colinear injective coreso-
lution; see (5.4.3) and compare [I3], (2.2.1), (2.9.1)], and establish the Extension
Conjecture for finite dimensional Koszul algebras with a noetherian Koszul dual,;



see ((5.6.4)).

In Chapter 6, we shall describe our generalized Koszul duality. In case A
is quadratic, we construct a left and a right Koszul functor from GModA into
C(GModAY); see (6.1.1)), which extend respectively to a left and a right complex
Koszul functor from C'(ModA) into C'(ModA'). The latter induce respectively a
2-real-parameter family of left and right derived Koszul functors from categories
derived from subcategories of C'(ModA) into those derived from subcategories of
C (Mod/l!) so that a left or right derived Koszul functor for A is paired with a
unique right or left derived Koszul functor for A', respectively; see . They
also induce a left and a right bounded derived Koszul functors from D’(GMod)
into Db(GMod/l!); see . In case A is Koszul, by composing the Koszul func-
tors and the complex Koszul functors, we obtain a graded projective resolution
and a graded injective co-resolution of a graded A-module M in terms of sub-
spaces of A' and M; see and . This is essential for us to show that
the derived Koszul functors in any pair are mutually quasi-inverse; see (6.4.6)),
including the Koszul duality stated in [I3, (2.12.1)]. If A and A" are locally
bounded on opposite sides, then the bounded derived Koszul functors restrict to
two equivalences D°(GModA) = D*(GMod') and D*(gmod) = D¥(gmod“d'");
see ([6.4.7). This strengthens the result in [13, (2.12.6)]. As applications, in case
A is quadratic, the images of a complex in Cb(gmodb/l!) under the two bounded
derived Koszul functors fit into an almost split triangle in D°(gmodA) if they are
indecomposable; see . In case A is Koszul, Db(gmodl’/l) is a full triangulated
subcategory of D’(gmodA), and every indecomposable object in D*(gmod®) is
the ending term of an almost split triangle in D?(gmodA) if and only if A' is locally
right bounded; see . If A and A" are locally bounded, then D’(gmod®A)
has almost split triangles, and the Auslander-Reiten translations and the Serre
functors are composites of derived Koszul functors; see .



Chapter 1

Categories

Throughout this thesis, k£ denotes a commutative field. In this chapter, we
assemble some basic notions and results concerning k-linear categories, with a
specific focus on additive k-categories, abelian k-categories, exact k-categories,
triangulated k-categories, derived k-categories, and double complex k-categories.
This enables us to provide the necessary foundational knowledge for subsequent
in-depth research endeavours.

1.1 k-linear categories

Given any category, we shall compose the morphisms from the right to the
left. A full subcategory of a category is called strictly if it is closed under
isomorphisms. A k-linear category (or simply a k-category) is a category in
which the morphism sets are k-vector spaces and the composition of morphisms
is k-bilinear. All functors between k-categories are assumed to be additive.

Throughout this section, A denotes a k-category. One says that A is Hom-
finite if its morphism spaces are finite dimensional over k. An object X in A
is called a zero object if idy = 0. Let f: X — Y be a morphism in A. One
says that f is a monomorphism provided that f o g =0 only if ¢ = 0 and an
epimorphism provided that g o f = 0 only if g = 0. A morphism q: U — X is
called a kernel of f provided that f oq = 0, and for any morphism g : V" — X
with f o g = 0, there exists a unique morphism h : V' — U such that g = g o h.
On defines a cokernel of f dually. It is evident that a kernel of a morphism is
a monomorphism and a cokernel of a morphism is an epimorphism. Moreover, f
is called a section or a retraction if there exists a morphism g : Y — X such



that go f = idx or f o g = idy, respectively. It is evident that a section is a
monomorphism while a retraction is an epimorphism.

1.1.1 Definition. Let A be a k-category. A coproduct or direct sum of a
family of objects {X,},ex in A is an object X with a family of morphisms {¢, :
X, — X},ex, called the canonical injections, satisfying the following universal
property: for any object Y with a family of morphisms {f, : X, = Y}sex in A,
there exists a unique morphism ¢ : X — Y such that the diagram

Xaq—g>X
fl/
Y

commutes for all ¢ € Y. In this case, one writes X = ]_[062 X,or X = BoenX,.

Dually, we have the following notion.

1.1.2 Definition. Let A be a k-category. A product of a family of objects
{X,}sex in A is an object X with a family of morphisms {p, : X = X, },es,
called the canonical projections, satisfying the following universal property:
for any object Y with a family of morphisms f, : Y — X, in A, there exists a
unique morphism ¢ : Y — X such that the diagram

X, <X

A

Y

commutes for all o € . In this case, one write X =[] ., X,.

REMARK. It is evident that the canonical injections for a direct sum are monomor-
phisms and the canonical projections for a product are epimorphisms.

The following statement is well known.

1.1.3 Proposition. Let A be a k-category. If X, Xy,...,X, are objects in A,
then X = X1 & --- @ X, if and only if there exist morphisms q; : X; — X and
pi: X — X; such thatidx = > | g; o p; and

idy, ifi=j;
i O qi =
PR 0 ifitg,



foralll <i,5 <n.

REMARK. In the above situation, X is the coproduct and product of Xy,..., X,
with canonical injections ¢; and canonical projections p;. Moreover, the e; = g;op;
with 1 <4 < n are pairwise orthogonal idempotents in End 4(X).

Let X be an object in A. An idempotent e € End 4(X) is said to split if there
exist morphisms p: X — Y and ¢ : Y — X such that e =gop and po g = idy.
The following statement is well known. For the reader’s convenience, we shall
include a short proof.

1.1.4 Lemma. Let A be a k-category with an object X. Then, X = X1&---®X,
if and only if idx = ey + - - - + e, where the e; are pairwise orthogonal split non-
zero idempotents in End4(X); and in this case, e; = q; o p;, where q; and p; are
the canonical injections and canonical projections of the direct sum respectively.

Proof. The sufficiency follows from Proposition [1.1.3] we only need to prove the
necessity. Suppose that eq,..., e, are pairwise orthogonal split non-zero idempo-
tents in End 4(X) such that e; 4+ -+ + e, = idyx. For every 1 < i < n, since e;
splits, there exist morphisms p; : X — X; and ¢; : X; — X such that ¢; op; = ¢;
and p; o ¢; = idy,. For any 1 <1 < n, since e; # 0, we see that idyx, # 0. That
is, the X; are all non-zero objects. Now, > "  qgiop; = 1,
ei,...,e, are pairwise orthogonal, p; o g; = 0 for all 1 <4, j < n with ¢ # j. By
Proposition [I.1.3] X = X; @ --- @ X,,. The proof of the lemma is completed.

e; = idy, and since

1.2 Additive k-categories

An additive k-category is a k-category, which has a zero object and finite
direct sums. Throughout this section, A denotes an additive k-category. Let X
be a non-zero object in A. An object Y is called a direct summand of X if
X 2Y @ Z for some object Z in A. And a direct sum decomposition X =Y & 7
is called proper if Y and Z are non-zero. One says that X is indecomposable
provided that it is non-zero and admits no proper decomposition. If End4(X) is
a local algebra, then it has no proper idempotent, and by Proposition [I.1.3] X is
indecomposable. In this case, we call X strongly indecomposable.

1.2.1 Definition. A non-zero additive k-category A is called Krull-Schmdit if
every non-zero object in A is a direct sum of finitely many strongly indecompos-
able objects.



To characterize Krull-Schmidt k-categories, we recall that a k-algebra 2 with
an identity is semiperfect if it has a complete orthogonal set {ey,...,e,} of
idempotents such that the e; Xe; with 1 < ¢ < n are local rings; see [I], page 304],
and also, [30} (4.1)].

The following statement is well known; see, for example, [39, (1.1)].

1.2.2 Theorem. Let A be an additive k-category with a non-zero object X.
Then, X = @IX; with X; strongly indecomposable if and only if End4(X) is
semiperfect with all idempotents split in A. In this case, the direct sum decompo-
sition for X is unique up to isomorphism and permutation, and every non-zero
direct summand of X is a direct sum of objects of a subfamily of {Xi,..., X,}.

As an immediate consequence, we have the following statement.

1.2.3 Corollary. Let A be a Hom-finite additive k-category. Then A is Krull-
Schmidt if and only if all idempotent endomorphisms in A split.

Proof. Tt is well known that every finite dimensional k-algebra with an identity is
semi-perfect. Now, the statement follows immediately from Theorem [1.2.2] The
proof of the corollary is completed.

Let A be an additive k-category. A two-sided ideal (or simply, ideal) Z
of A consists of subspaces Z(X,Y) of Homy(X,Y) with X,Y € A such that
hofogeZ(UV) forall feZ(X,Y), g € Homs(U, X) and h € Homu (Y, V).
The following easy result will be used later; see, for example, [39] 1.2].

1.2.4 Lemma. Let A be an additive k-category and T be a proper ideal of A. If
A is Krull-Stchmidt, then so is A/T.

1.2.5 Definition. Let A be an additive k-category. A morphism f: X — Y in
A is called

(1) right minimal provided that every morphism g : X — X such that fog =
f is an automorphism.

(2) right almost split provided that f is not a retraction and every non-
retraction morphism u : U — Y factors through f.



(3) minimal right almost split provided that it is right minimal and right
almost split.

Dually, one has the following notions.

1.2.6 Definition. Let A be an additive k-category. A morphism f: X — Y in
A is called

(1) left minimal provided that every morphism h : Y — Y such that ho f = f
is an automorphism.

(2) left almost split provided that f is not a section and every non-section
morphism v : X — V factors through f.

(3) minimal left almost split provided that it is left minimal and left almost
split.

The following statement is due to Auslander and Reiten; see 7, (2.3)].

1.2.7 Proposition. Let A be an additive k-category. If f : X — Y is a
left (respectively, right) almost split morphism in A, then X (respectively, Y)
15 strongly indecomposable.

Finally, let A be Hom-finite. An additive functor S : A — A is called a left
(respectively, right) Serre functor if there exist binatural k-linear isomorphisms
Hom4(X,Y) = DHom4(SY, X) (respectively, Hom 4(X,Y) = DHom 4(Y,SX)),
for all X, Y € A; see [59], (I.1)]. Moreover, a left (respectively, right) Serre functor
F is called a left (respectively, right) Serre equivalence if it is an equivalence
of categories.

1.3 Abelian k-categories

An additive k-category is called abelian if every morphism has a kernel and
a cokernel, while every monomorphism is a kernel of some morphism and every
epimorphism is a cokernel of some morphism; see [61), (1.2.2)]. Throughout this
section, let 21 denote an abelian k-category. We start with some sufficient con-
ditions for an additive k-subcategory of 2 to be Krull-Schmidt. The following



statement is well known. For the convenience of the reader, we will provide a
brief proof.

1.3.1 Lemma. Let 2l be an abelian k-category. Then idempotent endomorphisms
i A split.

Proof. Let e : X — X be an idempotent endomorphism in 2. Since 2 is abelian,
the endomorphism idxy —e : X — X has a kernel f : Y — X. In particular,
(idx —e)o f =0, and hence, f = eo f. On the other hand, since (idx —e)oe = 0,
there exists a morphism ¢ : X — Y such that e = f o g. Therefore, fo(go f) =
(fog)of=eof=f. Since f is a monomorphism, g o f = idy. By definition,
e splits in 2. The proof of the lemma is completed.

We shall use frequently the following statement.

1.3.2 Proposition. Let 2 be an abelian k-category, and let A be a strictly full
additive k-subcategory of A. If A is Hom-finite, then A is Krull-Schmidt if and
only if it is closed under direct summands.

Proof. Let A be Hom-finite. Suppose first that A is Krull-Schmidt. Consider a
non-zero object X € A. Then, X = @7 X;, where X; are strongly indecomposable
objects in A. Let Y be a non-zero direct summand of X. By Theorem [1.2.2] Y
is a direct sum of objects of a subfamily of {Xj,..., X,,}. In particular, Y € A.

Conversely, suppose that A is closed under direct summands. Let e: X — X
be a proper idempotent endomorphism. Then, idy = e + (idx — e), where e
and idy — e are orthogonal idempotents in End 4(X). By Lemma e and
idy — e split in 2. And by Lemma [1.1.4], X =Y & Z such that e = g o p, where
q : Y — X is the canonical injection and canonical projection in 2. In particular,
Y is a direct summand of X, and hence, Y € A by the assumption. Therefore, e
splits in A. By Corollary [1.2.3] A is Krull-Schmidt. The proof of the proposition

is completed.

Let f: X — Y be a morphism in 2. Recall that the image Im(f) of f is the
kernel of its cokernel. The following statement follows from the definition of an
abelian category.

1.3.3 Lemma. Let 2 be an abelian k-category. FEvery morphism f : X — Y

in A admits a canonical factorization f = p o q, where p : X — Im(f) is an
epimorphism p : X — Im(f) and q : Im(f) = Y is a monomorphism.

10



REMARK. In the sequel, the morphisms p, ¢ in Lemma will be called re-
spectively the canonical epimorphism and the canonical monomorphism
associated with f.

1.3.4 Definition. Let 2 be an abelian k-category.

(1) An epimorphism f : X — Y in 2 is called superfluous provided, for any
morphism ¢ : U — X, that the composite f o g is an epimorphism only if
g is an epimorphism.

(2) A monomorphism f : X — Y in 2 is called essential provided, for any
morphism A : Y — V, that the composite h o f is a monomorphism only if
h is a monomorphism.

An object P in 2 is called projective provided, for any epimorphism f :
X — Y and any morphism g : P — Y, that there exists a morphism h: P — X
such that f o h = g. Dually, an object I in 2 is called injective provided, for
any monomorphism f : X — Y and any morphism ¢ : X — I, that there exists
a morphism h : Y — I such that ho f = g.

1.3.5 Definition. Let 2 be an abelian k-category. Given an object X in 2,

(1) a projective cover of X is a superfluous epimorphism f : P — X with P
projective;

(2) an injective envelope of X is an essential monomorphism ¢ : X — I with

I injective.

ExaMPLE. If P is a projective object in 2, then idp : P — P is a projective
cover of P. Dually, if I is an injective object in 2, then id; : I — I is an injective
envelope of I.

The projective covers and the injective envelope can be characterized in terms
of minimal morphisms as follows; see [30] (3.4)] and its dual.

1.3.6 Lemma. Let 2 be an abelian k-category with an object X.

11



(1) An epimorphism f : P — X in 2 with P projective is a projective cover if
and only if it is right minimal; and in this case, [ is unique up to isomor-
phism.

(2) A monomorphism g : X — I in A with I injective is an injective enve-
lope if and only if it is left minimal, and in this case, g is unique up to
1somorphism.

More generally, we have the following well known result. For the reader’s
convenience, we shall include a short proof.

1.3.7 Lemma. Let 2 be an abelian k-category with an object X.

(1) A morphism f : P — X in 2 with P projective is right minimal if and only
if the canonical epimorphism f': P — Im(f) is a projective cover of Im(f).

(2) A morphism g : X — I in A with I injective is left minimal if and only
if the canonical monomorphism ¢' : Im(g) — I is an injective envelope of
Im(g).

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
dual. Let f : P — X be a morphism with P projective. Write f = ho f,
where f': P — Im(f) is the canonical epimorphism and A : Im(f) — M is the
canonical monomorphism. By Lemma [1.3.6] it amounts to show that f is right
minimal if and only if so is f’.

Suppose that f is right minimal. Let u : P — P be such that f' = f' o u.
Then, f = ho f' = ho(f' ou) = fowu. Since f is right minimal, u is an
automorphism. Thus, f’ is right minimal. Conversely, assume that f’ is right
minimal. Let v : P — P be such that f = fov. Then, hof' = f = fov = ho f/ov.
Since h is a monomorphism, f’ = f o, and hence, v is an automorphism. So, f
is right minimal. The proof of the lemma is completed.

In order to introduce exact sequences in 2, we shall need the following easy
statement.

1.3.8 Lemma. Let2l be an abelian k-category. Consider a morphism f : X — Y
with q : Im(f) — Y the kernel of the cokernel of f, and a morphism g :Y — Z
with j : Ker(g) — Y the kernel of g. If go f = 0, then there exists a canonical
monomorphism i : Im(f) — Ker(g) such that ¢ = j o1.

12



Proof. Let ¢ : Y — Coker(f) be the cokernel of f. Suppose that go f = 0. Then,
there exists a unique morphism u : Coker(f) — Z such that uoc = g. By the
assumption, ¢ : Im(f) — Y is the kernel of ¢ and j : Ker(g) — Y is a kernel of
g. Since go g =wuocoq =0, there exist a unique morphism ¢ : Im(f) — Ker(g)
such that j o4 = ¢. Since ¢ is a monomorphism, so is . The proof of the lemma
is completed.

Now, a finite or infinite sequence of at least two morphisms
fnfl fn

e — n—1—>Xn—>Xn+1—>'

in 2 is called exact provided that there is an isomorphism Im(f,_1) = Ker(f,)
for each n.

1.3.9 Definition. Let 2 be an abelian k-category with an object X.
(1) A projective n-presentation of X is an exact sequence

prndipn . pldlp P x 0

with the P~¢ projective, which is called minimal if d~¢ is right minimal,
that is, it induces a projective cover d=* : P=* — Im(d~"), for i = 0,...,n.

(2) An injective n-copresentation of X is an exact sequence

(PG (R £ —

with the I? injective, which is called minimal if d’ is left minimal, that is,
it induces an injective envelope d' : Im(d’) — I‘, for i =0, ..., n.

In particular, a projective 1-presentation of X is called a projective pre-
sentation, and an injective 1-copresentation of X is called an injective cop-
resentation. Observe that a minimal projective 0-presentation of X is simply
a projective cover of X, while a minimal injective O-copresentation of X is an
injective envelope of X, More generally, one has the following notions.

1.3.10 Definition. Let 2 be an abelian k-category with an object X.

13



(1) A projective resolution of X in 2 is a semi-infinite exact sequence

p-n 47 plon p1at po & x 0

with the P~ projective, which is called minimal if =" # 0 is right minimal
for every n > 0. Moreover, given such a projective resolution, the double
infinite sequence

n

oo pn_ 47" plen p-1 -t po 0

will be called a truncated projective resolution of M.

(2) An injective coresolution of X in 2 is a semi-infinite exact sequence

0 X d° ]0 d! ]1 . ]n an ]nJrl ..

with the I™ injective, which is called minimal if d" # 0 is left minimal
for every n > 0. Moreover, given such an injective coresolution, the double
infinite sequence

0 o4 iy 5 R

will be called a truncated injective coresolution of X.

One says that 2l has enough projective objects if every object X in 2
admits an epimorphism f : P — X with P projective; and enough injective
objects if every object Y in 2 admits a monomorphism ¢ : Y — [ with [
injective; see, for example [61, (2.2 and 2.3)]. The following statement is evident.

1.3.11 Lemma. Let 2 be an abelian k-category.

(1) If A has enough projective objects, then every object in 2 has a projective
resolution.

(2) If 2 has enough injective objects, then every object in A has a injective
coresolution.

14



1.4 Extension groups

Throughout this section, let 2 be an abelian k-category. Our objective is to
introduce extension groups in 2. For this purpose, we start with the following
evident fact.

1.4.1 Lemma. Let A be an abelian k-category. A sequence

o X—Joy 2.7 .0

i A is exact if and only if f is a kernel of g, and g is a cokernel of f.

An exact sequence as stated in Lemma will be called a short exact
sequence. The following statement is well known; see [57, (4.1.7)].

1.4.2 Proposition. Let 2l be an abelian k-category. Given a short exact sequence

0 x .y 2.z 0 in A, the following statements are equivalent.

(1) The morphism f is a section.
(2) The morphism g is a retraction.

(3) There is an isomorphism of exact sequences

0 x> .y .7 0
|y P oo |
0 x ) x g 7 002 7 0.
REMARK. A short exact sequence 0 x 1ty 9.y 0 in %A is said

to split if any of the equivalent statements in Proposition holds true.

Now, we are ready to define the extension groups; see [42], [51], [57] and [61].
Fix two objects X,Y in 2. A short exact sequence

£€:0 Y E—2-X 0

15



is called an extension of Y by X. One says that it is equivalent to another

extension & : 0 Y I E' g X 0 if there exists a commutative di-
agram

£:0 vy 1.p f.x 0

¢0—-y I fox o

In this case, u is an isomorphism. Thus, this yields clearly an equivalence relation
on the extensions of Y by X. We shall write [¢] for the equivalence class of
¢. Moreover, one denotes by Exty(X,Y) the set of all equivalence classes of
extensions of Y by X. Given a morphism v : X’ — X in 2, it is clear that we
have a map

Exty(v,Y) : Exty(X,Y) — Exty (X', Y); [£] = [€-0]

given by a pull-back diagram

Ev:0 3”' EI’ )I’ 0
£:0 g X ——0.

Dually, given a morphism u : Y — Y’ in 2, we have a map
Exty (X, u) : Exty(X,Y) — Exty(X,Y"); [¢] — [u-]

given by a push-out diagram

£€:0 Y E X 0
u-€:0 Y B X 0

Now, we are ready to recall the Baer sum of extensions of Y by X see, for
example, [61, (3.4.4)]. Given two short exact sequences

51:0 Y El X 0

52:0 Y EQ X 0

16



in 2, we consider their direct sum
51@52: OﬁY@YﬁEl@EQﬁ-X@X*O

and two morphisms V = (idy,idy) : Y @Y — Y and

A= (?dx) X XaX
ldX

in 2. Then, one sets
(6] + [&] = [V (& @ &)-A] € Exty(X,Y),
which is illustrated as follows:

51@52: OﬁY@YﬁEl@EQﬁX@XﬁO

ol

V(& ®E): 0 Sﬂ ]Tl XTX—>O
V'(fl 6952)-A: 0 Y E X 0.

It is well known that this makes Exty(X,Y) into an abelian group, whose
zero is the equivalence class of the split short exact sequence

idy .
0—>Y(—°)>YEBX(°L1§)X—>0.

Indeed, in view of Lemmas 1.3 and 1.4 in [51l (VII)], we have the following
well known result.

1.4.3 Proposition. Let A be an abelian k-category. If X,Y are objects in 2,
then Exty(X,Y) is an Endy(X)-Endy(Y)-bimodule such that

for all [€] € Exty(X,Y), v € Endy(X) and u € Endy(Y).

REMARK. In particular, Exty(X,Y) is a k-vector space such that

A€ =[(A-idy) -] = [§- (A -idx)],
for all A € k and [¢] € Exty(X,Y).

We shall need the following notion.
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1.4.4 Definition. Let 21 be an abelian k-category. A full additive subcate-
gory A of 2 is called extension-closed provided, for any short exact sequence
0 X Y Z 0 in A, that Y € A whenever X, Z € A.

More generally, one can define the higher degree Yoneda extension groups
Exty(X,Y) in A for all n > 1; see, for example, [51], (VIL.3)] and [61, (3.4.6)].
An n-fold extension of X by Y is an exact sequence

fn fnfl .

00—y Iy, U, x o

in 2. Fix p be a n-fold extension of X by Y. We obtain the following short exact
sequences from p:

@; 0 Vi Ui Vica 07

where Vo = X, V,, =Y and V; = Ker(f;_;) forall: = 1,...,n—1. In this case, we
shall write g = £,&,-1 -+ - £&1. Given two morphisms v : Y — Y and v : X' — X
in A, we define u-p = (u-&,)&—1 - && and p-v = £,&,-1 - - - &(&1-v). Moreover,
given two short exact sequences

€:0 Y E X 0

€0 Y hok X 0

in 2 such that (£ - v){’ is defined, we shall call a morphism (£ - v)¢ — & - (v€')
is a switch. It is well known; see [51) (VII.3.1)] that there exists an equivalence
relation on these n-fold extensions of X by Y such that two n-fold extensions
=Ebn1--&& and (' = &L are equivalent if p can obtain from
i/ by a finite number of switches. The equivalence class of u will be denoted
again by [u]. And one writes Exty(X,Y) for the set of equivalence classes of
n-fold extensions of X by Y. Given two n-fold extensions p and y’, one defines

] + (] = [V-(p @ 18],
where V- (@ p')-A is the n-fold extension
0—-Y—=V—->U,108U,_—  —ULeU,—-W-—-=X—-0

with V' the push-out of f, & f, : Y @&Y - U,0 U, and V:Y &Y =Y, and W
the pull-back of fo® fl : Uy Uj - X & X and A: X — X & X. Equipped with
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this addition, Exty(X,Y’) is an abelian group, whose zero is the equivalent class
of the n-fold extension

idy idx
0 Y

Y 0 0 X X 0.

As in the degree one case, Exty(X,Y) is an Endy(X)-Endgy(Y)-bimodule; see
[51, (VIL.3.2)], and in particular, it is a k-vector space, for every n > 1.

The following statement is well known; see, [51) (VII1.6.3)] and its dual, which
is useful for calculating Yoneda extension groups.

1.4.5 Lemma. Let 2l be an abelian k-category with objects X, Y .

(1) If A has an exact sequence

0 e - pt PO X 0
with n > 0 and P~*° projective for 0 < s < n, then
Exty(X,Y) = Homg(L™",Y)/ImHomgy(q,Y)
and Exty (X, Y) = Exty(L™™,Y) fori > 0.
(2) If A has an exact sequence

0 Y 10 It . J a5 0

with n > 0 and I° injective for 0 < s < n, then
Exty(X,Y) = Homy (X, L") /ImHomgy (X, p)
and Extyt (X, Y) = Exty (X, L") fori > 0.
REMARK. Lemma [1.4.5]is particularly useful for constructing finitely generated

projective resolutions or finitely cogenerated injective coresolutions in concrete
abelian categories.

In case 2 has enough projective objects or enough injective objects, the follow-
ing well known statement; see, for example, [51, (VIL.7)] provides an alternative
interpretation of Yoneda extension groups.
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1.4.6 Proposition. Let 2 be an abelian k-category with objects X,Y .

(1) Given a projective resolution

. p-n-1 an! pn 4% p-ntl Po d° X 0

in A, for any n > 0, we have

Ext} (X,Y) = Ker(Homgy(d "1, Y))/Im(Homgy (d ", Y)).
(2) Given an injective coresolution

R e LI L

mn A, for any n >0, we have

Ext}(X,Y) = Ker(Homgy (X, d"))/Im(Homgy (X, d" ).

We conclude this section with the following well-known notion; see, for exam-
ple, [10, page 5].

1.4.7 Definition. An abelian k-category 2 is called hereditary provided that
Exty(X,Y) =0 for all X,Y € 2l.

The following statement is probably well known. However, we could not find
it explicitly in the existing literature.

1.4.8 Proposition. Let 2 be an abelian category with enough projective objects.
Then A is hereditary if and only if the subobjects of a projective object are pro-
jective.

Proof. The sufficiency follows immediately from Proposition m(l) Suppose
that 2l is hereditary. Let P be a projective object in 2 with a subobject M.
Suppose that M is not projective. Since 2l has enough projective objects, we
have a non-split short exact sequence

0 N P’
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in 2 with P’ projective. In particular, Exty (M, N) # 0. Setting g = j o f, where
7 : M — P is the inclusion map, we obtain an exact sequence

0 N p—2-p P/M 0.

Since N has a projective resolution by the hypothesis, we deduce from Proposition
1.4.6(1) that
Exty(P/M, N) = Exty (M, N) # 0,

a contradiction. The proof of the proposition is completed.

1.5 Exact k-categories

Throughout this section let A be an exact k-category, that is an extension-
closed additive full subcategory, closed under direct summands, of an abelian
k-category 2A; see [39, Section 2]. We first recall the notion of stable categories of
A; see [35] [38], which is related to the existence of almost split sequences. Given
X,Y € A, we shall write Ext';(X,Y) = Exty(X,Y). A morphism f: M — N in
A is called projectively trivial provided that, given any commutative diagram
with exact rows

0—=X 7 M 0
| L
n: 0—X Y N 0

in A, the upper row splits; and injectively trivial provided that, given any
commutative diagram with exact rows

5 0 M Y X 0
.
Fe6: 0 N Z X 0

in A, the lower row splits. An object M € A is called Ext-projective if id;, is
projectively trivial, or equivalently, ExtY (M, X) = 0 for all X € A. Dually, an
object N € A is called Ext-injective if idy is injectively trivial, or equivalently,
Ext4 (Y, N) =0 for all Y € A; see [38, page 9].

It is easy to see that the projectively trivial morphisms in A generate an ideal
P(A), and the injectively trivial morphisms in A generate an ideal Z(A). The
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quotient categories A = A/P(A) and A = A/Z(A) are called the projectively
stable category and the injectively stable category of A, respectively. Given
X,Y € A, we shall denote by P(X,Y) and Z(X,Y)) the k-vector subspace
of Hom4(X,Y') of projectively trivial morphisms and that of injectively trivial
morphisms, respectively, and we put

HO_HLA(Xa Y) = HOIHA(X, Y)/P(X7 Y)

and
Hom4(X,Y) = Homu(X,Y)/Z(X,Y).

The following statement shows that for an abelian category with enough pro-
jective objects and enough injective objects, the stable categories as defined above
coincide with the classical ones.

1.5.1 Lemma. Let 2 be an abelian k-category, having enough projective objects
and enough injective objects.

(1) An object in U is Ezxt-projective (respectively, Ezxt-injective) if and only if it
is projective (respectively, injective).

(2) A morphism in 2 is projectively (respectively, injectively) trivial if and only
if it factors through a projective (respectively, injective) object.

Proof. Since 2 has enough projective objects and enough injective objects, State-

ment (1) is evident. For Statement (2), we shall only prove the first part, since

the second part is dual. Let f: M — N be a morphism in 2. Suppose that f is
projectively trivial. By the hypothesis, there exists an exact sequence

n: 0 K P—=N 0

in 2 with P being projective. Consider the pull-back diagram

n-f:0 K E M 0
| )
n:0 K P—2sN 0

in 2. Since the upper row splits by hypothesis, f factors through w. In particular,
it factors through P. Conversely, assume that there exists a commutative diagram

'\
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commutes in 2 with P being projective. Consider a commutative diagram with

exact rows
0 X227 M 0
|
n: 0 X Y =N 0

in 2. Since P is projective, h = v o b’ for some h' : P — v, and consequently,
f=hog=wvo(h'og). Now, it is easy to verify that u is a section. That is, the
upper row in the above commutative diagram splits. The proof of the lemma is
completed.

1.5.2 Definition. Let A be an exact k-category. A short exact sequence

Xty 2.7 .0

in A is called an almost split sequence if f is minimal left almost split and g
is minimal right almost split. In this case, we call X the starting term and Z
the ending term, and write X =77 and Z = 7 X.

The almost split sequences in an exact category are characterized as follows;
see [7, (2.14)], and also, [12] (7.9)].

1.5.3 Theorem. Let A be an exact k-category with a short exact sequence

!

0 X y 2.7 0.

The the following statements are equivalent.

(1) The given sequence is almost split.
(2) The endomorphism ring of Z is local and f is left almost split.

(3) The endomorphism ring of X is local and g is right almost split.

We say that A has almost split sequences on the right if every strongly
indecomposable not Ext-projective object in A is the ending term of an almost
split sequence; and in this case, 7 is called the right Auslander-Reiten trans-
lation and that A has almost split sequences on the left if every strongly
indecomposable not Ext-injective object in A is the starting term of an almost
split sequence; and in this case, 77 is called the left Auslander-Reiten trans-
lation. Moreover, one says that A has almost split sequences if it has almost
split sequences on the right and on the left; see [39 page 5].
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1.6 Triangulated k-categories

Throughout this section, let T be a triangulated k-category with transla-
tion functor [1]. That is, 7 is an additive k-category and [1] is an automorphism
of T, together with a class of sextuples

f

X y -7 X[1),

satisfying the properties (TR 1), (TR 2), (TR 3) and (TR 4); see[49, (II.1.1)]. In
this case, a sextuple as stated above is called an exact triangle. An additive
functor F' : T — T’ between triangulated k-categories is called triangle-exact
if it commutes with the translation functors and sends exact triangles to exact
triangles. The following notion is due to Happel; see [27, (4.1)].

1.6.1 Definition. Let 7 be a triangulated k-category. An exact triangle

f

X Yy -7 25 X[1]

in 7 is called an almost split triangle if f is minimal left almost split and g
minimal right almost split. In this case, we call X the starting term and Z the
ending term, and write X =77 and Z = 77X.

One says that 7 has almost split triangles on the right (respectively,
left) if every strongly indecomposable object in 7 is the ending (respectively,
starting) term of an almost split triangle; and in this case, 7 is called the right
(respectively, left) Auslander-Reiten translation. And one says that 7 has
almost split triangles if it has almost split triangles on the right and on the left.
The following statement is due to Reiten and Van den Bergh; see [55], (I.2.3)].

1.6.2 Theorem. Let T be a Hom-finite Krull-Schmidt triangulated k-category.

(1) T has almost split triangles on the right if and only if there exists a right
Serre functor S : T — T; and in this case, TX =S(X)[—1] for any inde-
composable object X € T.

(2) T has almost split triangles on the left if and only if there exists a left Serre
functor S : T — T; and in this case, 7~ X = S(X)[1] for any indecompos-
able object X € T .

(3) T has almost split triangles if and only if it admits a right Serre equivalence
if and only if it admits a left Serre equivalence.
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1.7 Derived k-categories

Throughout this section, by an additive k-category we mean a strictly full
additive subcategory of some abelian k-category. Let A stand for a strictly full
additive k-subcategory of an abelian k-category 2. A complex (X* dy), or
simply X, over A is a double infinite sequence

dy " d%,

e s X1 X o xn Xyl L

, nez

of morphisms in A such that d¥'' o d% = 0 for all n € Z. The object X"
(May be equal to 0) is called the component of degree n and the morphism
d% is called the differential of degree n, of X*. A morphism f*: X* — Y*
of complexes over A is a family of morphisms f" : X™ — Y™ in A such that
frtlody = d’{,“ o f™ for all n € Z. With these morphisms, the complexes over
A form an additive k-category C'(A), called the category of complexes of A.
It is evident that C'(2() is an abelian k-category. A complex X* in C(A) is called
bounded below (respectively, bounded above) if there exists nyg € Z such
that X™ = 0 for n < ng (respectively, for n > ng); bounded if it is bounded
below and bounded above; and stalk complex concentrated in degree s if
X" =0 for any n # s. We shall denote by C®(A), CT(A) and C~(A) the full
subcategories of C'(A) of bounded complexes, of bounded-below complexes and
of bounded-above complexes, respectively.

Now, we shall define the cohomology functors of A. First, we shall fix some
notation for the differentials of a complex in the following statement, which fol-
lows immediately from Lemma [1.3.8]

1.7.1 Lemma. Let A be an additive k-category, and let X* be a complex in C'(A).
Given n € Z, since d% o d}’l =0, we have a commutative diagram

anl d?{l X
n—ll q?(71 ] n—1
Px Ix
infl
Im(d ™) Ker(dy),

where p'y ' is the canonical epimorphism, ¢'v ' is the cokernel of d ', and j%*
15 the kernel of d', while % s the canonical monomorphism as stated in Lemma

EED)
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The following statement is well known. However, we are not able to find any

rigorous categorical proof.

1.7.2 Lemma. Let A be an additive k-category, and let f* : X* — Y* be a
morphism in C(A). For any n € Z, there exists a commutative diagram

in A, where the horizontal morphisms are the canonical morphisms as stated in
Lemma|1.7.1).

Proof. Recall that j% ' and j'” ! are kernels of d% and d¥, respectively. Since
diofrojyt = frtlody ot =0, we have f* : Ker(d%) — Ker(d}) such that
frojvt =47 o fr. In view of Lemma , we obtain a commutative diagram

with exact rows

dn 1 cnfl
Xl H“ = Coker(d% ') ——=0
0—>Im(d X”—>Coker dvl)y——=0
00— Ker( ) Xntl
f‘n B jfn lfn+1
0— = Ker(dp) 2 —yn — 5 _ynh
infl
Y n—1 Cnfl
0 —Im(d ™) Y yn —— Coker(dy ') —=0
p’gl/_l m—1 H n—1 H

yr Yy Y Coker(dt) —— 0.

Now, ¢ tofrodi™ = ¢ tod o f7~1 = 0. Recall that p'y ! is an epimorphism.
Thus, 1o f* o ¢! = 0, and hence, there exists f* : Im(d% ) — Im(d%!)
such that f" o g% = ¢j~ ' o f*. This yields
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‘n—1 rn n—1 _ prn ‘n—1 ‘n—1
Jy o ftoiy = ffojy oidy

_fm n—1
= ["oq¥
n—1 rn—1
=qy of
_ mn—1 __ n—1 rn—1
=Jjy o1ty o f".
. n—1 - . m -n—1 _ n—1 rn—1
Since jy = is a monomorphism, f" oi% "~ =4y - o f*~". The proof of the lemma
is completed.

Let X* be a complex in C'(A). Considering the canonical monomorphism i’y * :

Im(d’y ') — Ker(d’) as stated in Lemmal|l.7.1, we define the n-th cohomology
group of X* to be the object

H"(X*) = Ker(d%)/Im(d% ") € 2.
Let f*: X*— Y* be a morphism in C(A). For any n € Z, in view of Lemma
1.7.2) we obtain a unique morphism H"(f*): H"(X*) — H™(Y") such that

n—1

0 —=Im(d% ") = Ker(d?% ) — H"(X*) —=0

| PO
.n—1

0 —Im(dp ") 2> Ker(dl ") —= H™(Y*) —=0
is a commutative diagram with exact rows. This yields an additive functor
H":C(A) -4, X* — H"(X"); f*— H"(f),

called the n-th cohomology functor of C'(A), for every integer n. One says
that a complex X* is acyclic if H"(X*) =0 for all n € Z, and a morphism f* is
a quasi-isomorphism if H"(f*) is an isomorphism, for every n € Z.

Next, we prepare to introduce the homotopy categories. Let X* be a complex
in C(A). Given an integer s, the s-shift of X* is a complex (X*[s], dx. ) defined
by (X[s])" = X"** and dy.;, = (—1)*d%™ for all n € Z. Moreover, the s-shift
of a morphism f*: X* — Y* is the morphism f*[s] : X*[s] — Y*[s], defined
by (f[s))™ = f** : X* — Y™ for all n € Z. In particular, we have an
automorphism

[1]: C(A) = C(A); X* — X°[1]; f*— f[1],
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called the translation functor, of C'(A). Moreover, the twist complex t(X*)
of X* is the complex (M*, d;,) defined by M™ = X" and d}; = —d¥; see [10]. This
induces an automorphism t of C'(A), called the twist functor of C(.A). Given a
morphism f*: X*— Y*in C(A), its mapping cone is the complex Cy. defined

by Cf. = X" g Y™ and
_ _d?{fl O
Cf’ - fn+1 d% Y

for all n € Z. Clearly, we have two complex morphisms ¢

o Y- = (. and
p,. : Cpe — X*[1] defined by

. 0 n .
i = (idyn) and p, = (idxn+1,0),

for all n € Z. This yields a sextuple X* Iy £l

is called the standard triangle attached to f*.

DPye

Ch. X*[1] in A, which

A morphism f*: X* — Y*in C(A) is called null-homotopic if there exist
morphisms A" : X" — Y"1 in A such that f* = d% ' o h" + h"*! o d% for all
n € Z. And two morphisms f*,¢* : X* — Y* are called homotopic if f* — ¢’
is null-homotopic. The following statement is well known; see, for example, [49
(IT1.1.4.1)]. Here, we provide a rigorous categorical proof.

1.7.3 Lemma. Let A be an additive k-subcategory of an abelian k-category 2.
Consider a morphism f* : X* — Y* be in C(A). If f* is null-homotopic, then
H"(f*) =0, for every n € Z.

Proof. Let k™ : X™ — Y™ be morphisms such that f* = dy' o h™ + h"+! o d%
for all n € Z. As stated in the proof of Lemma [1.7.2] we have a commutative
diagram with exact rows

n—1 n
dX

0 —— Ker(dy) 22 X Xt
}Fn ) Lfn lfn-&-l
0——Ker(dp) 2 syn 5 _ynn
in- 1 ‘
Y P 1
O—>Im(d" 1 Y"‘"—>Coker (dy ') —=0
yn-1 L yn Coker(dy ') —=0
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in . Thus,
e = o gy
=(dytoh™+h" M ody)o it
=dy oo it
=y toil topt o A" o !
Since j3~! is a monomorphism, f* =% o pi! o A" 0 % 1. On the other hand,
by definition, we have a commutative diagram with exact rows

-n—1

0—Im(d% ") = Ker(d ) —> H"(X*) —

e
,Lnl

0—— Im(d" ') ¥~ Kerd '~ H(Y") — >

in 2. Thus, ul o f* = ul o i opit o h" o j% 1 = 0, and consequently,
H"(f) ouy = 0. Since u% is an epimorphism, H"(f*) = 0. The proof of the
lemma is completed.

Consider C*(A), where x € {(), —, +,b}. Observing that the null-homotopic
morphisms in C*(.A) form an ideal, one defines the homotopy category K*(.A)
to be the quotient category of C*(A) modulo the null-homotopic morphisms.
In particular, K(.A) is called the homotopy category of A. We denote by
Pi : C*(A) — K*(A) the canonical projection functor. Given a morphism
fo: X* = Y*in C*(A), we obtain a morphism f* = P3(f") : X* = Y* in K*(A).
We call the sextuple

f.

X ve L 0 — X0[1]

the standard triangle in K*(A) attached to f*, and C}. the mapping cone of
f. Tt is well known; see [49, (II1.2.1.1)] that K*(A) is a triangulated category,
whose translation functor is the automorphism induced from the shift functor of
C(A) and the exact triangles are the sextuples isomorphic to standard triangles

in K*(A).

Consider two homotopic morphisms f*,¢* : X* — Y* in C*(A). In view of
Lemma [1.7.3] we see that H"(f*) = H"(g"), for all n € Z. In particular, f* is a
quasi-isomorphism if and only if so is ¢*. Thus, one calls f* a quasi-isomorphism
in K*(A) if f* is a quasi-isomorphism in C*(.A4). We shall need the following well
known result; see, for example, [49], (I11.3.1.1)].

29



1.7.4 Lemma. Let A be an additive k-category. Then, a morphism in K*(A)
with x € {0,+,—,b} is a quasi-isomorphism if and only if its mapping cone is
acyclic.

Finally, we shall introduce derived categories. Fix x € {0, —, +,b}. It is well
known; see [49] (I11.3.1.2)] that the class of quasi-isomorphisms in K*(.A) is a lo-
calizing class compatible with the triangulation; see, for definition, [49, Chapter I,
Section 1.3] and [49, Chapter II, Section 1.6]. One defines the derived category
D*(A) to be the localization of K*(.A) with respect to quasi-isomorphisms, which
is a triangulated k-category with translation functor and exact triangles induced
from those of K*(.A); see [49} (I1.1.6.1)]. We shall denote by L : K*(A) — D*(A)
the localization functor. In particular, D(A) and D°(A) are called the derived
category and the bounded derived category of A, respectively. Clearly, we
have a canonical additive functor

Ja: A= D*(A); X — XI[0]; f — f]0].

The following statement is well known; see, for example, [49, Chapter III,
(3.4.3), (3.4.4), (3.4.5), (3.4.7)].

1.7.5 Proposition. Let 2 be an abelian k-category. Given x € {(), —, +,b}, the
following statements hold.

(1) The canonical functor j4 : A — D*() is fully faithful.

(2) There exists a fully faithful triangle-exact functor i* : D*(2() — D().
REMARK. In the sequel, we shall regard D*(2() as a full triangulated subcategory
of D(A) for x € {—,+,b}.

More generally, we have the following statement.

1.7.6 Proposition. Let o7 be a full additive subcategory of C'(2l), where A is an
abelian k-category. If of is closed under shifts, then

(1) the quotient category KC(<f) of &/ modulo the null-homotopic morphisms is
a full triangulated subcategory of K(2A);

(2) the localization D(f) of K(f) with respect to quasi-isomorphisms is a
triangulated category.
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Proof. We sketch a proof of this statement. It is evident that the null-homotopic
morphisms in &/ form an ideal of @/. Thus, the quotient category K(<7) of &/
modulo the null-homotopic morphisms is a full additive subcategory of K ().
Assume that 7 is closed under shifts. Then, &7 is closed under mapping cones.
Therefore, k() is closed under the translation functor of K (%) and under map-
ping cones. Hence, (&) is a full triangulated subcategory of K (2(); see [49,
Chapter II, Section 1.7]. Moreover, in view of the proof of Proposition 3.1.2 in
[49, Chapter III], we see that the quasi-isomorphisms in K(&) form a localiz-
ing class compatible with the triangulation. Therefore, D(/) is a triangulated
category; see [49] (I1.1.6.1)]. The proof of the proposition is completed.

REMARK. In the sequel, we shall say that a full additive subcategory 7 of C'(2)
is derivable if it is closed under shifts, and in this case, D(&7) is called the
category derived from /. Some sufficient conditions for D(47) to be a full
triangulated subcategory of D(2() can be found in 49, (I1.1.7.1), (I1.1.7.2)].

Let X* be a complex in C'(2). A complex of projective objects P*is called a
projective resolution of X* if there exists a quasi-isomorphism f*: P* — X*
in C'(2(), which is finite if P*is a bounded complex. Dually, a complex I* of
injective objects is called an injective coresolution of X* if there exists a quasi-
isomorphism ¢* : X* — [*in C(2(), which is finite if [* is a bounded complex.
The following statement is evident.

1.7.7 Lemma. Let 2 be an abelian k-category. Consider a complex X* in C*(2)
with x € {0, +, —, b}.

(1) If X* admits a projective resolution P* in C*(2), then X* = P*in D*(2).
(2) If X* admits an injective coresolution I* in C*(U), then X* = I+ in D*().
The following statement; see [61, (10.4.7)] says that it is easy to compute the
morphisms in the derived category starting (respectively, ending) in a complex

with a bounded above projective resolution (respectively, bounded below injective
so-resolution).

1.7.8 Lemma. Let 2 be an abelian k-category. Let P+ € C~(2) be a complex
of projective objects and I* € Ct () a complex of injective objects. Given any
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complex X* over U, the localization functor L : K(A) — D(2l) induces two
1somorphisms

LP',X' . HOHIK(Q[) (P', X‘) — HomD(g[) (P', X‘)

and
LX',I' . HomK(m) (X', I') — HOIHD(Q[) (X', ]’)

We shall need the following result.

1.7.9 Lemma. Let 2 be an abelian k-category.

(1) If P is a full additive subcategory of projective objects of A, then K°(P) can
be regarded as a full triangulated subcategory of D*(2L).

(2) If T is a full additive subcategory of injective objects of A, then K°(Z) can
be regarded as a full triangulated subcategory of D*(2L).

Proof. We shall only prove Statement (1). It is evident that K°(P) is a full
triangulated subcategory of K°(2). Restricting the localization functor LY :
Kb() — DP(2), we obtain a triangle-exact functor j : K°(P) — Db(). Let
PU € K°P). Since K°(P) is a full subcategory of K(P), we deduce from
Lemma and Proposition [1.7.5(2) that

HOHle(p) (P', U.) = HOHIK(Q[)(P., U') = HOHlD(Q[) (P., U') = HOIIlDb(Q[) (P', U')
The proof of the lemma is completed.

REMARK. We see from Proposition M(Q) that K°(P) and K®(Z) can also be
regarded as a full triangulated subcategories of D ().

To conclude this section, we shall study when an additive functor between cat-
egories of complexes induces a triangle-exact functor between derived categories.
The following statement is well known; see [49) (II.1.6.2)]. For the convenience
of the reader, we will provide a brief proof.

1.7.10 Proposition. Let A and B be additive k-categories. Consider an additive
functor § : C*(A) — C*(B), where x € {0, —,+,b}, such that

(1) So[lf=[1]oF;
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(2) § sends acyclic complezes to acyclic complezes.
(3) § sends the cone of a morphism to the cone of its image;
(4) § sends null-homotopic morphisms to null-homotopic morphisms;

Then, § induces a commutative diagram of additive functors

where § and @ are triangle-ezxact..
Proof. By Statement (4), ¥ induces an additive functor § : K*(A) — K*(B)
such that § o Pj = P oJ. By Statements (1) and (3), § is triangle-exact. Let
fr: X* — Y in K*(A) be a quasi-isomorphism. Then, there is a standard triangle
XLy Cy. o X*[1] in K*(A), where C}. is acyclic by Lemma |1.7.4]
By Statements (1) and (3), we have a standard triangle

— ) = S(ise) 5(p.)
F(X) ——=F(") —=3F(Cp.) —=F(X)[1]

in K*(B), where F(C}.) is acyclic by Statement (2). Again by Lemma S(F)
is a quasi-isomorphism. This shows that § sends quasi-isomorphisms to quasi-
isomorphisms. By the universal property of localization, there exists a unique
triangle-exact functor § : D*(A) — D*(B) such that § o L% = L o §. The proof
of the proposition is completed.

Let F': A — B be an additive functor between additive k-categories. Then,
it induces an additive functor F© : C*(A) — C*(B) as follows. Given a complex
X*in C*(A), we have a complex F¢(X*) € C*(B) defined by FC(X*)" = F(X™")
and dic .y = F(d%) : F(X") = F(X"), for all n € Z. And given a morphism
f: X* = Y*in C*(A), we have a morphism F(f*) : FC(X*) — F¢(Y*) in C*(B)
defined by FC(f)" = F(f") : F(X") — F(Y") for all n € Z. The following
statement is well known; see, for example, [49, (V.1.1.1)] and [49, (V.1.2.2)]. For
the sake of the reader’s convenience, we shall include a short proof.

33



1.7.11 Proposition. Let F' : A — B be an exact functor between abelian k-
categories. Given x € {0, —, +,b}, there exists a commutative diagram of functors

* *
PQl LQ[

C*(A) — K*(A) —= D" (%)

FC FK LFD
P L*

C*(B) —> K*(B) —> D*(B),

where FX and FP are triangle-ezact.

Proof. It is evident that F¢ has the properties in Statements (1) and (4) of
Proposition As shown in Section 1.1 in [49, Chapter V], F© sends the
cone of a morphism in C*(2() to the cone of its image. Finally, since F is exact,
F¢ sends acyclic complexes in C*(2A) to acyclic complexes. Now, the proposition
follows from Proposition [1.7.10, The proof of the proposition is completed.

1.8 Double complexes

In order to provide a tool for constructing our generalized Koszul duality,
we shall recall the double categories of complexes as defined in [16l section 4].
An additive k-category is called concrete if the objects are equipped with a k-
vector space structure, which is compatible with the composition of morphisms.
Throughout this section, A, B, C stand for full additive subcategories of concrete
abelian k-categories.

Let (M=, v, h) be a double complex over A, where v is the vertical differ-
ential and hy is the horizontal one. Given i, j € Z, the complexes (M be, va}') and
(M=, h;\’j ) are called the i-th column and the j-th row of M*, respectively. A
double complex morphism f*: M* — N* consists of morphisms f*/ : M*J — N*J

in A with ¢, j € Z making

i,5+1
fi’]y
i,5+1
M7 |U]ZVJ
hid
i N N NitLi
Uni fi,j
/ hid %173'
M M, ML

commute for all i,j € Z, that is, f : M* — N and f* : M/ — N*J are
complex morphisms, called the i-column and the j-th row of f* respectively,
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for all 7,7 € Z. In this way, the double complexes over A form an additive k-
category written as DC(.A). In case A has countable direct sums, we shall define
a functor T : DC(A) — C(A) as follows. Given M= € DC(A), one defines its
total complex T(M*) € C(A) by setting T(M*)" = ®;cz M*"~" and

At = (A (5,1)) Girezxz  Diez M — @jeg MP"H,
where di}(M--) (7,1): M”’*l — MI7+1=J ig defined such that d{FL(M,,)(Z', i) = vj/}”*i;
dpppe (i +1,4) = ™" and df e (4,4) = 0if j ¢ ¢ or i + 1. Given a morphism
f*: M* — N= we define its total morphism T(f*) : T(M=) — T(N*) by
setting

T(f)" = (T ()", 1) Gyezxz - Piez M — Bjez N7

for n € Z, where T(f*)"(j,i) : M*"~" — N¥"7J is given by T(f*)"(i,1) = fi"~°
and T(f=)"(j,4) = 0 for all j # 1.

We shall study when the total complex of a double complex is acyclic. For
this purpose, we need some terminology. Let M= € DC(A). Given n € Z,
the n-diagonal of M* consists of M*"~" with i € Z. We shall say that M=
is n-diagonally bounded (respectively, bounded-above, bounded-below) if
M=% = ( for all but finitely many (respectively, positive, negative) integers i.
Moreover, M* is called diagonally bounded (respectively, bounded-above,
bounded-below) if it is n-diagonally bounded (respectively, bounded-above,
bounded-below) for every n € Z.

The following two statements; see [16, (4.2), (4.3)] tell us when the total
complex of a double complex is acyclic.

1.8.1 Lemma. Let A be a concrete additive category with countable direct sums.
If M~ e DC(A) and n € Z, then H*(T(M=)) = 0 in case

(1) M* is n-diagonally bounded-below with H" ™ (M*7) = 0 for all j € Z; or
(2) M+ is n-diagonally bounded-above with H*~*(M*) = 0 for all i € Z.
As a consequence, one obtains the Acyclic Assembly Lemma; see [61) (2.7.3)].
1.8.2 Proposition. Let A be a concrete additive category with countable direct

sums. If M= € DC(A), then T(M*) is acyclic in case M* is diagonally bounded-
below with acyclic rows or diagonally bounded-above with acyclic columns.
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The following statement; see [16, (4.6)] tells us when the total morphism of a
double complex morphism is a quasi-isomorphism.

1.8.3 Lemma. Let A be a concrete additive category with countable direct sums.
Consider a morphism f*: M* — N** in DC(A) such that f: M — N** is a
quasi-isomorphism, for every i € Z. If M* and N** are diagonally bounded-above,
then T(f**) is a quasi-isomorphism.

Next, we recall a technique to extend a functor from an additive category
into a category of complexes to the category of complexes. Consider an additive
functor

F:A—-CB):M—FM);f— F(f),
where B has countable direct sums. In order to extend F' to C(A), one first
constructs a functor FP¢ : C(A) — DC(B) as follows. Given an object M- €
C(A), applying F' component-wise yields a double complex

o . inj41 Ty i1y j+1
F(M-)*: o F(MY 2 P(MT)H
S (D i,
. F(di,) o
_)F(Mz)] (dis) F(Mz+1)j_>__.

whose i-th column is t/(F(M?)"), the i-th twist of the complex F(M*):. Then, one
puts FPY(M*) = F(M*)". Given a morphism f*: M*— N*in C(A), applying F

component-wise yields a commutative diagram

s TV
F y
F(M?)+1 (=1)'d, iy
o . F(di,)I . .
V|, POV A (N,
. /F(dﬁw)] i1 41)j
F(M?)) F(MH1Y
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for i,j € Z. So, F(f*) = (F(f"))ijez : F(M*)* — F(N*)* is a morphism in
DC(B). Then, one puts FPC(f*) = F(f*)".

The following statement is quoted from [16], (4.8)], which collects some basic
properties of the extended functor F'¢ and is a general version of the result stated
n [10] (3.7)].

1.8.4 Proposition. Let A and B be concrete additive categories such that B has
countable direct sums. Then, every additive functor F': A — C(B) extends to a
functor F€ =T o FP¢: C(A) — C(B) with the following properties.

(1) If M is an object in A, then FE(M) = F(M).
(2) If M* is a complex in C(A), then FE(M*[1]) = FE(M")[1].

(3) If [+ is a morphism in C(A), then F(Cs.) = Cre(pa; and in case f* is
null-homotopic, FC(f*) is null-homotopic.

We show that the extension of functors preserves the exactness and the faith-
fulness.

1.8.5 Proposition. Consider an additive functor F : A — C(B), where A and
B are concrete additive categories such that B has countable direct sums. If F' is
exact or faithful, then FC is exact or faithful respectively.

Proof. Assume that F' is exact. Let 0 X Y. A 0 be a short
exact sequence in C'(2(). Then, we have short exact sequences

0—F( X)) ——= F(Y)"! —= F(Z)" ——=0,
for all i,n € Z. This yields a short exact sequence
00— FY(X)" —= FO(Y*)" —= FY(Z*)" —=0,
for every n € Z. Thus, this gives rise to a short exact sequence
0—FYX") —=F(Y") —=F9(Z") —0.

That is, F¢ is an exact functor.
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Suppose that F' is faithful. Consider a morphism f*: X* — Y*in C'(A). By
definition, FC(f*) = T(F(f*)"), where F(f*)* is the double complex morphism
given by F(f) : F(X")7 — F(Y")J, for i,j € Z. Thus, for any n € Z, we have

FO(f)" =T(F(f))" = @iez F(F)"
Since F' is faithful, we see that

FO(f)=0 = @iz F(f)y" =0, foralln€Z
F(fHn=t =0, for all i,n € Z
F(fy =0, foralli,j € Z
F(f?) =0, foralli e Z
fi=0, foralli cZ

fr=0.

R

So, F© is faithful. The proof of the proposition is completed.

We quote the following important statement from [16], (4.10)], which says that
the extension of functors is compatible with the composition of functors.

1.8.6 Proposition. Let A, B and C be concrete additive categories with B and C
having countable direct sums. If F: A — C(B) and G : B — C(C) are additive
functors, then (G F)¢ = G% FC.

In view of Proposition [1.8.2] we see that the total complex of a double complex
is not necessarily acyclic even if the double complex has exact rows or exact
columns. Therefore, the extended functor F'¢ does not send all acyclic complexes
to acyclic ones, and hence, it does not descend to the derived category D(.A) as
stated in Proposition [1.7.10f We quote the following statement from[16] (4.9)],
which says that F'¢ descends to categories derived from some suitable derivable
subcategories of C'(A).

1.8.7 Theorem. Let A, B be concrete additive categories such that B has count-
able direct sums. Consider an additive functor F : A — C(B), sending acyclic
complezes to acyclic ones. Suppose that FC sends a derivable subcategory < of

C(A) into a derivable subcategory % of C(B).

(1) If FPC sends complezes in o/ to diagonally bounded-below double complexes,
then FC sends acyclic complexes in o/ to acyclic ones.
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(2) If F¢ sends acyclic complezes in </ to acyclic ones, then it induces a com-
mutative diagram of functors

o — K() —D()

B K(B) ——D(B),

where FX and FP are triangle-ezact.

We conclude this section by quoting the following statement from [16], (4.11)],
which says that functorial morphisms between functors can also be extended.

1.8.8 Lemma. Let A, B be concrete additive categories such that B has count-
able direct sums. Let F, G : A — C(B) be additive functors. Then every
functorial morphism n = (n: )meca : F' — G eatends to a functorial morphism
n% =S mecow : F€ — G, where 0, = T(n:,,) : FC(M*) — GY(M") with
0. F(M) = G(M)* given by n? « F(M') — G(M') with i,j € Z;
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Chapter 2

Algebras and modules

The main objective of this chapter is to recall some background and collect
some preliminary results. The terminology and notation introduced in this section
will be used throughout the thesis. Let k denotes a commutative field. All tensor
products will be over k unless explicitly stated otherwise. An algebra is always
over k and does not necessarily have an identity unless explicitly stated otherwise,
and an ideal of an algebra is always a two-sided ideal.

2.1 Linear algebras

The content of this section is taken from [16, Section 1]. Given a set S, the
k-vector space spanned by S will be written as £S. The category of all k-vector
spaces and that of finite dimensional k-vector spaces will be denoted by Modk
and modk, respectively. We shall make a frequent use of the exact functor D =
Homy(—, k) : Modk — Modk, which restricts to a duality D : modk — modk.
The following result is important.

2.1.1 Lemma. Given U,V; M, N € Modk, we obtain a k-linear map
p : Hom (U, V) @ Homg (M, N) — Hom (U @ M,V @ N); f @ g — p(f ® g),

where p(f @ g)(u®@m) = f(u) @ g(m) foru e U and m € M, which is natural in
all variables. Moreover, p is an isomorphism in case U,V are finite dimensional,
or else, M, N are finite dimensional.

Proof. The first part of the lemma is evident. For the second part, we shall
consider only the case where U,V are finite dimensional. Let {u,...,us} be
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a basis of U and {vy,...,v;} a basis of V. Consider the k-linear maps ¢; :
M —-UMmru@m,and p; : VN — N;Zlevl®nl — n,;, and
fij U= V30 Nw = N, fori=1,...,sand j=1,...,¢t

Let w € Homy(U,V) ® Homy (M, N) such that p(w) = 0. Since the f;;
form a basis of Homy(U,V), Then, we may write w = »_7_, z;zl fii ® gi5,
with ¢;; € Homy(M,N). Given any m € M, we obtain Z;:ﬂ’j ® qij(m) =
Zlezi.zlfij(ul) ® gi;(m) = p(w)(yy ® m) = 0 for | = 1,...,s. Therefore,
gij(m) =0, and hence, ¢;; =0, for [ =1,...,s; j=1,...,t. That is, w = 0.

Let h € Homy,(U ® M,V ® N). Consider g;; = p; o ho ¢ € Homy(M,N).
Given w =Y 7 ,uy®m € U® M, we may write h(wy @ m;) = 22:1 vj ® ny;, for
some n;; € N. Then, g;;(my) = pj(h(w @ m;)) = ny;. Now,

@ (Zf:1 Y [y ® gg) (w) = > ,¢(fi @ gig) (w @ my)
= Zlgi,lgs Zlgjgt fij(w) @ gij(mu)
= Y Y (v @)
= > h(w@my)
= h(w).

Thus, (377, Z;:j fij ® gij) = h. The proof of the lemma is completed.

REMARK. We shall identify f ® g with p(f ® g) in case U,V € modk or M, N €
modk.

Observing that V @ k = V = Homy(k, V) for any V € Modk, we obtain the
following immediate consequence of Lemma [2.1.1}

2.1.2 Corollary. Given U € Modk and V € Modk, we obtain
(1) a binatural k-linear isomorphism
c:DU)®V — Homy(U,V); f@v— o(f ®@v),

where o(f @ v)(u) = f(u)v foru € U and v € V, which is an isomorphism
in case U or'V is finite dimensional.

(2) a binatural k-linear isomorphism
p:DV)@DU) = DV eU)feg=plfeg),

where p(f @ g)(v @ u) = f(v)g(u) for w € U and v € V, which is an
isomorphism in case U or V' s finite dimensional.
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The following statement will be needed for our later investigation.

2.1.3 Lemma. Given morphisms f : U — M and g : N — V in modk, we
obtain a commutative diagram with vertical isomorphisms as follows:

f®D(g)

U D(V) M @ D(N)
DV ® D)) 2EPY) (N @ D(M)).

We conclude this section with the following easy statement.

2.1.4 Lemma. Let V be a k-vector space, and let U be a subspace of V. If
v € V\U, then there exist a subspace W of V' containing U such that V. = W @kv.

Proof. Assume that v € V\U. Let U be a k-basis of U. Being linearly inde-
pendent, U U {v} extend to a k-basis WU {v} of V. Letting W be the subspace
generated by W, we see that U C W and V = W @ kv. The proof of the lemma
is completed.

2.2 Quivers and algebras

In this section, we shall fix some notions and terminology for quivers, which
will be used throughout this thesis. Let @ = (Qo, Q1) be a quiver, where Qg is
a set of vertices and ()7 is a set of arrows between the vertices. Given an arrow
a:r — yin @, we call x the starting point and y the ending point of «;
and write s(a) = z and e(a) = y. One says that @ is finite if both @y and Q)
are finite sets; locally finite, that is, for any = € )y, the set of arrows o with
s(a) = z or e(a) = x is finite; gradable if Qy = U;czQ} such that every arrow
is of the form x — y, where z € Q%, y € Q! and i € Z. A path p of length
n > 11in (@) is a sequence

Pi To Ty Ty e Ty — Ty,

where o; € @ for all 1 < i < n such that e(q;) = s(ay1) for 1 < i <n—1.
Such a path will be denoted by p = v, - - - a;. In this case, we call a; the initial
arrow and «,, the terminal arrow of p. Moreover, we associate with each vertex
x € Qo a trivial path e,, which is of length 0. A path of length n > 1 is said to
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be a oriented cycle whenever its starting point and ending point coincide. In
particular, an oriented cycle of length 1 is called a loop.

Fix an integer n > 0 and some vertices z,y of (). We shall denote by @,, the
set of paths of length n and by Q(z,y) the set of paths from x to y. Moreover,
we shall write Q,(z,y), Q<n(z,y), and Q>,(z,y) for the subsets of Q(z,y) of
paths of length n, of length < n, and of length > n, respectively. Further, we
put Qn(z, —) = Useq,@n(2, 2) and Q,(—, ) = U,eq,@n(2, ). Finally, we define
Q<n(T, —) = Useq, Q<nlz,2) and Q<n(—,7) = U.eq, Q<n(z, ), and similarly,
Q>n(x, =) = Useq, @>n(z, 2) and Qs (—, ) = U,cq, @>n(z, z). For convenience,
we shall put Q(z,y) = () for an integer s < 0.

The opposite quiver of () is a quiver Q° defined in such a way that (Q°)y = Qo
and (Q°)y ={a®°:y >z | a:x—y e @i} A non-trivial path p = a,, -y

in Q(z,y), where a; € @, corresponds to a non-trivial path p° = af---af

in
Q°(y, z). However, the trivial path in @ at a vertex x will be identified with the
trivial path in Q° at x.

2.3 Algebras given by a quiver with relations

In this thesis, an algebra does not necessarily have an identity, and an ideal
in an algebra is always a two-sided ideal unless stated otherwise. In this section,
we shall fix some notions and terminology for algebras defined by a quiver with
relations.

2.3.1 Definition. Let @) be a locally finite quiver. The path algebra k() of )
is the k-vector space having the set of all paths in () as a basis. The product of
two paths «,, - --aq and 3, - - - B is defined by

e 8y = { B ) =)

0, otherwise.

This multiplication is then extended by k-bilinearity to all elements in kQ).

The opposite algebra of k@) is the path algebra kQ° of the opposite quiver
Q°. Given w =Y _7_; \ip; € kQ, where \; € k and p; are paths, we shall write

WO =S5 Al € kQ°.
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Then, we have an algebra anti-isomorphism k() — kQ° given by w — w° for
w € kQ.

Consider the path algebra kQ. An element p € k(@ is called quadratic if
p € @2 and homogeneous if p € k@), for some n > 1. Moreover, an element
p € kEQ(x,y) with x,y € Qg is called monomial if p = 0 or p = Ap, where \ € k
and p a path in @), and polynomial otherwise.

Let R be an ideal of kQ. We write R, = RN kQ, for n > 0, R(z,y) =
RN EkQ(x,y) for x,y € Qp, and R,(z,y) = RN kQ,(x,y). Finally, we put
R(x,—) = UseqoR(z,2) and R(—,y) = U.eq,R(2,y). We shall say that R is
quadratic or homogeneous if R is generated by a set of quadratic elements
or by a set of homogeneous elements in k@), respectively. Moreover, R is called
a relation ideal if it is contained in (kQ™)?, where kQ" is the ideal of kQ
generated by Q).

Consider now a quotient algebra A = kQ /R, where R is a relation ideal of kQ).
Given z,y € Qo. An element p =Y | \;p; € R(z,y) is called a relation for A
if the \; are non-zero scalars in k and the p; are pairwise distinct paths in Q(x, y)
such that Y, - A\ip; € R for any 0 # X' C {1,...,s}. In this case, the \;p; are
called the summands of the relation p. In the sequel, we shall say that A is the
algebra defined by ) with relations in R. Moreover, we call A4 a quadratic or
graded algebra if R is a quadratic or homogeneous ideal, respectively.

Let us fix some notations for 4 = kQ/R, which will be used for the rest of
the thesis. Write 5y = v+ R € A for v € kQ, and e, = &, for z € )g. Then,
{e. | € Qo} is a complete set of orthogonal idempotents in A. The opposite
algebra of A is given by A° = kQ°/R°, where R° = {p° | p € R}. We shall write
¥° =~°+ R° for v € kQ, but e, = ¢, + R° for x € (Jy. In this way, we have an
algebra anti-isomorphism A — A° given by ¥ — 4° for ¥ € A.

A left A-module M is called unitary if M = _, e,M. In this case, we
shall write M(x) = e, M, called the z-component, for all x € Q. We shall
denote by ModA the category of all unitary left A-modules, and by mod?l the
full subcategory of Mod A of finite dimensional modules.
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2.4 Locally noetherian algebras

Throughout this section, let A = kQ/R, where @ is a locally finite quiver and
R is a relation ideal. A left or right unitary A-module is called noetherian if
all of its submodules are finitely generated. We shall say that A is locally left
noetherian if Ae, is noetherian for every a € ()y; and locally right noetherian
if e,/ is noetherian for every a € ()y. As examples of locally noetherian algebras,
we introduce the following class of algebras.

2.4.1 Definition. Let 4 = kQ/R, where @ is a locally finite quiver and R is
a relation ideal. We say that A is multi-serial provided, for any o € )1, that

there exists at most one arrow 3 such that fa ¢ R and at most one arrow v such
that ay ¢ R.

REMARK. It is evident that string algebras and special biserial algebras are
multi-serial; see [17, [59].

2.4.2 Proposition. Let A = kQ/R be a multi-serial algebra, where Q is a locally
finite quiver and R is a relation ideal. Then A is locally left and right noetherian.
Proof. Fix a € Q. Given a € Q1(a,—), we claim that the left A-module A«
is noetherian. For this purpose, we may assume that A« is infinite dimensional.
Since A is multi-serial, () contains an infinite path

a = ap a T a;—1 a;

with a1 = a such that Aa has a k-basis {uq, us, ..., u;, ..., }, where u; = @; - - - a;.
Thus, every non-zero element u € A« is uniquely written as u = Y. | \;u;, where
Ai € k with A\, # 0, and we write deg(u) = n. Given non-zero elements u, v € Aa,
it is not hard to to see that v = qu+w, where ¢ € A and w € A« such that w =0
or deg(w) < deg(u). Using this fact, we deduce that if L is a non-zero left A-
submodule of A, then L = Au, where u € Aa with deg(u) being minimal. This

establishes our claim. Since @ is locally finite, J, = > 0 A« is noetherian.

QGQI(CL,
Since Ae,/J, is one-dimensional, we conclude that Ae, is noetherian. Similarly,
we can show that e, A is a noetherian right A-module. The proof of the proposition

is completed.

Finally, we say that A is locally left bounded if Ae, is finite dimensional for
any a € Qo; locally right bounded if e,/ is finite dimensional for any a € @,
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and locally bounded if A is locally right and locally left bounded; compare [14]
(2.1)]. It is evident that a locally left or right bounded algebra is locally left or
right noetherian respectively.

2.5 Local trace function

Throughout this section, we let A = kQ/R, where @ is a locally finite quiver
and R is a relation ideal. In case A is finite dimensional, Lenzing’s trace function;
see [34] is localized to a local trace function in [29] for finite dimensional modules,
in order to establish the Strong No Loop Conjecture, that is, () has no loop at
a vertex a if the corresponding simple module S, is of finite projective dimension.
In this section, we shall further extend the notion of local trace function and
reformulate the main result in [29] under our most general setting.

We start with some notations and terminology. Given z € )y, we shall write
P, = Ae,, which is clearly a projective module in ModA. We denote by [A, A]
the commutator group of A, that is the k-vector subspace of A generated
by the elements uv — vu with u,v € A. And we write HHo(A) = A/[A, A],
called the O-th Hochschild homology group of A. Given a € (), we put
Ao = A/(3 2 cqo\(ay A€zA). Then, the canonical algebra projection 4 — A,
induces a k-linear map H, : HHy(A4) — HHy(4,). By definition, we see that
Hy(uv + (A, A]) = Hy(vu + [A, 4]), for all u,v € A.

An index set for @ is a set {2 equipped with a map 7 : 2 — (. In this
case, we shall write e; = er(;) and P = Py for i € {2. And for a € @)y, we shall
write 2, = 7 !(a) and say that £ is a-finite if {2, is finite.

Fix a € Qo and an a-finite index set 2. We write P?) = @, P; with canon-
ical injections ¢; : P; — P and canonical projections p; : P) — P,. Consider
¢ € Endy(P). We may write ¢ = (u;j)(j)eoxn, where u; = (pjpq;)(e;) €
e;Aej. Observe that each row of the matrix (u;;)(j)coxe has at most finitely
many non-zero entries. Since H,(u; + [A, A]) = 0 for all i € 2\2,, we may
define the e,-trace tr,(¢) of ¢ by setting

tra () == Y e Ha(ui + [A, A]) = Ho (3 e, wii + [A, A]) € HHo(Aq).

In particular, tr,(¢) = 0 if £2, is empty.
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2.5.1 Lemma. Let A = kQ/R, where Q is a locally finite quiver and R is a
relation ideal. Fiz a vertex a of Q).

(1) Let @, : Ae, — Ae, be the right multiplication by some u € e,Ae,. Then
tra(pu) = 0+ [Aqg, Ag], where @ = u + (Eero\a AegA) € A,.

(2) Let p: P9 — P©®) and +) : P©) — P be A-linear morphisms, where {2
and © are a-finite index sets for some a € Qo. Then tr, (oY) = tr,(¢Yy).

Proof. Statement (1) follows immediately from the definition of the e,-trace. For
proving Statement (2), we consider the canonical injections ¢; : P, — P and
q¢. : P, — P®) and the canonical projections p; : P*Y) — P, and p/, : P©®) — P,
for all i € 2 and s € ©. Then, we may write ¢ = (us)(i,s)cox0, Where u;, =
(pspai)(ei) € eides, and ¢ = (vgj)(s jeoxn, Where vg; = (pjihq;)(es) € esde;.
Now, ¢ = (wij) i )eoxn, where

wij = (pi(Ye)a)(e:) =(pj¥) (Do (@ ((Pipai)(€:)
=P V) (X sco 4 (uis))
= Zse@ (pjva.) (uis - e5)
= eco Uis - (DY) (es)

= Zse@ UisVsj-

Similarly, ¢t = (w},)(scoxe, where wl, = >, vgu;. By definition, we have

tra (V) = ieq Ha(wii + [4, A])
=2 icn Ha(X o wisvsi + [4, 4])
=2 ico 2seo Ha(uisvg + [4, 4])
and
tra(pY) = > seo Halws, + [4, 4])
=2 o Ha(Xicq vaitis + [4, 4])
=i 2seo Hauisvsi + [4, A]).
So, tra(pe) = tra(dp). The proof of the lemma is completed.

Let a € QQp. We shall denote by Proj(4,a) the full additive subcategory of
ModA generated by the projective modules isomorphic to some projective A-
module P2 where {2 is an a-finite index set. Consider ¢ € End,(P), where
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(2

P € Proj(A,a). Choosing a A-linear isomorphism w : P — P where 2 is an

a-finite index set, we define the e,-trace tr,(¢) of ¢ by setting

tr, () i= try(wpw ™)
which is well-defined as shown below.

2.5.2 Lemma. Let A = kQ/R, where Q) is a locally finite quiver and R is a
relation ideal. Consider a projective module P € Proj(A,a). Then, the e,-trace
tra () is well-defined, for every ¢ € End(P).

Proof. Assume that w: P — P and § : P — P©) are A-linear isomorphisms,
where (2 and © are a-finite index sets for some a € Q). Given ¢ € End,(P), by

Lemma [2.5.1](2), we have
trg (wow ™) = tr,(wed 1) (Bw™)) = tre((Bw ™) (wpd ™)) = try(0pd ).
The proof of the lemma is completed.

The following statement collects some basic properties of our local trace func-
tion; compare [29, (1.1)].

2.5.3 Proposition. Let A = kQ/R, where Q is a locally finite quiver and R is a
relation ideal. Let P and P’ be projective modules in Proj(A,a) for some a € Q.

(1) If p,¢" € Ends(P), then try(p + ¢') = tra(@) + tra(¢).

(2) If p = <(‘011 S012) :P® P — P& P is a A-linear morphism, then
Y21 P22

tra () = tra(pi1) + tra(22).
(3) If o: P— P’ and ¢ : P — P are A-linear morphisms, then
tra(p9) = tra(¢p).
(4) If ¢ : P — P’ is an isomorphism and ¢ € End(P), then

tra(dpg ') = tra(p).
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Proof. By the assumption, we have A-linear isomorphisms w : P — P and
6 : P — P© where 2 and O are a-finite index sets for Q.

(1) Let ¢, ¢’ € Endy(P). Assume first that P = P, Write ¢ = (Uij) (i, j)cox 0
and ¢ = (vi5)@,j)enxn, where u;;, vi; € e;Aej. Then, o+ ¢ = (uj + vij) (. j)enxo-
By definition, we have

tI‘a(SO) + tra(sol) = Zie() Ha(uii + [Av A]) + Zie() Ha(vii + [A7 A])
= ico Ha((ui +vi) + [A, A])
= tra(p + ¢').

In general, we have wow ™, wp'w™" € End(P“?)) such that w(p + ¢ )w™! =
wpw ! + wp'w!. By definition, we have

tra(p + @) = tra(w(p + ¢ ™) = tra(wpw™) + tra(wp'w™) = tra(p) + tra ().

(2) Consider a A-linear morphism

90:<<P11 SOH):PEBP’%P@P'.
Y21 P22

Suppose first that P = P*» and P’ = P©). Then, we may write

o= (9011 @12) _ <<uij)(i,j)€!2><(l (Uit)(i,t)e.(lx@)

P21 P22 (usj)(s,j)e@xrz (Ust)(s,t)e@x@

where u;; € e;Ae;, uy € e;Aey, usj € esAe; and ug € esAe,. By definition,
tra(p) = 2icq, Halui + [A, A]) + 2 co, Haluss + [A, A]) = tra(e11) + tra(pas).
In general, we have a A-linear isomorphism

p= (“" 0) PP — P9 g p®
such that

—1 —1
popt = (WP WPl ) p@) g pe) _, p) g pe)
0%021&)71 0@22971

By definition, we have
tro(p) = tra(ppp ") = tra(wpniw ™) + trg(0paef ") = tra(p11) + tra(pa).

49



(3) Given A-linear morphisms ¢ : P — P" and ¢ : P’ — P, we obtain A-linear
morphisms w@d ! : P©®) — P and fpw=! : P2 — P©O) By Lemma [2.5.1{2)

tra(p¢) = tra(0(e ) )
= trg(
= tr,(
= tr,(woppw™
= tra(¢p).
(4) Let ¢ € Endy(P) and let ¢ : P' — P be a A-linear isomorphism. By

Statement (3), we have tr,(¢p¢ ') = tr,((pd~')¢) = tr,(p). The proof of the
proposition is completed.

Fix a € Q. Given M a module in Mod A, a projective resolution

. p-n ar pl-n. .. PO d M 0

is called called e,-bounded if P~ = P(?») for n > 0, where the {2,, are a-finite
index sets for @) such that ({2,), is empty for all but finitely many n > 0. In this
case, every ¢ € End,(M) induces a commutative diagram

prndipr o p0 Ty
lwn Lsoln lSOO l(p
p-n 47 pion PO 0,

and we define the e,-trace tr,(¢) of ¢ by setting

tra(¢) = 3o (= 1) tra(¢™™) € HHo(q).

In view of Proposition [2.5.3] we may establish the following important state-
ment; see, for details, 29 (1.3), (1.4)].

2.5.4 Proposition. Let A = kQ/R, where Q) is a locally finite quiver and R is
a relation ideal.

(1) If M € ModA admits an e,-bounded projective resolution, then tr,(y) is
well defined for every ¢ € Endj(M).
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(2) Consider a commutative diagram with exact rows

0 Lo N 0
j‘/’L lWM l%\l
0 L2 N 0

in ModA. If L and N admit e,-bounded projective resolutions, then so does
M and tra(p,,) = tra(p,) + tra(ey)-
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Chapter 3

Graded algebras and graded
modules

The objective of this chapter is to investigate graded module categories over
a graded algebra given by a quiver with relations, especially to generalize some
classical results under the non-graded setting; compare [I] and [2].

Let A = kQ/R be a graded algebra, where @ is locally finite and R is a
homogeneous relation ideal of kQ). Then, A is a positively graded algebra with
A = @;>od;, where A; = {7 | v € kQ;}.

To study graded module categories over A, we begin by constructing a crucial
tool for our investigation: a contravariant functor ® : GModA — GModA°,
which restricts to a duality ® : gmodA — gmodA®. In Section 4, we provide
descriptions of the morphisms in GProjA and GInjA, while in Section 5, we
delve into the graded radical and graded socle in GModA. In order to study the
graded projective covers and the graded injective envelopes, we explicitly describe
the finitely generated graded modules, the finitely cogenerated graded modules,
superfluous graded epimorphisms and essential graded monomorphisms. In the
final section, we shall introduce several Hom-finite Krull-Schmidt k-subcategories
of GModA.

3.1 (General positively graded algebras

The purpose of this section is to recall the notions of general positively graded
algebras and graded modules from [52 53]. It is important to note that our
algebras do not necessarily have an identity.
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3.1.1 Definition. A k-algebra A is called positively graded if there is a family
of k-vector subpaces {A;}i>o of A such that

(1) A=®;>04; as a k-vector space, called the grading of A;

REMARK. Let A be a positively graded algebra. Then Ay is a subalgebra of A,
which does not necessarily have an identity.

For the rest of this section, A stands for a positively graded k-algebra.

3.1.2 Definition. Let A be a positively graded k-algebra. A left A-module M
is called graded provided that, for every i € Z, there is a k-vector subspace M;,
call the i-th homogeneous component, of M such that

(1) M = @;ezM; as a k-vector space, called an A-grading;

(2) AZMJ Q Mi+j; for all ¢ 2 0 andj €.

REMARK. Clearly, A is a graded left A-module with A-grading A = @;>0A4;,
which is written as 4 A.

Let M = ®;czM; be a graded left A-module. Given m € M, we shall always
write m = Zz‘GZ m; with m; € M; and finitely many nonzero m;. An element
m; € M; with ¢ € Z is called homogeneous of degree i. An A-submodule L
of M is said to be graded if L =), _,(M; N L), and in this case, L is a graded
left A-module with A-grading L = @®;czL;, where L; = M; N L. In particular,
a graded submodule of 4A is called a graded left ideal of A. The following
statement collects some well known properties of graded submodules of a graded
module. For the convenience of the reader, we include a proof.

3.1.3 Lemma. Let A be a positively graded k-algebra, and let M = ®;czM; be a
graded left A-module.

(1) An A-submodule N of M is graded if and only if, given m =3y, ., m; € N
with m; € M;, we have m; € N for all 1 € Z.

(2) If L and N are graded submodules of M, then L+ N and LN N are graded
submodules of M.
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(3) If I is a graded left ideal of A and m is a homogeneous element of M, then
Im is a graded submodule of M.

(4) If L is a graded submodule of M, then the quotient M /L is a graded left A-
module with A-grading M /L = ®;ez(M/L);, where (M/L); = (M; + L)/ L.

Proof. (1) Let N be an A-submodule of M. Suppose first that N is a graded.
Let m = ZieZ m; € N, where m; € M;. By definition, we can also write
m =3y, mj, where mj € M; "N C M;. Thus, m; = mj; € N, for all i € Z.

Conversely, assume that this condition is satisfied. Given m € N, we may
write m = )., m;, where m; € M;. By the condition, m; € N, and hence,
m; € M; N N. This shows that N =3, _,(M; N N).

(2) Let L and N be graded submodules of M. Then L+ N is an A-submodule
of M. Consider z € L + N. We may assume that x = m + m’ with m € L and
m' € N. Then m = >, _,m; and m’ = >, _, mj, where m; € M; N L and
m; € M; " N. Then, z = >, _,(m; +mj), where m; +m; € M; N (L + N).
Therefore, L+ N =3".., M;N (L + N).

(3) Assume that I is a graded left ideal of A. Then, I = @®jczl; where
I, = A;N 1. Consider m € M, with s € Z. Clearly, I'm is an A-submodule of
M. Let um € Im, where u € I. Writing u = Zjez“j with w; € I;, we have
=) icgluym) = 3.5 ui—sm, where u;_sm € M; N (Im). This shows that
Im="7%".., M;n0(Im).

(4) Let L be a graded submodule of M. Observe that M/L =", ,(M;+L)/L.
By definition, A; - (M; + L)/L = (AjM; + L)/L C (M;y; + L)/L, for all i, j € Z.
Let Y. ,(m; + L) = 0, where m; € M; such that m; + L = 0 for all but finitely
many ¢ € Z. Without loss of generality, we may assume that m; = 0 for all but
finitely many ¢ € Z. Then, m = ,_, m; € L. By Statement (1), m; € L for all
i € Z. Thus, M/L = ®;cz(M; + L)/L. The proof of the lemma is completed.

As an immediate consequence of Lemma [3.1.3 we obtain the following state-
ment.

3.1.4 Corollary. Let A be a positively graded k-algebra, and let M be a graded
left A-module. If my,...,m, € M are homogeneous, then Amy + ---+ Am, is a
graded submodule of M .

Proof. Assume that m, is homogeneous of degree i. Then, Am; = @;>0A;my,
which is clearly graded submodule of M. By Lemma [3.1.3(2), Am; + --- + Am,
is a graded submodule of M. The proof of the corollary is completed.
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Let M be a graded left A-module. A graded submodule L of M is said
to be graded essential in M if M # 0 and L N N # 0, for any non-zero
graded submodule N of M; and graded superfluous in M if L is a proper
graded submodule of M and M is the only graded submodule of M such that
L+ M = M. The following statement is evident.

3.1.5 Lemma. Let A be a positively graded k-algebra, and let M be a graded left
A-module.

(1) A graded submodule of M is graded superfluous if and only if it is contained
i a graded superfluous submodule of M.

(2) A graded submodule of M is graded essential if and only if it contains a
graded essential submodule of M.

Let M be a graded left A-module. One says that M is graded simple if it is
non-zero with exactly two graded submodules 0 and M; graded semisimple if
it is a direct sum of graded simple modules. Moreover, a graded submodule L of
M is called graded maximal if there exists no graded submodule N of M with
L C N C M. The following statement is well known.

3.1.6 Lemma. Let A be a positively graded k-algebra, and let M be a graded left
A-module. A graded submodule L of M is graded mazimal if and only if M/L is
graded simple.

The following definitions will play an essential role in our later study of graded
modules.

3.1.7 Definition. Let A be a positively graded k-algebra, and let M be a graded
left A-module.

(1) The graded socle socM of M is defined to be the sum of all graded simple
submodules of M in case M has graded simple submodules; and otherwise,
socM = 0.

(2) The graded radical radM of M is defined to be the intersection of all
maximal graded submodules of M if M has maximal graded submodules;
and otherwise, radM = M.
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(3) The graded top of M is defined to be the graded quotient module topM =
M /radM.

Let M, N be graded left A-modules. An A-linear morphism f : M — N is
called graded if f(M;) C N; for all i € Z. We shall write f; : M; — N;, where
1 € Z, for the maps obtained by restricting f. The following statement is well
known.

3.1.8 Proposition. Let A be a positively graded k-algebra, and let f: M — N
be a graded A-linear morphism of graded left A-modules.

(1) Imf = @iez(Imf); is a graded submodule of N, where (Imf); = Im(f;).
(2) Kerf = @;ez(Kerf); is a graded submodule of M, where (Kerf); = Ker(f;).

(3) There is a one-one correspondence L — L/Ker(f) from the class of graded
submodules L of M with Ker(f) C L C M onto the class of graded submod-
ules of ITm(f).

Let M = ®;ezM; be a graded left A-module. Given s € Z, we define the
grading s-shift M(s) of M by M(s); = M, for all i € Z. And for a graded A-
linear morphism f : M — N, we define the grading s-shift f(s) : M(s) — N(s)
of f by f(s); = firs, for all : € Z. The following statement is evident.

3.1.9 Lemma. Let A be a positively graded k-algebra. If f : M — N is a graded
A-linear morphism of graded left A-modules, then Ker(f(s)) = (Kerf)(s) and
Im(f(s)) = (Imf)(s), for all s € Z.

Let M = @;czM; be a graded left A-module. Given a k-vector space V,
it is clear that M ® V = ®;ezM; ® V is a graded left A-module such that
a(m®@wv) = (am)®@w, for alla € A, m € M and v € V. The following statement
is evident.

3.1.10 Lemma. Let A be a positively graded k-algebra. Given a graded left A-

module M and a k-vector space V', we have (M @ V){(s) = M(s) ® V, for all
s € 7.

56



3.2 Positively graded algebras given by a quiver
with relations

Throughout the rest of this chapter, we shall concentrate on graded algebras
given by a quiver with relations. For this purpose, we shall always assume that
A = kQ/R is a graded algebra, where @ is a locally finite quiver and R is
a homogeneous relation ideal of kQ). It is important to note that A does not
necessarily have an identity. The terminology, the notations and the results
stated in this section will be used frequently in the sequel.

A graded left A-module M = @;czM; is called unitary if M = erQo e, M.
Let M be such a unitary graded left A-module. Since the e, in A with x € @)y are
pairwise orthogonal, it is easy to see that M = @,eq, M (), where M (z) = e, M,
called the z-point component of M. As a consequence, M = @;cz.0c0, Mi(z),
where M;(z) = e, M;, called the (i,z)-piece of M. Given m € M, by writing
m= Z(i,x)erQo mi . with m; , € M;(z), we shall assume implicitly that m; , =0
for all but finitely pairs (i,2) € Z x Q. An element m € M will be called pure
if m € M;(x) for some (i,z) € Z X Q.

The following easy statement is useful.

3.2.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider a graded left A—module M. If N is a A-submodule of M, then

the following statements are equivalent:

(1) N is a graded A-submodule of M;
(2) N = Z(i,x)EZXQo N, », where N, is a k-vector subspace of M;(x);

(3) for any m = 37 enxg, Mix € N with m;, € M;(z), we have m;, € N
for all (i,x) € Z x Q.

Proof. Let N be a A-submodule of M. First, suppose that Statement (1) holds.
Given m € N, we may write m = )., m;, where m; € M;. By Lemma[3.1.3(1),
m; € N for all i € Z. Since M is unitary, we have m; = erQo ey,m; with
exm; € Mi(x) N N for all (i,z) € Z x Qo. Thus, N =3, 7 o, (Mi(x) N N).
In particular, Statement (2) holds.

Now, suppose that Statement (3) holds. Given any m € N, we may write m =
Z(i,x)eZXQO m;, where m;, € M;(x). By Statement (3), m;, € N, and hence,
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m;e € M;(2)NN for all (i, z) € Zx Q. This shows that N =7 ) 7. o (M;NN).
In particular, Statement (2) holds.

Finally, suppose that Statement (2) holds, that is, N = Z(i,x)erQo N,
where N;, is a k-vector subspace of M;(z). Then, any element m € N can be
written as m = Z(i,w)EZXQO ni . with n;, € N;, € M;(z) C M;. Assume that
m = Z(i,m)GZXQO mi, with m;, € M;(x). Then, m;, = n;, € N for all (i,z) €
Z x Qo. Therefore, Statement (3) holds. Moreover, assume that m = ) _, m;,
where m; € M;. Observing that erQo ni. € M;, we get m; = erQo Niz € N,
for all i € Z. By Lemma [3.1.3(1), N is a graded submodule of M. That is,
Statement (1) holds. The proof of the lemma is completed.

Let f: M — N be a graded A-linear morphism between unitary graded left
A-modules. We shall write f;, : M;(z) — N;(x), where i € Z and x € Qy, for the
maps obtained by restricting f. Observe that such a graded A-linear morphism
f is uniquely determined by a family of k-linear maps f;, : M;(x) — N;(x) with
(i,2) € Zx Qo such that uf; ,(m) = fiy;,(um), for allu € e, Aje, and m € M;(z).

Clearly, the unitary graded left A-modules together with the graded A-linear
morphisms form an abelian k-category, which will be denoted by GModA. Given
modules M, N € GModA, we shall write GHom (M, N) for the k-vector space of
graded A-linear morphisms f : M — N. In particular, GEnd (M) = GHom, (M, M).
The following statement is evident.

3.2.2 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite

quiver. A sequence of morphisms Lo M—2~ N in GModA is ezact if and

only if the sequences L;(x) &Ml(aj) LN N .(x) are exact in Modk, for all

(1,x2) € Z X Q.

As in the classical case where graded algebras have an identity; see [52, page
7], the abelian category GMod/ has arbitrary direct sums and arbitrary products.

3.2.3 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally
finite quiver. Consider a family {My}sex of modules in GModA.

(1) The direct sum M = @,ex M, exists in GModA such that M;(x) = @,cx(M,)i(x)
for all (i,x) € Z x Q.

(2) The product N = e M, exists in GModA such that Ni(x) = ,ex(M,)(z)
for all (i,z) € Z x Q.
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Proof. We shall only prove Statement (2), since the proof of Statement (1) is dual.
Put N = ®¢a)ezxqoNi(x), where Nij(z) = Il,ex(M,)i(z). For any u € e Aje,
and (m,)sex € Ni(x), we define u- (my)ses = (Wmey)sex € Nitj(y). This defines
a graded A-module structure of N. Let {p, : N — M,},cx be the family of
canonical projections, in which p, : N — M,;(my)ses — m, for all p € X.
Assume that L is a graded A-module with a family {f, : L — M, },cs of graded
A-linear morphisms. Fix (i,2) € Z x Q. Note that, by definition, V;(z) is a
product of (M, );(x). Then there is a unique k-linear map g;, : L;(z) — M;(x)
such that for each o0 € X' the diagram

(po)i,x
P —

(Mo)i(x) Ni(z)=,e5(M,)i(v)
(fa)i,xT T
Li(x)

commutes. Thus, we obtain a unique k-linear map g = (gi,x)(m) : L — M such
that the diagram

M, <2 N
f”T/
L

commutes, for each o € . Next, we show that g is A-linear, or equivalently, the
diagram

gi+j,
Li+j (?J) — i+j (y)

commutes for all u € e, A;e, with (j,y) € Z x Qy. Given m € L;(x), we have

u(fiz(m)) = u(((po)ia © gix)(M)) = ((po)ia(gia(m))) = (Po)itjy(u(gia(m)))
and
fivin(um) = (Po)itjy © Giviy(Wm) = (Po)itjy(gitjy(um))
for all o € X. Since u(f;z(m)) = fitj,(um), we have

(Po)itiy(u(giz(m))) = (Po)itiy(Gitjy(um))

for all ¢ € ¥. This implies that u(g; ,(m)) = ¢itj,(um). Therefore, ¢ is a A-linear
map. The proof of the proposition is completed.
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In the sequel, we shall need to consider various types of graded A-modules as

defined below.

3.2.4 Definition. Let A = kQ/R be a graded algebra, where @ is a locally finite
quiver. Let M € GModA with M = @®iczM; = @reqoM (2) = @(iw)czxgoMi().
We shall say that M is

(1) finitely supported if M(z) = 0 for all but finitely many = € Qo;

(2) finitely piece-supported if M;(z) = 0 for all but finitely many (i,z) €
Z % Qo;

3) bounded above if M; = 0 for i > 0;

4) bounded below if M; = 0 for i < 0;

6

(3)

(4)

(5) bounded if M; = 0 for all but finitely many i € Z.

(6) locally finite dimensional if M; is finite dimensional for all i € Z;
(7)

7) piecewise finite dimensional if M;(z) is finite dimensional for every
(i, I’) €7 x Qo.

The full subcategories of GMod A/ of finitely piece-supported modules, of boun-
ded below modules and of bounded above modules will be written as GMod™,
GMod™, GMod 4, respectively. Moreover, we shall denote by gmodA the full
subcategory of GModA of piecewise finite dimensional modules, while the full
subcategories of gmodA of finite dimensional modules, of bounded below mo-
dules and of bounded above modules will be written as gmod®d, gmod™, gmod ™4,
respectively.

3.2.5 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Then gmod A is an extension-closed abelian subcategory of GModA.

Proof. It amount to show that given an exact sequence

0Lt 2o N0

in GModA, we have M € gmodA if and only if L, N € gmodA. Indeed, by Lemma

3.2.2 the sequence 0 —— L;(x) RS M;(z) 22 Nj(z) — 0 is exact for each

(2,) € Z x Qo. Therefore, dim,M;(z) < oo for all (i,x) € Z x @y if and only if
dimy L;(z) < oo and dimyN;(x) < oo, for all (i,2) € Z x QQy. The proof of the
lemma is completed.
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3.3 The contravariant functor %

Throughout this section, 4 = kQ/R is a graded algebra, where () is a locally
finite quiver. We shall construct a contravariant functor ® : GModA — GModA°,
by applying D = Homg(—, k) to every piece of a graded A-module. This functor
restricts to a duality ® : gmodA — gmodA°. Our functor ® is different from the
similar functor defined in [42] page 70], where D is applied to every homogeneous
component of a graded module, and the one defined in [16]; see also |26, [11],
where D is applied to every point-component of a non-graded module.

Let M be a module in GModA. First, we write DM = P;ez(DM);, where
(DM); = Breq, D(M_;(z)). Then for ¢ € D(M_;(x)) and u € e, Aje,, we define
u®- ¢ € D(M_;_;(y)) by setting

(u®-p)(m) = p(um), for all m € M_;_;(y).

It is easy to verify that ®©M € GModA° with (DM );(z) = D(M_;(z)) for all
(i,2) € Z x Qp. Sometimes, we shall consider ®M as a k-vector subspace of
DM = Homy,(M, k) in the following way: given ¢ =33, s o @iz € DM with
Pix € D(M;(x)), for m =37 \cr0, Miy € M with m;, € M;(y), put p(m) =
Z(i,x)EZXQo ©ix(Mmi ;). Moreover, given a morphism f : M — N in GMod4, we
obtain a morphism ®f : ®©N — ®M in GModA® by setting (Df); . = D(f-iz),
for all (i,z) € Z x Q. Clearly, this yields an additive contravariant functor
® : GModA — GModA°.

3.3.1 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) If M € GModA and s € Z, then D(M(s)) = (DM ){—s).
(2) Given M € GModA and V € Modk, there exists a binatural morphism
0: DM@ DV -DMxV)
i GModA, which is an isomorphism in case M € gmodA or V € modk.

(3) The functor ® : GModA — GModA°® is exact, and it restricts to functors
D : GMod™ — GMod ™ A° and ® : GMod A — GMod™A°.
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Proof. (1) Let M € GModA. Given s € Z, by definition, we see that
(DM)(=s)i = (DM)i—s = Gaeq, D(Ms-i(2))
and
(DM(s))i = Dreqo D(M(s)-i(x)) = Bacqy D(Ms-i(x)),
for all i € Z. That is, ®(M(s)) = (DM )(—s).
(2) Let M € GModA and V' € Modk. For any (i,x) € Z x Qy, by definition
(DM @ DV);(z) = (DOM);(z) ® DV = D(M_;(z)) ® DV
and
(DM @ V))i(x) = D(M @ V)_i(z)) = D(M_s(x) @ V).
Now by Corollary 2.1.2)(2), we have a binatural k-linear map

Let ¢ € D((M_;(x)), f € DV and u € e, Aje, with (i,2), (j,y) € Z x Qo. For
m € M_,_;(y) and v € V, as defined in Corollary [2.1.2(2), we have

(u® - Oia(p @ f))(m @) = bia(p @ f)((wm) @ v) = p(um) f(v)
and
Oirjoy(u® - (0 © f))(m @ v) = biyjy (0 - 0) ® f)(m @)
= ((u®- @) (m))f(v)
= @(um) f(v).
That is, u® - 0; (0 ® f) = Oi1j,(u® - (¢ ® f)). Therefore, 0 = (0; )i x)czx0, i a
morphism in GModA. Since the 6, , are natural in M, and V', we see that 0 is
natural in M and V. Finally, if M € gmodA or V' € modk, then it follows from
Corollary [2.1.2(2) that 6;, is a k-linear isomorphism for every (i,z) € Z x Q.
Thus, 6 is an isomorphism.
(3) Let L—1oM—2~N be an exact sequence in GModA. Given any

(i,2) € Z x Qq, by Lemma [3.2.2) the sequence L;(z) AMz(x) i>N,Jm(ac)

D(gi,x) D(fl,(L)

D(M;(x))

is exact, and hence, the sequence D(N;(x)) D(L; () is

of

exact. Again by Lemma |3.2.2] the sequence DN DM DL is exact in
GModA°. This proves the first part of Statement (3), and the second part follows
immediately from the definition of ®. The proof of the proposition is completed.

The following statement says that ® converts direct sums into direct products.
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3.3.2 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Let {M,}weq be a family of modules in GModA. Then
©<€Bw€QMw) = Hw€Q©<Mw)-

Proof. Write M = @®,coM, and N = I c0®(M,). Fix (i,z) € Z x Qo. By
Proposition B.2.3, M;(z) = @uece(My)i(z) and Ni(z) = Muen(D(M,))i(x) =
H,enD((My)—i(x)). For each w € €, denote by ¢, : (M,)(x) — M;(z) the
canonical injection. It is well known that we have a k-linear isomorphism

Dyt (DM)i(7) = D(Buen(My)-i(7)) = Huep D((My)-i(z)) = Ni(z)

such that @, ,.(f) = (f © qu)wep for all f € (DM);(z). Given f € (DM);(z)
and u € eyAje,, where 4,5 € Z and x,y € @, it is a routine verification that
u- P .(f) = Pigjy(u- f). Therefore, & = (P;.)40)ezxqy : DM — N is a
morphism in GModA. The proof of the proposition is completed.

The next statement is our promised duality.

3.3.3 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) Given M € GModA, there is a natural monomorphism Y™ : M — D2M
in GModA, which is an isomorphism in case M € gmodA.
(2) The contravariant functor ® : gmod A — gmodA°is a duality, which restricts

to dualities ® : gmod™A — gmod A° and ® : gmod A — gmod*A°.

Proof. Let M be a module in GModA. Given (i,z) € Z X o, it is well known
that there is a canonical k-linear monomorphim

ix t Mi(z) = D*(Mi(2)) = (D*M)i(x)

given by the formula L (m)(¢) = ¢(m), for all ¢ € D(M;(z)) and m € M;(x).
We claim that this yields a graded A-linear morphism

wM - (¢%g)(i,x)€ZXQo M — ©2M7
or equivalently, the following diagram commutes

M
wi,z

M;(x) D?*(M;(x))

l . L

Mi-l—j (y) — D2<Mi+j (y))
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for u € eyAje, and (i,2),(j,y) € Z x Q. Indeed, for m € M;(z) and ¢ €
D(M;1(y)), we have

My (um) () = o(um)

= (- ¢)(m)
= v (m)(u )
= (u ) ().

This establishes our claim. Next, consider a morphism f : M — N in GModA.
Fix (i,z) € Z x Qo. For m € M;(x) and ¢ € D(N;(x)), we have

(Wi 0 fia) (M) () = Ui (fin(m)) () = @(fin(m)) = (00 fiz)(m)

and
(fie) (Wi (m))) ()
bi(m)) o D(fi)) ()
v (m)(D(fie)(9))
pe(m) (o fiz)
= (po fiz)(m).
Thus, (7%, © fiz)(m) = (D*f)iz 0 ¥ig)(m) i © fiw = (D2 f)iw 0. This
shows that v is natural in M.

Finally, if M € gmodA, then M;(x) € modk, and consequently, ¥ is a

k-linear isomorphism, for all (i,7) € Z x Q. That is, ¥ is a graded iéomor—
phism. Thus, Statement (2) follows from Proposition [3.3.1[(3). The proof of the

proposition is completed.

(D% f)iw 0 ig) (M)(g) = (D?
((
(&
(8

Using the duality ®© : gmodA — gmodA° we have the following result.

3.3.4 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If f : M — N is left minimal in gmodA, then ®f : ON — DM is right
minimal in gmodA°.

(2) If f : M — N right minimal in gmodA, then Df : ON — DM is left
minimal in gmodA°.
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Proof. We shall only prove Statement (1), since Statement(2) is dual. Suppose
that f : M — N is left minimal in gmodA. Let g : ® N — ©® N be a morphism in
gmod/A° such that ®f o g =D f. Then, Dgo Df = D2f. By proposition [3.3.3]
we have YV o f = D%f o ™, where M : M — D2M and ¢V : N — D2N are
graded isomorphisms. Thus, we see that

YNof =D fopM =Dgo@?f oyt =Dgoyof.

So, f = (WN)toDgoyN o f, where (V) is an inverse of ¥V. Since f is left
minimal, (V) 1o Dgoy is a graded automorphism, and hence, so is Dg. This
shows that © f is right minimal. The proof of the Lemma is completed.

3.4 Graded projective modules and graded in-
jective modules

Throughout this section, let A = kQ/R be a graded k-algebra, where @ is
a locally finite quiver. Under our general setting of A without an identity, we
study graded projective A-modules and the graded injective A-modules. We shall
give an explicit description of the morphisms between graded projective modules
with a finitely piece-supported top and those between graded injective modules
with a finitely piece-supported socle. Moreover, we shall prove that, as under
the classical setting, GMod/ has enough projective objects and enough injective
objects.

To start with, we put P, = Ae, for each a € ()y. Since () is a locally finite,
P, = ®icz(P,); € gmodA, where (P,); = Aje,. In particular, (P,); = 0 for i < 0.
In order to describe graded morphisms from such modules, we fix some notations
which will be used for the rest of this thesis. Let M be a module in GModA.
Given u € e Ase, with s € Z and x,y € @, the left multiplication by u yields a
k-linear map
M(u) : Mi(z) = Mips(y); m — um,

for every i € Z. On the other hand, given m € M,(a) with s € Z and a € Q,
the right multiplication by m yields a graded A-linear morphism

M[m)] : P,(—s) = M;v +— vm.
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3.4.1 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Consider modules M € GModA, W € Modk and P,(—s) @ V' with
(s,a) € Z x Qo and V € Modk. We have a k-linear monomorphism

¢, Mg(a) @ Homg(V, W) — GHom(P(—s) @V, M @ W);m & f — M[m]| ® f,

which is natural in M. Moreover, p,, is an isomorphism in case Mg(a) or V is
finite dimensional.

Proof. Consider M € GModA and W € Modk. We first show that the k-linear
map ¢,, stated in the proposition is natural in M. Given a morphism g : M — N
in GMod A, we have a commutative diagram

M(a) @ Homy,(V, W) -2~ GHom(Py(—s) @ V, M @ W)
gs,a®idl l(g@)idw)*

N,(a) ® Hom, (V, W) <2~ GHomy (Py(—s) @ V, N @ W),
where (¢ ® idw ), = GHom(P,(—s) ® V, g ® idw ). Indeed, we have

(on 0 (gs.a @1d))(m @ f)(ea @ v) = PN (gs,a(m) @ f)(ea ® v)

and

(g ®idw)s o o) (m ® f)(ea ®v) = (¢ ® idw ) (M[m] ® f)(es ® v)
= (g ®idw) o (M[m] ® f)(ea @)
= (9 @idw)(m ® f(v))
= gs.a(m) @ f(v)

for all m € M;,, f € Hom(V, W) and v € V; thus, we see that ¢y o (gs,®id) =
(9 ®idw )« 0 pur.

Choose a basis {m; |i € 2} of M_y(a). lf w =), ,m; ® f; € ker(yp,,) for
some f; € Homy(V, W), then ¢, (w)(ea ® v) = > ,c.om; ® fi(v) = 0, and hence,
fi(v) =0, for all v € V and i € 2. That is, ¢,, is a monomorphism.

Consider f € GHomy(P,(—s) @ V,M @ W). Given v € V, since e, ® v €
P,(—s)s ® V, we see that f(e, ®v) € (M ® V)s(a) = Ms(a) ® V, and hence, we
can uniquely write f(e, ® v) = Y., m; ® w;,, for some w;, € W. This yields,
for every i € 2, a k-linear map f; : V — W, sending v to w;,. In case {2 is

66



finite, f = ¢,, (3 ;comi ® fi). Otherwise, choose a basis {v;|j € A} of V and a
basis {w; |1 € ©} of W. For (i,7) € © x A, we have §;; € Homy(V, W) such that
0;j(v;) = w; and 6,;(v,) = 0 for j # p. For each j € A, we may write uniquely
flea ®vj) = .co mij @ w;, where my; € M,(a) with m;; = 0 for all but finitely
many ¢ € ©. In case A is finite, m;; = 0 for all but finitely many (4, j) € © x A,
and f = @M(Z(i,g‘)eegm mi; ® 6;;). The proof of the proposition is completed.

REMARK. By Proposition [3.4.1 P,(—s) ® V with (s,a) € Z x Qo and V € Modk
are graded projective A-modules. Thus, the strictly full additive subcategory of
GModA generated by them will be written as GProjA. Moreover, we denote by
gproj/ the strictly full additive subcategory of GModA generated by P,(—s) with
(s,a) € Z x Q.

As a special case of Proposition [3.4.1] we obtain the following useful result.

3.4.2 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Given M € GModA and P,(—s) with (s,a) € Z X Qo, we obtain a k-linear
isomorphism

@, Mg(a) = GHomy(P,(—s), M);m — M][m)],

whose inverse is given by n,,: GHom,(P,(—s), M) — M(a); f — f(ea)-
Proof. Let f € GHomu(P,(—s), M). Observing that e, € P,(—s)s(a), we see that
m = f(e,) € Ms(a) such that f = M[m]. The proof of the corollary is completed.

We shall describe the morphisms in GProj A; compare [9], (7.6)]. To simplify
the notation, for u € e,As_1e, = Py(—t)s, the right multiplication by u will be
simply written as

Plu] : P,(—s) — P)(—t);v — vu.

This notation will be used for the rest of this thesis. Note, however, that it does
not distinguish Plu] from its grading shifts.

3.4.3 Proposition. Let A = kQ/R be a graded algebra, where @ is a locally
finite quiver. Consider P,(—s) @ V' and Py(—t) @ W with (s,a), (t,b) € Z x Qo
and V,W &€ Modk. Then, we obtain a k-linear isomorphism

¢ 1 eqAs_iep, @ Homy (V, W) — GHomy (Py(—s) @ V, P(—t) @ Wiu® f +— Plu] ® f.
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Proof. Write M = Py(—t) @ W. Then, My(a) = Py(—t)s(a) = e,As_tep, which is
finite dimensional. By Proposition |3.4.1] we obtain a k-linear isomorphism ¢ as
stated in the proposition. The proof of the proposition is completed.

Given a € @)y, we shall write P? = A%, € projA°. Then I, = DP? € gmodA
with a A-grading I, = ®iez(la)i, where (1,); = ®reg,(La)i(x) with (1,);(z) =
D(e,A° ;e,), for (i,z) € Z x Q. In particular, (I,); = 0 for ¢ > 0. If fe(I,):(z
and u € eyAje,, then (u- f)(v°) = f(u°v®) for any v € e,A_;_je,. Therefore,
1(u) = D(PY(u)) : (Li(x) = (L) 5(9).

3.4.4 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Given M € GModA and I,(s) @ V with (s,a) € Z x Qy and V € Modk,
we have a natural k-linear isomorphism

¥, GHomy (M, I,(s) ® V) — Homg(M_4(a), V).

Proof. First, we have a k-linear isomorphism 6, : Homy (e, Ageq, V) — Vig—g(eq).
And given (i,z) € Z X Qo, by Corollary 2.1.2[(1), we have a k-linear isomorphism
Oiz: Lo(s)i(z) @V = D(e, A%, .e,) @V — Homy (e, A°

—1—s

€q, V)

so that ;. (h®v)(u®) = h(u®)v, for h € D(e,A%;_.e4), u € e, A_;_se, and v € V.

Furthermore, given any graded morphism f : M — [,(s) ® V', we have a k-linear
map f_s,: M_s(a) = I,(s)_s(a) ® V. This yields a natural k-linear map

Y, » GHomy (M, I,(s) ® V) — Homy(M_s(a),V); f — 0,00 540 f_sa.

Suppose that ¥, (f) = 0. Fix (i,x2) € Z x Qy and m € M;(x). We may
write fi.(m) =377, h; ® v;, where h; € D(e,A%;_,e,) and the v; are k-linearly

independent in V. If u € e,A_;_se,, then f_; ,(um) = uf; ,(m) = ijl uh; ® ;.
Observing that uh; € 1,(s)_s(a), we obtain

0 =4y, (F)(um) =375y 0-saluh; @vj)(ea) = 325 (why)(ea)v; = 325 hi(u®)v;.

Thus, hj(u®) =0, for j =1,...,r. Hence, h; =0, for j = 1,...,r. In particular,
fiz(m) =0. Thus, f;, =0 for all (i,x) € Z x Q. So, ¢,, is a monomorphism.
Consider now a k-linear map g : M_g(a) — V. Given (i,z) € Z X Qo, we shall
define a k-linear map f;, : M;(z) — I,(s)i(x) ® V. For any m € M;(z), we have
a k-linear map g¢;.(m) : e, A%, e, — V such that g;.(m)(u°) = g(um) for all
u € e, A_;_se,. This yields a k-linear map f;, : M;(z) — I.(s);(z) ® V, sending
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m to cr;x1 (gix(m)). In other words, o; .(fi.(m)) = gi.(m), for all m € M;(x). Let
v € eyAje, and m € M;(x). Given u € e, A_;_;_se,, we obtain

Oty (firg (VM) (u®) = Gigjy(vm)(u®) = gluvm) = gia(m)((uv)®).
Giz(m)) = Zr h, ®v,, for some h, € D(e,A°%,_.e,)

—’LS

€q)- S0

On the other hand, o;

1,T

2
and v, € V. Thus, vf;,(m) =3 _, (vh, )®vp with vh, € D(e, A%, ;_

Tit gy (Ui () (W) = 325 (hp) (u)vp =310y @ 1) (uv)°) = gi o (1) ((w)°).

Thus, 04y (Vfiz(m)) = 0iyjy(firjy(vm)). Hence, fii;,(vm) = vf;,(m). That
is, we have a graded A-linear morphism f = (fiz)uz)czxq, : M — I(s) @ V.
Clearly, 1,,(f) = g. The proof of the proposition is completed.

S

REMARK. By Proposition [3.4.4] I,(s) ® V with (s,a) € Z x Qp and V € Modk
are graded injective A-modules. The strlctly full additive subcategory of GModA
generated by them will be written as GInjA. Moreover, the strictly full additive
subcategory of GModA generated by I,(s) with (s,a) € Z x Qo will be denoted
by ginjA.

Fix a € @Qp. Observe that (I,)o = (la)o(a) = D(e,AJes) = D(ke,). In
the sequel, we shall always denote by e the k-linear form in (/,)o(a) such that
e*(e,) = 1. The following statement can be regarded as the dual statement of

Corollary [3.4.2]

3.4.5 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Let M be a module in GModA. Given m € M_4(a) with (s,a) € Z x Qo,
there is a graded morphism f : M — 1,(s), sending m to e.

Proof. Fix m € M_4(a) with (s,a) € Z x Qo. In view of Proposition [3.4.4) we
have a k-linear isomorphism

Y, GHomy, (M, 1,(s)) — Homy(M_4(a),k); f — 6,0 f_sa,

where 6, : Homy (e, AJeq, k) — k; g — g(eq) is a k-linear isomorphism. Consider
a k-linear map h : M_s(a) — k, sending m to 1. Then, there exists a graded
morphism f : M — I,(s) such that ¢,,(f) = h. Thus, we see that

L= h(m) =1, (f)(m) = (0a 0 f=sa)(m) = 0u(f=sa(m)) = f=sa(m)(€a).
That is, f_s4(m) = €. The proof of the lemma is completed.
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Now, we shall describe the morphisms in GInjA. For this purpose, we fix some
notations, which will be used for the rest of this thesis. Given u€e,A;_ze, with
s,t € Z and a,b € Q, the right multiplication by u° yields a morphism P[u°] :
P2(—t) — P2(—s) in gprojA°. Applying the duality © : gmodA°® — gmod4, we
obtain a morphism [[u] = ©(P[u°]) : I.(s) — I,(t) in ginjA. Note that this
notation does not distinguish I[u] from its grading shifts.

3.4.6 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Consider I,(s) @ V and I,(t) @ W with (s,a), (t,b) € Z x Qo and
VW € Modk. Then, we obtain a k-linear isomorphism

¢ eqMi—sep, @ Homy (V, W) — GHomy (1,(s) @ V, Iy(t) @ W); u f +— I[u] ® f.
Proof. First, we have a canonical k-linear isomorphism
N eqAi_sey, — D*(ey A2 eq);u — n(u),

such that n(u)(g) = g(u®) for all u € e,A;_sep, and g € D(epA;_.e,). And by
2.1.1], we obtain a k-linear isomorphism

p: D*(eyAy_eq) @ Homy (V, W) — Homy,(D(eyA7_yea) @V, W) 0@ f = p(p ® f)

such that p(e ® f)(g @ v) = p(g9)f(v), for all g € D(epA] ,e,) and v € V.
As did in the proof of Proposition[3.4.4], we consider two k-linear isomorphisms
0y : Homy(ep Agep, V') — W; g — g(ep) and

o_tp: D(epAger) @ W — Homy(epAgen, W) g @ w +— o_44(g @ w)

such that o_;,(g ® w)(ep) = g(ep)w. Since (L(s) @ V)_4(b) = D(epdy_se4) @V,
we obtain a k-linear isomorphism

Y GHomy(1,(s) @V, Iy(t) @ W) — Homy (D(epA}_ eq) @V, W)h — 000 _;0h_yp.
Now, we obtain a k-linear isomorphism
¢ =1vopo(n®id) : eqAy_sep @ Homy(V, W) — GHomy(I(s) @ V, I,{t) @ W).

Fix u € e, Ay_sep and f € Homy(V, W). We claim that ¢(u® f) = I[u]® f, or
equivalently, (po (n®id))(u ® f) = ¥ (I[u] ® f). Indeed, given g € D(epA;_.€,)
and v € V', we have

(po(n®@id))(ue® f)lg®v) =



and

(Iu] @ f)lg@v) = (0o o (I[u] @ f)-1p)(g @ v)
b0 ob)({[ul(g) @ f(v))
b(L[ul(g) © f(v))(en)
[u](g)(ea)) f ()

(u®)f(v).

That is, (po (n®id))(u ® f)(g ® Y(I[u] ® f)(g ® v). This establishes our
claim. The proof of the proposition is completed.

= (0
(1
g(u
v) =

As an immediate consequence of Propositions and we obtain the
following statement, which shows an important difference between the graded
setting and the non-graded setting.

3.4.7 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Given a € Qo, we have GEnd(P,) = GEnd(1,) = k; and in particular,
P, and I, are strongly indecomposable.

The following result is well known in case A has an identity; see [52, page 7].

3.4.8 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Then, GModA has enough projective objects and enough injective
objects.

Proof. Let M € GModA. Given (i,z) € Z X Qo, it is clear that we have a graded
morphism f; , : Py(—i) ® M;(xz) — M such that f; .(u®m) = um for u € P,(—i)
and m € M;(x). Consider @ 2)ezxqoFr(—1) ® M;(x) with canonical inclusions
Usa @ Pa(—5) @ Ms(a) = @w)czxgoPe(—1) @ M;(x), with (s,a) € Z x Qy. By
the universal property of direct sums, there exists a unique graded morphism
[ BumezxgoPue(—1) @ M;(x) — M such that f o g, = fsq for all (s,a) €
Z x Qo. Given m € M;(x) with (i,z) € Z x Qo, we see that f(g;.(e; ® m)) =
(fogqiz)es®@m) = fir(e; ®m) =m. Thus, fis a graded A-linear epimorphism.
That is, GModA has enough projective objects.

Since GModA° has enough projective objects, by the above construction, we
have a graded epimorphism ¢ : @ g)ezx, Py (t) ® D(M;(x)) — ©M. Applying
the exact functor ®, we obtain a graded monomorphism

D(g) : D*M — D(D(i,)ezxqo Pr (i) © D(Mi(2))).

x
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In view of Propositions [3.3.1] and [3.3.2], we have
D(Bi)ezx@oLa(—1) @ D(M;i(x))) = 1 0)ezxqoD (Pr(—i) © D(M;(x)))

= TL(s,0)ezx 0D (Py(—1)) ® D*(M;(x))

= (i 0)ezxQo (i) ® D*(Mi(z)),
which is graded injective by Proposition . Moreover, by Proposition (1),
there exists a graded monomorphism v : M — ©2M. This yields a desired graded
monomorphism D (g) o ¢ : M — D (D z)ezx, Poli) ® D(M;(x))). The proof of
the proposition is completed.

3.5 Graded socle and graded radical

In this section, let 4 = kQ/R be a graded algebra, where @ is a locally finite
quiver. Put J = ®,-94,, which is a graded ideal of A. Under this setting, we
shall be able to describe the graded radical and the graded socle of a graded
A-modules. Moreover, we will provide some sufficient conditions for the graded
socle to be graded essential and the graded radical to be graded superfluous.

To start with, we shall describe all graded simple modules in GMod A; compare
[2, (1.5.17)]. Fix a € Qo. We put S, = P,/Je,, where Je, is a graded submodule
of P, by Lemma (3) Since P, = Je, + ke,, we have S, = k(e, + Je,). Thus,
Sa(n) is graded simple for each n € Z.

3.5.1 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Then every graded simple module in GModA is isomorphic to S,(—n),
for some (n,a) € Z x Qo.

Proof. Let S be a graded simple module in GModA. Then, there exists a non-zero
element m € S, (a) for some (n,a) € Zx Q. By Corollary[3.1.4] Am is a non-zero
graded submodule of S, and hence, S = Am. By Corollary[3.4.2] we have a graded
A-linear epimorphism p : P,(—n) — S such that p(e,) = m. On the other hand,
by Lemma [3.1.3] Jm is also a graded submodule of S. Since Jm C @®;>p415;, we
see that Jm # S, and hence, Jm = 0. This implies that (JP,){(—n) C Ker(p).
Therefore, p induces a graded epimorphism p : P,(—n)/(JP,){—n) — S. Since
P.(—n)/(JP,){—n) = S,(—n), which is graded simple, we see that S = S,(—n).
The proof of the Proposition is completed.

The following statement describes the graded socle of any graded A-module.
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3.5.2 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider a module M = ®;cz M; = ®; z)czxqoMi(x) in GModA.

(1) socM = @i z)ezxq, (socM);(x) with (socM );(z) = {m € M;(z) | Jm = 0}.
(2) socM is contained in any essential graded submodule of M.

(3) If Me GMod A is non-zero, then socM is graded essential in M.

Proof. (1) Write N;, = {m € M;(z) | Jm = 0} for all (i,2) € Z x Qo. By
Proposition[3.5.1] we see that (socM);(z) C N;,. On the other hand, let m € N;,
with (i,2) € Z x Q. By Corollary Am is a graded submodule of M. Since
Ae, = Je,+ke,, we see that Am = Ae,m = km. Thus, Am = 0 or Am is a graded
simple submodule of M. So, Am C socM, and consequently, m € (socM);(x).
Thus, N;, C socM, and hence, (socM);(z) = N; 4.

(2) Let L be an essential graded submodule of M. If S is a simple graded
submodule of M, then L NS is a non-zero graded submodule of S. Hence,
LNS =S5, that is, S C L. Therefore, socM C L.

(3) Assume that M is bounded above. Let N be a non-zero graded submodule
of M. Then N contains a non-zero element m; € N; for some 7. Since N is
bounded above, there exists some j > 0 such that A;m; # 0 but A;;ym; = 0.
Observing that 4,1 = JA;, we have J(A;m;) = 0. By Statement (1), 0 #
Ajm; € socM. This shows that socM is graded essential in M. The proof of the
lemma is completed.

ExampPLE. Consider the graded algebra A = kQ /R, where

Q: OzCl—5>2

and R = (Ba). Consider P, = ke, 3,a,---,a',---). By Lemma [3.5.2(1),

socP; = k(B). Considering the graded submodule k{a,--- ,a*,---) of Py, we see
that socP; is not graded essential in P;. Indeed, P, is not bounded above.

The following statement is well known for non-graded modules.

3.5.3 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. If f: M — N is a morphism in GModA, then f(socM) C socN.
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Proof. Let f : M — N be a morphism in GModA. Consider a pure element
m € socM. Then f(m) is a pure element in N. By Lemma [3.5.2(1), Jm = 0,
and hence, Jf(m) = f(Jm) = 0. By Lemma [3.5.2(1) again, f(m) € socN. The
proof of the proposition is completed.

Recall that e with a € @)y stands for the k-linear form in (I,)o(a) such that
ex(eq) = 1.

3.5.4 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. If a € Qq, then socl, = ke, which is graded essential in I,.
Proof. Fix a € Qo. Note that (I,)g = (DP?)y = D(Aje,) = ke* = (1,)o(a).
Since (I,); = 0 for ¢ > 0, we have JeX = 0. By Lemma [3.5.21), eX € (socl,)o(a).
(L) 4(x) =
D(e,A;e;) for some i > 0 and = € ()y. By definition, there exists some u € e, 4;e,
such that f(u®) # 0. Then, (u - f)(e ) = f(u°) # 0. That is, u - f 7é 0.
Observe that w € J. Thus, by Lemma [3.5.2(1), f ¢ socl,. Therefore, socl, =
(socl,)o = ker. Finally, since I, is bounded above, by Lemma [3.5.2(3), socl, is
graded essential in I,. The proof of the corollary is completed.

So, (socl,)y = ke*. Next, suppose that f is a non-zero functlon in

It is well known that a finitely generated non-zero module (not necessarily
graded) admits a maximal submodule; see, for example, [I, (2.8)]. We shall
describe all possible maximal graded submodules of a module M in GModA.
First, by Lemma [3.1.3] JM is a graded submodule of M. An element m in M
is called a top-element if m € M, (a)\JM for some (n,a) € Z x @Qy. In this
case, by Lemma , there exists a k-vector subspace L, , of M,(a) containing
M,,(a)NJM such that M, (a) = L, ,®km. Setting L, , = M;(x) for (4, ZU) € ZxQo
with (2, z) # (n, a), we obtain a k-vector subspace L(m) = >_; ,yczyq, Lix of M.
Note that this construction of L(m) is not unique.

3.5.5 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Let M be a module in GModA. If L is a graded submodule of M, then it
is graded mazimal in M if and only if L = L(m) for some top-element m € M;
and in this case, JM C L.

Proof. Suppose that m is a top-element in M, (a), where (n,a) € Z X Qo. We
claim that L(m) = }7 ,)czxq, Liw i @ A-submodule of M. If this is not the
case, then there exist some m' € L;, and v € e A e,, where i,j € Z and
z,y € Qo, such that um’ € M;y;,\Liy;,. In view of the definition of L(m), we
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see that (¢ + j,y) = (n,a). If j > 0, then um’ € M,,(a) N JM C L, o = Litj,,
a contradiction. If j = 0, then (i,2) = (n,a) and u € e, Ape, = ke,, and
consequently, um’ € km' C L; , = L; ,, a contradiction. Hence, our claim holds.
By Lemma[3.2.1 L(m) is a graded submodule of M. By definition, L(m) contains
JM and M/L(m) is one-dimensional. By Lemma[3.1.6, L(m) is a maximal graded
submodule of M.

Conversely, assume that L is a maximal graded submodule of M. This yields
a graded simple A-module M/L = ®(;zezxq,(Mi(x) + L)/L. By Proposition
B5.1 M/L = S,(—n) for some (n,a) € Z x Qy. Therefore, (M,(a) + L)/L =
k(m+ L) with m € M,(a)\Ly,(a), and L;(x) = M;(z) for all (i,x) € Z x Qo with
(1,x) # (n,a). As a consequence, M, (a) = L,(a)+km and M, (a)NJM C L,(a).
Since m & L,(a), we see that M, (a) = L,(a) & km. By the above construction,
we have L = L(m). The proof of the lemma is completed.

Applying Lemma [3.5.5, we obtain the following important property of the
graded radical of a module in GModA, which is known in case @ is finite and
M € GMod™; see, for example, [42, Page 70].

3.5.6 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Then, radM = JM for any module M € GModA.

Proof. Let M be a module in GModA with A-grading M = ®;cz M;. Suppose
first that M has no maximal graded submodule. By definition, radM = M. On
the other hand, by Lemma , M contains no top-element, that is, M;(z) =
M;(z) N JM for all (i,2) € Z x Qo. Thus, M = JM.

Suppose now that M has maximal graded submodules. By Lemma [3.5.5] JM
is contained in every maximal graded submodule of M, and hence, JM C radM.
On the other hand, assume that m € M\JM. Write m = >, . o Mix with
m; e € M;(x). By Lemma [3.2.1)(3), my, o € M,(a)\JM for some (n,a) € Z x Qq,
that is, m,, is a top-element in M, (a). By Lemma , we may construct
a maximal graded submodule L(m,,,) of M such that m,, ¢ L(mua)na. By
Lemma [3.2.1(1), m ¢ L(m,,), and consequently, m ¢ radM. This shows that
radM C JM, and consequently, JM = radM. The proof of the proposition is
completed.

As an immediate consequence of Proposition [3.5.6, we obtain the following
statement, which is well known in case () is finite.

5



3.5.7 Corollary. Let A =kQ/R be a graded algebra, where Q) is a locally finite
quiver. Then, rad(,A) = J. Moreover for any a € Qo, radP, = Je,, which is the
unique maximal graded submodule of P,.

The following statement is well known for non-graded modules.

3.5.8 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. If f: M — N is a morphism in GModA, then f(radM) C radN.

Proof. Let f : M — N be a morphism in GModA. By Proposition [3.5.6]
f(radM) = f(JM) = Jf(M) C radN. The proof of the corollary is completed.

It is well known that a finitely generated non-graded module is semisimple
if and only if it is artin and its radical is zero; see [I, (10.15)]. The following
statement is a generalized graded version of this fact.

3.5.9 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. A non-zero module M in GModA is graded semisimple if and only
if radM = 0.

Proof. Let M be a non-zero module in GModA. By Proposition [3.5.6] radM =
JM. Now, M is graded semisimple if and only if socM = M if and only if
(socM);(z) = M;(z), for all (i,z) € Zx Qo. By Lemmal[3.5.2|(1), this is equivalent
to JM;(x) = 0, for all (i,x) € Z x Qo, that is, JM = 0. The proof of the
proposition is completed.

3.5.10 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. A nonzero module M in GModA s graded semisimple if and only if © M
1s graded semisimple.

Proof. Let M be a nonzero module in GModA. Suppose that JM = 0. Then,
given any f € (OM);(x) = D(M_;(x)) with (i,x) € Z x Qp and u® € e,(A°) e,
with j > 1 and y € Qo, we have (u° - f)(m) = f(um) =0, for all m € M_,_;(y).
That is, J°-®M = 0. Suppose that JM # 0. Then, um # 0 for some m € M;(x)
with (i,z) € Zx Qo and u € e, A e, with j > 1 and y € Qy. Then, f(um) # 0 for
some f € D(M;4(y)). Thatis, (u°-f)(m) = f(um) # 0, where f € (DM)_;_;(y)
and u® € e,(A°%);e,. Thus, J°- DM # 0. In view of Propositions |3.5.6| and [3.5.9]
we see that M is graded semisimple if and only if ® M is graded semisimple. The

proof of the corollary is completed.
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In general, the graded radical of a graded module M is not necessarily graded
superfluous in M. However, this is the case when M is bounded below; compare
[T, (9.18)].

3.5.11 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally
finite quiver. Consider a module M € GMod™.

(1) radM contains any superfluous graded submodule M.

(2) radM is graded superfluous in M.

Proof. (1) Let N be a superfluous graded submodule of M. If N ¢ radM, then
there exists a non-zero pure element m € N but m ¢ radM. By definition, m is
a top-element in M, and by Lemma [3.5.5] we may construct a maximal graded
submodule L(m) of M. Since m ¢ L(m), we obtain N + L(m) = M, contrary to
N being graded superfluous. Therefore, N C radM.

(2) Let N be a graded submodule of M such that radM + N = M. Suppose
that N # M. Since M is bounded below, there exists a minimal s such that
N5 # M. So, there exists m € My(a)\Ns(a) for some a € Qy. By the minimality
of s, we see that M(a) N JM C Ng(a). In particular, m is a top-element. By
Lemma [2.1.4) M,(a) = Ly, ® km, where L, , is a subspace of M (a) containing
N(a). Since My(a) N JM C Li,, by Lemma [3.5.5] L(m) is a maximal graded
submodule of M. Moreover, since Ny(a) C Lg,, we have N C L(m). Since
radM C L(m), we obtain M = L(m), a contradiction. Thus, radM is graded
superfluous in M. The proof of the proposition is completed.

3.5.12 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Let M be a module in GMod™A.

(1) IfradM = M, then M = 0.
(2) If M is non-zero, then topM is graded semisimple.

Proof. (1) Assume that radM = M. In particular, radM + 0 = M. Since radM
is graded superfluous in M by Proposition [3.5.11)2), M = 0.

(2) Suppose that M # 0. By Statement (1), topM # 0, and by Proposition
3.5.6, rad(topM) = J(M/JM) = 0. By Lemma [3.5.9 topM is graded semi-

simple. The proof of the corollary is completed.
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REMARK. As will be shown in the following section, finitely generated graded
modules are bounded below. Thus, Corollary [3.5.12)(1) includes the graded ver-
sion of Nakayama’s Lemma, which is known for positively graded rings with an
identity; compare [53] (2.9.2)]. In case @ is finite, this is stated without a proof
in [42, Page 70].

ExAMPLE. Consider the graded algebra A = kQ, where

Q : a@l

Then, A = k(a® | i > 0), where o’ = €;. Thus, DA = P;>o(DA)_; with
(DA)_; = k{(a?)*), where {(a')*) are dual bases of (). In particular, DA ¢
GMod*A. Observe that a® - (a?)* = (a’~!)* for all i > 1. By Proposition [3.5.6}
rad®A = J - DA = DA. Thus, rad®A is not graded superfluous in DA and
topDA = 0.

3.6 Finitely generated and finitely cogenerated
graded modules

Throughout this section, let 4 = kQ/R be a graded algebra, where @ is a
locally finite quiver. In this section, we will give explicit descriptions of finitely
generated modules and finitely cogenerated modules in GModA.

A module M in GModA is called finitely generated if M = Amy+- - -+ Am,.,
where my, ..., m, are homogeneous elements in M, or equivalently, M = Amq +
-+ Am,, where my, ..., m, are pure elements in M; see (3.2.1)). The following
result is essential to describe finitely generated graded modules.

3.6.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider a module M in GModA. If radM is graded superfluous in M,
then a set {mq,...,m.} of elements in M is a generating set for M if and only
if {my +radM,... ,m, +radM} is a generating set for topM.

Proof. Suppose that radM is graded superfluous in M. We only need to show
the sufficiency. Suppose that {mi,...,m,} is a set of pure elements such that
{my +radM, ..., m, +radM} is a generating set for topM. Given any m € M,
we have m+radM = . (\im; +radM) with \; € k, namely, m—3Y_;_, \;m; €
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radM. Thus, radM + Y., Am; = M, where >_._, Am; is a graded submodule
of M by Corollary 3.1.4] Since radM is graded superfluous, M =Y., Am,;. The
proof of the lemma is completed.

3.6.2 Lemma. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Given a module M in GModA, the following statements are equivalent:

(1) M 1is finitely generated.
(2) M € GMod™ such that topM is finite dimensional.

(3) radM is graded superfluous in M such that topM is finite dimensional.

Proof. Assume that M is finitely generated, say M = Y, Am;, where m; €
M, (a;) with (s;,a;) € Z % Q. Then, topM is generated by my +radM, ..., m,+
radM, and hence, it is finite dimensional. Now, Am; = @;>04;m; = B>, (Am;);,
fori = 1,...,7. Thus, M € GMod™A. This shows that Statement (1) implies
Statement (2). By Proposition [3.5.11] Statement (2) implies Statement (3). And
by Lemma [3.6.1] Statement (3) implies Statement (1). The proof of the lemma

is completed.

Dually, a module M in GModA is called finitely cogenerated if socM is
graded essential in M and is finite dimensional; compare [I], (10.4), (10.6)].

3.6.3 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. A module M in GModA is finitely cogenerated if and only if M € GMod ™A

and socM 1is finite dimensional.

Proof. Let M € GModA. The sufficiency follows from Lemma [3.5.2)3). Assume
that M is finitely cogenerated. By Lemma [3.5.21), we see that socM has a k-
basis {m,...,m,}, where m; € M;, (a;) with (s;,a;) € Z x Qp. We may suppose
that s; < ... <'s,. Then, socM N M; = 0 for all j > s,. Suppose that M, # 0
for some s > s,. Let m € M, be non-zero. Since socM is graded essential in M,
there is some u € A; with ¢ > 0 such that 0 # um € socM. So, socM N M4 # 0
with ¢ 4+ s > s,, a contradiction. This shows M; = 0 for all j > s,. Therefore,
M € GMod™A. The proof of the lemma is completed.

EXAMPLE. In view of Lemma and Corollary we see that every module
in ginj/ is finitely cogenerated.
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The following notions are important for our later study of graded projective
covers and graded injective envelopes.

3.6.4 Definition. Let A = kQ/R be a graded algebra, where @) is a locally finite
quiver. Consider a module M in GModA. A set {my,...,m,} of pure elements
in M is called

(1) a top-basis for M if {m + radM, ..., m, + radM} is a k-basis of topM
and M is generated by mq,...,m;;

(2) a socle-basis for M if {my,...,m,} is a k-basis of socM, and socM is
graded essential in M.

EXAMPLE. Given a € @y, it is clear that {e,} is a top-basis for P,, and by
Corollary [3.5.4] {eX} is a socle-basis for I,.

3.6.5 Lemma. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Consider a module M in GModA with {m4,...,m,} a set of pure ele-
ments in M.

(1) If M € GMod™, then {my,...,m,} is a minimal generating set of M if
and only if {m; +radM, ..., m, +radM} is a k-basis of topM; and in this
case, {my,...,m,} is a top-basis for M.

(2) If M € GMod ™A, then {my,...,m.} is a socle-basis for M if and only if it
is a k-basis of socM.

Proof. (1) Assume that M € GMod ™. By Proposition , radM is graded
superfluous in M. In view of Lemma , we see that {mq,...,m,} is a minimal
generating set of M if and only if {m; + radM,... ,m, + radM} is a minimal
generating set of topM. Since topM is graded semisimple by Corollary (2),
the latter condition is equivalent to {m; +radM, ..., m,+radM} being a k-basis
of topM.

(2) Let M be a module in GModA. By Lemma [3.5.2(3), socM is graded
essential in M. Thus, Statement (2) follows from the definition of a socle-basis.
The proof of the lemma is completed.

3.6.6 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Let M be a non-zero module in GModA. Then,
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(1) M is finitely generated if and only if it admits a top-basis;
(2) M is finitely cogenerated if and only if it admits a socle-basis.

Proof. (1) The sufficiency follows from the definition. Suppose that M is finitely
generated. Then, M has a minimal generating set {m;, ..., m,} of pure elements.
By Lemma , M € GMod™, and by Lemma M(l), {mq,...,m,} is a top-
basis for M.

(2) The sufficiency follows from the definition of a socle-basis. Assume that
M is finitely cogenerated. By Lemma[3.2.1)3), socM has a k-basis {mi, ..., m,}
of pure elements. By Lemma , M € GMod ™4, and by Lemma m@),

{mq,...,m,} is a socle-basis for M. The proof of the proposition is completed.

Further, given a module M € GModA, we shall say that M is finitely gen-
erated in degree s if it is generated by finitely many homogeous elements of
degree s. and finitely cogenereated in degree —s if M is finitely cogenerated
and socM C M_,. For instance, P,(—s) is finitely generated in degree s and I,(s)
is finitely cogenerated in degree —s, for any (s,a) € Z x Qo.

The following statements will be useful in our later construction of linear
projective resolutions and colinear injective coresolutions.

3.6.7 Lemma. Let A = kQ/R be a graded algebra, where @ is a locally finite
quiver. Consider a module M in GModA. Then,

(1) M is finitely generated in degree s if and only if My contains a top-basis for
M; and in this case, M = ®;>,M; and radM = ;> M,.

(2) M 1is finitely cogenerated in degree —s if and only if M_g contains a socle-
basis for M; and in this case, M = ®;<_sM; and socM = M_;.

Proof. (1) Assume that M contains a top-basis {my,...,m,} for M. By defi-
nition, M is generated by my,...,m, € M,. That is, M is finitely generated in
degree s. Conversely, suppose that M is finitely generated in degree s. Then,
M, contains a minimal generating set {my,...,m,} of M, which consists of pure
elements. By Lemma [3.6.2, M € GMod ™, and by Lemma [3.6.5, {mi,...,m,}
is a top-basis for M. In particular, M = AM; = ®;>0(A;M;). In particular,
M; =0 for all i < s. Thus, M = ®;>,M;. This yields M; = A;,_sM, C JMj for
all i > s. As a consequence, ®;~sM; C JM, C ®;~,M;. By Proposition [3.5.6],
radM = JM = JM, = @~ M;.
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(2) Suppose that M_; contains a socle-basis {my, ..., m,} for M. By defini-
tion, socM is graded essential in M and socM = kmq + -+ km, C M_,. Thus,
M is finitely cogenerated in degree —s. Conversely, assume that M is finitely
cogenerated in degree —s. By definition, socM is graded essential in M, finite
dimensional and contained in M_;. By Lemma [3.2.1] socM contains a k-basis
{mq,...,m,} of pure elements in M_,. By definition, {m4,...,m,} is a socle-
basis for M contained in M_,. As in the proof of Lemma we see that
M; =0 for i > —s. Thus, M = @®;<_,M; and JM_, = 0. By Lemma [3.5.2{1),
M_, C socM. Therefore, socM = M_,. The proof of the lemma is completed.

The following easy statement will be needed later.

3.6.8 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.

(1) A graded projective module P in gprojA is generated in degree s if and only
if P= P, (—s) @@ P, (—s) for some ay,...,a,. € Qp.

(2) A graded injective module I in ginjA is cogenerated in degree —s if and only
if 1 =2 1,(s) @ - @ I,.(s) for some ay,...,a, € Q.

Proof. (1) Let P € gprojA. We may assume that P = P, (—s1) ®--- @ P, (—s,),
where s; € Z and a; € Qy. Observe that P, (—s;) is generated in degree s; for
i=1,...,r. Now, P € gproj/ is generated in degree s if and only if P,,(—s;) is
generated in degree s for ¢ = 1,...,r if and only s; = s, for © = 1,...,r. This
establishes Statement (1), and Statement (2) follows dually. The proof of the
lemma is completed.

3.7 Superfluous graded epimorphisms and es-
sential graded monomorphisms

In this section, let 4 = kQ/R be a graded algebra, where @ is a locally finite
quiver. The objective of this section is to study superfluous epimorphisms and
essential monomorphisms in GModA.

The following statement is well known for non-graded modules, see [I, (5.13)
and (5.15)]. For the reader’s convenience, we shall include a proof.
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3.7.1 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) An epimorphism f : M — N in GModA is superfluous if and only if Ker(f)
is graded superfluous in M; and in this case, f~'(radN) = rad M.

(2) A monomorphism f: M — N in GModA is essential if and only if Im(f)
is graded essential in N; and in this case, socN = f(socM).

Proof. (1) Let f : M — N be an epimorphism in GModA. By Proposition
B.5.6] radN = JN = Jf(M) = f(radM). Thus, f~'(radN) = radM + Ker(f).
Suppose that f is superfluous. Let L be a graded submodule of M such that
Ker(f)+L = M. Then, foq: L — N is a graded epimorphism, where ¢ : L — M
is the inclusion morphism. Thus, ¢ is a graded epimorphism, that is, L = M. So,
Ker(f) is graded superfluous in M. By Propositions [3.5.11](1), Ker(f) C radM,
and consequently, f~!(radN) = rad M.

Conversely, assume that Ker(f) is graded superfluous in M. Let g : L — M
be a graded morphism such that f o g is a graded epimorphism. It is easy to
see that Ker(f) + Im(g) = M. Since Im(g) is a graded submodule of M by
Proposition [3.1.8] we obtain Im(g) = M. So, f is superfluous.

(2) Let f : M — N be a monomorphism in GModA. Assume that f is
essential. Let L be a graded submodule of N such that Im(f)N L = 0. It is easy
to see that po f : M — N/L is a monomorphism, where p : N — N/L is the
canonical projection. Thus, p is a graded monomorphism, that is, L = 0. So,
Im(f) is graded essential in N. By Lemma [3.5.2(2), socN C Im(f). So, for any
pure element n € socN, there exists a pure element m € M such that n = f(m).
Now, f(Jm) = Jf(m) = Jn = 0. Since f is a monomorphism, Jm = 0, and by
Lemma [3.5.2(1), m € socM. This shows that socN C f(socM). On the other
hand, by Proposition [3.5.3 f(socM) C socN. Hence, socN = f(socM).

Conversely, suppose that Im(f) is graded essential in N. Let h : N — L be
a graded morphism such that h o f is a graded monomorphism. Then, we have
Im(f) N Ker(h) = 0. Since Ker(h) is a graded submodule of M by Proposition
[3.1.8, we obtain Ker(h) = 0, that is, h is a graded monomorphism. So, f is
essential. The proof of the proposition is completed.

REMARK. Proposition [3.7.1(1) says that a superfluous graded epimorphism f :
M — N induces a graded isomorphism f : topM — topN.
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The following statement is well known for finite dimensional non-graded mod-
ules.

3.7.2 Corollary. Let A =EkQ/R be a graded algebra, where Q) is a locally finite
quiver.

(1) An epimorphism f : M — N in GMod™/A is superfluous if and only if
Ker(f) C radM.

(2) A monomorphism f : M — N in GMod ™A is essential if and only if socN C

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
dual. Let f : M — N be an epimorphism in GMod™A. By Proposition ,
radM is the largest superfluous graded submodule of M. By Lemma 3.7.1(1), f
is superfluous if and only if Ker(f) is graded superfluous in M; and by Lemma
3.1.5(1), this is equivalent to Ker(f) C radM. The proof of the corollary is
completed.

The following statement is interesting.

3.7.3 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) Let f: M — N be an epimorphism in GModA. If M is finitely generated
(in degree s), then N is finitely generated (in degree s). And the converse
holds if f is superfluous.

(2) Let f: M — N be a monomorphism in GModA. If N is finitely cogenerated
(in degree —s), then M 1is finitely cogenerated (in degree —s). And the
converse holds if f is essential.

Proof. (1) The first part of the statement is evident. Suppose that f is superfluous
and that N is finitely generated. Write N = Any + - - - An,., where n; € N, with
s; € Z. Since f is a graded epimorphism, n, = f(m;) with m; € M,,, for
i=1,...,7. Then, M = Ker(f)+>_,_, Am,. Since Ker(f) is graded superfluous
in M by Proposition m(l), M =377 Am;. That is, M is finitely generated.
If N is finitely generated in degree s, then s; = --- = s, = s. That is, M is
finitely generated in degree s.
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(2) Suppose that N is finitely cogenerated. By Lemma , N € GMod ™
and dimgsocN < oo. Since f is a monomorphism, M € GMod 4. So, by
Lemma3.5.2|(3), socM is graded essential in M. Moreover since f(socM) C socN
by Proposition [3.5.3] dimgsocM < oo. Again by Lemma [3.6.3] M is finitely
cogenerated. If N is finitely cogenerated in degree —s, then socN C N_g, and
hence, socM C M_,. That is, M is finitely cogenerated in degree —s.

Assume that f is essential and that M is finitely cogenerated. Then socM is
graded essential in M. Since f is a monomorphism, f(socM) is graded essential
in f(M). And since f(M) is graded essential in N by Proposition [3.7.1)(2), we
see that socN = f(socM) is graded essential in N. Moreover, by Lemma [3.6.3]
socM is finite dimensional, and therefore, soc/NV is finite dimensional. Again by
Lemma[3.6.3] N is finitely cogenerated. If M is finitely cogenerated in degree —s,
then socM C M _,, and hence, socN C N_,. That is, N is finitely cogenerated
in degree —s. The proof of the proposition is completed.

To conclude this section, we shall concentrate on piecewise finite dimensional
graded A-modules.

3.7.4 Lemma. Let A = kQ/R be a graded algebra, where @ is a locally finite
quiver. Consider a morphism f: M — N in gmodA.

(1) If f is a superfluous epimorphism, then ©f : O©N — DM is an essential
monomorphism.

(2) If f is an essential monomorphism, then ® f : ON — DM is a superfluous
epimorphism.

Proof. We shall only prove Statement (1), since Statement(2) is dual. By Propo-
sition [3.3.3(2), we have a duality © : gmodA — gmod/A° Let f : M — N be
a superfluous epimorphism in gmodA. Then, ®f : DN — DM is a graded
monomorphism in gmodA°. Assume that g : © M — L is a morphism in gmodA°
such that g o D f is a graded monomorphism. Then, D?f o Dg is a graded epi-
morphism. By Proposition [3.3.3|1), we have a commutative diagram

oL 2 o2y 2 ey
d)]\/ft l(z)l\]
M—L N
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where ¢ and ¢V are graded isomorphisms. Thus, fo¢ oDy is a graded epimor-
phism. Since f is superfluous, g is a graded epimorphism, and consequently, ¢
is a graded monomorphism. Therefore, ® f is essential in gmodA°. The proof of
the lemma is completed.

The following statement is well known for finite dimensional non-graded mod-
ules.

3.7.5 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) If M € gmod™A, then soc(DM) = D (topM) and DM/soc(DM) = D (rad M).
(2) If M € gmod A, then top(DM) = D(socM) and rad(DM) = D(M /socM).

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
dual. Let M be a nonzero module in gmod™l. Consider the canonical short
exact sequence

0——radM —2> M L~ topM —— 0
in gmod™*A. This yields a short exact sequence

of Dg

DM

0 —D(topM) D(radM) —0

in gmod A°. By Proposition m(l), f is superfluous, and by Lemma m(l),
D f is essential. Thus, soc(®M) C Im(Df) by Lemma [3.7.1(2). On the other
hand, by Corollary [3.5.12] topM is graded semi-simple, and by Corollary [3.5.10]
so is D(topM). Then, by Proposition [3.5.3 Im(®f) C soc(DM). Therefore,
soc(DM) = Im(Df) = D(topM). Asa consequence, D (radM) = DM /soc(DM).
The proof of the proposition is completed.

3.8 Graded projective covers and graded injec-
tive envelopes

Throughout this section, let 4 = kQ/R be a graded algebra, where @ is a
locally finite quiver. The objective of this section is to study projective covers and
injective envelopes in GMod/, which will be called graded projective covers
and graded injective envelopes, respectively. We start with an immediate

consequence of Corollary as follows.
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3.8.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.

(1) An epimorphism f: P — M in GModA with P a bounded below projective
module is a graded projective cover of M if and only if Ker(f) C radP.

(2) A monomorphism f : M — I in GModA with I a bounded above injective
module is an injective envelope of M if and only if socI C Im(f).

In particular, we may describe the graded projective cover and the graded
injective envelope for each graded simple module. This will be used frequently in
the sequel.

3.8.2 Lemma. Let A = kQ/R be a graded algebra, where @ is a locally finite

quiver. Given any a € Qqg, the graded simple module S, admits
(1) a graded projective cover p, : P, — S, sending e, to e, + Jeg;

(2) a graded injective envelope q, : Sq — 1., sending e, + Je, to ef.

Proof. Let a € Q. Since Ker(p,) = radP,, by Lemma [3.8.1[1), p, is a graded
projective cover. Next, S, = (S,)o(a) = k(e, + Je,). By Lemma [3.4.5, we have
a graded morphism ¢, : S, — I, which is necessarily a monomorphism, sending
eq +radP, to e;. By Corollary 3.5.4 Im(q,) = ke = socl,, and by Lemma
3.8.1(2), ¢, is a graded injective envelope. The proof of the lemma is completed.

The above result can be extended to any bounded below semisimple modules.

3.8.3 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. If M € GMod*A is graded semisimple, then it has a graded projective
cover

[ ®liayezxqoPel—1) @ M(z) — M

such that f(e; @ m; ) = my; ., where e, € Py(—i);(x) and m;, € M;(z).

Proof. Let M € GMod™A be graded semisimple. By Lemma , JM = 0.
Thus, M = @ z)ezx0, Mi(x), where M;(z) is a semisimple graded submodule of
M concentrated in the (i, x)-piece. Clearly, for any (i,x) € Z X @Qp, we have a
graded isomorphism ¢(i,x) : Sy(—i) ® M;(z) — M;(x), sending (e, + Je,) @ m;
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to m; ,, where (e, + Je,) € Sy(—i);(x) and m;, € M;(x). This yields a graded
isomorphism

9= ®(i’1)€Z®Qog(i’ IE) : 6B(izﬂf)GZXQOSHU<_Z‘> ® MZ(QZ) — M.

Consider the short exact sequence

0 —— (rad P, )(—i) — Py(—i) 2L 5, (i) —0

in GModA, where p, : P, — S, is the canonical projection, we obtain a short
exact sequence

0 —— B (i.2)ezx Qo (Tad Py )(—i) @ M;(x) — @ (i.2)ezx o Pul—1) @ M;(x)

D(i,z)eZx Qopz<_i>
_

D (i) ez Qo Oa{—1) ® Mi(x) ——0
in GModA. This gives rise to a graded epimorphism

f= 90 (Biw)ezxqoPal=i)) : Bliwyezxole(=1) @ Mi(z) = M
with Ker(f) = @ s)ezxq, (tad P, )(—i) ® M;(x). Now, by Proposition |3.5.6]

rad(D(i.0)ezx Qo Pe(—1) @ Mi(x)) = J(D(i,0)ezxqo Pal—1) @ M;(x))
= O(ix)ezx Qo (J Pe)(—1) @ M;(x)
= Bi2)ezxQo (rad Py )(—1) @ M;(z).

That is, Ker(f) = rad(@ z)eze0, Pe(—i) ® M;(x)). Moreover, since M;(x) = 0
for i < 0, we see that @ z)ezo0, Pe(—1) ® M;(x) is bounded below. By Lemma
3.8.1)(1), f is a graded projective cover of M. The proof of the lemma is completed.

Now, we are ready to construct graded projective covers for bounded below
graded modules.

3.8.4 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. If M € GMod™A, then M admits a graded projective cover p,, : P — M,
where P is a graded projective module in GMod™A.

Proof. Let M be a non-zero module in GModA. By Corollary (2), topM is a
semisimple graded module in GMod™A. In view of Lemma , we have a graded
projective cover f : P = @ z)ezx0, Pe{—1) ® Ve — topM with Ker(f) = radP,
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where V;, = (topM);(x). Then, there exists a graded morphism p,, : P — M
such that the diagram

Pt

N

topM

commutes, where g is the canonical projection with Ker(g) = radM. Since M
is bounded below, by Proposition [3.7.21), ¢ is superfluous. Since g o p,, is a
graded epimorphism, so is p,,. On the other hand, Ker(p,,) C Ker(f) = radP.
By Lemma m(l), py is a graded projective cover of M. The proof of the
proposition is completed.

REMARK. We do not know if every module in GMod ™A admits an injective
envelope.

Next, we shall describe how to construct graded projective covers for finitely
generated graded modules and graded injective envelopes for finitely co-generated
graded modules; compare [37, (1.1)].

3.8.5 Proposition. Let A = kQ/R be a graded algebra, where @ is a locally
finite quiver. Then, a module M in GModA admits

(1) a graded projective cover f: Py (—s1) @ --- & P, (—s,) — M, sending e,, to
m; if and only if {my,...,m,} with m; € M;, (a;) is a top-basis for M,

(2) a graded injective envelope g : M —1,(s1) ® - -+ @ Io,(s), sending m; to e},
if and only if {m1,...,m,} with m; € M_g,(a;) is a socle-basis for M.

Proof. (1) Let {my,...,m,} be a top-basis for M, where m; € M, (a;). In view of
Corollary we obtain a graded morphism f : P, (=) & ---® P, (—s,) = M,
sending e,, to m;. Since M = "7 | Am;, we see that f is a graded epimorphism.
Let u € Ker(f). Write u = Y. (Mieq, + u;) with \; € k and u; € JP,(—s;).
Then > ., (AMim; + wym;) = f(u) = 0, that is, > ., \ym; € radM. Hence,
Yoi g Ai(my+radM) = 0in M/radM, and consequently, \; = 0foralli =1,...,7r.
So, u =37, u; € rad(Py(—s1) @ - - - ® P, (—s,)). Therefore, by Lemma [3.8.1](1),
f is a graded projective cover.

Conversely, suppose that f: P = P,(—s1)® --- ® P, (—s,) — M is a graded
projective cover, sending e,, to m;. Obviously, M is generated by {m4,...,m,},
and hence, topM is generated by {m; + radM,..., m, + radM}. Assume that
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Yoiy Ai(m; +radM) = 0, that is, >, \ym; € radM, where \; € k. By Propo-
sition , radP = f~'(radM). Thus, Y ;_, Am; = f(u) for some u € radP.
Then, .7, Aieq, — u € Ker(f). By Lemma [3.8.1f1), Ker(f) € radP. Thus,
Yo Aieq; € radP = @_rad(P,(—s;)). Therefore, \e,, € rad(P,(—s;)), and
consequently, \; = 0, for all ¢ = 1,...,r. This shows that {mq,...,m,} is a top
basis for M.

(2) First, suppose that g : M — I, (s1) @& -- @ I, (s,) = I is a graded injective
envelope, sending m; to e} . In view of Corollary |3.5.4} we see that {e} ,..., e}
is a k-basis of ®!_;soc(l,(s;)) = socl. Now, since I is bounded above, so is
M. Thus, socM is graded essential in M by Lemma [3.5.2(3). We claim that
{mi,...,m,} is a k-basis of socM. Assume that > . \;m; = 0, \; € k. Then,
g(> i Aimy) = 51 Nief. = 0, and hence, \; =0 for all i = 1,...,7. Moreover,
if m € socM, then g(m) € socl by Corollary . Hence, g(m) = >/, el =
Yo Aig(my), where \; € k. Hence, m = >, \;m;. This establishes our claim.
Therefore, {m1,...,m,} is a socle-basis for M.

Conversely, suppose that socM is graded essential in M and has a k-basis
{mq,...,ms}, where m; € M_g (a;) with (s;,a;) € Zx Qo, fori =1,...,r. Then,
socM = kmy @ - - - @ km,, where km; is a graded simple submodule of M. In view
of Lemma [3.4.5] there exists a graded monomorphism ¢ : socM — I, (s1) ®--- @
I,,(sr) = I, sending m; to e} . Thus, there exists a graded morphism g : M — I
such that g o h = ¢, where h : socM — M is the inclusion map. In particular,
g(m;) = e, for i = 1,...,r, and hence, socl = ke; @ --- @ ke; C Im(g).
Moreover, since M is bounded above, by Proposition W(Z), h is an essential
graded monomorphism. Since goh = ¢, we see that g is a graded monomorphism.
By Lemma m(Z), g is a graded injective envelope of M. The proof of the

proposition is completed.

As a consequence of Propositions [3.8.5] and [3.7.3], we obtain the following
useful statement.

3.8.6 Corollary. Let A =EkQ/R be a graded algebra, where Q) is a locally finite
quiver.

(1) A module M € GModA is finitely generated if and only if it admits a
graded projective cover over gprojA; and in this case, M is a locally finite
dimensional module in gmod™A.

(2) A module M € GModA is finitely cogenerated if and only if it admits a
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graded injective envelope over ginjA; and in this case, M is a locally finite
dimensional module in gmod /.

Proof. (1) By Proposition [3.6.6(1), a module M € GMod is finitely generated if
and only if M admits a top-basis; and by Proposition M(l), this is equivalent
to M admitting a graded projective cover over gprojA. Since @ is locally finite,
every P, with a € Qq is a locally finite dimensional module in gmod™A, and so
is every module P in gprojA. Thus, if f : P — M is a projective cover with
P ¢ gprojA, then M is a locally finite dimensional module in gmod ™.

(2) Similarly, we deduce from Propositions[3.6.6{2) and [3.8.5{2) that a module
M € GModA is finitely cogenerated if and only if there exists a graded injective
envelope g : M — I, where I € ginjA. In this case, I = D P, for some P €
gprojA°. As seen above, P is a locally finite dimensional module in gmod™°.
Thus, [ is a locally finite dimensional module in gmod ™/, and so is M. The proof
of the corollary is completed.

The following statement will be useful for our later investigation.

3.8.7 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider M a module in GModA.

(1) If f : P — M is a graded projective cover of M over gprojA, then Df :
DM — DP is a graded injective envelope of DM over DP € ginjA°.

(2) If g : M — I is a graded injective envelope of M over ginjA, then Dg :
DI — DM is a graded projective cover of DM over gprojA°.

Proof. Let f : P — M be a graded projective cover of M, where P € gprojA.
By [3.7.4(1), ©f : DM — DP is an essential monomorphism in gmodA°, where
DP € ginjA°. By definition, ® f is a graded injective envelope of ®M over
D P € ginjA°. This establishes Statement (1). And Statement (2) follows dually.
The proof of the lemma is completed.

3.9 Hom-finite Krull-Schmidt exact categories
of graded modules

Throughout this section let A = kQ/R be a graded algebra, where @ is a
locally finite quiver. The main objective of this section is to introduce several
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Hom-finite Krull-Schmidt k-subcategories of GModA, which will play an impor-
tant role in our later investigation. We start with the following important result,
which does not hold under the non-graded setting.

3.9.1 Proposition. Let A = kQ/R be a graded algebra, where @ is a locally
finite quiver. Then

(1) gprojA is Hom-finite Krull-Schmidt and contains all finitely generated pro-
jective modules in GModA.

(2) ginjA is Hom-finite Krull-Schmidt and contains all finitely cogenerated in-
jective modules in GModA.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
dual. In view of Proposition [3.4.3] we see that gprojA is Hom-finite. And being
generated by the strongly indecomposable objects P,(—s) with (s,a) € Zx Qo; see
(3-4.7), gprojA is Krull-Schmidt. Finally, let P be a finitely generated projective
module in GModA. By Corollary [3.8.6(1), P admits a graded projective cover
f:U — P with U € gprojA. Since idp : P — P is also a graded projective cover
of P, by Lemma [1.3.6] P = U. The proof of the proposition is completed.

More generally, we have the following statement.

3.9.2 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider a module M € gmodA.

(1) If P € gprojA, then dimyGHom (P, M) < co.
(2) If I € ginjA, then dim;GHom, (M, I) < oc.

Proof. (1) Let P € gprojA. We may assume that P = &!_, P, (—s;), where

(si,a;) € Z X Q. By Corollary [3.4.2) we have
GHom, (P, M) = &;_,GHomu(P,,(—s;), M) = &_, My, (a;).

i

Since M is piecewise finite dimensional, we have

dim;GHom, (P, M) < ZdimkMsi(ai) < 00.

i=1
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(2) Let I € ginjA. Since D1 € gprojA°® and ®©M € gmodA°, by Statement (1),
dimpGHom o (D1, D M) < oco. In view of Proposition m@), we have a k-linear
isomorphism

GHom, (M, I) = GHom o (D1, D M).
Therefore, dim;GHom (M, N) < co. The proof of the lemma is completed.

In the sequel, we shall write gmod™ and gmod ™ for the full subcategories
of GModA of finitely generated modules and of finitely cogenerated modules,
respectively. By Corollary both are subcategories of gmodA.

3.9.3 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Then, the duality ® : gmodA — gmodA® restricts to two dualities
D : gmod™ 1 — gmod™%4° and ® : gmod %4 — gmod™°A°.

Proof. By Proposition [3.3.3(2), we have a duality © : gmodA — gmodA°. Let
M € gmod™°A. By Corollary [3.8.6(1), M has a graded projective f : P — M
with P € gprojA. Then, by Lemma m(l), D(f) : ®M — DP is a graded
injective envelope with ®P € ginjA°. Thus, ®M is finitely cogenerated by
Corollary (2) So, ® : gmod ™’ — gmod™%4° is a duality. Dually, one can
prove that the second part of the proposition. The proof of the proposition is
completed.

Recall that gmod? denotes the full subcategory of GModA of finite dimen-
sional modules.

3.9.4 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Then gmod ™A and gmod ™A are Hom-finite Krull-Schmidt extension-
closed subcategories of GModA such that their intersection is gmod¥.

Proof. Let M,N € gmod™A. By Corollary [3.8.6(1), M has a graded pro-
jective cover f : P — M with P € gprojA. Applying the left exact functor
GHom(—, V), we obtain the exact sequence

GHom (f7N)

Oﬁ-GHOIﬂA(M,N) GHOIIIA(P,N).

By Lemma [3.9.21), dim;GHom, (P, N) < oo, and hence, dim;GHom (M, N) <
0. So, gmod ™/ is Hom-finite. It is evident that gmod ™A is closed under direct
summands. By Proposition m, gmod A is Krull-Schmidt.

Let 0 X-2Lsy-toz 0 be an exact sequence in GMod/, where
X,Z € gmod™A. Assume that X = 3% Am/ and Z = >_'_, Am/, where the

7
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m/ and the m! are homogeneous elements. Since h is a graded epimorphism,
m; = g(m;) for some homogeneous element m; € Y, i = 1,...,¢t. It is easy to
check that Y = 2;1 Am; + 377 Ag(m}), that is, YV is finitely generated.
Finally, in view of Lemmas @ and , we see that gmod® is contained
in both gmod ™A and gmod™A. If M € GModA is finitely generated and finitely
cogenerated, then it follows from Corollary that M is locally finite dimen-

sional and bounded, and consequently, M is finite dimensional. The proof of the

proposition is completed.

REMARK. By Proposition m, gmod ™/ and gmod ™%/ are exact k-categories.
Note that they are not abelian in general.

A module M in GModA is called noetherian if every graded submodule of
M is finitely generated. Note that, by Theorem 5.4.7 in [53], a graded module is
noetherian in GMod A if and only if it is noetherian as a non-graded module.

3.9.5 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

1) If A is locally left noetherian, then gmod™°A is abelian.
(

(2) If A is locally right noetherian, then gmod A is abelian.

Proof. (1) Suppose that A is locally left noetherian. Consider a morphism
f: M — N in gmod™A. In view of Proposition m, the cokernel of f
lies in gmod™®A. By Corollary [3.8.6(1), M admits a graded projective cover
g : ®_P.(—s;) — M, where (s;,a;) € Z x QQp. By the hypothesis, we see that
", P.,(—s;) is noetherian, and hence, so is M; see, for example, [I, (10.12)]. In
particular, the kernel of f lies in gmod™?A. Therefore, gmod ™1 is an abelian
subcategory of GModA.
(2) Assume that A is locally right noetherian. That is, A° is locally left
noetherian. By Statement (1), gmod™?4° is abelian, and by Proposition SO
is gmod~?A. The proof of the proposition is completed.

Recall that A is locally left bounded if Ae, with a € @)y are finite dimensional,
and it is locally right bounded if A°e, with a € )y are finite dimensional. The
following statement will be useful in our later study.
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3.9.6 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

1S toca LE t ounae ) t en 1Mo — MO 11..

Proof. (1) Suppose that A is locally left bounded. Let M € gmod™’A. Write
M =3, Am;, where m; € Mj,(a;) with (s;,a;) € Z x Q. Since Ae,, is finite
dimensional, so is Am; = Ae,,;m;. Thus, M € gmod?, and hence, gmod ™4 =
gmod.

(2) Assume that A is locally right bounded. That is, A° is locally left bounded.
By Statement (1), gmod™4° contains only finite dimensional modules, and by
Proposition so does gmod~?A. That is, gmod ?4 = gmod?. The proof of
the proposition is completed.

Next, we shall introduce finitely presented and finitely co-presented graded
modules, which will play an essential role in our later study of the existence of
almost split sequences.

3.9.7 Definition. Let A = kQ/R be a graded algebra, where @ is a locally finite
quiver. A module M € GModA is said to be

(1) finitely presented if it admits a graded projective presentation

prpo Ly 0,

where P°, P~1 € gprojA.

(2) finitely copresented if it admits a graded injective co-presentation

0 ML oo _d_n

?

where 1%, I'' € ginjA.

The following statement will be needed in our later study.

3.9.8 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.
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(1) A finitely presented graded module in GModA admits a minimal graded
projective presentation over gproj/A.

(2) A finitely copresented graded module in GModA admits a minimal graded
injective copresentation over ginjA.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
dual. Let M € GMod/A with a graded projective presentation

pr po s,

where P71, PY € gprojA. In particular, M and Ker(d°) are finitely generated.
By Corollary [3.8.6(1), M has a graded projective cover v’ : U’ — M with
U° € gprojA. Consider the following commutative diagram with exact rows

0

0 — Ker(u’) —=U" "= M 0

b

0 —> Ker(d?) —“~ PO ¥, pp 0

ool

)
0 — Ker(u’) —=U" "= M 0.

In particular, u® o f' o f = u°. Since u" is right minimal by Lemma m(l),
f' o f is an automorphism of U°, and consequently, ¢’ o ¢ is an automorphism
of Ker(u®). Therefore, Ker(u") is a direct summand of Ker(d"). Since Ker(d°)
is finitely generated, so is Ker(u®). By Corollary [3.8.6(1), Ker(u°) admits a
graded projective cover h : U~! — Ker(u") with U~! € gprojA. By Lemma m,
we obtains a right minimal graded morphism u=! = joh : U™ — U°, where

J : Ker(u”) — P° is the inclusion map. That is, we have a minimal graded
0

projective presentation U~! L (N 0 over gprojA. The proof of
the lemma is completed.

In the sequel, we shall denote by gmod*?4 (respectively, gmod'A) the full
additive subcategory of gmod/ generated by the finitely presented (respectively,
co-presented) modules.

3.9.9 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Then, the duality ® : gmodA — gmodA® restricts to two dualities
D : gmod™?A — gmod ™ A° and ® : gmod A — gmod™ A°.
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Proof. By proposition [3.3.3(2), we have a duality ® : gmodA — gmodA°. Let
M € gmod™?A with a graded projective presentation

pr A po s,

where P!, P° € gprojA. Applying the duality ©, we obtain an injective copre-

sentation

D(dY)

0 DM opo 2) Hp-t

of ® M over ginjA°. So, the duality © : gmodA — gmod A°restricts to a functor © :
gmod™?4 — gmod 'A°. Similarly, the duality ® : gmodA° — gmod restricts to
a functor ® : gmod 'A° — gmod™?A. Therefore, ® : gmod™?A — gmod'A° is
a duality. Dually, we have a duality ® : gmod %A — gmod™’4°. The proof of
the proposition is completed.

The following statement does not hold under the general non-graded setting.

3.9.10 Proposition. Let A = kQ/R be a graded algebra, where Q is a lo-
cally finite quiver. Then, gmod™?A and gmod ™A are Hom-finite Krull-Schmidt
extension-closed subcategories of GModA such that their intersection is gmod”A.

Proof. By Proposition m, gmod™?A is Hom-finite, and by Proposition 2.1 in
[3], gmod™?A is extension-closed in GModA. We claim that it is closed under di-
rect summands. Indeed, let M € gmod™?A with a graded projective presentation
plalpo Py 0 over gprojA. Then, Ker(u®) is finitely generated.
Assume that M = L & N with a canonical injection ¢ : L — M and a canonical
projection p : M — L. In particular, L € gmod™A. By Corollary [3.8.6(1), L
has a graded projective cover u® : UY — L with U° € gprojA. Hence, we obtain

a commutative diagram with exact rows

0

0 — Ker(u?) —= U -~

T
0 — Ker(d®) —2> PO & J\f 0
L

0.

In particular, u’o f'o f = u°. Since u is right minimal by Lemma ( ), flof
is an automorphism of U, and hence, ¢’ o ¢ is an automorphism of Ker( 9). So,
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Ker(u?) is a direct summand of Ker(d"), and hence, it is finitely generated. There-
fore, L admits a graded projective presentation over gproj/A. This establishes our
claim. By Proposition [1.3.2, gmod™?4 is Krull-Schmidt. Moreover, in view of
Proposition , we see that gmod ™A is also a Hom-finite Krull-Schmidt and
extension-closed subcategory of GModA.

Finally, by Proposition , the intersection of gmod™?4 and gmod ™/ lies
in gmod. Conversely, let M € gmod’A. In particular, there exists some t € Z
such that M; = 0 for all i > ¢t. By Corollary[3.9.5] M admits a graded projective
cover f: P — M with P € gprojA. Write L = Ker(f). Then L = @®;czL;, where
L; C P, for all i € Z. Since f is a graded morphism, L; = P; for all ¢ > ¢t. If 1 > ¢,
then L; = P, = J;_4P, C radL. Therefore, topL = @;<;(L; +radL)/radL. On the
other hand, since P is locally finite dimensional and bounded below; see (]3.8.6)),
@i<¢F; is finite dimensional. As a consequence, ®;<,;L; is finite dimensional, and
so is topL. Being bounded below, L is finitely generated by Lemma [3.6.2] By
Corollary (1), Ker(f) admits a graded projective cover over gprojA. So,
M € gmod™?A. Dually, we may show that M € gmod A. The proof of the
proposition is completed.

REMARK. By Proposition [3.9.10, gmod™*4 and gmod ™"/ are exact k-categories.
Note that they are not abelian in general.

As an analogue of Proposition [3.9.5, we have the following statement.

3.9.11 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally
finite quiver.

(1) If A is locally left noetherian, then gmod ™A is abelian.
(2) If A is locally right noetherian, then gmod A is abelian.

Proof. (1) Suppose that A is locally left noetherian. Let f : P — P’ be a
morphism in gprojA. By Proposition M(l), Ker(f) € gmod*™®A. Thus, by
Corollary [3.8.6(1), we have a graded projective cover g : U — Ker(f) with

U € gprojA. This yields an exact sequence U 9 p o pin gprojA, where
q : Ker(f) — P is the inclusion morphism. Now, by Proposition 2.1 in [3],
gmod™? A is closed under kernels and cokernels. Therefore, gmod™? A is abelian.

(2) Assume that A is locally right noetherian. That is, A° is locally left
noetherian. By Statement (1), gmod**A° is abelian, and by Proposition M,
so is gmod~""A. The proof of the proposition is completed.
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We conclude this section with the following result, which will be useful in the
study of almost split sequences for graded representations of any locally finite
quiver.

3.9.12 Proposition. Let Q be a locally finite quiver. Then gmod™?(kQ) and
gmod ™" (kQ) are Hom-finite Krull-Schmidt hereditary abelian subcategories of
gmodkQ such that their intersection is gmod’ (kQ).

Proof. By Proposition , gmod™?(kQ) is Hom-finite and Krull-Schmidt.
It is well known that the category of all unitary k@Q-modules is hereditary; see
[20, (8.2)]. In particular, GExt;o(M,N) = 0 for all M,N € gmod™?(kQ).
That is, gmod™?(kQ) is hereditary. Let f : P — P’ be a morphism in gprojA.
Since GMod™?(kQ) has enough projective objects by Proposition Im(f)
is projective, and hence, P = Ker(f) @ Im(f). Since gproj4 is Krull-Schmidst,
Ker(f) € gprojA. Now, by Proposition 2.1 in [3], gmod™®?(kQ) is closed under
kernels and cokernels. Therefore, gmod™?(kQ) is abelian. This establishes the
first part of the statement, and the second part follows dually. The proof of the
proposition is completed.
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Chapter 4

Auslander-Reiten theory over a
graded algebra arising from a
locally finite quiver

In this chapter, we shall study the existence of almost split sequences in
GModA and almost split triangles in the derived categories of graded modules.
For this purpose, we shall first construct a Nakayama functor for graded mod-
ules. Using the Nakayama functor, we give a novel, more categorical, proof
of Auslander-Reiten formulas, eliminating the need for tensor product functors,
compare [3I]. As a consequence, we prove that GModA has almost split se-
quences. In the final section, by using the link between the Nakayama functor
and the almost split triangles, we investigate the existence of almost split trian-
gles in the bounded derived category of piecewise finite dimensional graded A-
modules for bounded complexes of finitely generated A-modules and for bounded
complexes of finitely cogenerated A-modules.

4.1 Graded Nakayama functor

The objective of this section is to construct a Nakayama functor for graded
modules, which is essential for the existence of almost split sequences in the
graded module category and almost split triangles in derived categories of graded
modules.

We start by constructing the contravariant functor (—)* as follows. Given
M € GModA4, put M' = @;ez(M?);, where (M*); = ®req, GHom,(M(—i), P,).
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For uw € e, Aje, and f € GHomu(M(—i), P,), put f(—j) : M{—i—j) — P.(—j),
considering the morphism Plu| : P,(—j) — P,, we define

u’-f = Plu]o f(~j) € GHoms(M(~i—j), P,),

that is, (u°- f)(m) = (f(—j))(m)u, for all m € M{—i). In this way, M* € GModA°.
Given a morphism ¢ : M — N, we define a morphism ¢ : N* — M" by setting
(¢")ix = GHomu(g(—1i), P,), for all (i,x) € Z x Qp. This yields a contravariant
functor (—)*: GModA — GModA°.

4.1.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Then the contravariant functor (—)': GModA — GModA° is left exact.

Proof. Let L M N 0 be an exact sequence in GModA. Fix
(1,x2) € Zx Qg. Then, L{—i) — M(—i) — N(—i) —0 is an exact sequence
in GModA. Applying the left exact functor GHom(—, P,), we obtain an exact

sequence
0 — GHom(N(—i), P,) — GHom /(M (—i), P,) — GHom(L(—i), P,).

That is, the sequence 0 —— (N?);(z) —= (M");(x) — (L");(z) is eaxct. By
Proposition [3.2.2] 0 N? M! L' is an exact sequence in GModA°.
The proof of the lemma is completed.

4.1.2 Lemma. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver.

(1) If M € GModA and V € modk, then (M @ V)(s))! = MY —s) ® DV, for
s €.

(2) We have a duality (=)' : gprojA — gprojA° such that P} = P?, for all
a € Qo.

Proof. Let M € GModA and V € modk. Using first the adjunction isomorphism
and then applying Lemma [2.1.2] we obtain

GHom (M ® V, P,) = Homg(V, GHom, (M, P,))
= GHomy, (M, P,) ® DV,

for x € QQy. Now, in view of the definition of (—)*, we see that

(M®V) =M @DV
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and M(s)" = M*(—s). Then, Statement (1) follows.

Fix a € Qy. Given any (i,x) € Z x (g, by Proposition [3.4.3] we obtain a

k-linear isomorphism

fie exAfeq — GHom (P, (—i), P,) : v° — P[v].
It is easy to see that f; (u°v°) = u°ff (v°), for u € e, Aje, and v € e, Aie,.
That is, f* = (f{,)G.2)ezxq, : Py — P, is an isomorphism in gprojA°. Similarly,
we may construct an isomorphism ¢* : (P°)" — (P?)° = P, in projA. This yields
an isomorphism ¢, = g% o (f*)*: P!* — P, in gprojA.

Fix u € e,Ase,. Consider the graded morphisms Plu] : P, — Py(s) and
Plu°] : P(—s) — P2, the right multiplication by u and u° respectively. Given
v € epd;_se,, we have Pluv] = Plv] o Plu](—i), that is,

Jia(Pu)i0(v”) = GHom(P[u)(~i), Po) (fi_ s 2(v°))-

1,2 1—S,T

So, f&, o Plu®]is = Plult, o f*(—s)i., and hence, f*o P[u°] = Plu]’ o f*(—s).
Similarly, Plu] o g* = ¢°(s) o P[u°]t. This implies Plu] o (* = ¢%s) o P[u]*’. Since
every morphism in Hom(P,, Py(s)) is of the form Plu]; see (3.4.3), ¢
in P,.

Now, let U and V' be two indecomposable projective modules in gprojA. Then
there are two graded isomorphisms ¥, : U — P,(s) and 0}, : V' — By(t) for some

a,b € Qo and s,t € Z. This yields two commutative diagram

% is natural

a ¢
(Pafs))" —— Fu(s) (Py(t))" — Plt)
ﬁij ]ﬁa and 19{}] Tﬁb
Uty vie Ly

for some graded isomorphisms ¢, : U — U and (, : V' — V. On the other hand,
given a graded morphism h : U — V', by Corollary we have a commutative

diagram
U
| e
v
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for some u € e, A;_se,. Now, observe the following diagram

(Pu(s))" i P(s)
193\ C 19@
Utt L) U
Plu]** h“L lh Plu]
vt Sy
2N
Byt “ Bt

we see that
Ypoho(, =Plulod,o(,

:P[u] OCaOﬁfzt

= Gy o Plu]* o

— Cb o ﬁit o htt

=, 0(, oh'.
Since ¥, is a graded isomorphism, h o (, = ¢, o h'*. Therefore, ¢, extends to a
natural isomorphism (,, : U — U for each U € projA. Thus, id = (=)' o (=)
The proof of the lemma is completed.

Composing the functors (—)" and © yields two functors v = © o (=)' :
GModA — GModA and v~ = (=) 0 ® : GModA — GModA. By Proposition
B.3.3 and Lemma [4.1.2] they restrict respectively to functors v : gprojA — ginjA
and v~ : ginjA — gprojA.

4.1.3 Theorem. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver.

(1) The restricted functors v : gprojA — ginjA and v~ : ginjA — gprojA are
mutually quasi-inverse such that v(P,(s)@V) = I,(s)RV, for s € Z and
V emodk.

(2) Given M € GModA and P € gprojA, there exists a binatural k-linear
1somorphism

®py: GHomy (M, vP) — D(GHomy (P, M)).
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Proof. By Proposition [3.3.3] and Lemma [{.1.2] both ©® : gprojA° — ginjA
and (=)' : gprojA — gprojA°® are dualities. Thus, v : gproj4 — ginjA and
v~ : ginjA — gproj/A are mutually quasi-inverse. Given V € modk, in view of
Proposition [3.3.12) and Lemma [£.1.2] we see that

V(Py(s) @ V) ZD(P)(—s) @ DV) = 1,(s) ® V.

This establishes Statement (1).

Fix M € GModA and P,(s) with (s,a) € Z x Q. By Lemma[1.1.2] we have a
natural isomorphism f%(—s) : P2(—s) — P!(—s) in gproj/A°, and hence, a natural
isomorphism D (f*)(s) : (vP,)(s) — I,(s) in ginjA. This gives rise to a k-linear
isomorphism

py = GHoma (M, D(f*)(s)) : GHoma(M, (vFy)(s)) — GHom,(M, I4(s)),

which is binatural in M and P,(s). Next, by Corollary [3.4.2) we obtain a k-linear
isomorphism 7%¢ : GHom  (Py(s), M) — M_,(a), which is clearly binatural in M
and P,(s). This yields a binatural k-isomorphism

D> DM_s(a) — DGHomy(Py(s), M).

Finally, we have a k-linear isomorphism 0, : D(e,Age,) — k : h — h(e,). Apply-
ing Proposition for the case V = k, we get a k-linear isomorphism

Yo GHomy (M, In(s)) = D(M_s(a)); g + 04 © g—sa;

which is clearly natural in M. Consider u € e, A;_ e, and the graded morphisms
Plu] : Py(s) — Py(t) and P[u°] : PP(—t) — P2(—s). Setting I[u] = ©(P[u°]), we
claim that the following diagram commutes
i’
GHom (M, I,(s)) —
GHomA(M,I[u])l

D(M_(a))
" | pary
GHoma(M, I,{)—2~ D(M_(b)).

Consider g € GHom (M, I,(s)). By definition, we have ¢**(GHom 4 (M, I[u])(g)) =
Oy o I[u] 1y © g—1p and D(M(u))(1>%(g)) = 04 © g—sqa © M(u). Moreover, given
m € M_;(b), we have

(0 © g-s.0 0 M(u))(m) = g—sa(um)(ea) = (ug—rp(m))(ea) = g-15(m)(u°).
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On the other hand,
(L[u]—tp © g-1)(m) = D(P[u’])(g-1,5(m)) = g—ts(m) o Plu’],
and hence,
(0 0 I[ul—tp 0 g—tp)(m) = (g-rp(m) o Plu’])(es) = g—ep(m)(u®).

Our claim holds. Since every morphism in Hom(BPP(—t), P°(—s)) is of the form
Plu®]; see (3.4.3)), 1> is natural in P,(s). Thus, we obtain a binatural A-linear
isomorphism

DPpoo, 00 = D(3") o p3® 0 pi: GHomy (M, v Py(s)) — D(GHom(Py(s), M)).

Now, let U € gprojA be indecomposable. Suppose that ¥, : U — P,(s) is
a graded isomorphism for some (s,a) € Z x )y and §, is an inverse of J,. We
shall show that ®p, ) s extends to a binatural k-linear isomorphism @ 5. The
composite o of graded isomorphisms

VU o D(U°)
u(«ml T@(ég)
(vP.){(~s) D(Py(—s)) = Lu(s)

gives rise to a k-isomorphism

D(f*)s)

p” = GHom(M, o) : GHom, (M, vU) — GHom, (M, D(U°)),

which is binatural in M and U. Composing Dn®* and D(GHom (04, M)) yields
a binatural k-linear isomorphism

@Y = D(GHomy (04, M)) o Dn*>* : DM_,(a) — DGHom, (U, M);

M
and composing GHom (M, D (7)) and ¥ yields a k-linear isomorphism
why = 5% o GHomy (M, D(99)) : GHom (M, DU°) — DM_,(a),

which is natural in M. Let h : U — V be a graded morphism, where U and
V' are indecomposable projective modules. Considering a graded isomorphism

Uy 1V — Py(t) with (¢,b) € Z x Qy, by Corollary we have a commutative

diagram
U
|
Vv



for some u € e, A;_,e,. Considering the following diagram

GHom (M, DU°) DM_4(a)
GHomm\ %
GHomu (M, I.(s))
GHom 4 (M, D(h°)) lGHomA(M,I[u]) D(M(u))
GHOH]A M Ib
GHomW K&b
GHom (M, DV°) DM_(b) ;
we see that

D(M(u)) owY; = D(M(u)) o ¥>* o GHom (M, D (V7))
= 1h"" o GHom (M, I[u]) o GHom (M, D(¥2))
= 1" o GHom4 (M, D(d)) o GHom, (M, D(h°))
= wy; o GHom (M, D(h°)).

Hence, wY; is natural in U. Therefore, we obtain a binatural k-linear isomorphism

Syar = 05 0wl o pY; : GHomy (M, vU) — D(GHom (U, M)).

It is well-known that ®p, ), s extends to a binatural k-linear isomorphism @y 5/
for all U € projA. The proof of the theorem is completed.

REMARK. By Theorem [£.1.3] the functor v : gproj4 — GMod/ is a Nakayama
functor as defined in 38, (5.4)].

4.2 Almost split sequences for graded modules

In case @ is a finite quiver, Martinez-Villa established the existence of al-
most split sequences in the category of finitely presented graded A-modules; [44]
(1.7.1)]. In this section, we supply a new, more categorical, proof of Auslander-
Reiten formulas which does not rely on the tensor product functors but the
Nakayama functor; compare [7, (IV.4.5)]. As a consequence, we shall extend
Martinez-Villa’s result to the locally finite case.
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We shall denote by GMod A the projectively stable category of GModA, and by
GMod 4 the injectively stable category of GModA. By Lemma and Propo-
sition [3.4.8 we see that GMod A is the quotient category of GModA modulo the
morphisms factoring through graded projective modules in GMod A, and GMod /A
is the quotient category of GModA modulo the morphisms factoring through
graded injective modules in GModA. Given M, N € GModA, we shall write

GHom , (M, N) = GHomu(M,N)/P(M,N)

and
GHom, (M, N) = GHom,(M,N)/Z(M,N).

Moreover, we shall write

GEnd (M) = GHom ,(M, M) and GEnd (M) = GHom (M, M).

The following easy statement is well known. For the convenience of the reader,
we will provide a brief proof.

4.2.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider M, N € GModA.

(1) If there exists an epimorphism f : P — N in GModA with P graded pro-
jective, then there exists an exact sequence

GHom, (M, P) GHom4(M.])

GHom (M, N) — GHom ,(M, N) —0.

(2) If there exits a monomorphism f : M — I in GModA with I graded injec-
tive, then there exists an exact sequence

SRR GHom (M, N) — GHom (M, N) —0.

GHomy(I, N)
Proof. We shall only prove Statement (2), since the proof of Statement (1) is
dual. Let f : M — I be a monomorphism in GModA with [ graded injective.
Consider the following sequence

GHomy (M, f
=

GHom (1, N) ) GHom (M, N) —~GHom (M, N) —— 0,

where p is the canonical epimorphism. Since [ is graded injective, we have
Im(GHomy, (M, f)) € Z(M, N). On the other hand, given g € Z(M, N), we have
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g = g1 © g2 for some graded morphisms g; : I’ = N and go : N — I’ in GModA
with I’ injective module. Since f is a monomorphism, there exists a graded mor-
phism h : I — I’ such that go = ho f. That is, GHom, (M, f)(g1oh) = g. Hence,
Im(GHomu (M, f)) D Z(M, N). Therefore, Im(GHom, (M, f)) = Z(M, N). The
proof of the lemma is completed.

We denote by MJ“I’A the full subcategory of GModA generated by the
finitely presented graded modules without non-zero graded projective direct sum-
mands, and by gmod /A the full subcategory of GMod/ generated by the finitely
co-presented graded modules without non-zero graded injective direct summands.
By Lemma , we see that gmod™?A is a dense full subcategory of the quo-
tient category of gmodf’p/l modulo the morphisms factoring through modules

in gprojA, and gmod A is a dense full subcategory of the quotient category of
gmod ~“/A modulo the morphisms factoring through modules in ginjA.

4.2.2 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally
finite quiver. Then gmod?A and gmod ‘A are Hom-finite and Krull-Schmidt.

Proof. By Proposition [3.9.10, gmod™?4 and gmod ™A are Hom-finite and Krull-
Schmidt. So are their quotient categories by Lemma [1.2.4f The proof of the
proposition is completed.

For each M € gmod™?A, by Lemma M(l), we fix a minimal graded pro-
jective presentation

prApo Ly 0,

where P!, PY € gprojA. Applying the functor (—)*, by Lemma [4.1.1] we obtain
an exact sequence
0\t —1\t
0—— Mt L (poy L (ptye L Coker(d ') —— 0

in gmod/A°. We define the transpose of M to be TrM = Coker(d')".

4.2.3 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider M € gmod™PA.

(1) M is graded projective if and only if TrM = 0.

(2) If M = XY, then TtM = TrX ¢ TrY.
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Proof. (1) Suppose that M is graded projective. Then the sequence

0 M4 0

is a minimal graded projective presentation of M. By definition, TrM is a cokernel
of the morphism M?! — 0, which is zero.

Suppose that TrA/ = 0. Let P! a7 po P 0 be a minimal
graded projective presentation of M. By definition, we get a graded projective

d71 t

presentation (P%)t L (P~1)t — ~ TyM — 0. Since TrM = 0 and (P~ is
projective, (d~')! is a retraction. Because (—)! is a duality by Lemma 4.1.2(2),
d~! is a section. This yields a split short exact sequence

0 p1A po_d_ 6 0.

In particular, M is graded projective.
(2) Assume that M = X @Y. Consider two minimal graded projective presen-

0

tations V1 -0 2 x 0 and W12 o 2y 0. Then,
M admits a minimal graded projective presentation

vl 0 0 0
0 w! 0 w°

View !l ——V'pgW' —— XY ——0.

Thus, by definition, it easy to see that TrM = TrX & TrY. The proof of the
lemma is completed.

4.2.4 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Let M € gmod™?A admitting a minimal graded projective presentation

p-1A po_d_ 0.

—1\t
(1) The graded projective presentation (Po)tw—l (P ——TrM ——=0 s
manimal.

(2) TrM has no non-zero graded projective direct summands.
(3) War : M — TY*M is a graded isomorphism.

(4) M is indecomposable and non-projective if and only if so is TrM.
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—1\t
Proof. (1) Assume that (PO)tM(P_l)tL>TrM—>O is not minimal.

Consider first the case where u is not a graded projective cover. By Lemma
3.8.2 there exists a graded projective cover f : V~! — TrM. Thus, we may
assume that

u=(f,0): (P =V'ew!—-TrM,
where W1 = 0. Then Im(d )" = Ker(u) = Ker f & W™, and hence,
(d 1) = <Zl) (P = VTiew T
2

where hy : (PY)! — W~ is a graded epimorphism. Since W' is graded projec-
tive, we may write

ho = (0,9) : (P = VO @ WO — W1,
where g : W% — W1 is a graded isomorphism. Therefore,
(d 1) = (ﬁ Z) H(PY = V0O WO s Ve Wl = (P

Since (—) is a duality by Lemma[4.1.22), d~! is isomorphic to the graded mor-
phism

pt 0 —1\t —1\t 0\t 0yt

i g ) Ve (Ve (WH

Therefore, the minimal graded projective presentation of M is isomorphic to an

(v o) (@ 4

(VO (W) M 0.

exact sequence

Since ¢' is a graded isomorphism, dy = 0 and (W?)! # 0. This is contrary to d°
being a graded projective cover.

Next, suppose that the co-restriction of (d7!)! to Im(d™')! is not a graded
projective cover. Since Im(d~!)! is finitely generated, there exists a graded pro-
jective cover v : VO — Im(d~')" by Lemma [3.8.2l Thus, (d~!)" is isomorphic to
a morphism (v,0) : V& W — (P71, where W # 0. Since (—)' is a duality by
Lemma [4.1.22), d~! is isomorphic to the morphism

ot
(0) Pl Vi W,
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Therefore, the minimal graded projective presentation of M is isomorphic to the

o)

Pl—=VigwW!

following exact sequence

M 0.

This yields M = Coker(v') & W', where W' is a non-zero projective module,
a contradiction to the assumption on M. This establishes the second part of
Statement (1).

(2) Assume that TrM = V @& X, where V is a non-zero graded projective
module. By Proposition [3.9.10, X admits a minimal graded projective presenta-
tion W12 o v x 0 over gprojA°. Then, TrM admits a minimal
graded projective presentation

1 0
(o a0}

()

By Statement (1), it is isomorphic to

o Wo Ve X—0.

—1\t
(Poy L p1yt .
Since (—)! is a duality, d~! is isomorphic to the morphism
(0, (w™)") : V@ (W' — (W)

So, the restriction of d~! to a non-zero direct summand V* of P~! is zero, a
contradiction.

(3) Since (—)! : gprojA — gprojA° is a duality by Lemma [£.1.2]2), we have a
graded morphism ¥, : M — Tr?M making the following diagram

pl— L po Ly 0
l% j% Y
1\tt tt v

(P1yit (@) (POY (d%) Ty 0

commute, where rows are exact and columns are graded isomorphisms. In par-
ticular, ¥, is a graded isomorphism.

(4) By Statement (3), it suffices to prove the necessity. Assume that M is
indecomposable and non-projective, and assume to the contrary that TrM =
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X @Y is a nontrivial direct sum decomposition. By Statement (2), X and Y
are not graded projective. By Statement (3) and Lemma [4.2.3, M = Tr*M =
TrX & TrY, where TrX # 0 and TrY # 0. This is a contradiction. So, TrM
is indecomposable, and by Statement (2), it is non-projective. The proof of the
proposition is completed.

The following statement is important in our investigation, which corresponds
to Auslander’s result for an arbitrary ring with an identity; see [4, Chapter I,
Section 3]. Here, we provide a detailed proof.

4.2.5 Proposition. Let A = kQ/R be a graded algebra, where Q) is a locally
finite quiver. Then, we have a duality Tr : gmod™?A — gmod™?A°.

Proof. For each non-zero object M € gmod™?A, we fix a minimal graded projec-

tive presentation
0

p-l 4 po_ 0.

By Proposition 4.2.4] TrM has no non-zero projective summands and has a min-
imal graded projective presentation in gmodA° as follows:

ove @D o
(P — (P') —=TrM —0.

Consider a morphism f = f+P(M, N) in gmod™”A, where f € GHom, (M, N).
We shall define Tr(f) as follows. First, we have a commutative diagram

plA po 0

A

ey 5 S 0,

where the lower row is a minimal graded projective presentation of N. Applying
the contravariant functor (—)*, we obtain a commutative diagram with exact rows

(P AL (Y Ty M ——0

A

(f“)t] (f‘l)t] e

oye (47" r e 3
(L) L= (L) —=TrN —0.

Set Tr(f) = f' + P(TrN, TrM). We claim that Tr(f) is well-defined. Indeed,
assume that f = g +P(M, N) for some g € GHom,(M, N) and that we have a
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commutative diagram

prELpr Ly

A

) B Vs 0,

which induces a commutative diagram

(Poy L Pty e TN
A

<g°>fT (ger g

ove @D Ty v '
(L) ——= (L) ——=TrN —0.

Since L° is graded projective, by Lemma , f—g = q" oh for some graded
morphism h : M — L. Since ¢°o (f° —¢°) = (f —g) 0d® = ¢° o hod’, there is a
graded morphism h° : P° — L1 such that ¢71 o h? = f° — ¢° — ho d°, and thus,
(h%) o (¢7H)t = (fO) — (¢") — (d°)! o h'. Observe that

() = ()o@ =@ ) o ((f) = (g7°)) = (@) o (A" o(¢7")"
Then, there exists a graded morphism w : TrN — (P~!)! such that
wov=(f1)—(¢g7")") —(d7") o (h")".
Moreover, we see that
(f'=g)ov=uo((f) =(¢7")) =uo(wouv+(d) o(h’)) =uowou.

Since v is a graded epimorphism, f’ — ¢’ = uwow, that is, f' — ¢’ factors through
(P~YHt. Thus, f'+P(TrN, TrM) = ¢'+P(TrN, TrM). This establishes our claim.
This defines a contravariant functor Tr : gmod™?4 — gmod™?4°. Similarly, we

have a contravariant functor Tr : gmod™?4° — gmod™?A.

We shall construct a natural isomorphism 9 : idg,,q+.p4 — Tr?. Indeed, by

Proposition M(Q), we obtain a minimal graded projective presentation

(dO)tt

(P1) (d77) (P)t T2 M 0

over gproj/. By Proposition [4.2.4]3), we have a graded isomorphism ¢, : M —
Tr?M. This induces a graded isomorphism ¥,, : M — Tr*M in gmod™?A. It
remains to show that 9,, is natural in M. Let f : M — N be a morphism in
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gmod™?A, where f € GHom,(M, N). Then, we have a commutative diagram
with exact rows

prlp Ty 0
fll fol lf
s B S\ 0.

We have obtained a commutative diagram with exact rows

POy L (1Y e T —— 0

A
(fO)tT (f‘l)tT -

ove (@D - v :
(L% —%= (L) ——=TrN ——=0

such that Tr(f) = f'+ P(TrN, TrM). Applying the contravariant functor (—)'
yields a commutative diagram with exact rows

gt 71)tt ONEE (dO)tt 9
(Pt = s (POt s T2 0
(fl)ttL (fO)ttl lf//
—1\tt 0\tt
(L T oy T 2y 0.

By definition, Tr? (f) = f"+P(M,N). Now, as seen above, we have a commuta-
tive diagram with exact rows

—1

L1 J N 0
N | = N | &2 9N %
—1\tt 0\tt v
(L—l)tt () (LO)tt (¢°) T2 N 0

in gmod/A, where the upper row is a minimal graded projective presentation.
Consider the following diagram

o —
TN N
s l — (P l ——Tr*M
Lt l Lo N ) 1
Lo N
1yt (ql)tt\{ 0\t (qo)tx 2
——— (L") ————Tr°N.

114



In view of this diagram, we see that
Inyofod =dyoq’ofO

— <q0)tt onuo fO

= (¢")" o (f*)" o

— f// o (dO)tt 0 Npo

— f// o 19M o dO.
Since d° is a graded epimorphism, Iy o f = f” o 9. This yields a commutative
diagram

M—2 20

f\ ‘TrQ(f)

O o

That is, we have a natural isomorphism ¥ : idg,q+.p4 — Tr?. Similarly, we have

a natural isomorphism ¢ : idg,0q+rg0 — Tr?. The proof of the proposition is
completed.

REMARK. In case @ is a finite quiver, Proposition was stated by Martinez-
Villa in [4, Section 1.4] without a proof.

The following statement is important.

4.2.6 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver.

(1) Let M € gmod™?A with a minimal graded projective presentaion

p1 4 po_ 4y 0

over gproj/A. Then there exists in gmodA an exact sequence

0 M — 1740 po M)

vP M 0.

(2) Let N € gmod ™A with a minimal graded injective co-presentation

0 N po_d _n

over ginjA. Then there exists in gmodA an exact sequence

v=(d™) (

= (d0
0— 1N L ) oy ),
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Proof. (1) Since the functor (—)" is left exact by Lemmal4.1.1, we obtain an exact
sequence

0\t —1\t
0 Mt A (poye L (pty T ),

which lies in gmod A° by Lemmam. Recalling that vM = D M?, by Proposition
3.3.1(3), we obtain an exact sequence

(d") (d°)

0——D(TrM) vP1 Pt M 0

in gmodA.

(2) Applying the exact functor ®, in view of Lemma [3.8.7(2), we obtain a
minimal graded projective presentation

1 0
o 2 p 2 o g

in gmodA° over gproj/A°. Applying the left exact functor (—)*, by Lemma 4.1.1]
we obtain an exact sequence

v=(dO° v (d!
0— v N y 10 L P (o N)
in gmodA, where v™N = (D N). The proof of the proposition is completed.

Combing Proposition [.2.5] and [.2.6], we obtain immediately the following
result.

4.2.7 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Then, we have two mutually quasi-inverse equivalences

7= 0Tr:gmod™?4 — gmodf’i/l

and '
7~ =Tro® :gmod ''A — gmod™?/,

called the Auslander-Reiten translations.

We shall need the following statement to prove the graded Auslander-Reiten
formula.
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4.2.8 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Consider a short exact sequence

0Lt M2 N0

in GModA. If X € gmod™?A, then we have an exact sequence of k-vector spaces

GHom 4 (g,7X) GHomx (f,7X)
- 7

0 —— GHom, (N, 7X) GHom, (M, 7X)

GHomy (L, 7X)

—— DGHomy (X, N) — DGHom, (X, M) — DGHomy (X, L) — 0.

Proof. Let X € gmod™”A with a minimal graded projective presentaion

p1a po 4 x 0

over gproj/A. By Proposition M(l), we have an exact sequence

(d)

0 TX yp-1 2% L, po.

Fix Y € GModA. Applying the left exact functor GHom,(Y, —) yields an exact
sequence

GHom 4 (Y, v(d™1))

0 — GHom, (Y, 7X) — GHom, (Y, vP™1) GHom (Y, vP?).

On the other hand, applying the right exact functor DGHom(—,Y") to the first
exact sequence, in view of Theorem M(Q), we obtain a commutative diagram
with exact lower row

GHom 4 (Y,v(d™1))

GHom,(Y,vP™1) GHom, (Y, vP?)

ul ”L

om —1 0 *
DGHom, (P~ y) —2Homat@ ) .

DGHom,(P%Y) — DGHom,(X,Y) —0,

where (d°)* = GHom,(d°,Y). This yields an exact sequence

GHom 4 (Y, v(d™1))

GHomy (Y, vP™1) GHom, (Y, vP°) — DGHom (X, Y) —0.
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Now, since vP~! and vP? are graded injective, we obtain a commutative diagram
with exact rows and exact columns

0 0 0

0 — GHomy (N, 7X) —— GHom, (M, 7X) —— GHom, (L, 7X)

0 — GHomy(N,vP~™') — GHom (M, vP~') — GHom(L,vP~™') —= 0

0 — GHom (N, vP) —— GHom (M, v P°) —— GHom (L, vP") — 0

DGHomy (X, N) — DGHom (X, M) —— DGHom, (X, L) —0.

0 0 0

Using the Snake Lemma, we obtain the desired exact sequence stated in the
proposition. The proof of the proposition is completed.

We also need the following statement.

4.2.9 Proposition. Let A = kQ/R be a graded algebra, where Q is a locally
finite quiver. Consider a short exact sequence

0Lt M2 N0

in GModA. If X € gmod ™A, then we have an ezact sequence of k-vector spaces
0 —— D?*GHomy (7~ X, L) — D*GHom, (7~ X, M) — D*GHom, (7~ X, N)

—— DGHomy (L, X') — DGHom (M, X)) — DGHom (N, X) — 0.

Proof. Let X € gmod ™A with a minimal graded projective presentaion

0—x - p
over ginj/A. By Proposition M(Z), we have an exact sequence

e LRy X 0.
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Fix Y € GModA. Applying the left exact functor D*GHom,(—,Y") yields an
exact sequence

D2GHom (v—dLY)
A YD

0 —D*GHom, (7~ X,Y) —=D?*GHom, (v I'Y) 2GHom, (v~ I%Y).

On the other hand, applying the right exact functor DGHom,(Y, —) to the first
exact sequence, in view of Theorem [4.1.3|2), we obtain a commutative diagram
with exact upper row

DGHom 4 (Y,dt)

0
DGHom,(Y, ') DGHom (Y, I°) 2% DGHomy (Y, X) —0

- -

2 omy (v—d!
D2GHomy (v 1% y) 222 ) he G om (v 19,Y),
where d = GHom, (Y, d"). This yields an exact sequence

D?GHomy (v—dLY)
_—

D?>GHomy (v— 1Y) D?>GHomy (v~ 1°%Y) — DGHomy (Y, X) — 0.

Now, since v~ I° and v~ I are projective, we obtain a commutative diagram with
exact rows and exact columns

0 0 0
0 — D?*GHom, (7~ X, L) — D?>GHom, (7~ X, M) — D*GHom (7~ X, N)
0 — D*GHom, (v~ I', L) — D?*GHom, (v~ I', M) — D?GHom (v~ I*, N) —0

0 — D*GHom, (v~ I°, L) — D*GHom, (v~ I°, M) — D?*GHom (v~ I°, N) — 0

DGHomy (L, X) DGHomy (M, X) DGHomy (N, X) —0.

0 0 0

Using the Snake Lemma, we obtain the desired exact sequence stated in the
proposition. The proof of the proposition is completed.

We are ready to obtain the graded Auslander-Reiten formula. The classical
approach to this well known formula consists of the following two identifications;
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see [4, (I1.3.4)] and the corollary to [44], (1.6.3)]. First, the covariant stable Hom
functor given by a finitely presented module is identified with the Tor! functor
given by its transpose; see [4, (1.3.2)] and [44], (1.6.3)]. Secondly, the dual of the
Tor! functor given by a module is identified by the adjunction isomorphism with
the contravariant Ext' functor given by its dual; see [4, (1.3.3)], [18, (VI.5.1)] and
[44] (1.6.1)]. Our approach is to apply the Nakayama functor; see (4.1.3), which
does not pass through the Tor' functor and does not involve the tensor product
over the algebra or the adjunction isomorphism.

4.2.10 Theorem. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider M, N € GModA.
(1) If M € gmodt?A, then there exists a k-linear isomorphism
DGHom (M, N) = GExt} (N, M),
which is natural in N.
(2) If N € gmod™'A, then there exists a k-linear isomorphism
D?*GExth (7~ N, M) = DGHom(M, N),
which is natural in M.

Proof. (1) Assume that M € gmod™?A. By Proposition [3.4.8 there exists a

short exact sequence 0 L—2-p-2L-N 0 in GModA with P being
graded projective. Applying GHom,(—,7M) yields an exact sequence

0 —= GHomu(N, M)~~~ GHom (P, M) ——~ GHom (L, 7 M)

— GExt(N,7M) ——0,

where p* = GHomy(p, 7M) and ¢* = GHom,(q,7M). In particular, we obtain
an isomorphism Coker(¢*) = GExt}(N,7M), which is natural in M. On the
other hand, in view of Lemma [4.2.1(1), we have an exact sequence

DGHom 4 (M,p
_—

0 —— DGHom ,(M, N) —— DGHom(M, N) ) DGHom (M, P).

This yields an isomorphism DGHom (M, N) = Ker(DGHom (M, p)), which is
natural in M. Further, by Proposition we have an exact sequence

0 —— GHomu(N, M) 2~ GHom (P, M) —~ GHom (L, 7 M) —~
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DGHomx (M,p)

DGHom, (M, N)

DGHom (M, P) —= DGHom (M, L) — 0.

This yields an isomorphism
Ker(DGHom (M, p)) = Im(n) = Coker(q"),
which is clearly natural in M. As a consequence, we obtain a natural isomorphism
DGHom ,(M, N)=GExth (N, 7M).

(2) Assume that N € gmod™‘A. By Proposition m there exists a short

exact sequence 0 M1 0 in GModA with I being graded
injective. Put U = 77 N. Applying the functor GHom, (7N, —), since [ is

graded injective, we obtain an exact sequence

0 — GHom(7~N, M) —*~ GHom (7N, I) —2~ GHom, (7N, L)

— GExt, ("N, M) ——0,

where p, = GHomy (77N, p) and g, = GHom,(77N,q). Applying the exact
functor D? yields an exact sequence

D? (p+)

0 —— D2GHoma(rN, M) 2% D2GHom(rN, 1) 2272 D2GHom (7N, L)

— D*GExt} (77N, M) —0.

Hence, we have an isomorphism D*GExt!(7"N, M) = Coker(D?(p.)), which is
natural in N. On the other hand, we deduce from Lemma [4.2.1(2) that

DGHom 4 (M,q)
é—

0 —= DGHom (M, N) —= DGHomy(M, N) DGHomy(I, N)

is an exact sequence. In particular, we obtain an isomorphism DGHom ,(M, N) =
Ker(DGHom,(M, q)), which is natural in N. Further, by Proposition |4.2.9, we
have an exact sequence

D?(px)

D?*GHom,(7"N, M) — D?*GHom, (7N, I) —= D*GHom, (7N, L) —

DGHom 4 (

DGHom,(M, N) M9 DGHoma (I, N) — DGHomy(L, N) — 0.
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This yields an isomorphism
Ker(DGHomy (M, q)) = Im(n) = Coker(D?(p,)),
which is clearly natural in N. As a consequence, we obtain a natural isomorphism
DGHom (M, N) = D*GExt} (7N, M).
The proof of the theorem is completed.

REMARK. (1) The non-graded version of Theorem 4.2.10|(1) was established by
Auslander and Reiten for modules over any ring; see [4, (I. 3.4)].

(2) In case Q is finite, Theorem [4.2.10[1) was established by Martinez-Villa in
case M is finitely presented and N is locally finite dimensional; see [44, Page 42].

We shall also need the following easy statement.

4.2.11 Lemma. Let X be a local k-algebra. Then D2 has a non-zero socle as a
left X -module and as a right X -module.

Proof. We shall consider only the left ¥-module DX. Let p: X' — X /radX be the
canonical projection. Applying the left exact functor D, we obtain an injection
D(p) : D(XY/radY) — D(X). Fix a non-zero element ¢ € D(X /radX). Then
D(p)(¢) = ¢op is a non-zero element in D(X'). For any u € radX and v € X, we

have (u - (¢ op))(v) = (pop)(vu) = @(p(vu)) = 0. That is, 0 # pp € soc(DX).
The proof of the lemma is completed.

The following is one of the main results of this thesis.

4.2.12 Theorem. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.

(1) If M € gmod™?A is indecomposable and non-projective, then there exists
an almost split sequence

0 TM E M 0

in GModA, which is contained in gmodA.

(2) If N € gmod A is indecomposable and non-injective, then there exists an
almost split sequence

0 N E TN 0

in GModA, which is contained in gmodA.
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Proof. (1) Let M € gmod™?A be indecomposable and non-projective. Then, by
Proposition M(ZL), TrM € gmod™?A° is indecomposable and non-projective.
By Proposition , M is indecomposable and non-injective in gmodA. So,
by Proposition [3.9.10, GEnd (M) and GEnd(7M) are local. Now, by Theorem
4.2.10((1), there exists a natural isomorphism

Wy : GExth(—, 7M) — DGHom , (M, —).

In particular, Wy, 5 : GExth(M,7M) — DGEnd,(M) is a right GEnd ,(M)-
linear isomorphism. Since GEnd (M) is local, by Lemma DGEnd (M)
has a non-zero GEnd ,(M)-socle. In particular, the intersection of the image of
Wy and the socle of DGEnd (M) is non-zero. By Theorem 3.6 in [38], there
exists an almost split sequence as stated in Statement (1).

(2) Let N € gmod "4 be indecomposable and non-injective. Then, DN €
gmod™?A° is indecomposable and non-projective by Proposition , and thus,
7~ N € gmod®?A is indecomposable and non-projective by Proposition M(Zl)
So, by Proposition [3.9.10, GEnd,(N) and GEnd,(7~N) are local. Now, by
Theorem [4.2.10[2), there exists a functorial isomophism

Uy : D*GExt) (77N, —) — DGHomy(—, N).

In particular, Uy : D2GExt)(7=N,N) — DGEnd,(N) is a left GEnd(N)-
linear isomorphism. On the other hand, it is well known that there exists a
natural monomorphism ®y : GExt (7~ N, —) — D?GExt} (7~ N, —). This yields
a natural monomorphism Oy = ®y o ¥y : GExt) (7N, —) — DGHom(—, N).
Since GEnd 4(N) is finite k-dimensional by Proposition , so are DGEnd4(N)
and D*GExt} (7~ N, N). Thus, ®y y : GExt} (7N, N) — D*GExt} (7~ N, N) is
an isomorphism. This yields a left GEnd(N)-linear isomorphism

On.n : GExth (77N, N) — DGEnd(N).

Observing that GEnd 4(NN) is local, by Lemma , the left GEnd 4(V)-module
DGEnd4(N) has a non-zero socle. In particular, the intersection of the image
of Oy and the socle of DGEnd,(N) is non-zero. By Theorem 3.6 in [38, 3.6],
there exists an almost split sequence as stated in Statement (2). The proof of the
theorem is completed.

REMARK. (1) To the best of our knowledge, the non-graded version of Theorem
4.2.12(2) is only known under certain finiteness condition on A; see [8, (V.1.15)];
and compare also [26].
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(2) In case @ is a finite quiver; see , Martinez-Villa stated an almost split sequence
in GMod as stated in Theorem [4.2.12)(1); [44} (1.7.1)]. However, the proof given
there shows only that the almost split sequence is in gmodA; see [44, (1.6.1)];
compare also [19, (3.5)].

As a special case of Theorem [{4.2.12) gmod™?/4 has almost split sequences on
the left for finite dimensional modules, and gmod ™" has almost split sequences
on the right for finite dimensional modules.

4.2.13 Corollary. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver, and let M be an indecomposable finite dimensional module in GModA.

(1) If M is non-projective, then gmod ™A has an almost split sequence

0 TM E M 0.

(2) If M is non-injective, then gmod™PA has an almost split sequence

0 M E T M 0.

Proof. We shall prove only Statement (1), since the proof of Statement (2) is
dual. By Proposition [3.9.10, M € gmod™?A N gmod™“A. If M is not projective,
by Theorem 4.2.12] there exists an almost split sequence

0 TM L M 0

in gmod/, where 7M € gmod ™A by Proposition 4.2.7l Since L € gmod ™A by
Proposition [3.9.10} this is an almost split sequence in gmod"A. The proof of the
corollary is completed.

We shall strengthen the existence of almost split sequences in gmod*?4 or
gmod ™/ under the locally right or left bounded setting.

4.2.14 Theorem. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.

(1) If A is locally right bounded, then gmod™PA has almost split sequences on
the right; and an indecomposable non-injective module is the starting term
of an almost split sequence if and only if it is finite dimensional.

124



(2) If A is locally left bounded, then gmod ‘A has almost split sequences on the
left; and an indecomposable non-projective module is the ending term of an
almost split sequence if and only if it is finite dimensional.

(3) If A is locally bounded, then gmod®/ has almost split sequences.

Proof. We shall prove only Statement (1), since Statement (2) is dual and State-
ment (3) follows immediately from the first two statements. Assume that A is
locally right bounded. By Proposition M(Z), gmod ™/ = gmod®4, and hence,

by Proposition [3.9.10, gmod ™A C gmod™*?A.
Now, let M € gmod™?4 be indecomposable. If M is not graded projective,

then, by Theorem there is an almost split sequence

0 TM L M 0

in gmod/. Since 7M € gmod A C gmod™ A, this is an almost split sequence
in gmod™PA. So, the first part of Statement (1) holds. And the sufficiency of the
second part follows directly from Corollary [4.2.13(2). Assume that there exists
an almost split sequence

0 M L N 0

in gmod™?A. In particular, N € gmod"™?A, and hence, M = 7N € gmodA.
By Proposition [3.9.10, M is finite dimensional. The proof of the theorem is
completed.

ExAMPLE. Consider the graded algebra A = kQ/R, where

AT G LG
\5‘3/5/

Q 6

and R = k(ya—4§5). Since @ has no infinite path with an ending point, 4 is locally
right bounded. By Theorem [4.2.14{1), gmod A has almost split sequences on

the right. Clearly, S; has a minimal graded projective resolution

5 Pla) P[]
0 p, L p oo p, ( ) P, S, 0.

Then, radP; € gmod™?4 is not graded injective. Moreover, since rad*P, = P, we
see that radP; is indecomposable of infinite dimension. By Theorem [4.2.14(1),
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there exists no almost split sequence in gmod™?A starting with radP;. Thus,
gmod ™"/ does not have almost split sequences on the left. In a dual fashion, one
can construct graded algebras A such that gmod ‘A has almost split sequences
on the left but not on the right.

In case @ is a strongly locally finite quiver, the existence of almost split

sequences in the category of finitely presented representations has been studied
in [I1], (3.7)]. As a special case of Theorem |4.2.14] we obtain the following result.

4.2.15 Theorem. Let () be a locally finite quiver.

(1) IfQ has no infinite path with an ending point, then gmod™?(kQ) has almost
split sequences on the right.

(2) If Q has no infinite path with a starting point, then gmod " (kQ) has almost
split sequences on the left.

(3) If Q has no infinite path, then gmod®(kQ) has almost split sequences.

Proof. If @ has no infinite path with an ending point(respectively, starting point),
then kQ is locally right (respectively, left) bounded. Thus, Statements (1) and
(2) follow from Theorem (1) and (2), respectively. Finally, Statement (3)
follows immediately from the first two statements. The proof of the theorem is
completed.

4.3 Graded almost split triangles

The objective of this section is to study the existence of almost split triangles
in the derived categories of graded modules.

4.3.1 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver.

(1) The categories K®(gprojA) and K°(ginjA) are Hom-finite and Krull-Schmidt.

(2) The Nakayama functor induces two mutually quasi-inverse triangle equiva-
lences v : K°(gprojA) — K®(ginjA) and v~ : K°(ginjA) — K®(gprojA).
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Proof. Since gprojA is Hom-finite and Krull-Schmmidt; see , C®(gprojA)
is Hom-finite and closed under taking direct summands. In particular, the idem-
potents in C®(gprojA) split. Hence, C®(gprojA) is Krull-Schmidt. And conse-
quently, K°(gprojA) is Hom-finite and Krull-Schmidt; see [36, page 431]. Next,
the Nakayama functor v : gproj4 — GModA induces two mutually quasi-inverse
equivalences v : gproj/A — ginjA and v~ : ginjA — gproj; see . Applying
them componentwise, we obtain two mutually quasi-inverse triangle equivalences
v : Kb(gprojA) — K°(ginjA) and v~ : K®(ginjA) — K®(gprojA). The proof of
the lemma is completed.

Note that K°(gprojA) and K°(ginjA) are full triangulated subcategories of
each of D’(gmodA), D(gmodA) and D(GModA) by Lemma [1.7.9, On the other
hand, D(gmodA) is not necessarily a triangulated subcategory of D(GModA).

4.3.2 Theorem. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. If P*€ K%gprojA) is indecomposable, then there exists an almost split
triangle

vP-1| — M*— P*—vP*
in each of D*(gmodA), D(gmodA) and D(GModA).

Proof. Let P* be an indecomposable complex in K°(gprojA). By Lemma ,
both P*and v P* are strongly indecomposable. Consider the Nakayama functors
v : gprojA — gmod/ and v : gprojA — GMod; see (4.1.3). By the result stated
n [38, (5.8)], we obtain a desired almost split triangle in each of D’(gmodA),
D(gmodA), and D(GModA). The proof of the theorem is completed.

We shall study the existence of almost split triangles in the bounded derived
category of piecewise finite dimensional graded A-modules for bounded complexes
of finitely generated A-modules and for bounded complexes of finitely cogenerated
A-modules.

4.3.3 Lemma. Let A = kQ/R be a graded algebra, where Q) is a locally finite

quiver.

(1) If A is locally left noetherian, then D®(gmod™) is a full Krull-Schmidt
triangulated subcategory of D(gmodA).

(2) If A is locally right noetherian, then D*(gmod™"A) is a full Krull-Schmidt
triangulated subcategory of D(gmodA).
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Proof. Suppose that A is locally left noetherian. By Proposition|3.9.5(1), gmod ™
is an abelian subcategory of gmodA, and by Corollary [3.8.6 every module in
gmod ™ has a graded projective resolution over gprojA. Thus, Db(gmod“i/l)
is a full triangulated subcategory of D(gmodA); see [9, (1.11)]. Given M, N €
gmod ™, we deduce from Lemma that GExt"(M, N) is finite dimensional
for all i > 0. As a consequence, D®(gmod ™) is Hom-finite and Krull-Schmidt;
see [32, Corollary BJ. This establishes Statement (1).

Suppose that A is locally right noetherian. By Proposition [3.9.3, we have a
duality ® : gmod™° — gmod ~’A. Thus, Statement (2) follows from Statement
(1). The proof of the lemma is completed.

The following result is analogous to Happel’s result under the finite dimen-
sional non-graded setting; see [28] (2.3)].

4.3.4 Theorem. Let A = kQ/R be a graded algebra with Q a locally finite quiver
such that A is locally left and right noetherian.

(1) Given an indecomposable complex M* € D*(gmod™"), there exists an al-
most split triangle N* L M- N°[1] in Db(gmodA) if and
only if M* has a finite projective resolution over gprojA; and in this case,
N € D*(gmod ™).

(2) Given an indecomposable complexr N* € D*(gmod ™), there exists an al-
most split triangle N* L M- N*[1] in Db(gmodA) if and
only if N* has a finite injective coresolution over ginjA; and in this case,
M+ € D*(gmod ™).

Proof. We shall prove only Statement (1). Assume that M* is an indecomposable
complex in Db(gmodJr’b/l). Since gmod™¥ is abelian with enough projective ob-
jects, M* has a truncated projective resolution P* € C~(gprojA); see [25, (7.5)].
If P € C*(gprojA), then M* = P+in D’(gmodA). By Theorem [4.3.2] there exists
an almost split triangle

I/N'—>L'—>M'—>VN'[1]

in D*(gmodA), where N = vP{[—1] is a complex over ginj4 C gmod ™. Con-
versely, if there exists an almost split triangle

N L M- N[1]
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in D’(gmodA), then it follows from Theorem 5.2 in [38] that M* has a bounded
projective resolution over gprojA. The proof of the theorem is completed.

REMARK. In case A is multi-serial, it is locally right and left noetherian. Hence,
both statements in Theorem [4.3.4] hold.

Next, we shall study the existence of almost split triangles in the bounded
derived category of finite dimensional graded A-modules. The following statement
is analogous to Happel’s result stated in [28] (1.5)].

4.3.5 Theorem. Let A = kQ/R be a locally bounded graded algebra, where Q) is

a locally finite quiver. Consider an indecomposable complex M in Db(gmodb/l).

(1) There exists in D*(gmod®) an almost split triangle

N L M- N-[1]
if and only if M* has a finite projective resolution over gprojA.

(2) There exists in D*(gmod®) an almost split triangle

M- L N M-[1]
if and only if M* has a finite injective coresolution over ginjA.

Proof. Since A is locally bounded, both gprojA and ginjA are contained in
gmod”. Thus, gmod? is an abelian category with enough projective objects
and enough injective objects. Thus, the necessity stated in Statements (1) and
(2) follow immediately from Corollary 5.3 in [38]. On the other hand, by Theo-
rem , we have a Nakayama functor v : gproj4 — gmod?, which restricts to
an equivalence v : gprojA — ginj/A. Now the sufficiency stated in Statements (1)
and (2) follow from Theorem 5.8 in [3§]. The proof of the theorem is completed.

To conclude this section, we shall specialize in the case where A = kQ).
4.3.6 Theorem. Let Q) be a locally finite quiver.
(1) If Q has no infinite path with an ending point, then D°(gmod™?(kQ)) has

almost split triangles on the right.
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(2) If Q has no infinite path with a starting point, then D°(gmod™"(kQ)) has
almost split sequences on the left.

(3) If Q has no infinite path, then gmod®(kQ) has almost split triangles.

Proof. Suppose that ) has no infinite path with an ending point. Then kQ is
locally right bounded. In view of Proposition , we see that gmod™?(kQ)
is a hereditary abelian subcategory of gmodA with enough projective objects.
Since ginj/ is contained in gmod™?(kQ), by Theorem , we have a Nakayama
functor v : gprojA — gmod™P(kQ). Let M* be an indecomposable complex in
D?(gmod™?(kQ)). Since gmod™?(kQ) is hereditary, M* is isomorphic to a stalk
complex; see [33, (3.1)]. By Proposition [3.9.12] M* = P+, where P* is a 2-term
complex over gprojA. By Theorem 5.8 in [38], D°(gmod™”(kQ)) has an almost
split triangle

vP* L M vP[1].

This establishes Statement (1). Dually, Statement (2) holds. Finally, if @) has
no infinite path, then gmod™?(kQ) = gmod " (kQ) = gmod’(kQ). Therefore,
Statement (3) follows immediately from the first two statements. The proof of
the theorem is completed.
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Chapter 5

Koszul algebras

The objective of this chapter is to provide a combinatorial description of the
local Koszul complexes and the quadratic dual. Using this local viewpoint, we
can describe the linear projective resolution and the colinear injective coresolution
of a graded simple module in terms of subspaces of the quadratic dual if they
exist. This enables us to show that a quadratic algebra is Koszul if and only if
every graded simple module has a colinear injective coresolution if and only if
the opposite algebra or the quadratic dual is Koszul. This generalizes Beilinson,
Ginzburg and Soergel’s results stated in [13] (2.2.1), (2.9.1)]. We shall also include
two applications: a new class of Koszul algebras and a stronger version of the
Extension Conjecture for finite dimensional Koszul algebras with a noetherian
Koszul dual.

5.1 Linear projective resolutions and colinear

injective coresolutions

In this section, let 4 = kQ/R be a graded algebra, where @ is a locally finite
quiver. We shall introduce the notions of linear projective n-presentation and
colinear n-copresentations.

5.1.1 Definition. Let A = kQ/R be a graded algebra, where @ is a locally finite
quiver. Consider M € gmod/A and n > 1.

(1) In case M is generated in degree s, a projective n-presentation

p-n 4" plon pl_dt po_d_ 0
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of M over gproj/ is called linear in case P~* is generated in degree s + i
fort=0,...,n, and d" is right minimal.

(2) In case M is cogenerated in degree —t, an injective n-copresentation

0 ML L p [t

of M over ginj/ is called colinear in case I is cogenerated in degree —t —1,
fort=20,...,n, and d" is left minimal.

REMARK. It is easy to see that a linear projective n-presentation and a colinear
injective n-copresentation are minimal.

The following statement is important for our later investigation.

5.1.2 Lemma. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. Consider M € gmodA. A sequence

P—nﬂ)P—n—i—l p-1 d-! Po d° M 0

s a linear projective n-presentation of M over gprojA if and only if the sequence

0 DM 2L ppo 2 pHp-t ppi-n 2L Hpn

is a colinear injective n-copresentation of DM over ginjA°.

Proof. By Proposition m@), one of the two sequences stated in the lemma is
exact if and only if the other one is exact. By Lemma |3.3.4] d=" is right minimal
if and only if ®d~" is left minimal. Moreover, by Corollary [3.6.8, M is generated

in degree s if and only if ® M is cogenerated in degree —s, and P~" is generated in

degree s+1 if and only if ® P~ is cogenerated in degree —s—i, fort =0,1,...,n.
The proof of the lemma is completed.

As an example, we have the following well known statement. For the conve-
nience of the reader, we will provide a brief proof.

5.1.3 Lemma. Let A = kQ/R be a graded algebra, where Q) is a locally finite
quiver. Consider a graded simple module S, with a € Q.

(1) If Q1(a,—) ={a;:a = b;|i =1,...,1}, then S, admits a linear projective
presentation

(P[&l]v""P[aT]) Pa Pa Sa O

Po(-1)®--- & b.(-1)
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(2) If Q1(—,a)={Bj:¢c; » al|j=1,...,s}, then S, admits a colinear injective
copresentation

(I[Bl]:“' 7I[Bs])T

0 S, -7, L)@@ l(1).

Proof. (1) Assume that Qq(a,—) ={a;:a = b;|i =1,...,r}. Let p,: P, — S,
be the canonical projection. In particular, Ker(p,) = radP,. Clearly, rad P, has a
top-basis {a4, - - - , @, }, where a; € (radF,)1(b;). By Proposition [3.8.5(1), we have
a graded projective cover f : P = P, (—1) @ --- & B, (—1) — Ker(p,) such that
(Play], -+, Pla,]) = g o f, where g : Ker(p,) — P, is the inclusion morphism.
Moreover, since P is generated in degree 1, we obtain a desired linear projective
presentation of S,.

(2) By Lemma , applying ® to the linear projective presentation of S?
yields a desired colinear injective copresentation of S,. The proof of the lemma
is completed

For our purpose, we quote the following statement from [16], (2.13)]; see also
[15].

5.1.4 Theorem. Let A = kQ/R be a graded algebra with Q) a locally finite quiver.
Then A is a quadratic algebra if and only if every graded simple A-module admits
a linear projective 2-presentation.

Now, we introduce the notions of a linear resolution and a colinear coresolu-
tion.

5.1.5 Definition. Let A = kQ/R be a graded algebra, where @) is a locally finite
quiver. Consider a module M € gmodA.

(1) In case M is generated in degree s, a graded projective resolution

i pn_ 4" plon p-14t_ po_d g 0

of M over gprojA is called linear if P~ is generated in degree s+ n for all
n > 0.

(2) In case M is cogenerated in degree —t, a graded injective coresolution

0—1"L ot

of M over ginj/ is called colinear if I" is cogenerated in degree —t — n for
alln > 0.
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REMARK. It is easy to see that a linear projective resolution and a colinear
injective coresolution are minimal.

We are ready to recall the notion of a Koszul algebra from [16, (2.14)], which
is essentially the same as the classical one; see [13] (1.2.1)] and [48], (5.4)].

5.1.6 Definition. Let 4 = kQ/R be a graded algebra, where @ is a locally
finite quiver. We shall call A a Koszul algebra if every graded simple A-module
admits a linear projective resolution over projA.

REMARK. (1) By Theorem [5.1.4] a Koszul algebra is quadratic; compare [13,
(2.3.3)].

(2) It is clear that A is Koszul if and only if S, admits a linear projective resolution
over proj/, for every a € Q.

ExaAMPLE. The path algebra k@) of any locally finite quiver ) is a Koszul algebra.
Indeed, for any a € Qo with Q1(a,—) ={a; :a = b;|1 =1,...,7}, we see that

0= By & @ P

is a linear projective resolution of S,.

5.2 Local Koszul complexes

Most of the content of this section is taken with a slight modification from
[16], Section 2]; see also [15]. The main objective is to describe explicitly the local
Koszul complexes. Throughout this section, A = kQ/R is a quadratic algebra,
where () is a locally finite quiver.

We start with some notations and terminology. Given « : y — = € @1, we
have a left derivation 0, : kQ — k@, the k-linear map sending a path p to 0
if p = «d; and to 0 if « is not a terminal arrow of p; and a right derivation
0% : kQ — kQ, the k-linear map sending a path p to d if p = da; and to 0 if « is
not an initial arrow of p. In particular, d, and 0“ send k@, to kQ,_, for n > 0
and vanishes on kQ).

Fix a € Qg and n > 0. For a € Q1 (y, z), we have a graded A-linear morphism
Pla] : Py(—n) — P,(1 —n) and a k-linear map 0, : kQy(a,z) = kQp_1(a,y). In
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view of Lemma [2.1.1, we obtain a k-linear map

9, "(y,x) = Zate(y,m) Pla] ® 0y : Po(—n) @ kQu(a, x) = Py(1-n) @ kQp-1(a,y),

which is clearly a morphism in gprojA, for any z,y € Qy. The following statement
is useful for later calculation, which is quoted from [16] (3.2)].

5.2.1 Lemma. Let A =kQ/R be a quadratic algebra, where Q is a locally finite
quiver. Consider the graded morphism 0;"(y,x) with a,z,y € Qo and n > 0 as
defined above. Given u€ Py(—n), 0 € kQn_1(a,y) and ¢ € kQ1(y, ), we have

9. (y, 2)(u® ) =ul ® 4.

Fix a,r € Qy. We put R (a,z) = kQ,(a,z) for n = 0,1, and
R™(a,x) = Nosjen—2 kQn-s—j(—, ) - Ry - kQ;(a, -)

for n > 2. In particular, R® (a,z) = Ry(a,z). Put R™(a, ) = @,eq, R™ (a, )
for n > 0. The following statement collects some important properties of these
subspaces.

5.2.2 Lemma. Let R be a quadratic ideal of kQ, where Q) is a locally finite
quiver. Consider a,x € Qo with Q1(—,z)={a;:y; = x|i=1,...,r} andn > 1.

(1) If y € R™(a,x) and o € Q1(y,z), then 04(7) € R™Y(a,y); and conse-
quently, v = >_i_, a;i, for some v € RV (a,y,).

(2) If p = Y0, Gpi with p; € R D(a,y) and & € kQi(yx), then p €
R(n)(a> (E) Zf and Only pr € RZ(_ax) ’ anfQ(C% _)'

Proof. The proof of the first part of Statement (1) is presented in [16], (3.1)], and
the second part follows immediately from the first part. Moreover, Statement
(2) follows directly from the definition of R(™ (a,z). The proof of the lemma is
completed.

Fix a € Qy. Given n > 0, since @ is locally finite, we obtain a module

K" = ®peqoPe(—1) ® R(”)(a, x) € gprojA.
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For n > 1, we write K1 ™ = @y, P,(1-n) ® R Y(a, y); and by Lemma |5.2.2(1),
we obtain a graded morphism

0, "y, x) = ZaEQl(y,x)P[d/] ® Oy : Py(—n) @ R™(a, x) — P,(1—-n)® R" Y(a,y),
for x,y € ()y. This yields a graded A-linear morphism
8a_n = <8a_n(y’x))(yvx)€Qo><Qo : K;n - lcclz_n>

for n > 1. The following statement is quoted from [16], (3.3)], see also [15].

5.2.3 Lemma. Let A =kQ/R be a quadratic algebra, where Q is a locally finite
quiver. Given any a € Qo, the above construction yields a complex

" _ 81
IC}I n e o 1 K0 0

a

IC‘ : . e ]C;n

a

over gproj/A such that Ker(0, ") CradkC, ™, if n > 0; and otherwise, K;™ = 0.

In the sequel, we shall call K the local Koszul complex at a for A. Since
K° = P, ® ke,, we have a graded projective cover d° : K — S,, sending e, ® &,
to e, +radP,. The following statement is a reformulation of Theorem 3.4 in [16];
see also [15].

5.2.4 Proposition. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver. If a € Qg and n > 0, then S, has a linear projective n-presentation
over gprojA if and only if

o0

n -1
| Gy o C U ' IR of e - —

a a a

1s a linear projective n-presentation of S,.

Combining Theorem and Proposition [5.2.4] we obtain immediately the
following result; compare [13], (2.6.1)].

5.2.5 Theorem. Let A = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then A is Koszul if and only if A is quadratic and KC;, is a graded projective
resolution of S,, for every a € Q.
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5.3 Quadratic dual

Throughout this section, A = kQ/R is a quadratic algebra, where @ is a
locally finite quiver. We shall recall the definition of the quadratic dual of A from
[16, Section 3]. Note that the classical quadratic dual is defined to be the tensor
algebra of the dual space of the generating space under a finiteness condition; see
13, (1.2.4), (2.8.1)].

We start with some notation. Fix n > 0. Given £ € @, let &* € D(kQ,,)
such that £*(n) = 1 if n = & and £*(n) = 0 otherwise, for any n € @,,. Given
v =Y N& € kQ, with \; € k and & € Q,, we write v* = > \;&F. This yields a

k-linear isomorphism

Ut kQY — D(EQy) 1 7° — 7.

Given £ € kQ,(x,y), for the sake of simplicity, the restriction of £* to
kQ.(z,y) is also written as £*. Since @ is locally finite, {¢* | £ € Qn(x,y)}
is the dual basis of Q,(x,y) in D(kQ,(z,y)). We shall need the following easy
statement for later calculation, which is quoted from [I6, (3.5)].

5.3.1 Lemma. Let ) be a locally finite quiver with x,y,z € Qo and s,t > 0.
(1) [fg € st($a y) and C S Ql(:% Z); then (Cf)*(n) = £*<8C(77))7 fO?“ CL” 77 € kQS+1'

(2) If € kQs(z,y) and ¢ € kQu(y, 2), then (C§)*(v6) = C*(7)€7(5), for all 0 €
kQs and v € kQ;.

Given z,y € Qp and n > 2, we denote by Rj(y,z) the k-vector subspace of
kQ3(y, x) spanned by the elements p® with p € kQy(x, y) such that p* vanishes on
Ry(z,y). The quadratic ideal R' of R is the two-sided ideal of kQ° generated
by the Ry(y,z) with 2,y € Qo. We are ready to quote the following definition
from [16, (3.7)]; compare [13], (2.8.1)], [42] Section 1] and [48, Section 4.1].

5.3.2 Definition. Let A = kQ/R be a quadratic algebra, where @ is a locally
finite quiver. The quadratic dual of A is the algebra

A =kQ°/R
where R' is the quadratic dual of R.
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The following statement is quoted from [16] (3.8)].

5.3.3 Proposition. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver. Then A' and A° are quadratic with (A')' = A and (A°)' = (AY)°.

5.4 A characterization of Koszul algebras

In this section, we shall show that a quadratic algebra is Koszul if and only
if its quadratic dual or its opposite algebra is Koszul if and only if every graded
simple module admits a co-linear injective coresolution. This generalizes the
result stated in [I6] (3.13)] where the algebra is assumed to be locally finite
dimensional and extends the results in [I3], Section 2] where the graded algebra
is assumed to have an identity.

Throughout this section, unless otherwise explicitly stated, 4 = kQ/R is
a quadratic algebra, where () is a locally finite quiver. First, we reformulate
an alternative description of the local Koszul complexes for A in terms of the
quadratic dual A' = kQ°/R' from [I6, Section 3]. For this purpose, we fix some
notations for A'. We shall write 7' = 4° + R' for v € kQ*, but e, = &, + R' for
z € Qo. Then, A'is graded as A' = @pez(A),, where (AY), = {7' | v € kQ,}
for n > 0, and /1% = 0 for n < 0. Given 2 € Qo, we write P} = A'e,, and
S = P!/radP;, and I, = D((A")%,).

Fix a€ Q. Given n € Z, we set P, " = ®ueq, (Po{—n) @ D(e AL e,)) € gprojA.
For n > 0, we write P}~ = @,eq, (P,(1 —n) ® D(e A}, _,e,)). Given a€Q,(y, z),

the right multiplication by &' gives rise to a k-linear map P[a'] : ea/lil_ley —

eq/Le,, and hence, a k-linear map DP[a'] : D(eqaA}e,) — D(ea A, 1e,). In view
of Lemma [2.1.1] we obtain a k-linear map

Pla) ® DP[a'] : Po{—n) ® D(e, Ay er) — Py(1 —n) @ D(eaA),_e,),

which is clearly a graded A-linear morphism. Thus, we have a graded A-linear
morphism

0" (y, ) :Zate(y,x)P[O_‘]@DP[O_‘!] : Po(—n)@D(ea A} e,) — P{1—n)@D(e,AL,_,e,)
for x,y € ()g. This yields a graded A-linear morphism
Ec:n = (Et;n(%x))(y:ﬂf)GQoXQo : Pa_n - P;_n
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for n > 1. Otherwise, P, " = 0 for all n < 0. Therefore, we get a double infinite
sequence

la

L plon p-tle, po 0 e

a

7)..

i P."
of morphisms in gprojA. This is indeed a complex gprojA by the following state-

ment, whose proof is similar to that of Lemma 3.9 in [16].

5.4.1 Lemma. Let A = kQ/R be a quadratic algebra, where Q) is a locally finite
quiver. Gien a € @y, the sequence P; as constructed above is isomorphic to the
local Koszul complex K at a.

Next, we shall reformulate an explicit description of the colinear injective
coresolution, if it exists, of a graded simple module from [I6] Section 3]. For
the sake of simplicity, we put A = (A)° = kQ/(R')°. Write § = v + (R")° for
v € kQ* and e, = ¢, + (R')° for z € Qp. In this way, we have A= @nez/]m
where A, = {3 |y € kQ,} for n > 0, and A, = 0 for n < 0. Moreover, we put
P, = /Ae, and S, = Pm/radlf’x, for all = € Q.

Fix a € Qo. Given n € Z, we set I = @,eq, (1.(n) ® e, A e,) € ginjA. For
n > 0, we write Z" ! = @ycq,(I,(n — 1) ® e, A),_je,). For each a € Q,(x,y),
we have a morphism I[a] : I,(n — 1) — L(n) in ginjA; see and a k-linear
morphism P}(a') : e, A, e — e,/ e,, that is the left multiplication by &'. In
view of Lemma [2.1.1, we have a k-linear map

!
n—1

Ila)® Pia') : Iin — 1) @ e,A,_jeq — Lin) @ e, A eq,

which is clearly a morphism in ginjA. Thus, we have a morphism
dy(z,y) = Zate(x,y) Ila] ® Pé(oz!) I{n—1)® ey/l!n—lea — I(n) ® ez/l!n@a
in ginjA, for each (z,y) € Qy x Q. This yields a morphism
dy = (dg(,9)) eyeoxqo : I — Iy

for n > 0. Otherwise, Z!' = 0 for all n < 0. And consequently, we have a double
infinite sequence

n

o RO J B < SRR (S R

a a a a

of morphisms in ginjA. The following statement is a reformulation of Lemma
3.11 in [16, (3.5)] with a slightly detailed proof.
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5.4.2 Proposition. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver. Given a € @y, the sequence I: as constructed above is a complex
over ginjA, which is a truncated graded injective coresolution of S, if and only if
S, admits a colinear injective coresolution over ginjA.

Proof. Fix a € Qy. By Proposition m (A°) = A. Let Pr. be the complex over
gprojA° for S as stated in Lemma [5.4.1] that is the complex

—-n " 1-n -1 ¢! 0
120 1%0 e Tzo 1%0 0 R

where P = @y, (PA—n) @ D(eadnes)), PA" = @yequ(P21-m) @ D(eadn1e,))

and £ = (¥ co, o I3 ® DPIa)garequran:

First, we shall show that ®(Py) =Z;. Given any n > 0, since @ is locally
finite, eqd, is finite dimensional. In view of Proposition M(Q), D(PL") =
Baeqo (1) © D (eadne,)) and D(L™") = (I[a] ® D*P[A))y.a)cqoxqo- More-
over, since A= (/1!)0, we have a k-linear isomorphism o : ea/inex — ex/l!nea,
sending 4 + 4'. Composing this with the canonical k-linear isomorphism

o D*(eqAne,) — egdnes, we obtain a k-linear isomorphism
4 |
0" = oo™ : D*(eqlne,) — exd. e,

Given a € Q1(x,y), it is easy to verify that we have a commutative diagram

n—1 n—1

D2(eohy_16y) —— eqlpy_1e, ——e, A€,
sz[d]l lp[a] ng(d’)
Dz(ea/inex) gl ey —= el e,

This yields a complex isomorphism ®(P;) = Z;, given by the graded isomor-
phisms

Dzeqo (id ®0;) : Dreqo <]x<n>®D2(ea/inez>) — Daeqo (Ir<n>®ea:/1!n€a)

with n € Z. Now, suppose that S, has a colinear injective coresolution Z* over
ginjA. In view of Proposition [5.1.2] we see that D(Z*) is a linear projective res-
olution of S° over gprojA°. By Theorem and Lemma we see that
D(Z) = P;,. Therefore, I* = D*(I*) = D(Pyr) =2 Z;. The proof of the proposi-
tion is completed.

The following statement is a generalization of Theorem 3.13 in [16], which is
under the assumption that e, Ae, is finite dimensional for all z,y € Q.
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5.4.3 Theorem. Let A = kQ/R be a graded algebra, where Q is a locally finite
quiver. The following statements are equivalent.

1) The algebra A is Koszul.

3) The algebra A is quadratic and A' is Koszul.

4

(1)

(2) The opposite algebra A° is Koszul.

(3)

(4) FEvery graded simple A-module has a colinear injective coresolution over

ginjA.

Proof. In view of Lemma5.1.2] we see that Statements (4) and (2) are equivalent.
Assume now that A is Koszul. Fix a € Q)y. Since A° is quadratic; see , in
view of Theorem |5.1.4] and Lemma [5.1.2] we may assume that S, has a colinear
injective (n — 1)-copresentation

0 S, d° i d! It [n—2£>[n—1

over ginjA, for some n > 2. We denote by ¢* : I"~! — C™ the cokernel of d" .
Given b € Qp and p € Z, since socI" 1 C Ker(c"), it is well known that

GExt"{ (Sp(p), Sa) = GHom 4 (Sy(p), C");
see (|1.4.5)). Since A is Koszul, S, has a linear projective resolution

o> Pt plei pt P, Sh 0

over projA. So,
GHom, (Sy(py, C™) = GExt'}(Sp, So{—p)) = GHom,(P™" S,(—p))-

Since P~" is generated in degree n and S,(—p) is generated in degree p, we have
GHom, (Sy(py, C™) = 0 for all but finitely many b € Qo and for all p # n. Hence,
soc C™ is finitely generated in degree —n. Since I™! is finitely cogenerated,
socC™ is graded essential in C™. That is, C™ is finitely cogenerated in degree —n.
By Proposition [3.8.5(2), there exists a graded injective envelope ¢" : C™ — I™,
where I™ € ginjA is cogenerated in degree —n. Thus, S, has a colinear injective n-
copresentation over ginjA. By induction, S, has a colinear injective coresolution
over ginjA. Thus Statement (4) holds, and consequently, Statement (2) holds.
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We shall also establish Statement (3). Indeed, by Proposition A s
quadratic with (4')' = A. By Lemma [5.4.1] the local Koszul complex at a of A'
is isomorphic to the complex

P;L! : s P;n el ,Pigin e P;l G PO! 0 )

a

where Pc;n = @IGQO(P1{=<_”>®D(eaAn€x)) and ,Pi!_n =Dyeqo (Py!<1_n>®D(6aAn*1€y))>
and (7" = (Zate(w)P[éz!] ® DP|a])(y)c00xQo- Fix n > 0. We claim that P,
is exact in degree —n. That is, for any (s,b) € Z X Qo the sequence

—n—1
n+s,b

(*) D2eqo (eb/l!s—lez ® D(esAnt1€:)) —> Oreqo (ebALex ® D(esAnes))

-n
n+s,b

T Byeq (1 6y @ DiegAn_rey))

is exact, where £\, ,= (zate(%y)P[@!] ® DP[a])(y.2)e00xQ0-

If s < 0, then eyAle, = 0, and () is evidently exact. In case s = 0, it becomes

—n

gn
0——epAhey, ® DlegAney) —2= Byeg, (erdiey, @ D(eaAn_1ey)),

where €7 = (€, (y,0))yeqo With £, 3 (¥.0) = 3" c0,bm) P[a'] ® DP[a]. Consider
0# f € D(e,Anep). Since n > 0, there exist 5 € Q1(b,y) and u € e A,,_1e, with
y € Qo such that f(uf) # 0, that is, (DP[B))(f)(u) £ 0. So, (DPIA))(f) # 0.
Now, £,%(y,b)(es @ f) = Zate(b’y)@! ® (DPla])(f), which is non-zero. Thus, £,
is a monomorphism. That is, the sequence (x) is exact in this case.

Let s > 0. By Proposition and Lemmal[5.4.T], S, has a linear graded pro-
jective resolution Py, which is exact in degree —s. Writing P, * = @,eq, (Pu(—5)®
D(epALe,)), and restricting it to the (n+ s, a)-piece, we obtain an exact sequence

—s—1
Zhn+aa

(%) Dyeqo (eaAN—ley ® D(eb/ﬁs—s—ley)) — Dreqo (ealnes ® D(eb/l}sex))

m EBzGQo (eaAnJrlez ® D(eb/l{gflez»?
where (;°70 = (3 e, (o) Pl0] © DP[AT)(@y)c00xo- ADPlying D to (xx), we
obtain an exact sequence isomorphic to (x); see (2.1.3). Our claim holds. Thus,

P:, is a linear projective resolution of S’ see (]m . So, A' is Koszul.

As we have shown, Statement (1) implies Statements (2) and (3). In case A
is quadratic, (4°)° = A and (A")' = A. Thus, each of Statements (2) and (3)
implies Statement (1). The proof of the theorem is completed.
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REMARK. (1) In case )y is finite, the equivalence of the first three conditions is
due to Beilinson, Ginzburg and Soergel; see [13], (2.2.1), (2.10.2)].
(2) In case A is Koszul, one calls A' the Koszul dual of A.

EXAMPLE. Consider A = kQ/(kQT)?, where @ is a locally finite quiver. Then
A" = kQ°P, which is Koszul. By Theorem [5.4.3| A is Koszul.

5.5 A new class of Koszul algebras

It is well known that some special classes of algebras are Koszul, including
hereditary algebras and radical square zero algebras; see |42 1.6], exterior al-
gebras and symmetric algebras; see [13, page 476], and monomial algebras; see
[42, 2.19]. In this section, we shall apply the Koszul complexes to study when a
quadratic multi-serial algebra is Koszul. As a consequence, we obtain a new class
of Koszul algebras.

To start with, we shall introduce a condition (x) for a quadratic multi-serial
algebra A = kQ/R as follows: Given a polynomial relation ) ;_, X\;B;c; € Ro(z, 2)
with \; € k and oy, 5; € @4, if there exist arrows v € Q1(a,z) and ( € Q1(z,b)
with (81 ¢ Rs, then a7y is a summand of a relation in Ry(a, —), foralli =2,...s.

5.5.1 Lemma. Let A =kQ/R be a quadratic multi-serial algebra, satisfying the
condition (x). Consider a polynomial relation Y ;_, \ific; € Ro(x, z) with \; € k,
a; € Qi(w,y:) and B; € Q1(yi, 2), such that (B ¢ Ry for some ( € Qi(z,—). If
¢ € R"Y(a,z) with n > 1 then, for each 2 < i < s, there exists n; € kQp(a,y;)
such that 3¢ +n; € R™ (a,y;) and aym; € Ro(—, 2) - kQp_1(a, —).

Proof. Let ¢ € R"V(a,x). If n = 1, then we take n; = 0, for each 1 < i < s.
Let n > 2. Choose a k-basis {¢y,...,&} with & € R 2 (a,b;) of R™"?(a,—).
Then, § = Z;Zl 0; & with 0; € kQ1(b;, x); see .

Fix 1 <i < s. If a0 € Ra(bs,y) for all 1 < j < t, then ;& € R™(a, y;); see
(5-2.2), and we take n; = 0. Otherwise, let J; be the set of j € {1,...,t} such that
a;0; ¢ Ro(bj,y;). Fix j € J;. Since A is multi-serial, o; = \;0; +0;, where \; € k
and 6;,0; € Q1(bj, x) such that A\;a;0; ¢ Ra(bj,v;) and «;d; € Ra(bj,v:). By the
condition (x), there exists a polynomial relation w; = A\ja;0; + >°,7, A in
Ry(bj,y;), where \j; € k; 05, € Q1(bj, c;) and oy € Q1(cji, ;). Since A is multi-
serial, oy # a; for 1 <1 < ;. Since f;a; ¢ Ry(x, 2), we have B;ay € Ra(cji, ) for
1 <1 <r;. By the induction hypothesis, there exists 1, € kQ,_1(a, ¢;;) such that
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& = M€ +n€ R (a, ;i) and agnyi € Ro(—, 4i) - kQn—s(a, —), for 1 <1<y,
Set i = Zje]i;lglgrjailgjl S an(aa yz) Then7 51772 € R2(_7 Z) : an—l(a7 _)' Put
Xi = i+ Then, xi = i€+ 35 e 5 <1, i, Where §, &y € RU"D(a, =). On
the other hand, we can verify that

Xi :Zjeli(wj +O‘i5j)§j+2j¢1io‘i0j§j +ZjeJi;1§l§rjail77jl € Ro(—,yi) - kQn-2(a, —).
By Lemma m(Z), Xi € R™(a,y;). The proof of the lemma is completed.

The following is the promised new class of Koszul algebras; compare [24],

(2.2)].

5.5.2 Theorem. Let A = kQ/R be a quadratic multi-serial algebra with Q a
locally finite quiver. If the condition (x) or its dual is satisfied, then A is a
Koszul algebra.

Proof. 1t is evident that A satisfies the dual condition of (x) if and only if A°
satisfies the condition (x). By Theorem [5.4.3] we may assume that the condition
(%) is satisfied. By Theorem m it amounts to show for any a € )y that K is
exact in all negative degrees. By Theorem and Proposition [5.2.4] we may
assume n > 2. It suffices to prove that Ker (9,™) C Im (9;"!). Recall that

K" = Byeq, P{—n) ® R™(a,y).

Consider a non-zero element u in Ker(9,™) C rad/C,™. Since ;" s generated
in degree n, we may assume that u € Ker(9,"),,(b) for b€ Qo and m > n. Then,

(AS @yerPy<_n>m<b> ® Rm)(% y) = 69yereb/lm—ney ® R(n)(aa y)‘

Let s be minimal such that u = Y, 6, ® p;, where 0, € Q,,_.(y1,b) and p; €
R(”)(a,yl). Note that 6, ...,0, are k-linear independent in eyA,,_,. Choose a
k-basis {&1, ..., &} of R V(a, —), where §; € R Y(a, z;); and since A is multi-
serial, ey A,,—,—1 has a k-basis {71, ..., 70, }, where n; € Qpm_n_1(2;,b) with z; € Q.

Then, p; = Z§:1§,j & with ¢ € kQ1(xj,y1); see |D and 0; = >_7_ 7;0y with
di € kQ1(y1, zi), for I =1,...s.

(1) For any 1 < j <t, we have > ;_, 0,:G; = S0 S0 1:6uy; = 0.

Indeed since u = 22:12;:1 01 ® (&5, we have 9;™(u) = S0 (S0, 0iGy) ®
& = 0; see (5.2.1). Since the ¢; are k-linearly independent,

S 0= > MibuCy = 0,
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for 1 < j <t. This establishes Statement (1).
(2) If m=n+1, then u € Tm(9,; " 1).

If m=n+1, then eyA,,_,,_1 = ey Ay = kep. In particular, r = 1 and 1, = &,.
By Statement (1), we obtain

Yoo ouGy = mi(>o_, 0uGy) € Ro(xj,b), for j=1,... L.

Put x1 =0 dupr = Y11 (351 6uy)E € Ra(—, 21) - kQnoa(x;, —). Then, by
Lemma [5.2.2(2), x1 € R™*Y(a, ;) such that 9, @ x1) = >, 0 ® pr = u.
This establishes Statement (2).

We assume now that m > n + 2. Then, §, = S n:6i1, for 8y € kQ1(y1, z:)
and non-trivial ; € Q—n_1(2;, ). Since A is multi-serial, we may assume that d;
is a monomial, for i =1,...,r;l =1,...,s. We shall consider another derivation
0% : kQ — kQ for any a € 1, which sends a path p to n if p = na; and 0 if « is
not an initial arrow of p.

(3) If 0uC; ¢ Ra(xj,2;), then ; has a summand \joy;, where A\j; € k and
ay; € Q1(xj, i), such that Njjdu0y; is a summand of a polynomial relation in Rs.

Suppose that 8;,(p; & Ra(xy,2i) for some 1 < i <71 <p<s1<qg<Ht.
Then, d;, is a non-zero monomial in kQ1 (y,, 2;) and (,, has a non-zero summand
ApgQlpg, Where o,y € k and oyq € Q1(2g, Yp), such that A di,apg ¢ Ro(24,2:). By
Statement (1), we may write Y ;_, 6,(, = 2?21 vjwjkj, where k; € Qp, (24, —)
with n; some non-negative integer, w; € Ry and vj € kQum—pn—n,—1(—,b).

Assume, for each 1 < j < h, that n; > 0 or 0°7*(w;) =0. Applying 0°7 to
the above equation, we obtain Y ;| N6 € R,,—,,(—,b), where A, = 9°1((,) € k.
Since A, = A, # 0, contrary to 0y, ..., 0, being k-linearly independent. Thus, we
may assume that n; = 0 and «,, is the initial arrow of a monomial summand of
wi € Ro(zy,—). Since A is multi-serial with A,;0:,(apg & Ra(z4, 2;), we see that
Apgdip(Qpq) 1s @ summand of wy, which is a polynomial relation in Ry(x4, 2;). This
establishes Statement (3).

(4) For each 1 < i < r, there exists some element x; € RV (a, z;) such that
O, (1 @ xi) = Dopy Tida @ pu.

Fix1<i<r. If ﬁi&-l =0foralll=1,...,s, then we take xy; = 0. Otherwise,
denote by L the set of [ with 1 <1 < s such that 7;0; # 0; and for | € L, denote
by J; the set of j with 1 < j <t such that 0;(; ¢ Ra(xj,2;). Fix (j,1) € L x J;.
Since /A is multi-serial, we may write (;; = ay; + 0y; such that 6,0;; € Ra(z;, 2;)
and «;; is a monomial with d;0q; & Ra(zj,2;). By Statement (3), we have a

145



polynomial relation wy; = dgag; + 74 VB in Ra(z4, 2:), where 85 € Q1(z;, 7))
with cfj € Qo and 7} is a monomial in le(cfj,zZ) Since 7; is a non-trivial
path with 7,0; # 0, we have ni7h = 0 for all 1 < p < r;. And by Lemma
, there exists &, € kQy(a,c];) such that pj; = B¢ + &) € R(”)(a,cfj) and
V0él; € Ra(—, 2:) - kQu-1(a, —), for each 1 < p < ry;. Now, we put

Xi = ZleL(;ilPl + ZleL;je.Jl;lgpgrlﬂZPZ»
where py, pj; € R™(a,—). Observing that p; = Zj.zlglj &;, we can verify that

— P ¢ep
Xi = 2ierjes(wiy +00003)65 + 2 g, 00G5€5 T Dierjen<p<n, Ykl

Since 6;(;; € Ra(xj, z;) for (1,7) € L x J;, we get x; € Rao(—, z;) - kQn—1(a, —). By
Lemma [5.2.2(2), x; € R"*V(a, 2;), and hence, 7; ® ¢; € K;"~*. Further, since
nyh =0 for (I,j) € L x Jyand 1 < p < ry; and 7,6y = 0 for [ ¢ L;, we deduce
that 0, (1, @ xi) = ZleLﬁiSil Qp =1, ;04 @ pr. This proves Statement (4).

Finally, w = Y'_, 7; ® x; € K, " is such that 9;" Y(w) = >;_, 0, ® p = u.
The proof of the theorem is completed.

ExampLE. Consider the quadratic special biserial algebra A = kQ /R, where

5
e

(1) If R = (Bacr, 6y1, 7151 + Y2f2), then A does not satisfies the condition (*)
and its dual. Clearly, S7 has a minimal graded projective resolution

0 —— Pg(—4) MP4<_2> Ploa] Py(—1) Pla) P, Plei] S, 0.

6

Since Ps(—4) is generated in degree 4, A is not a Koszul algebra.

(2) If R = (facr, 672,711 + 7202), then A satisfies the condition (x) and its
dual. By Theorem A is Koszul. Indeed, as shown below, every graded
simple module in GModA admits a linear graded projective resolution

L] 0—>P4

—2) —= Py(—1) P S 0,

® Oép5—2 éP3<—1>@P2<—1> P2 SQ 0,




5.6 Extension Conjecture for Koszul algebras

The objective of this section is to apply our previous results to establish a
stronger version of the Extension Conjecture for Koszul algebras whose Koszul
dual is locally left or right noetherian. In this section, we shall mainly consider
non-graded modules over Koszul algebras. We recall the Extension Conjecture
from [29, (2.6)] as follows.

5.6.1 Conjecture. Let A be an artin algebra, and let S be a simple A-module.
If Ext} (S, S) # 0, then Ext’y(S,S) # 0 for infinitely many integers n > 0.

Let A = kQ/R be a Koszul algebra, where @ is locally finite. Recall that A
is locally left noetherian if P, is noetherian as a non-graded left A-module for
any x € (Qo; and locally right noetherian if e, /A is noetherian as non-graded right
A-module for any x € Q).

5.6.2 Lemma. Let A = kQ/R be a locally left noetherian Koszul algebra, where
Q is a locally finite quiver. Let a € Qo such that A'e, is finite dimensional. Then
the eq-trace is defined for every endomorphism in gmod™°A.

Proof. By the assumption, Aiea = 0 for some t > 0. By Theorem and
Proposition [5.4.2] S, has a graded injective coresolution

I': 0—=8,—=1"—>1'"—> > ["

where I" = @,cq,(I(n) @ e A e,), for all n € Z. In particular, I" = 0 for
n > t. Consider M € gmod™"/A. Since A is locally left noetherian, by Proposition
3.9.5(1), gmod™*4 is abelian. In view of Corollary [3.8.6(1), we see that M has a
minimal graded projective resolution

P P pt P M 0

over gprojA. For s € Z, GHom,(P™", S.(s)) = GExt);(M, S.(s)). By Proposition
[1.4.6] we see that GHom(P~",S,(s)) is a sub-quotient of GHom (M, I"(s)).
Thus, given n > t, GHom4(P~", S,(s)) = 0, that is, P,(s) is not a direct summand
of P™" for any s € Z. Forgetting the graduation, we see that P*is a projective
resolution of M over projA such that P, is not direct summand of P~ for all
n > t. In other words, P*is an e,-bounded projective resolution of M over
projA. Thus, the e,-trace is defined for every endomorphism of M. The proof of
the lemma is completed.
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The following statement is a local version of Lenzing’s result in [34] for locally
left noetherian Koszul algebras.

5.6.3 Proposition. Let A = kQ/R be a locally left noetherian Koszul algebra,
where Q is a locally finite quiver with a loop o at a vertex a. If A'e, is finite
dimensional, then & is not nilpotent.

Proof. Assume that A'e, is finite dimensional with " = 0 for some r > 0.
Consider M® = Ag* € gmod™A for i > 0, where 3° = e,. Let o® : M® — M©)
be the right multiplication by &, for i > 0. By Lemma [5.6.2} tr,(¢(") is defined
for i > 0. Now, since (M®) C M+ we have a commutative diagram with
exact rows

0 —— MG+D M@ M@ /M(i+1) — 0

lq,(m) lq,(i) lo

0 —— MG+D M@ M@ /M(i+1) —0,

and by Proposition [2.5.4(2), tr, (@) = tr, (V) for all i > 0. In view of Lemma
2.5.1(1), we see that

(0 + D req\fay A€z) + [Aa; Ao] = tra (@) = tr, (o) = 0.

That is, 0 + > cop\ (ayA€24 € [Aa, Aq], and hence, 0 € 3° o\ (o3 A4+ [4, A].
Observing that eyAe, C radA if x # y and e,u = ue, for any u € e,Ae,, we
deduce that g€ rad*, contrary to R being generated in degree 2. Thus, & is not
nilpotent in A. The proof of the proposition is completed.

We are ready to obtain the main result of this section.

5.6.4 Theorem. Let A = kQ/R be a Koszul algebra such that A" is locally left
noetherian, where Q) is a locally finite quiver containing a loop o at some vertex
a. If Ae, is finite dimensional, then Ext’j (S, S,) # 0 for n > 1.

Proof. By Theorem [5.2.5| and Lemma [5.4.1], S, has a linear projective resolution

P ... p-n .. p-! Po Sa 0,

where P™" = @©,eq, (Po(—n) ® D(eaAle,)) for n > 0. Assume that Ae, is finite
dimensional. Since A' is locally left noetherian with (A')' = A, by Proposition

5.6.3, 0 # (6")" € eaAle, for all n > 0. Since D(e Al e,) # 0, we see that P,(—n)
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is a direct summand of P~", for n > 1. That is, GExt}(S,, So{(—n)) # 0, and
hence, Ext’; (S, S,) # 0 for n > 1. The proof of the theorem is completed.

ExampLE. Consider the algebra A = kQ/R, where @) is the quiver

aC4 23—5»2 f 10a

and R = (a? + Bv,a8,78,va,0n,0(). It is easy to see that A is a multi-serial
algebra satisfying the condition (x). By Theorem [5.5.2) A is Koszul. Note that
A= kQ°/R', where Q° is the quiver

n° &° B° o
o° C 4 R — Q a
¢° gl
and R' = ((a®)? — ~°(°,6°8°, (6°)?). We claim that A" is left noetherian. Indeed,
P} = k(es) and P} = k(ey,5",77',(",7'5",('G"), which are finite dimensional.
Since 4'' = (a')? and §'3' = 0, we see that P} = k(3', (&")", 8'(@')" | n > 0),

=

where (@')° = e;. Thus, every element of P} is of the form 3'f(a') + g(a'), where

f and g are polynomials. Let M be a non-zero graded A'-submodule of P;. Since
7'a' = 0 and B'B' = 0, there exists a non-zero polynomial g such that g(a') € M.
We may assume that g is of minimal degree s. Then M<, = ®o<;<sM; is finite
dimensional such that M = AMc,. So Pj is noetherian. Again since 7'3' = (a@')?,
we see that
Py = k(e 8,7, 07, (@))"7, B(@)"7' [ n > 1),

Similarly, we can prove that Pj is noetherian. This establishes our claim. Now,
since Ae; is finite dimensional, by Theorem m, Ext}(Sy,S1) # 0 for all i >
1. On the other hand, Ext}(Sy,S;) = 0 for all i > 2. Indeed, Aey is infinite
dimensional.

As a consequence of Theorem [5.6.4] we obtain the following statement, which
is stronger than the Extension Conjecture for finite dimensional Koszul algebras
with a noetherian Koszul dual.

5.6.5 Theorem. Let A = kQ/R be a finite dimensional Koszul algebra such
that A is left or right noetherian. If Q contains a loop at some vertex a, then
Ext’(Sq, S.) # 0, for every n > 1.
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Proof. Let o be a loop in @ at some vertex a. Suppose that A' is left noetherian.
Since /e, is finite dimensional, by Theorem [5.6.4) Ext’;(S,, S,) # 0, for every
n > 1. Suppose now that A' is locally right noetherian. Then, (A')° is locally left
noetherian. By Theorem and Proposition [5.3.3], A° is a finite dimensional
Koszul algebra with (4°)' = (A')°. Since 0° is a loop in Q° at a, Ext’},(S2, S°) # 0,
for every n > 1. Since A is finite dimensional, we have a duality D = Homy(—, k) :
mod”A°® — mod”. This yields Ext’j(S,, S,) # 0, for every n > 1. The proof of the
theorem is completed.

REMARK. Since a multi-serial algebra is locally left and right noetherian; see
(2.4.2)), the Extension Conjecture holds for finite dimensional Koszul algebras
with a multi-serial Koszul dual.
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Chapter 6

Generalized Koszul dualities

The main objective of this chapter is to describe our generalized Koszul dual-
ities for a Koszul algebra, which include the classical Koszul duality of Beilinson,
Ginzburg and Soergel stated in [13] (2.12.1)]; see also [48, Theorem 30]. In the
locally bounded Koszul case, we shall obtain two equivalences of bounded derived
categories, one for finitely piece-supported graded modules and one for finite di-
mensional graded modules. This generalizes the result stated in [I3], (2.12.6)].

6.1 Koszul Functors

In this section, we shall construct two Koszul functors for a quadratic algebra
given by a locally finite quiver, which are adapted from the Koszul functors for
a quadratic algebra given by a locally finite gradable quiver in the non-graded
setting; see [10, Section 5.

Throughout this section, A = kQ/R is a quadratic algebra, where @ is a
locally finite quiver. Let us recall some notations which will be frequently used
in this chapter. First, A' = kQ°/R' = {3' | v € kQ}, where 7' = 4° + R'; and
A= (A =kQ/(RY = {7 | v € kQ}, where ¥ = vy + (R')°. Then, for z € Q,,
we have P! = A'e, and I = @]396, where P, =/Ae,.

We start with defining the right Koszul functor F : GModA — C(GModA'")
as follows; compare [16, page 35]; and also [15, page 63]. Let M € GModA and
n € Z. We put

FM)" = Bqequ(Phin) @ Ma(2))
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Writing F(M)™™ = @yeq, (P (n+1) ® My11(y)), we define
7]L-'(M) = (d?:(M)(yax))(y,x)eQOXQo P F(M)" — ]:(M)nH
with

where Pla'] : Py(n) — P,(n+1) is the Alinear morphism given by the right

multiplication by &', and M (&) : M, (x) — M,,1(y) is the k-linear map given by
left multiplication by @. Given a morphism f : M — N in GModA and n € Z,
we put

F()" = Baeqo(id ® fu) : Bucqy(Peln) ® Ma(2)) = Gueqy(Pin) @ Na(z)),
where f, . : M,,(z) — N,(z) is the k-linear map obtained by restricting f.

We define the left Koszul functor G : GModA — C(GModA') in a similar
fashion as follows. Let M € GModA and n € Z. We set

G(M)" = Baeq, (1{n) @ Ma()).
Writing G(M)"! = @yeq, (I,(n+1) ® My41(y)), we put
G(M) = (dZ(M) (¥, %) (g.0)Qoxo + G(M)"™ — G(M)"
with
gon(y, ) = ZaEQl(:p,y)[[a!] ® M(@): I{n) ® My(z) = I,{n+1) @ My (y),

where I[a'] : I}(n) — I'(n+1) is the D-dual of P[4] : P,(~n—1) — P,(—n). And
given a morphism f: M — N in GModA and n € Z, we set

G(f)" = @aequ(d @ fa) : Pueqo(Le(n) ® Mu(2)) = Bueqy(L{n) © Nu(2)).

The following statement is a generalization of Proposition 5.1 in [16] where
the quiver @) is assumed to be gradable.

6.1.1 Proposition. Let A = kQ/R be a quadratic algebra, where Q) is a locally
finite quiver. The above construction yields functors F : GModA — C(GMod/l!)
and G : GModA — C(GModA"), which are full, faithful and ezact.
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Proof. We only verify that G is an exact functor. Fix M € GModA and n € Z.
Write G(M)" = Bqeq, (I1{n)@Mn(2)) and G(M)™? = B.eq, (1{n+2) @ M42(2)).

For (z,x) € Qo X Qo, write Qa(z,2) = {a1f1,...,as0s}, where a;, 5; € Q1. In
view of the definition of G, we see that d"H o dg(M) (d2 ) (z.2)eQox Qo> Where

=Y LIBa] @ M(a:5;) : L{n) @ My (x) = I{n+2) @ Myio(2).

Choose a k-basis {p1, ..., pr, pra1,- -, pst of kQa(x, z), where {p1,...,p,} is
a k-basis of Ry(z,z). There exists a k-basis {1, ..., 0, Nrs1,- .., 05} of kQa(x, 2)

such that {ny,...,n5n5, ..., nt} is the dual basis of {p1,...,pr, pre1s .-, s}
Then, {n7,...,n}} is the dual basis of {p1,...,ps} and {n2,,,...,no} is a k-basis
of Ry(z,z). Observe that p; = 0 for 1 <4 < r, and 77;» =0andforr <j<s. On
the other hand, by Corollary 2.1.2] we have a k-linear isomorphism

D(kQa(x, 2)) ®@ kQ2(x, 2) — Endg(kQ2(z,2)); f @ v = [0 — f(0)7].

Since {11, ..., as0s} and {p1,...,ps} are k-bases of kQq(z, 2), we see that
o(Ximi(@ifs) ®@aifi) =id = o (31 @pi). S0, 3oy (i) @il = 3 ymy @
pi- In view of the canonical k-linear isomorphism D(kQs(z, 2)) — kQS(z, x), we
obtain > 7 (25;)° @ ;8 = Y _i_m¢ ® p;. Applying the tensor product of the
canonical projections kQa(z, 2) — e, Ase, and kQ3(z,x) — e, Abe., we obtain

Yo B @ i = 300 7 ® pie
Moreover, we clearly have a k-linear morphism
Y egAhe, ® e, Age, — Homy (I5(n), I {n+2)) @ Homy (M, (2), M,4a(2)),
sending 7' ® p to [l ® M(p). Applying this to the above equation, we obtain
S L[Bia] © M(auBi) = Yo7, 1) © M(p;) = 0.

Therefore, dgzrj\la o dgy = 0. That is, G(M)" is a complex in C(GModAY).

Next, given a morphism f : M — N in GMod4, it is easy to verify that
G(f)rtto dgary = dgnvy © G(f)", for n € Z. This yields a morphism of complexes
G(f) : G(M) — G(N). Since the tensor product is over a field, G is exact and
faithful. Finally, consider a morphism f*: G(M)* — G(N)* in C(GModA'), where
M, N € GModA. Write

"= ("4 2) warequxqu - Boeqo (I{n) ® Ma(x)) = Syeqq (L,(n) ® Na(y)),
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where f"(y,z) : I.(n) ® M( ) — I,(n) ® Ny,(y) is a graded morphism. In
view of Proposition we see that f"(y,z) = 0 if y # z; and otherwise,
[y, ) =idp ® gne, for some g, € Homy (M, (z), N,(x)). This implies

)

" = @oequ(idy, @ gna) * Doequ (1(n) ® Ma(x)) = Baeqy (Iofn) @ Na(2)).

Let (z,2) € Qo X Qo with Qq(z,z) # 0. We deduce from the equation
f”‘”‘1 o dg(M) = dg(N) o f™ that

(f" o dgan)(z ) = (dgvy © )z, 2) : Lin) © My(x) = L{n+1) @ Nusa(2),

namely, ZaéQl(x,z) I[a'] @ (N(@) 0 gna) = Zate(w,z) I[&'] @ (gnsr,z © M(a)). By
the uniqueness stated in Proposition [3.4.6] N (&) o ¢, = gnt1,. © M (@), for every
arrow o € Q1 (, z). This yields ¢ = (gn.z)(n,e)ezxQ, 15 @ A-linear graded morphism
from M to N such that G(g) = f. That is, G is full. The proof of the proposition
is completed.

Let X* be a complex in C(GModA). Given s € Z, we define the grading
s-shift X*(s) by setting (X*(s))" = X"(s) and dY. , = d(s) for all n € Z.

6.1.2 Lemma. Let A = kQ/R be a quadratic algebra, where Q) is a locally finite
quiver. If X* is a complex in C(GModA), then

(1) (X(s))(t) = X*(s+ 1), for all s,t € Z;
(2) H™(X*(s)) = H"(X*)(s), for alln,s € Z.

Proof. Statement (1) is evident. Let X* € C(GModA). Given s,n € Z, in view
of Lemma [3.1.9] we have
H*(X(s)) = Ker(d.,y)/Im(dy. )
Ker(d"< >)/Im(d" H(s))
(Ker(d) /Tm(d%™))(s)
= H"(X")(s).

The proof of the lemma is completed.

The following statement tells us how the Koszul functors F and G are related
to the grading shift of graded modules and the shift of complexes; compare [48]
Proposition 20].
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6.1.3 Lemma. Let A = kQ/R be a quadratic algebra, where Q is a locally fi-
nite quiver. If M € GModA and s € Z, then ¢*(F(M)[s]) = F(M(s))*(s) and
t'(G(M)[s]) = G(M(s))*(s), where t is the twist functor.

Proof. We shall only prove the first part, since the proof of the second part is
similar. Let M € GModA and s,n € Z. By definition,

E(F(M)[s)" = (F(M)[s])" = F(M)™* =®qeqy(Paln+ ) © Myi())
and dit zapers) = (1)@ apyeg = driapy- On the other hand, by definition,
F(M(s))" = Bueqo( Poln) © Muys()).
Writing F(M(s))" ! = @yeqo(Py(n + 1) @ Myyo1(y)), we have
A are) = (D) Y ) areoxqo + F(M{s))" — F(M(s))"*,
where
@i (U ) = P aeqy () P1ATOM(Q) : Po(n) @ My s () = Pyn+1) @ My 51 (1)

Therefore,

(F(M{s))(s)" = F(M(s))™(s) = Buequ(Paln + ) @ Myys(x)) = £(F(M)[s])",

d?r(M<s>)-<s> = d?-'(M(s))<8> = (d?f(M<s>) (¥, $)<5>)(y,x)erxQo>
where d’ /4 (y, ©)(s) is the morphism

Y@y P11 @ M(@) 1 Pyn 4 5) @ Myyo(2) = Py{n+5+1) @ Myyoa(y).

So, d (ya z)(s) = dn+s (y, x) for all (y,z) € Qo X Qp, and consequently,
d?-'(M 5))< > = d??f&) Therefore d’ FM(s))s) = dfs( M)els])> , for all n € Z. This shows

that t*(F(M)[s]) = F(M(s))(s). And similarly, t*(G(M)[s]) = G(M(s))(s).
The proof of the lemma is completed.

We shall need the following statement.

6.1.4 Corollary. Let A = kQ/R be a quadratic algebra, where Q is a locally finite
quiver. If M is a module in GModA, then H"*(F(M(s))*) = H"(F(M)*)(—s)
and H"*(G(M(s))*) = H(G(M)*){(—s), for alln,s € Z.
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Proof. Let M € GModA. Fix s,n € Z. Since t is an automorphism of C'(GMod4),
applying Lemmas [6.1.3] and [6.1.2|(2), we see that

HY(F(M)) = H(
— H s (6(F (M)
H =

By Lemma [6.1.2)1), we have H"~*(F(M(s))) = H*(F(M)*)(—s). Similarly,
H"*(G(M(s))*) = H*(G(M)*){—s). The proof of the Corollary is completed.

To conclude this section, we shall show that the Koszul functors are compat-
ible with tensor products and arbitrary direct sums. Let (X*,dy) be a complex
in C'(GModA). Given V' € Modk, we shall define X* ® V' to be the complex such
that (X*®@ V)" = X" ®V and d% 4, = d% ®idy for all n € Z.

6.1.5 Lemma. Let A = kQ/R be a quadratic algebra, where Q) is a locally finite

quiver.

(1) If M € GModA and V € Modk, then F(M @ V) = F(M) @ V and
GMV)=GM)xV.

(2) If M, witho € X are modules in GModA, then F(@yexsMy)* = Gpex F(My)*
and g(@aeﬂMa). = ®UEE g(MO').'

Proof. (1) Let M € GModA and V' € Modk. Fix n € Z. By definition,

F(M @ V)" = Baeqy(Piln) @ My(z) @ V)
= (Baeqo Po(n) ® My(2)) © V
— F(M)"®V.

Writing F(M @ V)" = @yeq, (Py(n+1) @ M1 (y) ® V), we have

druevy = ([drarev) (¥, ) wareoxqo : F(M @ V)" = F(M @ V),
where d' 0y (¥, @) is the morphism
Y acor@p PlAT® (M @ V)(@): Pin) © My(z) @ V = Pyn+1) @ My (y) @ V.

On the other hand, writing F(M)"" @V = (@yeQOP;(n%— DM, 1(x)RV, we
have

d;-'(M)(X)V = (d;(M)(@\/(y, x))(y@)GQoXQO : J’.'(M)n QV — F(M)n—H 2 Vv,
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where d (5 (¥, ) is the morphism
S acanteny P11 © M(@) @ idy: PLind © My (a) ©V = Pfn+1) @ My (4) © V.

Since (M ®@ V)(a) = M(a) ®idy for any o € Qy(z,y) with (y,x) € Qp X Qo,
we have d'% ) 1) = d%(yp)ey- This shows that F(M @ V) = F(M) @ V. And
similarly, G(M @ V) =G(M) @ V.

(2) Let {M, },ex be a family of modules in GMod/A. By Proposition [3.2.3(1),

we see that '
F(@oesM,)" = DPreq, (Pi(n) ® (BrexMy)n(x))

= Boex Preqo (Pg'c<n> ® (Mg)n())
== @UEE‘F(MO'>n'
Writing ‘F(@UEEMU)HJrl = @yEQO(Pzi(n + 1> & (®U€E(Ma)n+1(y)))7 we have

mn

d]:(@UEZJMa) - (d}]}(@o—eZ‘Ma)(y7 x))(yyx)EQOXQO : ‘F(@UEEMO')TL — ‘F(@UEEMO')nJ’_l’

where

T (@, eort) (Y: 1) 2 Poln) @ (Boex(My)a(2)) = Pyn+1) @ (Does(Mo)ati(y))
is the morphism defined by

d}(@dezMg)(y’ l‘) = Zate(J)y)P[a!] ® (®062M0)<d)
On the other hand, given o € X, write F(M,)"™ = @yeq, (Py(n+1) @ (My )ns1(y)).
Then, we have
dn}'(Ma) = (d?-'(MU)(y>$))(y,x)€Qo><Qo P F(My)" — f(Ma)n+17

where d%,, \(y, ) is the morphism

Za‘EQl(a:,y)P[a!] ® Mo(a) P;(n) ® (Mg )n(z) — P;(n—f—l} ® (Mo )nt1(y)-

Thus, we see that

!

r (e ontn) U T) = D00 (2 PlO] ® (BoesMo) (@)
= Zate(m,y)P[a!] ® (BoexMy(@)
= Doen (X acou ey Pla] ® My (a))
— Bresdiun (5 7)
=dy, .7, (¥ 2); forall (y,2) € Qo x Qo.

That is, A% ar) = Do, coroan,)- Consequently, F (@ exM,) = BoesF (M)
And similarly, we can show that G(®,exM,) = @yex G(M,)*. The proof of the
lemma is completed.
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6.2 Complex Koszul functors

In this section, we shall extend the Koszul functors to obtain the complex
Koszul functors. They are the graded version of those defined in [16 Section 5]
under the non-graded setting and the assumption that the quiver is locally finite
gradable.

Throughout this section, we always assume that A = kQ/R is a quadratic
algebra, where () is a locally finite quiver. As described in Section 1.8, the
right Koszul functor F : GModA — C(GModA') and the left Koszul functor
G : GModA — C(GModA') extend to two additive functors

FPC . C(GModA) — DO(GModA'); M* + F(M?); f* v F(f)5

and

GP% . C(GModA) — DC(CGModA'); M* — G(M*); f*+ G(f*)".

For convenience, we shall describe these functors explicitly in the following
statement, which follows immediately from the definition of the Koszul functors.

6.2.1 Lemma. Let A = kQ/R be a quadratic algebra, where Q is a locally finite
quiver. If M+ e C(GModA), then

(1) the double complex F(M*)* is given by
F(M'Y = @ueqy(Po(j) © Mj(2)); for all i, j € Z.
(2) the double complex G(M)*)* is given by

G(M)') = @oeq,(I{j) ® Mj(x)); for all i,j € Z.

Composing these functors with the functor T : DC(GModA') — C(GModA"),
sending a double complex to its total complex; see (1.8), we obtain two additive
functors

F¢=To FPY . C(GModA) — C(GModA")

and

G =T oGP C(GModA) — C(GModA"),

which are called the right and the left complex Koszul functors, respectively.
They are explicitly described in the following statement.
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6.2.2 Proposition. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver.

(1) The right complex Koszul functor F¢ : C(GModA) — C(GModA'") is faith-
fully exact such, for M+ € C(GModA) and n € Z, that

FOAM)" = @iczineqy(Po{n—1) ® M, _;()).

(2) The left complex Koszul functor G€ : C(GModA) — C(GModA") is faith-
fully exact such, for M* € C(GModA) and n € Z, that

gC(M')n = Diez;zeQo ([;(n—z) &® Mfw—z(@)

Proof. We shall only prove Statement (1). By Proposition [6.1.1] F is faithful and
exact, and by Proposition , F¢ is faithful and exact. Let M* € C(GModA).
By definition, F¢(M)* = T(F(M*)"). Fix n € Z. In view of Lemma [6.2.1] the
n-diagonal of the double complex F(M*)* consists of

F(MHY'"™ = @reqo(Pin—i) @ M!_,(z)); for all i € Z.
Therefore,
FAM)" = T(F(M))" = @iez F(M')"™" = @iczineqo(Pr{n—1i) ® M,,_;(x)).
The proof of the proposition is completed.

Now, we shall compose the Koszul functors and the complex Koszul functors.
For this purpose, we need the following statement, which follows immediately
from the definition of the Koszul functors.

6.2.3 Lemma. Let A = kQ/R be a quadratic algebra, where Q is a locally finite
quiver. If M € GModA, then

(1) the double complex F(G(M)*)* is given by

F(GM)') = Bazeqo(Palj) ® (Ii)z'+f‘(a) ® M;(x))
= Bareqo(Pulj) @ D(e,A_;_je,) ® M(x)); for all i,j € Z.

(2) the double complex G(F(M)*)* is given by

GF(M)Y = @apeqo(Lald) @ (Py)ir;(a) ® M;(z))
Bazeq,(La{j) ® €q /1i+jegC ® M;(x)); foralli,j € Z.
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6.2.4 Proposition. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver.

(1) The functor F€o G : GModA — C(GModA) is faithfully exact such that
(FEoG)(M)" = Biczameqo(Paln—i) @ D(ead-_ne,) © My(z)),
for all M € GModA and n € Z.
(2) The functor G€ o F : GModA — C(GModA) is faithfully exact such that
(G o F)(M)" = ®icziracqo(la(n—1i) @ e Ay ea © Mi(x)),
for all M € GModA and n € Z.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is
similar. By Propositions and , F¢ and G are faithfully exact, and
hence, F¢o G is faithfully exact. Let M € GModA. By definition, G(M)" is given
by G(M)! = @®req, (IL(i) ® M;(x)) for all i € Z. Moreover,

(FCoG)(M) = FE(G(M)) = T(F(G(M))).

Given n € Z, in view of Lemma[6.2.3(1), we see that the n-diagonal of the double
complex F(G(M)*)* consists of

F(G(M))'™" = Baweo(Paln — 1) @ D(egA_nes) @ M;(x)); for all i € Z.
Thus,
(FG)(M)" = ®iez F(G(M)')" ™ = ®iez;a0eq0 (Paln—i) @ D(eaA_ne,) @ Mi(z)).
The proof of the proposition is completed.

To extend the above composite functors, we need the following statement,
which follows immediately from the definition of the Koszul functors and Propo-
sition 10.2.4l

6.2.5 Lemma. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. If M+ € C(GModA), then

(1) the double complex (F€o G)(M*)* is given by
(FOoG) (M"Y = ®yeziancqy (Pali—5)@D(ead—je,)@Mi(x)); for all i, j € Z.
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(2) the double complex (G€o F)(M*)* is given by

(G o F)(M'Y = ®sezimacqoLali—5) ® eaAje, @ Mi(x)); for all i,j € Z.

Now, we are able to describe the extension of the composite functors of the
Koszul functors and the complex Koszul functors.

6.2.6 Proposition. Let A = kQ/R be a Koszul algebra, where Q is a locally
finite quiver.

(1) The functor (F€oG)¢ : C(GModA) — C(GModA) is faithfully exact such,
for M+ € C(GModA) and n € Z, that

(FOoG)UM)" = ®ijezaveqn(Pan—i—j) @ D(eadi—nea) @ Mj(x)).

(2) The functor (G0 F)¢ : C(GModA) — C(GModA) is faithfully exact such,
for M+ € C(GModA) and n € Z, that

(gco ]:)C<M)n = B jez; aweqy Lx{n—1i—J) ® eaAiz—iex ® M;(a))

Proof. We shall only verify Statement (1), since the verification of Statement (2) is
similar. By Proposition , FYog is faithfully exact, and by Proposition [1.8.5]
s0is (F€G)C. Let M* € C(GModA). Then, (F%G)Y(M*) = T((FC o G)(M*)).
Fix n € Z. By Lemma , the n-diagonal of (F%0 G)(M*)* consists of

(FCoG) (M)~ = Bz aweo (Pa{n—i—7) ®D(ea/ii_nex) ®MJZ($)), for all i € Z.
As a consequence, we have

(FCo Q)M = ez (FOoG) (M) A |
= EBi,jEZ;a,ero (Pa<n—l—j>®D(€aAl,n€m)®M;(I)>

The proof of the proposition is completed.

6.3 Derived Koszul functors

In this section, we shall show that each complex Koszul functor descends to
a 2-real parametrized family of derived Kozul functors from categories derived
from subcategories of the category of complexes of a quadratic algebra to those
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derived from those derived from subcategories of the category of complexes of
its quadratic dual. These include the two derived functors constructed in [48]
Section 5]. The key ingredients of this section are adapted from those in [16],
Section 5] which are in the non-graded setting and under the assumption that
the quiver is gradable.

Throughout this section, we always assume that A = kQ/R is a quadratic
algebra, where @) is a locally finite quiver. As mentioned in Section 1.8, the right
complex Koszul functor F¢ : C(GModA) — C(GModA") and the left complex
Koszul functor G¢ : C(GModA) — C(GModA') do not descend to the whole
derived category D(GModA). Therefore, we need to consider some derivable
subcategories of C'(GModA). For this purpose, we shall view a complex M* of
graded modules M* = @,z M; as a bigraded k-vector space M; with 7,5 € Z.

6.3.1 Definition. Let A = kQ/R be a quadratic algebra, where @ is a locally
finite quiver. Given p,q € R with p > 1 and ¢ > 0, we denote

(1) by C,(GModA) the full subcategory of C(GModA) of complexes M* such
that MJ’ =0fori+pj>0ori—gqj <0;in other words, M* concentrates
in a lower triangle formed by two lines of slopes —]l) and é, respectively;

(2) by C,(GModA) the full subcategory of C(GModA) of complexes M* such
that M; =0for i+ pj < 0ori—qj > 0;in other words, M* concentrates
in an upper triangle formed by two lines of slopes —Ilj and %, respectively.

REMARK. (1) Taking p = 1 and ¢ = 0, we cover the categories C*(A) and CT(A)
as defined in [I3], (2.12)]; see also [48, (2.4)].

(2) The categories Cf,(GModA) are pairwise distinct derivable subcategories
of C(GMod™A) containing C*(GMod ™).

(3) The categories C (GModA) are pairwise distinct derivable subcategories
of C(GMod™A) containing C*(GMod*/).

(4) The triangular regions in which the complexes of these categories are
concentrated can be visualized as follows:
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;! (GMod )

.}, (GMod )

Let 2 be an abelian subcategory of GModA. We denote by C’qu(Ql) the full
subcategory of C}, (GModA) of complexes of graded modules in 2, by K, () the
quotient category modulo null-homotopic morphisms of C}, (), and by D} ()
the localization at quasi-isomorphisms of K, (2). We define categories C)Y, (),
K[! () and D[ () in the same fashion. In other words, D} () and D] ()
are categories derived from Cp%q(Ql) and C’II ,(2), respectively.

In order to show that the complex Koszul functors descend to these derived
categories, we shall restrict complexes of graded modules to obtain complexes
of k-vector spaces. Consider a complex M* and a morphism f*: M* — N*in
C(GModA). Fix i € Z. By restricting M* and f* to the degree i, we obtain a
complex
(dyr 1) (

Mp B

Mp: o M

(2

and a morphism f;: M; — N; in C'(Modk). Similarly, restricting an object M*
and a morphism f* : M* — N* in DC(GModA) to the degree i, we obtain an
object M;* and a morphism f;* : M;* — N;* in DC(Modk).

6.3.2 Lemma. Let A = kQ/R be a quadratic algebra, where Q) is a locally finite
quiver.

(1) If M+ € C(GModA), then H*(M*); = H*(M;) for all i € Z.

(2) If f*: M*— N-*is a morphism in C(GModA), then H™(f*); = H"(f;), for
alln,i € 7.
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(3) If M is an object in DC(GModA), then T(M*); = T(M;*), for all i € Z.
(4) If f= is a morphism in DC(GModA), then T(f*); = T(f;*), for all i € Z.

Proof. (1) Consider a complex (M, d*) in C(GModA). In view of Proposition
3.1.8] we see that
Kerd" DiezKer(dl) Ker(d!")

H*"(X*) = — ? ~ i N : H* (X*).
(X Imd"=!  @;ezlm(d] ") Diez Im(d}™1) DiczH"(X)

Thus, H"(M*); = H*(M; ) for all i € Z.
(2) Let f*: M*— N*be a morphism in C'(GModA). Fix n € Z. We have a

commutative diagram with exact rows

0——Imd" ' - Kerdy, M H*(MF) ——0

A A

0 ——=Imd% '~ Kerd?, — H™(N*) — 0,
where f™ and f™ are induced from f". For any i € Z, we have a commutative

diagram with exact rows

0 — (Imdy; ), (in); (Kerd?,);

N k
(

0 (Imdrjif_l) (qN)z (K dn) pN)z'

(P?V[ )z
—_—

H"(M*); —0
jH"(f')z‘
H"(N*); —0.

By Proposition [3.1.8] this is the commutative diagram with exact rows

(ah)i (Php)i
My MY

0 —Im(d}; ) Ker(d%,); H*(M*); —=0

fi"l Lf” lH"(f-)i

(qN)i ) (pN)i Hn(N')Z O

0 —Im(dy ), —=

Therefore, H*(f*); = H"(f;).

(3) Let (M**, v, h**) be an object in DC'(GModA), where v** is the vertical dif-
ferential and h* is the horizontal differential. Fix ¢,n € Z. Then, by Proposition
3.2.3(1),

(2

T(M*)! = (Bjez M), = e MI™ 7 = T(M).
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Moreover,
(diapen)i = (diapen) (1)) wiezxz = TIM™)] — T(M=)i* = (@rez M),
where df (L, 7)i © M7 — M;" ™" is defined such that d .., (j,4); = v}"™;

I

A2y G+ 1,5)i = W7 and di g (1L 5)i = 0'if j # L or [+ 1. On the other
hand,

iy = (i) (1 9)) gyexa » T(M;)" — T(M;)" = (Prez M),
where d%(Ml,.)(l,j) : M — M is defined such that d%(M;.)(j,j) = /",

At py (G + 1,5) = " and di g (1 5) = 03 j # Lor L+ 1. S0, ()i =
d%(Mz’)' Therefore, T(M*); = T(M;*), for all i € Z.

(4) Let f* : M* — N* be a morphism in DC(GModA4). Fix i,n € Z. By
definition,

T(f*)i = (T(f*)i (b)) agyezxz - (BjeaM?™ )i = (@1eaN"" ),
where T(f*)/(L,j) « MJ"™ — N is given by T(f);(j,j) = fi"~ and
T(f)*(,j) =0 for all j # [. On the other hand,
T(f;)" = (T(f)" (1 5)) wpezxz : BieaM?" ™ — Siea N,

where T(f)"(1,5) + M} — N;""is given by T(f)"(j,j) = f" and
T(f)"(l,j) = 0 for all j # . So, T(f*)? = T(f;*)". Consequently, T(f*); =
T(f;), for all i € Z. The proof of the lemma is completed.

We are ready to have the main result of this section. It is adapted from
Theorem 5.3 in [16], which is in the non-graded setting and under the assumption
that the quiver is gradable.

6.3.3 Theorem. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver. Consider p,q € R with p > 1 and ¢ > 0.

(1) The right complex Koszul functor FC induces a commutative diagram of
functors

Cyy(GModA) —— K (GMod4) —— D/}, (GMod4)

fpc,qj lfﬁfq jfpffq

(GModA") — K, (GModA') — D, (GModA"),

q+1,p—1 q+1,p—1

CT

q+1,p—1

where GModA and GModA' can be replaced simultaneously by gmod/A and
gmod A, respectively.
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(2) The left complex Koszul functor G induces a commutative diagram of func-
tors

Cyly(GModA) —— K[ (GMod4) —— D/} (GMod )

.c;j lg;fq jgézq

Ciiyp1(GModA) —= K,y 1 (GModA') —= Dy, ,_(GModA'),
where GModA and GModA' can be replaced simultaneously by gmodA and

gmodA', respectively.

Proof. (1) Let M- € C} (GModA), say M} = 0 for i 4 pj>s or i — qj <t, where
s,t€Z. Fix n,r € Z. In view of Proposition [6.2.2(1), we have

FOM); = Bizniriacqo(Pentr—i ® My_i(2)).

Fix some i < n+r. If n+ (¢+ 1)r < t, then i — q(n — i) < t; and if
n—(p—1)r > s, then i + p(n —i)>s. Thus, FE(M*)"=0if n+(q+ 1)r <t or
n —(p—1)r > s. That is, FE(M*)" € C;L,p_l(GMod/l!). This yields a functor

FECCY (GModA) — Gy, 1 (GModA).

Given n € Z, by Proposition [6.2.1[1), the n-diagonal of the double complex
F (M) consists of
F(MY"™ = @,eq, (Pn—i) @ M!_,(x)); for any i € Z.

xT

If i < (ng+t)(1+q)~"', then M! . = 0, and hence, F(M*)"~* = 0. Thus,
F (M) is diagonally bounded below. By Theorem m(l), FS. sends acyclic
complexes to acyclic ones, and by Theorem W(2)’ .7:1')% induces a commuta-
tive diagram as stated in Statement (1). Assume now that the M;(z) are finite
dimensional for all (i,2) € Z x Q. Given y € @y, we have

]:C(M)?(y) = Di<ntr;zeQo (eyA!n—s-r—iez ® Mfz—z@))

It is easy to see that FEYM*)"(y) # 0 only if (gn +t)(¢+ 1)t <i < n+r.
So FEM*)*(y) is finite dimensional. Thus, FEM*)* € C(gmodA'). That is, F¢
restricts to a functor F¢, : Cf (gmodA) — thrl’pfl(gmod/l!). As seen above, it
induces a diagram as stated in Statement (1) with GModA and GModA' replaced

simultaneously by gmod/ and gmodA', respectively.
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(2) Similarly, G restricts to functors G& : C! (GModA) — Cqﬁl’p_l(GMod/l!)
and G& : Cl (gmodA) — Cq¢+17p_1(gmod/1!). Let N* be an acyclic complex in
C(GModA). Then, GE(N*) = T(G(N*)"). Fix r € Z. In view of Proposition
[6.3.2(2), GE(N*), = T(G(N*);). Since G is exact, the double complex G(N*)* has
acyclic rows, and so does the double complex G(N*):. Given n € Z, by Lemma
6.2.1(2), the n-diagonal of G(N*): consists of

Q(Ni)?‘i = @mer((IL)nw—i 0% N;;fi(x)); for any i € Z.

If i <n+r, then (I.),1— = 0, and hence, G(N")"~% = 0. Thus, G(N*)",
is diagonally bounded-below. By Proposition [1.8.2] T(G(N*);) is acyclic. That
is, GE(N*), is acyclic, for all 7 € Z. By Lemma6.3.2(1), GE(NN*) is acyclic. By
Theorem [1.8.7)(2), G¢ induces a commutative diagram as stated in Statement (2).
The proof of the theorem is completed.

REMARK. In case p = 1 and ¢ = 0, Theorem has been established for
positively graded quadratic categories; see [48, Proposition 20].

(2) By Theorem W, the functors Fy and G)) in Theorem are triangle-
exact , which will be called the right and the left derived Koszul functors,
respectively.

Next, we shall show that the complex Koszul functors descend always to the
bounded derived category of finitely piece-supported graded modules. For this
purpose, we observe that K°(GProjA) and K°(GInjA) are full triangulated sub-
categories of D*(GModA), while K®(gprojA) and K°(ginjA) are full triangulated

subcategories of D°(gmodA); see (1.7.9)).

6.3.4 Theorem. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver.

(1) The right Koszul functor F: GModA— C(GModA") induces a commutative
diagram of functors

Mo — K Mo —D Mo
CY(GMod b(GMod% b(GMod

| #r| |

CY(GProjA') — K GProjA') —— D*(GModA"),

where GModA, GProjA' and GModA' can be replaced simultaneously by
gmod?, gprojA' and gmod /' respectively.
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(2) The left Koszul functor G: GModA — C(GModA') induces a commutative
diagram of functors

CY(GMod) — K*(GMod”l) — D*(GMod™)

| e

CY(GInjA') —— K¥(GInjA') —— D¥(GModA"),

where GMod?, GInjA' and GModA' can be replaced simultaneously by gmod?,
ginjA' and gmod A’ respectively.

Proof. We shall only prove Statement (1). Let M* € C*(GMod). There exist
integers s,t > 0 such that MJZ # 0 only if —s <i < sand —t < j <t. Given
n € Z, by Proposition [6.2.2(1), we have

]:C(M')n = @(merQo(Pz’(n—i) ® M;L—z(‘r))

Since M!_; # 0 only if —s —t <n < s+ ¢, the complex F(M*) is bounded.
And since the M' are finitely piece-supported, M: ,(z) # 0 only for finitely
many pairs (i,7) with —s < i < s and € Q. Thus, FY(M*) € C*(GProjA").
This yields a functor F¢: C*(GModA) — C*(GProjA'). As seen in the proof of
Theorem [6.3.3] it induces a commutative diagram as stated in Statement (1).

Suppose that M* € C%(gmod). Then, the M! ,(x) are finite dimensional.
So, F¢(M*) € C*(gprojA). This yields a functor F¢ : C*(gmod’A) — C*(gprojA').
As seen above, it induces a commutative diagram as stated in Statement (1) with
GMod, GProjA' and GModA' replaced by gmod®, gprojA' and gmodA', respec-
tively. The proof of the theorem is completed.

In case A' is locally left or locally right bounded, as shown below, the functor
FP 1 DYGMod) — DY(GModA') or GP : DY(GMod”) — D*(GModA') co-
restricts to D*(GMod®"), respectively.

6.3.5 Corollary. Let A = kQ/R be a quadratic algebra, where Q is a locally
finite quiver.

(1) In case A" is locally left bounded, the right Koszul functor F : GModA —
C’(GMod/l!) induces a commutative diagram of functors

Mo — K Mo ——D Mo
CP(GMod¥% b(GMod b(GMod

#| #| #|

C*(GProjA') —— K GProjA') —— DY(GMod"),
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where GModA, GProjA' and GModA' can be replaced simultaneously by
gmod?, gprojA' and gmod®', respectively.

(2) In case A is locally right bounded, the left Koszul functor G : GModA —
C(GModAY induces a commutative diagram of functors

Mo — K Mo —D Mo
CP(GMod¥ b(GMod b(GMod

| e

C*(GInjA") —— K*(GInjA") —— D*(GMod“"),

where GModA, GInjA' and GModA' can be replaced simultaneously by
gmod?, gprojA' and gmod®', respectively.

Proof. Suppose that A' is left locally bounded, that is, P! is finite dimen-
sional for every z € Q. Then, GProjd' C GMod' and gprojd' C gmod®'.
Therefore, K*(GProjA') and K®(gprojA') are full triangulated subcategories of
D*(GMod”") and D?(gmod“"), respectively. Now, Statement (1) follows from
Theorem [6.3.4(1). Dually, Statement (2) follows from Theorem [6.3.4(2). The

proof of the corollary is completed.

REMARK. By Theorem m, the functors FP : D*(GModA) — D*(GMod")
and GP: D*(GMod) — D*(GMod®A") are triangle-exact, which will be called the
right and the left bounded derived Koszul functors, respectively.

6.4 Koszul dualities

The objective of this section is to show that the derived Koszul functors for a
Koszul algebra and those for its Koszul dual form two 2-real parametrized family
of dualities, which contain particularly the classical Koszul duality of Beilinson,
Ginzburg and Soergel; see [13, (2.12.1)]; also [48, Theorem 30]. The key ingre-
dients of this section are adapted from those in [I6, Section 5] which are in the
non-graded setting and under the assumption that the quiver is gradable.

Throughout this section, let 4 = kQ/R be a Koszul algebra, where @ is a
locally finite quiver. We start with the following important property of Koszul
functors; see [13], (1.2.6)] and [48, Theorem 30].
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6.4.1 Lemma. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. If a € Qo, then S} has F(I,)" as a truncated linear projective resolution

and G(P,)" as a truncated colinear injective coresolution.
Proof. Fix a € Q. Since A' is Koszul; see (5.4.3), S! has a truncated colinear

injective coresolution Z/; see 1} Since (A')' = A; see in view of

the definition of G, we see that G(F,)* = Z:,. Next, by Lemma | S! has a
truncated linear projective resolution P;, as follows:

_ o _ _ Z—l
P pi! n e pa!1 PY 0 ce

a

where P =Beqy(PA{—n)®@D(ea Ane,)) and P =Byeqy( Pi{1—n)@D(ea Apn-16y)).
Moreover, £7" = ({7™(y, )) (y.2)cQo xQo» Where

UMY, ) =2 e (v Pl ]@DPla]: P{=m)@D(eg Anes) =Py (1-n)@D(eaAn-1¢y).
On the other hand, for any n € Z, we have

FLa)™ = ueqo(Pef=n) @ (La)-n()) = Bueqy(Pe(—n) ® D(esAea)).

In partlcular F(l,)™ =P," =0, for all n < 0. Fix an integer n > 1. Write
F(L)'™" = Byeqo(P, < n)@D(ey A, _seq)). Then, d]-‘?[ (d]—‘?j (¥ %)) (y2)€QoxQo-
where

d;‘?la)(%x) : Pa!c<_n> ® D(ezAneq) — EBQEQOPgi(l —n) @ D(eyA;_ eq)
is given by
d]_:?fa)<y7 :L“) = ZaEQl(Z‘,y) P[@!] ® ]a(d/) = ZaEQl(I,y) P[d!] ® DP;)(@())'

Consider the canonical k-linear isomorphism 07 : e, A, e, — e AV eq; 5 — 7°.
This yields a k-linear isomorphism DO? : D(e,Ae,) — D(e,Ane,). Given any
a € Q1(z,y), it is easy to verify that the diagram

Pla]
eqAnes —— e Anii1ey

02 L lGZFFI
Po(a)

epdyeq ——=e, A, e,
commutes. Hence, DP[a] o D87 = D§;~" o DP?(a°). Therefore,
M (y,2) 0 (id @ DY) = (id ® DO o dzly (v, ),
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for all (y,z) € Qo X Q. That is, the graded A-linear isomorphisms
Daeqq(id ® DO;) : @oeqqy(Pf{—n) ® Dl(esAyea)) — Bueqy(Pe(—1) ® D(esAnea))

with n € Z form a complex isomorphism F(/,)* = P:,. The proof of the lemma
is completed.

REMARK. Lemma is adapted from Lemma 5.4 in [16], which is in the
non-graded setting and under the assumption that () is gradable.

More generally, composing the left Koszul functor and the right complex
Koszul functor yields graded projective resolution for graded modules.

6.4.2 Lemma. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. Consider F¢ o G : GModA — C(GModA). Given M € GModA, there
exists a natural quasi-isomorphism n?, : (F< o G)(M)*— M.

Proof. Let M € GModA. By definition, (F¢ o G)(M)* = T(F(G(M)*)*). For any
n € Z, by Proposition [6.2.4/1),

(5)  (FOoG)(M)" = @icnaneq (Puln—i) @ D(ed_nes) ® My(x)).

So, (FY G)(M)™ = 0 for n > 0. We shall divide the rest of the proof into two
statements.

STATEMENT 1. Ifn <0, then H"((F¢ o G)(M)") = 0.

Indeed, fix some n < 0. Note that H*((F¢ o G)(M)") = HYT(F(G(M))")).
For any i € Z, as described in Section 1.7, the i-th column of F(G(M)*)" is

(
E(F(GM)')) = Buequt' (F(L{1) ® Mi(2))") = @eequt (F(L(i))) ® Mi(x),

where t is the twist functor. Since n < 0, by Lemma | H™(F(I))) = 0, for
any x € QQo. Now, for all i € Z and = € @y, it follows from Corollary 6.1.4] that

H (€ (F(L(0))7) = B (F(L(0))7) = HY(F(L))(—i) = 0.

T

So, H"{(t/(F(G(M)'))) = SueqoH" ™ (¢ (F(1{i))") ® M;(x) =0, for all i € Z.
Fix p € Z. Consider the double complex F(G(M));. Given i € Z, the i-th
column of F(G(M)); is the complex t'(F(G(M)")"),. It follows from Lemma
B3I that ™ (F(GM)))) = I HEFGOD )y =
On the other hand, we deduce from Lemma [6.2.3{1) that the n-diagonal of
F(G(M)*);, consists of

]—"(Q(M)’)Z‘i = @uweoy(Apin_ita @ (I))n(a) ® M;(x)); for all i€Z.
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In particular, F(G(M)")n~*= 0 for all i > n + p. So, F(G(M)");, is n-diagonally
bounded-above. Applying Lemma we see that H"(T(F(G(M));)) = 0,
that is, H*((F“cG)(M);) = 0, for any p € Z. So, H*((F€0G)(M)") = 0. This
establishes Statement 1.

To conclude the proof, it suffices to show that H((F% G)(M)") is naturally
isomorphic to M. In view of the equation (x), we see that the 1-diagonal of
F(G(M)) is null. Since (I, ® M)(a') = IL(d') ® idy for o € Q(a,z), the
0-diagonal and the (—1)-diagonal of F(G(M)*)* are illustrated as

Boeqo(Po(—1) ® (1,)0(b) ® M;(b))

,U'L,—i—lT

Bareqo(Pul—i—1) ® (1) 1(a) @ My(w)) 5 Becqy (PA{—i— 1)@ (1o () @ Miya(c)),

i,—i—1 __

where v® = (V"7 (b, 4, ) (b.a,0)€Q0 x Qo x Qo With

i plA s : :
i,—i—1 _ Zate(x,a)(_l) P[Oé] ® Iz(a ) ® 1d7 if b= x;
v b e, ) { 0, it b+,

and ho~t = (B (¢, a . T))(c.0,2)€Q0x Qox Qo With

i,—i—1 _ ZQEleald®[[ ]@M( ), ifC:Cl;
h (¢,a,2) { 0, if ¢ # a.

In particular,
(FEoG) (M) ™ = @ienaweqe (Pal—i — 1) @ (I;)-1(a) ® M;(2)),

where (I')_1(a) = D(eqAre,) has a k-basis {5* | € Q1(z,a)}, that is the dual

€T

basis of {3 |8 € Q1(x,a)}. Moreover, by Proposition (1),
(F 0 G)(M)" = @ipyezxq, Pil=i) ® (1)o(b) @ Mi(b),

where (I)o(b) = D(eyAges) with a k-basis {é}}.

STATEMENT 2. Let d~' is the differential of degree —1 of (F€oG)(M):. We
have a natural graded epimorphism

i(i+1)

M (]:CO g)(M)O — M; Z(i,b)erQo Uip @ & ® mip — Z(i,b)erQo(_l) 2 Ui pMibs

such that 1) od™' = 0.
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Indeed, the existence and the naturality of 7,, are evident. Consider an ele-
ment w € (F% G)(M)~!. We may assume that

w € Py(—i—1) @ IL(i) _i_1(a) ® M;(x)

for some i € Z and a,r € ()y. Further, we may assume that w = ug ® Bg ® my,
for some ug € P(—i—1), By € Q1(x,a) and mg € M;(x). Write B, = Ae,. For
o € Qi(x,a), since (@)° = &, we obtain I.(a') = DP,(&) and I'[a'] = DPJa].
Thus, I,(a')(55)(e2) = B5(@) and I[a'](535)(ea) = B5(@). Hence,

& if a = Sy

@) = 1) = {

0, otherwise.
This yields
d7W) = (1Y ocr@a (Pla] © I(a") @ id)(ue ® 55 @ mo)
+ e (d @ Ia'] ® M(a))(uo ® 5 © mo) ()
= (—1>i(uoﬁo) ® é; & mg + ug X é; ® (Bomo).

Since ug € P,(—i—1) and uofy € Py{—i), we obtain
_ i(i+1)
(med ) (w) = (1)
This establishes Statement 2.
It remains to verify that Ker(d™!) C Im(n,,). Fix w € Ker(n,,). We may
assume that

G+D(42) =

P (uofomo) + (1) 2 (uoBomng) = 0.

w € (FoG)(M)y(a) = Bizpaeqo(ealul=i)y ® (I)o(x) @ M;(x)),

where e,P.(—i), = e,A,_;e,, for some pair (p,a) € Z x Q. Thus, we may find
some i, < - <1y <i;y=pandx,...,rs € Qo suchthat w = Z;Zl ’7j®é;j®mj,
where the ¥; with v; € Q,—;,(z;,a) are pairwise distinct and m; € M; (z;). In
particular, v, = ¢,. We shall proceed by induction on the minimal integer n,, for
which w can be written in this form and n, = Y>>, (p — ;).

If n, =0, then s = 1 and m; = £+7,,(w) = 0, and hence, w = 0. Suppose
that n, > 0. Since v; # 71 = &,, we may write v; = 0;5; with §; € Q1(x;,y;)
and 0; € Qp;-1(yj,a), for 2 < j < s.Set 0 =77 ,(—1)¥0; ® BJ* ® mj, where
0j € Py (—ij—1),. In view of the equations (x*), we obtain

d'(o) = Y ((=1)%(a;85) @&, @my+ (=1)%0; @ é; @ (8;my))
= whe,®e® (—m) + 35,0 ® ¢ @ (=1)5(B;my).
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Put ' =d (o) ~w =€, @@ (—m1)+3 5, 7; ®é, ® (—=1)%(B; mj). Then,
W' € Ker(n,,) with n, < n,. Thus ' € Im(d™'), and hence, w € Im(d™'). The
proof of the lemma is completed.

As shown below, composing the right Koszul functor and the left complex
Koszul functor yields graded injective coresolutions for bounded above graded
modules.

6.4.3 Lemma. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. Consider G¢ o F : GModA — C(GModA). Given M € GMod A, there
exists a natural quasi-isomorphism ¢, : M — (G0 F)(M)".

Proof. Let M € GMod™A. Assume that r is an integer such that M; = 0 for all
i > r. For any n € Z, by Proposition |6.2.4/(2),

(G 0 F)(M)" = Biczinacqo(Tafn—1i) @ eadpes ® Mi(x)).

In particular, (G F)(M)" = 0 for n < 0. We shall split the rest of the proof
into several statements.

Recall that (G%0 F)(M)* = T(G(F(M))*). For any i € Z, the i-th column of
G(F(M)*)* is the following complex

E(G(F(M)')) = Bacqy t'(G(Puli) @ Mi(a))) = @acqut' (G(Pu(i))") ® Mi(a).
STATEMENT 1. Given any integers n,i, we have

H" (¢ (G(F(M)')) = @acqo H(G(FP,)) (i) © Mi(a).
Indeed, fix some n,i € Z. We deduce from Lemma that

H™ ((G(Py(0))) = H'H(G(Pa(0))) = H(G(P,) (i)

Since F(M)! = @®aeq, PH{i) ® M;(a) by definition, it follows from Lemma

a
and the above equation that

H*(€(G(F(M)')) Boeqo " (E(G(P(i)) ® M;(a))
Do, " (E(G(Py(i))) @ Mi(a)

Bacan B (G(P))(—i) ® Mi(a).

11l

2

This establishes Statement 1.
STATEMENT 2. Ifn > 0, then H"((G% o F)(M)") = 0.
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Indeed, fix some n > 0. Note that H*(G% F)(M)") = HY(T(G(F(M)))). It
follows from Lemmal[6.2.3|2) that the n-diagonal of the double complex G(F(M)*)*
consists of

(6)  GFOM)™ = @pacq(Lln —i) © e, Aye, © Mi(a)); for all i € Z.

Since M; = 0 for all i > r, we see that G(F(M)")"~* = 0 for all 4 > r. That is,
G(F(M)*)* is n-diagonally bounded-above.

On the other hand, for any i € Z, the i-th column of G(F(M)*)* is the
t'(G(F(M)?)"). Since n > 0, it follows from Lemma that H*(G(P})") = 0.
Thus, it follows from Statement 1 that

H" (H(G(F(M)')) = Saeqo H(G(P))(~i) @ M;(a) = 0.

Thus, by Lemma [1.8.1, H*(T(G(F(M)")")) = 0. That is, H*((G o F)(M)*) = 0.
This establishes Statement 2.

To conclude that proof, it suffices to construct a natural graded isomorphism
M — H°((GC0 F)(M)). Indeed, by Proposition [6.2.4)2), we see that

(G F)(M)° = @icz;acqy (La(—1) ® eadyeq @ My(a)),
Given (i,a) € Z x Qo, we shall construct a morphism
fir M = I{—i) ® ea/lé)ea ® M;(a)
in GModA. For this purpose, we define a k-linear map
2’]- My — L(—1); ® ea/lé)ea ® M;(a)

for every j € Z, where I,(~i); = D(/A]_je,). Clearly, ;J =0 1in case j > . Fix j
with j <i. We have a k-linear map

;,j : M — Homy (A7 eq, eqAbe, @ M;i(a)); w ¢Z,j(w),

where v} ;(w) sends 7° to e, ® Jw, for v € kQ;_;(—,a). Since A7 e, is finite
dimensional, in view of Corollary [2.1.2(1), we obtain a k-linear isomorphism

0, D(AY_jeq) ® ealpeq @ Mi(a) — Homy,(A7_;eq, calheq @ Mi(a)).

Now, put f;] = (Qé,j)*l o @ZJ}U C My — 1, (—1); ® ea/lé]ea ® M;(a), which can be
computed in the following way.
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STATEMENT 3. Let {¥{,...,73} with v, € kQ;_j(—,a) be a k-basis of A7 e,
with dual basis {777, ..., 79"}, Then fi j(w) = 370 _ 170" @ eq @F,w, forw € M;.

Indeed, every 7° € A7_je, is written as y° = S Ay with Ay € k. Given
w € M;, by the definition given in Corollary 2.1.2(1), we obtain

0,001 7 @ ea @7,w)(°) = ea @ (D Mg w = ¥, ;(w)(7°).

Thus, 0) ;317" ® ea @7,w) = 1y, ;(w). This establishes Statement 3.
STATEMENT 4. Given (i,a) € Z X Qq, there exists a natural graded A-linear
morphism fi: M — I,(—i) ® e, Ayeq @ Mi(a) such that (fi); = for all j € Z.

Indeed, given o € ()7 and j < i, we clearly have a commutative diagram

%
a7] ’

i i

wa,j a,j .
M; Hom((P2);_j, ealApea @ Mi(a)) <—2— I{~i); ® e, Ayeq @ Mi(a)

M(a) jHom(Pg(ao),eaAE)ea(@Mi(a)) j]a<i)(a)®id®id

Vi i1 0 i1 .
M —Hom((P2)i—j-1, eadyea @ Mi(a)). <= Io(—i) j41 ® e Ageq @ Mi(a)

So, f!is a graded A-linear morphism. Similarly, one can verify that f! is
natural in M. This establishes Statement 4.

Fix i € Z. Given a € )y, by Statement 4, we obtain a natural graded A-linear
morphism g% : M — I,(—i) ® e, Aye, @ M;(a) where

(i—1)i

(92); = (1) = faj,

which will be written as gfm-, for all j € Z. Let w = erQo;jeZ wg,; € M with
Wy € e M. If gl (wj.) = gi ;(wj.) # 0 for some a € Qo, then f; ;(w;.) # 0.
Hence, j < 4, and by Statement 3, kQ,;_;(z,a) # 0. Since @ is locally finite,
g.(w) = 0 for all but finitely many a € Q,. Therefore, we have a graded A-linear
morphism

9" = (g)acqy : M = G(F(M)') ™" = Bacq, (Lol—i) ® ealpea ® M;(a))

where
95 = (gl )acqo : Mj = @acq,((La(—1)); ® eaAjeq @ M;(a)),
for all j € Z.

STATEMENT 5. There exists a natural graded monomorphism

G = (9)iez = M = (G F) (M)’ = iz G(F(M)') ™"
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Observe that G(F(M)")™" = 0, for all i > r. Let w = >, ,w; € M with
w; € My If g'(wy) = 30, 9a(w)) = g5;(w;) # 0 for some i, then j < i, and
hence, j < i < r. As a consequence, ¢g'(w) = 0 for all but finitely many i € Z.
Thus, we obtain a graded A-linear morphism ¢,, = (¢%)icz : M — (G% F)(M)°,
which is clearly natural in M. Assume that (,,(w) = 0, for some w € M; with
Jj € Z. In particular, ¢’(w) = 0, that is, gg(wj) = > uc ggyj(w) = 0. Thus,
gij(w) = 0, and hence, fg](w) = 0, for all a € Q. Since {e,} is a basis of
AZ_eq, by Statement 3, €5 ® e, ® e,w = 0, and hence, e,w = 0, for all a € Q.
That is, w = 0. So (,, is a monomorphism. Statement 5 is established.

In view of the equation (%), we see that the (—1)-diagonal of G(F(M)*)* is
null, while the 0-diagonal and the 1-diagonal can be illustrated as follows:

Bbegy (Iy—i) @epAe, @ M; (b)) 2> By veoy (Iol—i) Rex ALea® My (a))

Tvi-s-l,—i—l

@CEQO(IC<_i_1>®66A5)60®Mi+1(c))7
where "~ = (h""(a,2,0))arpeq, With

Zate(%a) d® P[d’] ® M(d)7 if b=

o~ (a, 2, b) =
(a,2,0) {o, it b+,

and vt = (VT (0,2, 0)) 4 g e With

Ui+1,—i—1(a - C) _ Zate(x,a)(_DH_lI[O_é]@Pa! <@!)®id> if c =g
" 0, if ¢ # a.

STATEMENT 6. If we denote by d° the differential of degree 0 of the complex
(GCo F)(M), then d°o ¢, = 0.
It amounts to show, for any ¢ € Z, that the diagram

Bzeq ht—a,z,x)

Dz eqo (Io(~1) ®6$ABBI®MZ-(:E)) Da,z Qo (Io(=1) ®€xA!1€a®Mi+1 (a))

(gi)ero[ [\@aeryi+1,—i—1(a7w,a)

M

i+1
(g}er )aEQO

Baeqo(la{—i—1)De Ajea® Miya (a)),
is anti-commutative, or equivalently, the diagram

@hi’_i( 3Ly ) .
ﬂi @a,af €Qo (]x<_z>j ®6:c/1!16a ®Mi+1(a))

TEBUiJrLil (avx7a)j

B eqo(Lof—i); ®ep Ayer @ M;(x))
(Qi,j)zGQo ]
M;

i+1
(QZJ,FJ‘ )aEQo

Baeqo(La(—i—1); ® ealien ® Miyi(a))
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is anti-commutative for all 4,j € Z, where I,(~i); = D(A7_je,). Indeed, this is
evident in case j > i. Fix ¢ > j and a,x € (Jy. Then, we have a k-linear isomor-
phism 9; t D(A]_je,) ® ex/l!lea ® Miy1(a) — Homy (A7 e, ex/l!lea ® M;i1(a)) as
stated in Corollary 2.1.2(1). Consider o € Qy(z,a) and w € M;. We choose a
k-basis {09,...,09} for A7 e,. By Statement 3, we obtain

(i—1)i

(id® Pla'] @ M(@))(gs;(w) = (1) 2 Y0 100" @ a' @ adyw.

p=1"p

As a consequence, we see that

(i—1)i

6; [(id ® Pla'] ® M(@))(g;](w))] (5}‘,’) =(-1)"72 (@® @gpw), p=1,...,s.
On the other hand, for any k-basis {7,...,77} of A7, ;eq, by Statement 3,

i(i+1)
2

(Ila] ® Pu(a) @id)(g,5 (w)) = (=1)77 " o, (5% 0 Pla°]) @ @' @ Fgu.

And hence, for any 1 < p < s, we obtain
i ~ = ; { So 0t 50,%( §0 ~0 ~ ! 5
0;[([a] @ Pu(a) @id) (g5 ()] (6p) = (=1) 77 20,1757 (650°) - (@' @ ).
Fix1<p<s. If 5; a°® =0, then ad, = 0. In this case, we see trivially that
0; [(idePla|@ M(a))(g) . (w)] (6) = (=1)'0;[(Ila]® P.(a') ®id) (g7, ()] (J5)-

If 60 a° # 0, then A9, _.e, has a basis {7;,...,757}, where ¢ = 6% a°. Noting
that 4; = ad,, we obtain

i(it+1)

(-1 (@@ ad, ) ]
(~1)6:[(d @ P[a'] @ M (@) (g}, (w))] (55).

Thus, (I[a] ® Py(a') @id)(git! (w)) = (—1)'(id® Pla'] @ M (a))(g! . (w)). It is now
is easy to see that

0:[(I[a]® Pa(a) @id) (g% (w))] (57)

(R (a,z,2) 0 gj ) (w) + (077 a, 2,a) 0 gith) (w) = 0.
Our claim is established. Thus, Statement 6 holds.
It remains to show that Ker(d®) C Im((,,). Let w = >, ., w' € Ker(d"),
where
w' € G(F(M)') ™" = Geeq, (I—i) © ecApe. @ M;(c)).

Since M; = 0 for all i > r, we see that w® = 0 for all 7 > r. We proceed by
induction on the maximal integern, < r such that w® = 0 for all i < n,,. If
n, = r, then w = 0 € Im((,,). Assume that n, < r and write n = n,. Since
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d’(w) = 0, we have v "(w") = —h"~ 117" (w"1) = 0. Applying Statement 1, we
see that

H"(E(G(F(M)")))) = @ceq H(G(Pa))(—n) @ Ma(c).

It follows from Lemma that the n-th column of G(F(M)*)* is a truncated
colinear injective coresolution of @.cq,(Se @ ecdyee @ M,(c)), which is graded
semisimple. Therefore, w™ € Ker(v™ ™) = Soc(G(F(N)*)~™). Now, we may

write w" = Zcng e2* ® e. ® u., where u. € M,(c) = e.M,. Putting

u=(-1)"7" Y o, U € My,
we obtain (,,(u) = >, ., u’, where v’ = g'(u) = g/, (u) € G(F(M)")~". It follows
from Statement 3 that

(n—1)n

Ut =Y e (L) gan(we)
= Zc,aer an (we)
= D caco, €07 ® €y ® equ.
= Zcer €0 @ e @ We.

Put v =w —(,(u) =Y, (w" —u') € Ker(d"). If i < n, then g}(u) =0, and
hence, w’ — u’ = 0. Since u" = w", we have n, < n,. Thus, v € Im((,,), and
hence, w € Im((,,). The proof of the lemma is completed.

The next statement describes a projective resolution for every complex in
C'pT’q(GMod/l) in terms of the extension of the composite of the left Koszul functor
and the right complex Koszul functor.

6.4.4 Proposition. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. Consider (F€o G)¢ : C(GModA)—C(GModA). Let M+ e C (GModA)
for somep,q € R withp > 1 and ¢ > 0. There exists a natural quasi-isomorphism
NS (FCo G)C (M) — M.

Proof. Consider 90 G : GModA — C(GModA) and the embedding functor
k : ModA — C(ModA). In view of Lemmal6.4.2] we obtain a functorial morphism
n = (i) meModa : FC oG — k, where n;, : (F€ o G)(M) — M is a quasi-
isomorphism, for any M € ModA. By Lemma [1.8.8) 1 extends to a functorial
morphism 7: (F% 0 G)Y = k% = idcmodn), where (F€o0G)¢ = T(FY0G), such
that

M = T(0ig) : (FC 0 G)9(M") — M,
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where 13, : (F¢ o G)(M*)* — k(M")* is the double complex morphism given by
Myt (FCo Q) (MY — k(M) with i,j € Z.

We claim that T(n;,.) is a quasi-isomorphism. By Lemma [6.3.2(2) and (4),
this is equivalent to T((n;,.)s) being a quasi-isomorphism for any s € Z. Fix an
integer s € Z. Consider the following double complex morphism

(nf\l'>s:(<ni4i)s>i7j€Z : (fco g)(M); - ’{<M.>;'
For any i € Z, the i-th column of (n;,.)s is
(1373)s = € ((FT 0 G)(MT))s = t'((M'))s,

which is a quasi-isomorphism by Lemma Moreover, k(M*); is clearly diag-
onally bounded above. Given n € Z, we deduce from Lemma [6.2.5(1) that the
n-diagonal of (F¢ o G)(M*); consists of

(fCog)<Mz)?—l = 6BjGZ; a,2€Q0 (An+sfifjea®D(ea/A1ifnex) ®M;(x))7 for all @ € Z.

By the assumption on M* there exists some t € Z such that M JZ = 0 for all
i,j with i — qj > ¢. Fix some i > (¢(n+s)+¢)(¢+1)"" If j > n+s—i, then
Anys—i—j = 0; and otherwise, M} = 0 since i — qj > i — q(n + s — i) > t. Thus,
(F€ 0 G)(M*); is also diagonally bounded-above. By Lemma [1.8.3] T((n;,.)s) is
a quasi-isomorphism, for any s € Z. This establishes our claim. That is, n{. is a
quasi-isomorphism. The proof of the proposition is completed.

The following statement describes an injective co-resolution for every complex
over GMod ™/ in terms of the extension of the composite of the right Koszul
functor and the left complex Koszul functor.

6.4.5 Proposition. Let A = kQ/R be a Koszul algebra, where Q is a locally finite
quiver. Consider (G o F)¢ : C(GModA) — C(GModA). Let M* € C(GMod /).
There exists a natural quasi-isomorphism ($y.: M*— (G€ o F)°(M").

Proof. Consider the embedding functor x : GMod A4 — C(GModA) and the
functor G o F : GMod /A — C(GModA). By Lemma , we have a functorial
morphism ¢ = (Cif)mremodaa : £ — G° o F, where (3, : M — (G o F)(M)
is a quasi-isomorphism for all M € GMod 4. By Lemma , ( extends to a
functorial morphism ¢ : idgyoq-4 = K — (G% F)¢ = T(G o F) such that

Chre = T(Cige) = M= — (G 0 F)“ (M),
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where (3. k(M) — (G€ o F)(M*)* is the double complex morphism given by
CJJQ,- t k(MY — (G€ o F)(M?Y)J with 4,5 € Z.

We claim that T(¢3,.) is a quasi-isomorphism. Indeed, for any ¢ € Z, the i-th
column of (3. is Gy ¢ tH(K(MP)) — ((GY o F)(M?)*), which is clearly a quasi-
isomorphism. Moreover, x(M*)* is evidently diagonally bounded above. Given
any n € Z, by Lemma [6.2.5(2), the n-diagonal of (G o F)(M")* consists of

(G o FY M) = Bjezinaco, La{n—i—j) ® ead,_je, ® Mi(z)); for all i € Z.

Thus, (G o F)(M*)"~* = 0 for any i > n. So, (G¢o F)(M")* is n-diagonally
bounded above for all n € Z. That is, (G0 F)(M")* is diagonally bounded
above. By Lemma T(¢;,.) is a quasi-isomorphism, that is, §. is a quasi-
isomorphism. The proof of the proposition is completed.

We are ready to prove the main result of this section, which includes the
classical Koszul duality of Belinson, Ginzburg and Soergel; see [13].

6.4.6 Theorem. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. Consider p,q € R with p > 1 and g > 0.

(1) The right derived Koszul functor FJ, - D} (GModA) — D;H’pfl(GMod/l!)
and the left derived Koszul functor

Dy Dl (GModA")— DY (GModA)

are mutually quasi-inverse, where GModA and GModA' can be replaced
simultaneously by gmod/A and gmodA', respectively.

(2) The left derived Koszul functor G, . D (GModA) — D/, (GMod4')
and the right derived Koszul functor

FPip1: Dty 1(GModA) — DI (GModA)

q

are mutually quasi-inverse, where GModA and GModA' can be replaced
simultaneously by gmod/A and gmodA', respectively.

Proof. Note that C (GModA) C C’(GMod_A) Given N* € C}, (GMod4), by
Proposition and Theorem 3 (GY o F)C(N*) = (G5, 1 © F5,)(NY).

Thus, we have a natural quas1—1somorph1sm Cre s N* = (G811 © F5)(IN'), by

Proposition [6.4.5
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Given M-* € thrl’p_l(GMod/l!), by Proposition m and Theorem m,
(Fog © Grip)(M?) = (F¢ 0 G)9(M*). And by proposition 6.4.4, we have a
natural quasi-isomorphism 7. : (F<, 0 Gy, 1) (M*) = (FC 0 G)Y(M*) — M.

This yields a natural isomorphism (. : N* — (G2, ,_; o FP)(N*) for every
N-e D} (GModA), and a natural isomorphism nyy. : (F 0GPy )(M*) — M-
for every M* € DqT +1’p_l((}l\/[od/ll). This implies that the derived Koszul functors
FP . D} (GModA) — D)., (GModA') and G2, : D], 1(GMod4') —
Dp{q(GMod/l) are also mutually quasi-inverse. Using the same argument, we see
that 72 : D} (gmodA) — D/, (gmodA') and G, ,_: D1, (gmodA’) —

D/, (gmodA) are mutually quasi-inverse. This establishes Statement (1). Simi-

larly, Statement (2) holds. The proof of the theorem is completed.

REMARK. In case p =1 and ¢ = 0, the first part of Theorem[6.4.6{(1) and (2) has
been established in [13, (2.12.1)] under the assumption that A has an identity,
while the second part of Theorem[6.4.6{1) and (2) has been proved for a positively
graded Koszul category in [48, Theorem 30].

The following statement says that the bounded derived Koszul functors are
also triangle equivalences under some local boundedness conditions.

6.4.7 Theorem. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver.

(1) If A is locally right bounded and A is locally left bounded, then the bounded
derived Koszul functors FP : DY(GMod) — D'(GModA") and G" :
DY(GMod") — D*(GMod") are mutually quasi-inverse, where GMod
and GMod”' can be replaced simultaneously by gmod”d and gmod®’ re-
spectively.

(2) If A is locally left bounded and A" is locally right bounded, then the bounded
derived Koszul functors GP . D*(GMod) — D*(GModA") and FP
DY(GMod™') — D*(GMod) are mutually quasi-inverse, where GModA
and GModA' can be replaced simultaneously by gmodd and gmod”’ re-
spectively.

Proof. Suppose that A is right locally bounded and A' is left locally bounded. By
Corollary|6.3.5, we have triangle exact functors F2: D*(GMod®1) — D*(GMod®")
and GP: D*(GMod®') — D*(GMod®4). By the same argument used in the proof
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of Theorem we conclude that they are mutual quasi-inverse. The proof of
the theorem is completed.

REMARK. (1) In case A is of finite dimensional and A' is left noetherian, Theorem
6.4.7|(3) is established by Beilinson, Ginzburg and Soergel in [13], (2.12.6)].

(2) Assume that @ has no infinite path with an ending point or no infinite path
with a starting point. Then A is locally right or left bounded and A' is locally left
or right bounded, respectively. By Theorem , DP(GMod®A) = D*(GMod ")
and D’(gmod®A) = Db(gmod®A").

6.5 Koszul functors, Auslander-Reiten transla-

tions and Serre functors

The objective of this section is to show how the derived Koszul functors are
related to Auslander-Reiten translations and Serre functors in various derived
categories of graded modules over a quadratic algebra and over a Koszul algebra.

Throughout this section, unless otherwise explicitly stated, A = kQ/R is a
quadratic algebra, where @) is a locally finite quiver. First of all, by making
use of the bounded derived Koszul functors FP : D¥(gmod') — D¥(gmodA)
and GP: D*(gmod”') — D’(gmodA); see , we may describe some almost
split triangles in D’(gmodA) in terms of bounded complexes of finite dimensional
graded A'-modules; compare [10, (5.2)].

6.5.1 Theorem. Let A = kQ/R be a quadratic algebra, where Q is a locally finite
quiver. If M€ C*(gmod®A") such that FP(M*) or GP(M*) is indecomposable in
D®(gmodA), then there exists an almost split triangle
GP(M)[-1] — N — FP(M) — ()

in each of D°(gmodA), D(gmodA) and D(GModA).

Proof. By Theorem [6.3.5(3), we have functors F© : C*(gmod®d') — C®(gprojA)
and G¢ : C%(gmod”') — C®(ginjA). Let M* € C%gmod’A'). By Proposition
[6:2.2(1), FEM )™ = B apezxq, (P n—i) @ M. _;(x)), for all n € Z. Since @;ez M’
is finite dimensional, F€(M*) € C®(gprojA'). Applying Theorem and Propo-
sition m(2), we have vFC(M*)" = @ ; pyezxq, (Lo{n—i) @ Mi_,(x)) = GO(M*)",
for all n € Z. That is, GE(M*) = vFY(M*). In particular, FX(M*) is indecom-
posable in K°(gprojA) if and only if GX(M*) is indecomposable in K®(ginjA).
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If FP(M*) or GP(M*) is indecomposable in D’(gmodA), then FX(M*) is inde-
composable in K®(gprojA) and GX(M*) is indecomposable in K°(ginjA). And in
this case, by Theorem [£.3.2] there exists a desired almost split triangle in each of
D*(gmodA), D(gmodA) and D(GModA). The proof of the theorem is completed.

REMARK. The almost split triangle stated in Theorem explains our termi-
nology of “left” Koszul functor and “right” Koszul functor.

ExXAMPLE. Let A = kQ/R be a Koszul algebra with a € ()y. By Lemma m,
FP(I!) = GP(P)) = S, in D¥(gmodA). Tt is well known that S is indecomposable
in D’(gmodA); see [49, (I11.3.4.7)]. If I! or P, is finite dimensional, then S, is the
ending or starting term respectively of an almost split triangle in D®(gmodA).

Next, we shall consider the case where A is a Koszul algebra. A complex over
gmodA is called derived indecomposable if it is indecomposable in D(gmodA).
In case A' is locally bounded, we shall establish the existence of almost split trian-
gles in D°(gmodA) for bounded derived indecomposable complexes over gmodA
and describe the Auslander-Reiten translates using bounded derived Koszul func-
tors.

6.5.2 Theorem. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver.

(1) Every bounded derived-indecomposable complex M* over gmod“d is the end-
ing term of an almost split triangle in D°(gmodA) if and only if A is locally
right bounded; and in this case, TM* = GP(GP(M*))[-1].

(2) Every bounded derived-indecomposable complex M* over gmod”A is the start-
ing term of an almost split triangle in D®(gmodA) if and only if A is locally
left bounded; and in this case, T~ M* = FP(FP(M-))[1].

(3) FEvery bounded derived-indecomposable complex M* over gmod¥ is the start-
ing term, as well as the ending term, of an almost split triangle in D°(gmodA)
if and only if A is locally bounded.

Proof. We shall only prove Statement (1). Given any a € @)y, by Lemma , S
has a projective resolution P; in gmod /A with P, = ©,co, (Pu(—n) @ D(e AL e.)),
for all n € Z. Then, Endpsigmoas)(Sa) = Homg (gmodaa)(P;, Sa) = k; see [61],
(10.4.7)]. Thus, S, is strongly indecomposable in D(gmodA). If S, is the ending
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term of an almost split triangle in D®(gmodA), then P:; is bounded; see [38,
(5.2)]. In particular, e, A, = 0 for all but finitely many n > 0, that is, e, A" is
finite dimensional. This establishes the necessity of Statement (1).

Suppose that A' is locally right bounded. Then ginjA' € gmod'. Con-
sider M* € C®(gmod®), which is indecomposable in D*(gmodA). By Corollary
(3), GC(M*) € C*(ginjA') C C*(gmod®A"). By Theorem@(?)), FEGe (M) e
C®(gprojA). Thus, by Proposition and Lemma , FP(GP(M*)) = M-,
Now, it follows from Theorem that there exists an almost split triangle

Go(G"(M))[=1] — N* — M* — GP(G"(M"))
in D(gmodA). The proof of the theorem is completed.

EXAMPLE. Let A = kQ, where Q is a locally finite quiver. Then A' = kQ°/R",
where R' is the ideal generated by all paths of length two. Since A' is locally
bounded, by Theorem [6.5.2 every indecomposable complex in D’(gmod®) is

the starting term, as well as the ending term, of an almost split triangle in

D*(gmodA).

Finally, we shall concentrate on the bounded derived category of finite dimen-
sional graded A-modules.

6.5.3 Lemma. Let A = kQ/R be a Koszul algebra, where Q) is a locally finite
quiver. Then DY(gmod®A) is Hom-finite and Krull-Schmidt.

Proof. Let M € gmod?A. By Lemma we obtain a quasi-isomorphism 7: :
(FG) M) — M with (F G)I(M)" =& i0)ezxq (Paln —1) ® (I)n(a) @ Mi(z)).
Since M;(x) = 0 for all but finitely many (i,z), we see that (F¢o G)°(M)
is a graded projective resolution of M over gprojA. Given N € gmod¥, we
deduce from Lemma that GExt’,(M, N) is finite dimensional for all i > 0.
Therefore, D?(gmod®) is Hom-finite and Krull-Schmidt; see [32, Corollary B].
The proof of the lemma is completed.

In the locally bounded Koszul case, we shall establish the existence of almost
split triangles in D’(gmod’4) and describe the Serre functors in terms of the
bounded derived Koszul functors.

6.5.4 Theorem. Let A = kQ/R be a locally bounded Koszul algebra, where @ is
a locally finite quiver.
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(1) There exist almost split triangles in D*(gmod®A) on the right if and only if
A is right locally bounded; and in this case,

GPo GP . D (gmodt) — DP(gmod“A)
s a right Serre functor.

(2) There exist almost split triangles in D®(gmodA) on the left if and only if
A is left locally bounded; and in this case,

FPo FP . D’(gmodA) — Db(gmod™)
is a left Serre functor.

(3) There exist almost split triangles in D*(gmod®A) if and only if A" is locally
bounded; and in this case, GPo GP : D*(gmod’) — D(gmod™) is a right
Serre equivalence and FPo FP: Db(gmodl’/l) —>Db(gmodll/1) 1s a left Serre
equivalence.

Proof. We shall only prove Statement (1). Since A is locally bounded, gprojA and
ginjA are subcategories of gmod”l. Given a € Qg, by Lemma , S, has a linear
projective resolution P; over gprojA with P, ™ =®,cq,(P{—n) @ D(e.Ae,)). I
S, is the ending term of an almost split triangle in Db(gmodb/l), then it has
a finite projective resolution over gproj; see [38, (5.2)]. So, P; is a bounded
complex over gproj/A. In particular, ea/l!n =0 for n > 0. That is, e, A" is finite
dimensional.

Suppose that A' is right locally bounded. Let M* € Db(gmodb/l) be indecompo-
sable. Since / is left locally bounded, by Theorem [6.4.7)(3), M* = FP(GP(M")).
By Theorem and Proposition we deduce that v(FP(GP(M*))) =
GP(GP(M*)). Considering the Nakayama functor v : gprojA — gmodA, we obtain

an almost split triangle
GAGP(M))[-1] — N* — M — GP(GP(M"))
in D(gmod?); see [38, (5.8)]. This implies that
GPoGP: D*(gmod®A) — D’(gmod®/)
is a right Serre functor; see [55, (1.2.3)]. The proof of the theorem is completed.
REMARK. Let A = kQ/R be a Koszul algebra, where @ is a locally finite quiver

with no infinite path. Since A and A' are locally bounded, D’(gmod®d) and
Db(gmod®A') are equivalent and have almost split triangles; see (6.4.7) and (6.5.4)).
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In case R = 0, one can probably describe the Aulsander-Reiten components of
gmod’kQ, as is done for mod’kQ; see [I1]. Since A' = kQ/(kQT)?, this will
yield a description of the Auslander-Reiten components for Db(gmodka) and
Db(gmod’kQ/(kQ*)?), as is done for D*(mod’.kQ) and D?(mod’.kQ/(kQ*)?); see
[10), [11].
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