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UNIVERSITÉ DE SHERBROOKE
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le jury a accepté la thèse de Monsieur Zetao Lin

dans sa version finale.

Membres du jury :

Professeur Shiping Liu

Directeur de recherche
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Abstract

In this thesis, we give a novel proof of Auslander-Reiten formulas and describe

a new connection between Koszul theory and representation theory.

Let Λ be a graded algebra defined by a locally finite quiver with relations.

We construct a graded Nakayama functor for Λ, essential for our new proof of

Auslander-Reiten formulas and the existence of almost split triangles in their

graded derived categories. In case Λ is quadratic, we first give a combinatorial

description for the local Koszul complexes and the quadratic dual Λ!.

As applications, we obtain a new class of Koszul algebras and prove the Ex-

tension Conjecture for finite dimensional Koszul algebras with a left noetherian

Koszul dual. Then, we construct a left and a right Koszul functor for Λ, which

respectively induce a 2-real-parameter family of left and right derived Koszul

functors from categories derived from graded Λ-modules into those derived from

graded Λ!-modules. A left or right derived Koszul functor for Λ is paired with a

unique right or left Koszul functor for Λ!, respectively. In case Λ is Koszul, any

two paired derived Koszul functors are mutually quasi-inverse, and the Koszul

duality of Beilinson, Ginzburg and Soergel is one of these pairs. If Λ and Λ! are

locally bounded on opposite sides, then the Koszul functors induce two equiv-

alences of bounded derived categories: one for finitely piece-supported graded

modules, and one for finite dimensional graded modules.

Finally, if Λ and Λ! are locally bounded, then the bounded derived cate-

gory of finite dimensional graded Λ-modules has almost split triangles, and the

Auslander-Reiten translations and the Serre functors are composite functors of

the derived Koszul functors.
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Sommaire

Dans cette thèse, nous donnons une nouvelle preuve des formules d’Auslander-

Reiten et décrivons une nouvelle connexion entre la théorie de Koszul et la théorie

des représentations.

Soit Λ une algèbre graduée définie par un carquois localement fini avec des

relations. Nous construisons un foncteur de Nakayama gradué pour Λ, essentiel

pour notre nouvelle preuve des formules d’Auslander-Reiten et l’existence de

triangles presque scindés dans leurs catégories dérivées graduées. Dans le cas

où Λ est quadratique, nous donnons d’abord une description combinatoire des

complexes locaux de Koszul et du dual quadratique Λ!.

Comme applications, nous obtenons une nouvelle classe d’algèbres de Koszul

et prouvons la conjecture d’extension pour les algèbres de Koszul de dimension

finie avec un dual de Koszul noethérien gauche. Ensuite, nous construisons un

foncteur Koszul à gauche et à droite pour Λ, qui induisent respectivement une

famille paramétrée par 2 paramètres réels de foncteurs Koszul dérivés à gauche

et à droite des catégories dérivées des Λ-module gradués vers celles dérivées de

Λ!-modules gradués. Un foncteur Koszul dérivé à gauche ou à droite pour Λ est

associé à un foncteur Koszul unique à droite ou à gauche pour Λ!, respective-

ment. Dans le cas où Λ est Koszul, deux foncteurs Koszul dérivés appariés sont

mutuellement quasi-inverses, et la dualité de Koszul de Beilinson, Ginzburg et

Soergel est l’une de ces paires. Si Λ et Λ! sont localement délimités sur des côtés

opposés, alors les foncteurs de Koszul induisent deux équivalences de catégories

dérivées limitées : une pour les modules gradués à support par pièces finies et

une pour les modules gradués de dimension finie.

Enfin, si Λ et Λ! sont localement bornés, alors la catégorie dérivée bornée

des modules Λ gradués de dimension finie a des triangles presque scindés, et

les translations d’Auslander-Reiten et les foncteurs de Serre sont des foncteurs

composés des foncteurs Koszul dérivés.
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Introduction

The history of Koszul theory traces back to Cartan and Eilenberg’s comput-

ing the cohomology groups of a Lie algebra using the Koszul resolution; see [18,

Section 8.7]. It is connected to many branches of mathematics such as algebraic

topology; see [21, 54], algebraic geometry; see [13], Hopf algebras and Lie theory;

see [13, 47, 48]. Beilinson, Ginzburg and Soergel described the Koszul duality

between a Koszul algebra Λ and its Koszul dual Λ! at the level of derived cate-

gories; see [13]. More precisely, they constructed a pair of mutually quasi-inverse

equivalences between a category derived from complexes of graded Λ-modules

and a category derived from complexes of graded Λ!-modules. In case Λ is finite

dimensional and Λ! is left noetherian, they obtained equivalences of the bounded

derived categories of finitely generated graded modules. Later, the Koszul duality

has been generalized to positively graded Koszul categories in [48]; see also [45].

Moreover, finite dimensional Koszul algebras have been studied extensively by

many representation theorists from other aspects; see [22, 24, 42, 43, 44, 46].

The main objective of this thesis is to study Koszul algebras defined by a

locally finite quiver with relations from a novel viewpoint of connecting the Koszul

theory with the representation theory. Our contribution is twofold. As to Koszul

theory, not only our Koszul algebras have infinitely many graded simple modules

up to grading shifts, but we shall also extend Beilinson, Ginzburg and Soergel’s

Koszul duality to a 2-real-parameter family of equivalence pairs. Moreover, under

a hypothesis weaker than theirs, we shall obtain two equivalences of bounded

derived categories, one for finitely piece-supported graded modules and one for

finite dimensional graded modules. Moreover, in contrast to their technique of

spectral sequences, ours is elementary.

As to the representation theory, we shall extract some homological properties

of Koszul algebras and study almost split triangles in their graded derived cate-

gories. Indeed, our combinatorial description of the local Koszul complexes and

the quadratic dual enables us not only to obtain a new class of Koszul algebras,
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but also to describe the linear projective resolution and the colinear injective

coresolution, if they exist, of a graded simple module in terms of subspaces of the

quadratic dual. This description allows us to establish the Extension Conjecture

for finite dimensional Koszul algebra with a left noetherian Koszul dual. More

generally, we use the Koszul functors to describe explicitly a graded projective

resolution and a graded injective coresolution for any finite dimensional graded

module over a Koszul algebra. This could be applied to study more homological

properties, for instance, to prove or disprove the Generalized Nakayama Con-

jecture; see [6] and the Finitistic Dimensional Conjecture, of finite dimensional

Koszul algebras. Finally, our graded Nakayama functor provides an indispens-

able tool for studying almost split sequences in graded module categories and

almost split triangles in graded derived categories in general. Using the graded

Nakayama functor, we give a new proof of graded Aslander-Reiten formulas. An

immediate consequence is to establish the existence of almost split sequences in

graded module categories. In the locally bounded Koszul case, we shall establish

the existence of almost split triangles in the bounded derived category of finite

dimensional graded modules, and describe the Auslander-Reiten translations and

the Serre functors in terms of the derived Koszul functors. This may stimulate fu-

ture work on the graded Auslander-Reiten components of a hereditary or radical

squared zero algebra, as is done under the non-graded setting; see [10, 11].

Now, we outline the content section by section. Let Λ be a graded algebra

defined by a locally finite quiver with relations. It is important to note that our

algebras do not necessarily have an identity. We denote by GModΛ the cate-

gory of unitary graded left Λ-modules, and by GModbΛ, gmodΛ and gmodbΛ its

subcategories of finitely piece-supported modules, of piecewise finite dimensional

modules and of finite dimensional modules, respectively. If A is an additive cat-

egory, then C(A), K(A), D(A) and Db(A) stand for the category of complexes,

the homotopy category, the derived category and the bounded derived category

of A, respectively.

We shall lay down the foundation of this thesis in Chapters 1 and 2. For this

purpose, we collect some basic notions and preliminary results related to k-linear

categories and k-linear algebras.

In Chapter 3, we shall investigate the graded module categories over a graded

algebra given by a quiver with relations. In Section 3, we shall construct a

contravariant functor D : GModΛ → GModΛo, which restricts to a duality

D : gmodΛ → gmodΛo. In Sections 4 and 5, we shall provide explicit descrip-

tions of the morphisms in GProjΛ and GInjΛ; see, (3.4.3) and (3.4.6); and study
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the graded radical and graded socle of graded modules, especially to generalize

some classical results under the non-graded setting; compare [1] and [2]. More-

over, we show how to construct the graded projective cover of a finitely gener-

ated module and the graded injective envelope of a finitely cogenerated module,

respectively; see (3.8.5). For this purpose, we shall first describe the finitely gen-

erated graded modules and the finitely cogenerated graded modules; see (3.6.6);

and, superfluous graded epimorphisms and essential graded monomorphisms; see

(3.7.1). In the final section, we shall introduce several Hom-finite Krull-Schmidt

k-subcategories of GModΛ.

In Chapter 4, we shall construct a Nakayama functor for GModΛ; see (4.1.3),

which ensures the existence of almost split triangles in D(GModΛ) for bounded

complexes of finitely generated projective modules and for those of finitely co-

generated injective modules; see (4.3.2). More importantly, using the Nakayama

functor, we provide a new method to prove the Auslander-Reiten formulas; see

(4.2.10). The classical approach to this well known formula consists of the follow-

ing two identifications; see [4, (I.3.4)] and the corollary to [44, (1.6.3)]. First, the

covariant stable Hom functor given by a finitely presented module is identified

with the Tor1 functor given by its transpose; see [4, (I.3.2)] and [44, (1.6.3)].

Secondly, the dual of the Tor1 functor given by a module is identified by the ad-

junction isomorphism with the contravariant Ext1 functor given by its dual; see

[4, (I.3.3)], [18, (VI.5.1)] and [44, (1.6.1)]. Our approach is to apply the Nakayama

functor; see (4.1.3), which does not pass through the Tor1 functor and does not

involve the tensor product over the algebra or the adjunction isomorphism. As a

consequence, we shall study the existence of almost split sequences in GModΛ.

Furthermore, if Λ is locally left noetherian, then an indecomposable complex of

finitely generated graded Λ-modules is the ending term of an almost split trian-

gle in Db(gmodΛ) if and only if it has a finite graded projective resolution; see

(4.3.4).

In Chapter 5, we shall give a combinatorial description of the local Koszul

complexes and the quadratic dual Λ! for a quadratic algebra Λ; see (5.2.3). This

allows us to obtain a new class of Koszul algebras; see (5.5.2) and to describe the

linear projective resolution and the colinear injective co-resolution of a graded

simple module, if they exist, in terms of subspaces of Λ!; see (5.4.1) and (5.4.2).

Using this description, we shall show that Λ is Koszul if and only if Λ! or Λop is

Koszul if and only if every graded simple module has a colinear injective coreso-

lution; see (5.4.3) and compare [13, (2.2.1), (2.9.1)], and establish the Extension

Conjecture for finite dimensional Koszul algebras with a noetherian Koszul dual;
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see (5.6.4).

In Chapter 6, we shall describe our generalized Koszul duality. In case Λ

is quadratic, we construct a left and a right Koszul functor from GModΛ into

C(GModΛ!); see (6.1.1), which extend respectively to a left and a right complex

Koszul functor from C(ModΛ) into C(ModΛ!). The latter induce respectively a

2-real-parameter family of left and right derived Koszul functors from categories

derived from subcategories of C(ModΛ) into those derived from subcategories of

C(ModΛ!) so that a left or right derived Koszul functor for Λ is paired with a

unique right or left derived Koszul functor for Λ!, respectively; see (6.3.3). They

also induce a left and a right bounded derived Koszul functors from Db(GModbΛ)

into Db(GModΛ!); see (6.3.4). In case Λ is Koszul, by composing the Koszul func-

tors and the complex Koszul functors, we obtain a graded projective resolution

and a graded injective co-resolution of a graded Λ-module M in terms of sub-

spaces of Λ! and M ; see (6.4.2) and (6.4.3). This is essential for us to show that

the derived Koszul functors in any pair are mutually quasi-inverse; see (6.4.6),

including the Koszul duality stated in [13, (2.12.1)]. If Λ and Λ! are locally

bounded on opposite sides, then the bounded derived Koszul functors restrict to

two equivalences Db(GModbΛ) ∼= Db(GModbΛ!) and Db(gmodbΛ) ∼= Db(gmodbΛ!);

see (6.4.7). This strengthens the result in [13, (2.12.6)]. As applications, in case

Λ is quadratic, the images of a complex in Cb(gmodbΛ!) under the two bounded

derived Koszul functors fit into an almost split triangle in Db(gmodΛ) if they are

indecomposable; see (6.5.1). In case Λ is Koszul, Db(gmodbΛ) is a full triangulated

subcategory of Db(gmodΛ), and every indecomposable object in Db(gmodbΛ) is

the ending term of an almost split triangle inDb(gmodΛ) if and only if Λ! is locally

right bounded; see (6.5.2). If Λ and Λ! are locally bounded, then Db(gmodbΛ)

has almost split triangles, and the Auslander-Reiten translations and the Serre

functors are composites of derived Koszul functors; see (6.5.4).
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Chapter 1

Categories

Throughout this thesis, k denotes a commutative field. In this chapter, we

assemble some basic notions and results concerning k-linear categories, with a

specific focus on additive k-categories, abelian k-categories, exact k-categories,

triangulated k-categories, derived k-categories, and double complex k-categories.

This enables us to provide the necessary foundational knowledge for subsequent

in-depth research endeavours.

1.1 k-linear categories

Given any category, we shall compose the morphisms from the right to the

left. A full subcategory of a category is called strictly if it is closed under

isomorphisms. A k-linear category (or simply a k-category) is a category in

which the morphism sets are k-vector spaces and the composition of morphisms

is k-bilinear. All functors between k-categories are assumed to be additive.

Throughout this section, A denotes a k-category. One says that A is Hom-

finite if its morphism spaces are finite dimensional over k. An object X in A
is called a zero object if idX = 0. Let f : X → Y be a morphism in A. One

says that f is a monomorphism provided that f ◦ g = 0 only if g = 0 and an

epimorphism provided that g ◦ f = 0 only if g = 0. A morphism q : U → X is

called a kernel of f provided that f ◦ q = 0, and for any morphism g : V → X

with f ◦ g = 0, there exists a unique morphism h : V → U such that g = q ◦ h.
On defines a cokernel of f dually. It is evident that a kernel of a morphism is

a monomorphism and a cokernel of a morphism is an epimorphism. Moreover, f

is called a section or a retraction if there exists a morphism g : Y → X such

5



that g ◦ f = idX or f ◦ g = idY , respectively. It is evident that a section is a

monomorphism while a retraction is an epimorphism.

1.1.1 Definition. Let A be a k-category. A coproduct or direct sum of a

family of objects {Xσ}σ∈Σ in A is an object X with a family of morphisms {qσ :

Xσ → X}σ∈Σ , called the canonical injections, satisfying the following universal

property: for any object Y with a family of morphisms {fσ : Xσ → Y }σ∈Σ in A,

there exists a unique morphism g : X → Y such that the diagram

Xσ
qσ //

fσ
��

X

g
~~

Y

commutes for all σ ∈ Σ . In this case, one writes X =
∐

σ∈Σ Xσ or X = ⊕σ∈ΣXσ.

Dually, we have the following notion.

1.1.2 Definition. Let A be a k-category. A product of a family of objects

{Xσ}σ∈Σ in A is an object X with a family of morphisms {pσ : X → Xσ}σ∈Σ ,
called the canonical projections, satisfying the following universal property:

for any object Y with a family of morphisms fσ : Y → Xσ in A, there exists a

unique morphism g : Y → X such that the diagram

Xσ X
pσoo

Y

fσ

OO

g

>>

commutes for all σ ∈ Σ . In this case, one write X =
∏

σ∈Σ Xσ.

Remark. It is evident that the canonical injections for a direct sum are monomor-

phisms and the canonical projections for a product are epimorphisms.

The following statement is well known.

1.1.3 Proposition. Let A be a k-category. If X,X1, . . . , Xn are objects in A,

then X = X1 ⊕ · · · ⊕ Xn if and only if there exist morphisms qi : Xi → X and

pi : X → Xi such that idX =
∑n

i=1 qi ◦ pi and

pi ◦ qi =

{
idXi

if i = j;

0 if i ̸= j,

6



for all 1 ≤ i, j ≤ n.

Remark. In the above situation, X is the coproduct and product of X1, . . . , Xn

with canonical injections qi and canonical projections pi. Moreover, the ei = qi◦pi
with 1 ≤ i ≤ n are pairwise orthogonal idempotents in EndA(X).

Let X be an object in A. An idempotent e ∈ EndA(X) is said to split if there

exist morphisms p : X → Y and q : Y → X such that e = q ◦ p and p ◦ q = idY .

The following statement is well known. For the reader’s convenience, we shall

include a short proof.

1.1.4 Lemma. Let A be a k-category with an object X. Then, X = X1⊕· · ·⊕Xn

if and only if idX = e1 + · · ·+ en, where the ei are pairwise orthogonal split non-

zero idempotents in EndA(X); and in this case, ei = qi ◦ pi, where qi and pi are
the canonical injections and canonical projections of the direct sum respectively.

Proof. The sufficiency follows from Proposition 1.1.3, we only need to prove the

necessity. Suppose that e1, . . . , en are pairwise orthogonal split non-zero idempo-

tents in EndA(X) such that e1 + · · · + en = idX . For every 1 ≤ i ≤ n, since ei
splits, there exist morphisms pi : X → Xi and qi : Xi → X such that qi ◦ pi = ei
and pi ◦ qi = idXi

. For any 1 ≤ i ≤ n, since ei ̸= 0, we see that idXi
̸= 0. That

is, the Xi are all non-zero objects. Now,
∑n

i=1 qi ◦ pi =
∑n

i=1 ei = idX , and since

e1, . . . , en are pairwise orthogonal, pi ◦ qj = 0 for all 1 ≤ i, j ≤ n with i ̸= j. By

Proposition 1.1.3, X = X1 ⊕ · · · ⊕Xn. The proof of the lemma is completed.

1.2 Additive k-categories

An additive k-category is a k-category, which has a zero object and finite

direct sums. Throughout this section, A denotes an additive k-category. Let X

be a non-zero object in A. An object Y is called a direct summand of X if

X ∼= Y ⊕Z for some object Z in A. And a direct sum decomposition X = Y ⊕Z
is called proper if Y and Z are non-zero. One says that X is indecomposable

provided that it is non-zero and admits no proper decomposition. If EndA(X) is

a local algebra, then it has no proper idempotent, and by Proposition 1.1.3, X is

indecomposable. In this case, we call X strongly indecomposable.

1.2.1 Definition. A non-zero additive k-category A is called Krull-Schmdit if

every non-zero object in A is a direct sum of finitely many strongly indecompos-

able objects.

7



To characterize Krull-Schmidt k-categories, we recall that a k-algebra Σ with

an identity is semiperfect if it has a complete orthogonal set {e1, . . . , en} of

idempotents such that the eiΣei with 1 ≤ i ≤ n are local rings; see [1, page 304],

and also, [30, (4.1)].

The following statement is well known; see, for example, [39, (1.1)].

1.2.2 Theorem. Let A be an additive k-category with a non-zero object X.

Then, X = ⊕n
iXi with Xi strongly indecomposable if and only if EndA(X) is

semiperfect with all idempotents split in A. In this case, the direct sum decompo-

sition for X is unique up to isomorphism and permutation, and every non-zero

direct summand of X is a direct sum of objects of a subfamily of {X1, . . . , Xn}.

As an immediate consequence, we have the following statement.

1.2.3 Corollary. Let A be a Hom-finite additive k-category. Then A is Krull-

Schmidt if and only if all idempotent endomorphisms in A split.

Proof. It is well known that every finite dimensional k-algebra with an identity is

semi-perfect. Now, the statement follows immediately from Theorem 1.2.2. The

proof of the corollary is completed.

Let A be an additive k-category. A two-sided ideal (or simply, ideal) I
of A consists of subspaces I(X, Y ) of HomA(X, Y ) with X, Y ∈ A such that

h ◦ f ◦ g ∈ I(U, V ) for all f ∈ I(X, Y ), g ∈ HomA(U,X) and h ∈ HomA(Y, V ).

The following easy result will be used later; see, for example, [39, 1.2].

1.2.4 Lemma. Let A be an additive k-category and I be a proper ideal of A. If

A is Krull-Stchmidt, then so is A/I.

1.2.5 Definition. Let A be an additive k-category. A morphism f : X → Y in

A is called

(1) right minimal provided that every morphism g : X → X such that f ◦g =
f is an automorphism.

(2) right almost split provided that f is not a retraction and every non-

retraction morphism u : U → Y factors through f .
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(3) minimal right almost split provided that it is right minimal and right

almost split.

Dually, one has the following notions.

1.2.6 Definition. Let A be an additive k-category. A morphism f : X → Y in

A is called

(1) left minimal provided that every morphism h : Y → Y such that h◦f = f

is an automorphism.

(2) left almost split provided that f is not a section and every non-section

morphism v : X → V factors through f .

(3) minimal left almost split provided that it is left minimal and left almost

split.

The following statement is due to Auslander and Reiten; see [7, (2.3)].

1.2.7 Proposition. Let A be an additive k-category. If f : X → Y is a

left (respectively, right) almost split morphism in A, then X (respectively, Y )

is strongly indecomposable.

Finally, let A be Hom-finite. An additive functor S : A → A is called a left

(respectively, right) Serre functor if there exist binatural k-linear isomorphisms

HomA(X, Y ) ∼= DHomA(SY,X) (respectively, HomA(X, Y ) ∼= DHomA(Y, SX)),

for all X, Y ∈ A; see [55, (I.1)]. Moreover, a left (respectively, right) Serre functor

F is called a left (respectively, right) Serre equivalence if it is an equivalence

of categories.

1.3 Abelian k-categories

An additive k-category is called abelian if every morphism has a kernel and

a cokernel, while every monomorphism is a kernel of some morphism and every

epimorphism is a cokernel of some morphism; see [61, (1.2.2)]. Throughout this

section, let A denote an abelian k-category. We start with some sufficient con-

ditions for an additive k-subcategory of A to be Krull-Schmidt. The following
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statement is well known. For the convenience of the reader, we will provide a

brief proof.

1.3.1 Lemma. Let A be an abelian k-category. Then idempotent endomorphisms

in A split.

Proof. Let e : X → X be an idempotent endomorphism in A. Since A is abelian,

the endomorphism idX − e : X → X has a kernel f : Y → X. In particular,

(idX−e)◦f = 0, and hence, f = e◦f. On the other hand, since (idX−e)◦e = 0,

there exists a morphism g : X → Y such that e = f ◦ g. Therefore, f ◦ (g ◦ f) =
(f ◦ g) ◦ f = e ◦ f = f . Since f is a monomorphism, g ◦ f = idY . By definition,

e splits in A. The proof of the lemma is completed.

We shall use frequently the following statement.

1.3.2 Proposition. Let A be an abelian k-category, and let A be a strictly full

additive k-subcategory of A. If A is Hom-finite, then A is Krull-Schmidt if and

only if it is closed under direct summands.

Proof. Let A be Hom-finite. Suppose first that A is Krull-Schmidt. Consider a

non-zero object X ∈ A. Then, X = ⊕n
iXi, where Xi are strongly indecomposable

objects in A. Let Y be a non-zero direct summand of X. By Theorem 1.2.2, Y

is a direct sum of objects of a subfamily of {X1, . . . , Xn}. In particular, Y ∈ A.

Conversely, suppose that A is closed under direct summands. Let e : X → X

be a proper idempotent endomorphism. Then, idX = e + (idX − e), where e

and idX − e are orthogonal idempotents in EndA(X). By Lemma 1.3.1, e and

idX − e split in A. And by Lemma 1.1.4, X = Y ⊕ Z such that e = q ◦ p, where
q : Y → X is the canonical injection and canonical projection in A. In particular,

Y is a direct summand of X, and hence, Y ∈ A by the assumption. Therefore, e

splits in A. By Corollary 1.2.3, A is Krull-Schmidt. The proof of the proposition

is completed.

Let f : X → Y be a morphism in A. Recall that the image Im(f) of f is the

kernel of its cokernel. The following statement follows from the definition of an

abelian category.

1.3.3 Lemma. Let A be an abelian k-category. Every morphism f : X → Y

in A admits a canonical factorization f = p ◦ q, where p : X → Im(f) is an

epimorphism p : X → Im(f) and q : Im(f) → Y is a monomorphism.
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Remark. In the sequel, the morphisms p, q in Lemma 1.3.3 will be called re-

spectively the canonical epimorphism and the canonical monomorphism

associated with f .

1.3.4 Definition. Let A be an abelian k-category.

(1) An epimorphism f : X → Y in A is called superfluous provided, for any

morphism g : U → X, that the composite f ◦ g is an epimorphism only if

g is an epimorphism.

(2) A monomorphism f : X → Y in A is called essential provided, for any

morphism h : Y → V , that the composite h ◦ f is a monomorphism only if

h is a monomorphism.

An object P in A is called projective provided, for any epimorphism f :

X → Y and any morphism g : P → Y , that there exists a morphism h : P → X

such that f ◦ h = g. Dually, an object I in A is called injective provided, for

any monomorphism f : X → Y and any morphism g : X → I, that there exists

a morphism h : Y → I such that h ◦ f = g.

1.3.5 Definition. Let A be an abelian k-category. Given an object X in A,

(1) a projective cover of X is a superfluous epimorphism f : P → X with P

projective;

(2) an injective envelope of X is an essential monomorphism g : X → I with

I injective.

Example. If P is a projective object in A, then idP : P → P is a projective

cover of P . Dually, if I is an injective object in A, then idI : I → I is an injective

envelope of I.

The projective covers and the injective envelope can be characterized in terms

of minimal morphisms as follows; see [30, (3.4)] and its dual.

1.3.6 Lemma. Let A be an abelian k-category with an object X.
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(1) An epimorphism f : P → X in A with P projective is a projective cover if

and only if it is right minimal; and in this case, f is unique up to isomor-

phism.

(2) A monomorphism g : X → I in A with I injective is an injective enve-

lope if and only if it is left minimal; and in this case, g is unique up to

isomorphism.

More generally, we have the following well known result. For the reader’s

convenience, we shall include a short proof.

1.3.7 Lemma. Let A be an abelian k-category with an object X.

(1) A morphism f : P → X in A with P projective is right minimal if and only

if the canonical epimorphism f ′ : P → Im(f) is a projective cover of Im(f).

(2) A morphism g : X → I in A with I injective is left minimal if and only

if the canonical monomorphism g′ : Im(g) → I is an injective envelope of

Im(g).

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

dual. Let f : P → X be a morphism with P projective. Write f = h ◦ f ′,

where f ′ : P → Im(f) is the canonical epimorphism and h : Im(f) → M is the

canonical monomorphism. By Lemma 1.3.6, it amounts to show that f is right

minimal if and only if so is f ′.

Suppose that f is right minimal. Let u : P → P be such that f ′ = f ′ ◦ u.
Then, f = h ◦ f ′ = h ◦ (f ′ ◦ u) = f ◦ u. Since f is right minimal, u is an

automorphism. Thus, f ′ is right minimal. Conversely, assume that f ′ is right

minimal. Let v : P → P be such that f = f◦v. Then, h◦f ′ = f = f◦v = h◦f ′◦v.
Since h is a monomorphism, f ′ = f ′ ◦ v, and hence, v is an automorphism. So, f

is right minimal. The proof of the lemma is completed.

In order to introduce exact sequences in A, we shall need the following easy

statement.

1.3.8 Lemma. Let A be an abelian k-category. Consider a morphism f : X → Y

with q : Im(f) → Y the kernel of the cokernel of f , and a morphism g : Y → Z

with j : Ker(g) → Y the kernel of g. If g ◦ f = 0, then there exists a canonical

monomorphism i : Im(f) → Ker(g) such that q = j ◦ i.
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Proof. Let c : Y → Coker(f) be the cokernel of f . Suppose that g ◦ f = 0. Then,

there exists a unique morphism u : Coker(f) → Z such that u ◦ c = g. By the

assumption, q : Im(f) → Y is the kernel of c and j : Ker(g) → Y is a kernel of

g. Since g ◦ q = u ◦ c ◦ q = 0, there exist a unique morphism i : Im(f) → Ker(g)

such that j ◦ i = q. Since q is a monomorphism, so is i. The proof of the lemma

is completed.

Now, a finite or infinite sequence of at least two morphisms

· · · // Xn−1
fn−1 // Xn

fn // Xn+1
// · · ·

in A is called exact provided that there is an isomorphism Im(fn−1) ∼= Ker(fn)

for each n.

1.3.9 Definition. Let A be an abelian k-category with an object X.

(1) A projective n-presentation of X is an exact sequence

P−n d−n
// P 1−n // · · · // P−1 d−1

// P 0 d0 // X // 0

with the P−i projective, which is called minimal if d−i is right minimal,

that is, it induces a projective cover d−i : P−i → Im(d−i), for i = 0, . . . , n.

(2) An injective n-copresentation of X is an exact sequence

0 // X
d0 // I0

d1 // I1 // · · · // In

with the I i injective, which is called minimal if di is left minimal, that is,

it induces an injective envelope di : Im(di) → I i, for i = 0, . . . , n.

In particular, a projective 1-presentation of X is called a projective pre-

sentation, and an injective 1-copresentation of X is called an injective cop-

resentation. Observe that a minimal projective 0-presentation of X is simply

a projective cover of X, while a minimal injective 0-copresentation of X is an

injective envelope of X, More generally, one has the following notions.

1.3.10 Definition. Let A be an abelian k-category with an object X.

13



(1) A projective resolution of X in A is a semi-infinite exact sequence

· · · // P−n d−n
// P 1−n // · · · // P−1 d−1

// P 0 d0 // X // 0

with the P−n projective, which is calledminimal if d−n ̸= 0 is right minimal

for every n ≥ 0. Moreover, given such a projective resolution, the double

infinite sequence

· · · // P−n d−n
// P 1−n // · · · // P−1 d−1

// P 0 // 0 // · · ·

will be called a truncated projective resolution of M .

(2) An injective coresolution of X in A is a semi-infinite exact sequence

0 // X
d0 // I0

d1 // I1 // · · · // In
dn // In+1 // · · ·

with the In injective, which is called minimal if dn ̸= 0 is left minimal

for every n ≥ 0. Moreover, given such an injective coresolution, the double

infinite sequence

· · · // 0 // I0
d1 // I1 // · · · // In

dn // In+1 // · · ·

will be called a truncated injective coresolution of X.

One says that A has enough projective objects if every object X in A

admits an epimorphism f : P → X with P projective; and enough injective

objects if every object Y in A admits a monomorphism g : Y → I with I

injective; see, for example [61, (2.2 and 2.3)]. The following statement is evident.

1.3.11 Lemma. Let A be an abelian k-category.

(1) If A has enough projective objects, then every object in A has a projective

resolution.

(2) If A has enough injective objects, then every object in A has a injective

coresolution.
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1.4 Extension groups

Throughout this section, let A be an abelian k-category. Our objective is to

introduce extension groups in A. For this purpose, we start with the following

evident fact.

1.4.1 Lemma. Let A be an abelian k-category. A sequence

0 // X
f // Y

g // Z // 0

in A is exact if and only if f is a kernel of g, and g is a cokernel of f .

An exact sequence as stated in Lemma 1.4.1 will be called a short exact

sequence. The following statement is well known; see [57, (4.1.7)].

1.4.2 Proposition. Let A be an abelian k-category. Given a short exact sequence

0 // X
f // Y

g // Z // 0 in A, the following statements are equivalent.

(1) The morphism f is a section.

(2) The morphism g is a retraction.

(3) There is an isomorphism of exact sequences

0 // X
f // Y

g //

∼=
��

Z // 0

0 // X
(idX0 )

// X ⊕ Z
(0,idZ) // Z // 0.

Remark. A short exact sequence 0 // X
f // Y

g // Z // 0 in A is said

to split if any of the equivalent statements in Proposition 1.4.2 holds true.

Now, we are ready to define the extension groups; see [42], [51], [57] and [61].

Fix two objects X, Y in A. A short exact sequence

ξ : 0 // Y
f // E

g // X // 0
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is called an extension of Y by X. One says that it is equivalent to another

extension ξ′ : 0 // Y
f ′ // E ′ g′ // X // 0 if there exists a commutative di-

agram

ξ : 0 // Y
f // E

g //

u
��

X // 0

ξ′ : 0 // Y
f ′ // E ′ g′ // X // 0.

In this case, u is an isomorphism. Thus, this yields clearly an equivalence relation

on the extensions of Y by X. We shall write [ξ] for the equivalence class of

ξ. Moreover, one denotes by Ext1A(X, Y ) the set of all equivalence classes of

extensions of Y by X. Given a morphism v : X ′ → X in A, it is clear that we

have a map

Ext1A(v, Y ) : Ext1A(X, Y ) → Ext1A(X
′, Y ); [ξ] 7→ [ξ ·v]

given by a pull-back diagram

ξ ·v : 0 // Y // E ′ //

��

X ′ //

v

��

0

ξ : 0 // Y // E // X // 0.

Dually, given a morphism u : Y → Y ′ in A, we have a map

Ext1A(X, u) : Ext
1
A(X, Y ) → Ext1A(X, Y

′); [ξ] 7→ [u·ξ]

given by a push-out diagram

ξ : 0 // Y //

u
��

E //

��

X // 0

u·ξ : 0 // Y ′ // E ′ // X // 0.

Now, we are ready to recall the Baer sum of extensions of Y by X; see, for

example, [61, (3.4.4)]. Given two short exact sequences

ξ1 : 0 // Y // E1
// X // 0

ξ2 : 0 // Y // E2
// X // 0

16



in A, we consider their direct sum

ξ1 ⊕ ξ2 : 0 // Y ⊕ Y // E1 ⊕ E2
// X ⊕X // 0

and two morphisms ▽ = (idY , idY ) : Y ⊕ Y → Y and

△=

(
idX
idX

)
: X → X ⊕X

in A. Then, one sets

[ξ1] + [ξ2] = [▽·(ξ1 ⊕ ξ2)·△] ∈ Ext1A(X, Y ),

which is illustrated as follows:

ξ1 ⊕ ξ2 : 0 // Y ⊕ Y //

▽
��

E1 ⊕ E2
//

��

X ⊕X // 0

▽·(ξ1 ⊕ ξ2) : 0 // Y // E ′ // X ⊕X // 0

▽·(ξ1 ⊕ ξ2)·△: 0 // Y // E //

OO

X //

△

OO

0.

It is well known that this makes Ext1A(X, Y ) into an abelian group, whose

zero is the equivalence class of the split short exact sequence

0 // Y
(idY0 ) // Y ⊕X

(0, idX)// X // 0.

Indeed, in view of Lemmas 1.3 and 1.4 in [51, (VII)], we have the following

well known result.

1.4.3 Proposition. Let A be an abelian k-category. If X, Y are objects in A,

then Ext1A(X, Y ) is an EndA(X)-EndA(Y )-bimodule such that

u · ([ξ] · v) = [u · (ξ · v)],

for all [ξ] ∈ Ext1A(X, Y ), v ∈ EndA(X) and u ∈ EndA(Y ).

Remark. In particular, Ext1A(X, Y ) is a k-vector space such that

λ · [ξ] = [(λ · idY ) · ξ] = [ξ · (λ · idX)],

for all λ ∈ k and [ξ] ∈ Ext1A(X, Y ).

We shall need the following notion.
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1.4.4 Definition. Let A be an abelian k-category. A full additive subcate-

gory A of A is called extension-closed provided, for any short exact sequence

0 // X // Y // Z // 0 in A, that Y ∈ A whenever X,Z ∈ A.

More generally, one can define the higher degree Yoneda extension groups

ExtnA(X, Y ) in A for all n > 1; see, for example, [51, (VII.3)] and [61, (3.4.6)].

An n-fold extension of X by Y is an exact sequence

µ : 0 // Y
fn // Un

fn−1 // · · · // U1
f0 // X // 0

in A. Fix µ be a n-fold extension of X by Y . We obtain the following short exact

sequences from µ:

ξi : 0 // Vi // Ui // Vi−1
// 0,

where V0 = X, Vn = Y and Vi = Ker(fi−1) for all i = 1, . . . , n−1. In this case, we

shall write µ = ξnξn−1 · · · ξ2ξ1. Given two morphisms u : Y → Y ′ and v : X ′ → X

in A, we define u·µ = (u·ξn)ξn−1 · · · ξ2ξ1 and µ·v = ξnξn−1 · · · ξ2(ξ1 ·v). Moreover,

given two short exact sequences

ξ : 0 // Y // E // X // 0

ξ′ : 0 // Y // E ′ // X // 0

in A such that (ξ · v)ξ′ is defined, we shall call a morphism (ξ · v)ξ′ → ξ · (vξ′)
is a switch. It is well known; see [51, (VII.3.1)] that there exists an equivalence

relation on these n-fold extensions of X by Y such that two n-fold extensions

µ = ξnξn−1 · · · ξ2ξ1 and µ′ = ξ′nξ
′
n−1 · · · ξ′2ξ′1 are equivalent if µ can obtain from

µ′ by a finite number of switches. The equivalence class of µ will be denoted

again by [µ]. And one writes ExtnA(X, Y ) for the set of equivalence classes of

n-fold extensions of X by Y . Given two n-fold extensions µ and µ′, one defines

[µ] + [µ′] = [▽·(µ⊕ µ′)·△],

where ▽·(µ⊕ µ′)·△ is the n-fold extension

0 // Y // V // Un−1 ⊕ U ′
n−1

// · · · // U2 ⊕ U ′
2

//W // X // 0

with V the push-out of fn ⊕ f ′
n : Y ⊕ Y → Un ⊕ U ′

n and ▽ : Y ⊕ Y → Y , and W

the pull-back of f0 ⊕ f ′
0 : U0 ⊕U ′

0 → X ⊕X and △: X → X ⊕X. Equipped with
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this addition, ExtnA(X, Y ) is an abelian group, whose zero is the equivalent class

of the n-fold extension

0 // Y
idY // Y // 0 // · · · // 0 // X

idX // X // 0.

As in the degree one case, ExtnA(X, Y ) is an EndA(X)-EndA(Y )-bimodule; see

[51, (VII.3.2)], and in particular, it is a k-vector space, for every n > 1.

The following statement is well known; see, [51, (VII.6.3)] and its dual, which

is useful for calculating Yoneda extension groups.

1.4.5 Lemma. Let A be an abelian k-category with objects X, Y .

(1) If A has an exact sequence

0 // L−n q // P−(n−1) // · · · // P−1 // P 0 // X // 0

with n > 0 and P−s projective for 0 ≤ s < n, then

ExtnA(X, Y ) ∼= HomA(L
−n, Y )/ImHomA(q, Y )

and Extn+iA (X, Y ) ∼= ExtiA(L
−n, Y ) for i > 0.

(2) If A has an exact sequence

0 // Y // I0 // I1 // · · · // In−1 p // Ln // 0

with n > 0 and Is injective for 0 ≤ s < n, then

ExtnA(X, Y ) ∼= HomA(X,L
n)/ImHomA(X, p)

and Extn+iA (X, Y ) ∼= ExtiA(X,L
n) for i > 0.

Remark. Lemma 1.4.5 is particularly useful for constructing finitely generated

projective resolutions or finitely cogenerated injective coresolutions in concrete

abelian categories.

In case A has enough projective objects or enough injective objects, the follow-

ing well known statement; see, for example, [51, (VII.7)] provides an alternative

interpretation of Yoneda extension groups.
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1.4.6 Proposition. Let A be an abelian k-category with objects X, Y .

(1) Given a projective resolution

· · · // P−n−1 d
−n−1

// P−n d−n
// P−n+1 // · · · // P 0 d0 // X // 0

in A, for any n > 0, we have

ExtnA(X, Y ) ∼= Ker(HomA(d
−n−1, Y ))/Im(HomA(d

−n, Y )).

(2) Given an injective coresolution

0 // Y d0 // I0 // · · · // In−1 dn−1
// In dn // In+1 // · · ·

in A, for any n > 0, we have

ExtnA(X, Y ) ∼= Ker(HomA(X, d
n))/Im(HomA(X, d

n−1)).

We conclude this section with the following well-known notion; see, for exam-

ple, [10, page 5].

1.4.7 Definition. An abelian k-category A is called hereditary provided that

Ext2A(X, Y ) = 0 for all X, Y ∈ A.

The following statement is probably well known. However, we could not find

it explicitly in the existing literature.

1.4.8 Proposition. Let A be an abelian category with enough projective objects.

Then A is hereditary if and only if the subobjects of a projective object are pro-

jective.

Proof. The sufficiency follows immediately from Proposition 1.4.6(1). Suppose

that A is hereditary. Let P be a projective object in A with a subobject M .

Suppose that M is not projective. Since A has enough projective objects, we

have a non-split short exact sequence

0 // N // P ′ f //M // 0
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in A with P ′ projective. In particular, Ext1A(M,N) ̸= 0. Setting g = j ◦ f, where
j :M → P is the inclusion map, we obtain an exact sequence

0 // N // P ′ g // P // P/M // 0.

SinceN has a projective resolution by the hypothesis, we deduce from Proposition

1.4.6(1) that

Ext2A(P/M,N) ∼= Ext1A(M,N) ̸= 0,

a contradiction. The proof of the proposition is completed.

1.5 Exact k-categories

Throughout this section let A be an exact k-category, that is an extension-

closed additive full subcategory, closed under direct summands, of an abelian

k-category A; see [39, Section 2]. We first recall the notion of stable categories of

A; see [35, 38], which is related to the existence of almost split sequences. Given

X, Y ∈ A, we shall write Ext1A(X, Y ) = Ext1A(X, Y ). A morphism f :M → N in

A is called projectively trivial provided that, given any commutative diagram

with exact rows

η · f : 0 // X // Z //

��

M //

f

��

0

η : 0 // X // Y // N // 0

in A, the upper row splits; and injectively trivial provided that, given any

commutative diagram with exact rows

δ : 0 //M //

f
��

Y //

��

X // 0

f · δ : 0 // N // Z // X // 0

in A, the lower row splits. An object M ∈ A is called Ext-projective if idM is

projectively trivial, or equivalently, Ext1A(M,X) = 0 for all X ∈ A. Dually, an

object N ∈ A is called Ext-injective if idN is injectively trivial, or equivalently,

Ext1A(Y,N) = 0 for all Y ∈ A; see [38, page 9].

It is easy to see that the projectively trivial morphisms in A generate an ideal

P(A), and the injectively trivial morphisms in A generate an ideal I(A). The
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quotient categories A = A/P(A) and A = A/I(A) are called the projectively

stable category and the injectively stable category ofA, respectively. Given

X, Y ∈ A, we shall denote by P(X, Y ) and I(X, Y )) the k-vector subspace

of HomA(X, Y ) of projectively trivial morphisms and that of injectively trivial

morphisms, respectively, and we put

HomA(X, Y ) = HomA(X, Y )/P(X, Y )

and

HomA(X, Y ) = HomA(X, Y )/I(X, Y ).

The following statement shows that for an abelian category with enough pro-

jective objects and enough injective objects, the stable categories as defined above

coincide with the classical ones.

1.5.1 Lemma. Let A be an abelian k-category, having enough projective objects

and enough injective objects.

(1) An object in A is Ext-projective (respectively, Ext-injective) if and only if it

is projective (respectively, injective).

(2) A morphism in A is projectively (respectively, injectively) trivial if and only

if it factors through a projective (respectively, injective) object.

Proof. Since A has enough projective objects and enough injective objects, State-

ment (1) is evident. For Statement (2), we shall only prove the first part, since

the second part is dual. Let f :M → N be a morphism in A. Suppose that f is

projectively trivial. By the hypothesis, there exists an exact sequence

η : 0 // K // P
u // N // 0

in A with P being projective. Consider the pull-back diagram

η · f : 0 // K // E //

��

M //

f

��

0

η : 0 // K // P
g // N // 0

in A. Since the upper row splits by hypothesis, f factors through u. In particular,

it factors through P . Conversely, assume that there exists a commutative diagram

P
h

��
M

f //

g
BB

N
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commutes in A with P being projective. Consider a commutative diagram with

exact rows

η · f : 0 // X
u // Z //

��

M //

f

��

0

η : 0 // X // Y
v // N // 0

in A. Since P is projective, h = v ◦ h′ for some h′ : P → v, and consequently,

f = h ◦ g = v ◦ (h′ ◦ g). Now, it is easy to verify that u is a section. That is, the

upper row in the above commutative diagram splits. The proof of the lemma is

completed.

1.5.2 Definition. Let A be an exact k-category. A short exact sequence

0 // X
f // Y

g // Z // 0

in A is called an almost split sequence if f is minimal left almost split and g

is minimal right almost split. In this case, we call X the starting term and Z

the ending term, and write X = τZ and Z = τ−X.

The almost split sequences in an exact category are characterized as follows;

see [7, (2.14)], and also, [12, (7.9)].

1.5.3 Theorem. Let A be an exact k-category with a short exact sequence

0 // X
f // Y

g // Z // 0.

The the following statements are equivalent.

(1) The given sequence is almost split.

(2) The endomorphism ring of Z is local and f is left almost split.

(3) The endomorphism ring of X is local and g is right almost split.

We say that A has almost split sequences on the right if every strongly

indecomposable not Ext-projective object in A is the ending term of an almost

split sequence; and in this case, τ is called the right Auslander-Reiten trans-

lation and that A has almost split sequences on the left if every strongly

indecomposable not Ext-injective object in A is the starting term of an almost

split sequence; and in this case, τ− is called the left Auslander-Reiten trans-

lation. Moreover, one says that A has almost split sequences if it has almost

split sequences on the right and on the left; see [39, page 5].
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1.6 Triangulated k-categories

Throughout this section, let T be a triangulated k-category with transla-

tion functor [1]. That is, T is an additive k-category and [1] is an automorphism

of T , together with a class of sextuples

X
f // Y

g // Z
h // X[1],

satisfying the properties (TR 1), (TR 2), (TR 3) and (TR 4); see[49, (II.1.1)]. In

this case, a sextuple as stated above is called an exact triangle. An additive

functor F : T → T ′ between triangulated k-categories is called triangle-exact

if it commutes with the translation functors and sends exact triangles to exact

triangles. The following notion is due to Happel; see [27, (4.1)].

1.6.1 Definition. Let T be a triangulated k-category. An exact triangle

X
f // Y

g // Z δ // X[1]

in T is called an almost split triangle if f is minimal left almost split and g

minimal right almost split. In this case, we call X the starting term and Z the

ending term, and write X = τZ and Z = τ−X.

One says that T has almost split triangles on the right (respectively,

left) if every strongly indecomposable object in T is the ending (respectively,

starting) term of an almost split triangle; and in this case, τ is called the right

(respectively, left) Auslander-Reiten translation. And one says that T has

almost split triangles if it has almost split triangles on the right and on the left.

The following statement is due to Reiten and Van den Bergh; see [55, (I.2.3)].

1.6.2 Theorem. Let T be a Hom-finite Krull-Schmidt triangulated k-category.

(1) T has almost split triangles on the right if and only if there exists a right

Serre functor S : T → T ; and in this case, τX = S(X)[−1] for any inde-

composable object X ∈ T .

(2) T has almost split triangles on the left if and only if there exists a left Serre

functor S : T → T ; and in this case, τ−X = S(X)[1] for any indecompos-

able object X ∈ T .

(3) T has almost split triangles if and only if it admits a right Serre equivalence

if and only if it admits a left Serre equivalence.
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1.7 Derived k-categories

Throughout this section, by an additive k-category we mean a strictly full

additive subcategory of some abelian k-category. Let A stand for a strictly full

additive k-subcategory of an abelian k-category A. A complex (X., d.X), or

simply X., over A is a double infinite sequence

· · · // Xn−1
dn−1
X // Xn

dnX // Xn+1 // · · · , n ∈ Z

of morphisms in A such that dn+1
X ◦ dnX = 0 for all n ∈ Z. The object Xn

(May be equal to 0) is called the component of degree n and the morphism

dnX is called the differential of degree n, of X.. A morphism f. : X. → Y .

of complexes over A is a family of morphisms fn : Xn → Y n in A such that

fn+1 ◦ dnX = dn+1
Y ◦ fn for all n ∈ Z. With these morphisms, the complexes over

A form an additive k-category C(A), called the category of complexes of A.

It is evident that C(A) is an abelian k-category. A complex X. in C(A) is called

bounded below (respectively, bounded above) if there exists n0 ∈ Z such

that Xn = 0 for n < n0 (respectively, for n > n0); bounded if it is bounded

below and bounded above; and stalk complex concentrated in degree s if

Xn = 0 for any n ̸= s. We shall denote by Cb(A), C+(A) and C−(A) the full

subcategories of C(A) of bounded complexes, of bounded-below complexes and

of bounded-above complexes, respectively.

Now, we shall define the cohomology functors of A. First, we shall fix some

notation for the differentials of a complex in the following statement, which fol-

lows immediately from Lemma 1.3.8.

1.7.1 Lemma. Let A be an additive k-category, and let X. be a complex in C(A).

Given n ∈ Z, since dnX ◦ dn−1
X = 0, we have a commutative diagram

Xn−1
dn−1
X //

pn−1
X
��

Xn

Im(dn−1
X )

in−1
X //

qn−1
X

77

Ker(dnX),

jn−1
X

OO

where pn−1
X is the canonical epimorphism, qn−1

X is the cokernel of dn−1
X , and jn−1

X

is the kernel of dnX , while i
n
X is the canonical monomorphism as stated in Lemma

1.3.8(2).
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The following statement is well known. However, we are not able to find any

rigorous categorical proof.

1.7.2 Lemma. Let A be an additive k-category, and let f. : X. → Y. be a

morphism in C(A). For any n ∈ Z, there exists a commutative diagram

Im(dn−1
X )

in−1
X //

f̃n

��

Ker(dnX)
jn−1
X //

f̄n

��

Xn

fn

��
Im(dn−1

Y )
in−1
Y // Ker(dnY )

jn−1
Y // Y n

in A, where the horizontal morphisms are the canonical morphisms as stated in

Lemma 1.7.1.

Proof. Recall that jn−1
X and jn−1

Y are kernels of dnX and dnY , respectively. Since

dnY ◦ fn ◦ jn−1
X = fn+1 ◦ dnX ◦ jn−1

X = 0, we have f̄n : Ker(dnX) → Ker(dnY ) such that

fn ◦ jn−1
X = jn−1

Y ◦ f̄n. In view of Lemma 1.7.1, we obtain a commutative diagram

with exact rows

Xn−1
dn−1
X //

pn−1
X��

Xn
cn−1
X // Coker(dn−1

X ) // 0

0 // Im(dn−1
X )

qn−1
X ////

in−1
X��

Xn
cn−1
X // Coker(dn−1

X ) // 0

0 // Ker(dnX)
jn−1
X //

f̄n

��

Xn
dnX //

fn

��

Xn+1

fn+1

��
0 // Ker(dnY )

jn−1
Y // Y n

dnY // Y n+1

0 // Im(dn−1
Y )

qn−1
Y //

in−1
Y

OO

Y n
cn−1
Y // Coker(dn−1

Y ) // 0

Y n−1
dn−1
Y //

pn−1
Y

OO

Y n
cn−1
Y // Coker(dn−1

Y ) // 0.

Now, cn−1
Y ◦fn◦dn−1

X = cn−1
Y ◦dn−1

Y ◦fn−1 = 0. Recall that pn−1
X is an epimorphism.

Thus, cn−1
Y ◦ fn ◦ qn−1

X = 0, and hence, there exists f̃n : Im(dn−1
X ) → Im(dn−1

Y )

such that fn ◦ qn−1
X = qn−1

Y ◦ f̃n. This yields
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jn−1
Y ◦ f̄n ◦ in−1

X = fn ◦ jn−1
X ◦ in−1

X

= fn ◦ qn−1
X

= qn−1
Y ◦ f̃n−1

= jn−1
Y ◦ in−1

Y ◦ f̃n−1.

Since jn−1
Y is a monomorphism, f̄n ◦ in−1

X = in−1
Y ◦ f̃n−1. The proof of the lemma

is completed.

LetX. be a complex in C(A). Considering the canonical monomorphism in−1
X :

Im(dn−1
X ) → Ker(dnX) as stated in Lemma 1.7.1, we define the n-th cohomology

group of X. to be the object

Hn(X.) = Ker(dnX)/Im(dn−1
X ) ∈ A.

Let f. : X.→ Y . be a morphism in C(A). For any n ∈ Z, in view of Lemma

1.7.2, we obtain a unique morphism Hn(f.) : Hn(X.) → Hn(Y .) such that

0 // Im(dn−1
X )

in−1
X //

f̃n

��

Ker(dnX)
//

f̄n

��

Hn(X.)

Hn(f.)
��

// 0

0 // Im(dn−1
Y )

in−1
Y // Ker(dn−1

Y ) // Hn(Y .) // 0

is a commutative diagram with exact rows. This yields an additive functor

Hn : C(A) → A;X. 7→ Hn(X.); f. 7→ Hn(f.),

called the n-th cohomology functor of C(A), for every integer n. One says

that a complex X. is acyclic if Hn(X.) = 0 for all n ∈ Z, and a morphism f. is
a quasi-isomorphism if Hn(f.) is an isomorphism, for every n ∈ Z.

Next, we prepare to introduce the homotopy categories. Let X. be a complex

in C(A). Given an integer s, the s-shift of X. is a complex (X.[s], d.X.[s]) defined
by (X.[s])n = Xn+s and dnX.[s] = (−1)sdn+sX for all n ∈ Z. Moreover, the s-shift

of a morphism f. : X. → Y . is the morphism f.[s] : X.[s] → Y .[s], defined

by (f.[s])n = fn+s : Xn+s → Y n+s, for all n ∈ Z. In particular, we have an

automorphism

[1] : C(A) → C(A);X.→ X.[1]; f. 7→ f.[1],
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called the translation functor, of C(A). Moreover, the twist complex t(X.)
of X. is the complex (M., d.M) defined byMn = Xn and dnM = −dnX ; see [10]. This
induces an automorphism t of C(A), called the twist functor of C(A). Given a

morphism f. : X.→ Y . in C(A), its mapping cone is the complex Cf. defined
by Cn

f.= Xn+1 ⊕ Y n and

dnCf. =

(
−dn+1

X 0

fn+1 dnY

)
,

for all n ∈ Z. Clearly, we have two complex morphisms i
f. : Y . → Cf. and

p
f. : Cf.→ X.[1] defined by

in
f. =

(
0

idY n

)
and pn

f. = (idXn+1 , 0),

for all n ∈ Z. This yields a sextuple X.
f. // Y .

i
f. // Cf.

p
f. // X.[1] in A, which

is called the standard triangle attached to f..

A morphism f. : X. → Y . in C(A) is called null-homotopic if there exist

morphisms hn : Xn → Y n−1 in A such that fn = dn−1
Y ◦ hn + hn+1 ◦ dnX for all

n ∈ Z. And two morphisms f., g. : X. → Y . are called homotopic if f. − g.

is null-homotopic. The following statement is well known; see, for example, [49,

(III.1.4.1)]. Here, we provide a rigorous categorical proof.

1.7.3 Lemma. Let A be an additive k-subcategory of an abelian k-category A.

Consider a morphism f. : X. → Y. be in C(A). If f. is null-homotopic, then

Hn(f.) = 0, for every n ∈ Z.
Proof. Let hn : Xn → Y n−1 be morphisms such that fn = dn−1

Y ◦ hn + hn+1 ◦ dnX
for all n ∈ Z. As stated in the proof of Lemma 1.7.2, we have a commutative

diagram with exact rows

0 // Ker(dnX)
jn−1
X //

f̄n

��

Xn
dnX //

fn

��

Xn+1

fn+1

��
0 // Ker(dnY )

jn−1
Y // Y n

dnY // Y n+1

0 // Im(dn−1
Y )

qn−1
Y //

in−1
Y

OO

Y n
cn−1
Y // Coker(dn−1

Y ) // 0

Y n−1
dn−1
Y //

pn−1
Y

OO

Y n
cn−1
Y // Coker(dn−1

Y ) // 0
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in A. Thus,
jn−1
Y ◦ f̄n = fn ◦ jn−1

X

= (dn−1
Y ◦ hn + hn+1 ◦ dnX) ◦ jn−1

X

= dn−1
Y ◦ hn ◦ jn−1

X

= jn−1
Y ◦ in−1

Y ◦ pn−1
Y ◦ hn ◦ jn−1

X .

Since jn−1
Y is a monomorphism, f̄n = in−1

Y ◦ pn−1
Y ◦ hn ◦ jn−1

X . On the other hand,

by definition, we have a commutative diagram with exact rows

0 // Im(dn−1
X )

in−1
X //

f̃n

��

Ker(dnX)
unX //

f̄n

��

Hn(X.)

Hn(f.)
��

// 0

0 // Im(dn−1
Y )

in−1
Y // Kerdn−1

Y

unY // Hn(Y .) // 0

in A. Thus, unY ◦ f̄n = unY ◦ in−1
Y ◦ pn−1

Y ◦ hn ◦ jn−1
X = 0, and consequently,

Hn(f.) ◦ unX = 0. Since unX is an epimorphism, Hn(f.) = 0. The proof of the

lemma is completed.

Consider C∗(A), where ∗ ∈ {∅,−,+, b}. Observing that the null-homotopic

morphisms in C∗(A) form an ideal, one defines the homotopy category K∗(A)

to be the quotient category of C∗(A) modulo the null-homotopic morphisms.

In particular, K(A) is called the homotopy category of A. We denote by

P ∗
A : C∗(A) → K∗(A) the canonical projection functor. Given a morphism

f. : X.→ Y . in C∗(A), we obtain a morphism f̄. = P ∗
A(f

.) : X.→ Y . in K∗(A).

We call the sextuple

X.
f̄. // Y .

ī
f. // Cf.

p̄
f. // X.[1]

the standard triangle in K∗(A) attached to f̄., and Cf. the mapping cone of

f̄.. It is well known; see [49, (III.2.1.1)] that K∗(A) is a triangulated category,

whose translation functor is the automorphism induced from the shift functor of

C(A) and the exact triangles are the sextuples isomorphic to standard triangles

in K∗(A).

Consider two homotopic morphisms f., g. : X. → Y . in C∗(A). In view of

Lemma 1.7.3, we see that Hn(f.) = Hn(g.), for all n ∈ Z. In particular, f. is a
quasi-isomorphism if and only if so is g.. Thus, one calls f̄. a quasi-isomorphism

in K∗(A) if f. is a quasi-isomorphism in C∗(A). We shall need the following well

known result; see, for example, [49, (III.3.1.1)].
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1.7.4 Lemma. Let A be an additive k-category. Then, a morphism in K∗(A)

with ∗ ∈ {∅,+,−, b} is a quasi-isomorphism if and only if its mapping cone is

acyclic.

Finally, we shall introduce derived categories. Fix ∗ ∈ {∅,−,+, b}. It is well

known; see [49, (III.3.1.2)] that the class of quasi-isomorphisms in K∗(A) is a lo-

calizing class compatible with the triangulation; see, for definition, [49, Chapter I,

Section 1.3] and [49, Chapter II, Section 1.6]. One defines the derived category

D∗(A) to be the localization of K∗(A) with respect to quasi-isomorphisms, which

is a triangulated k-category with translation functor and exact triangles induced

from those ofK∗(A); see [49, (II.1.6.1)]. We shall denote by L∗
A : K∗(A) → D∗(A)

the localization functor. In particular, D(A) and Db(A) are called the derived

category and the bounded derived category of A, respectively. Clearly, we

have a canonical additive functor

j∗A : A → D∗(A);X 7→ X[0]; f 7→ f [0].

The following statement is well known; see, for example, [49, Chapter III,

(3.4.3), (3.4.4), (3.4.5), (3.4.7)].

1.7.5 Proposition. Let A be an abelian k-category. Given ∗ ∈ {∅,−,+, b}, the
following statements hold.

(1) The canonical functor j∗A : A → D∗(A) is fully faithful.

(2) There exists a fully faithful triangle-exact functor i∗ : D∗(A) → D(A).

Remark. In the sequel, we shall regard D∗(A) as a full triangulated subcategory

of D(A) for ∗ ∈ {−,+, b}.

More generally, we have the following statement.

1.7.6 Proposition. Let A be a full additive subcategory of C(A), where A is an

abelian k-category. If A is closed under shifts, then

(1) the quotient category K(A ) of A modulo the null-homotopic morphisms is

a full triangulated subcategory of K(A);

(2) the localization D(A ) of K(A ) with respect to quasi-isomorphisms is a

triangulated category.
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Proof. We sketch a proof of this statement. It is evident that the null-homotopic

morphisms in A form an ideal of A . Thus, the quotient category K(A ) of A

modulo the null-homotopic morphisms is a full additive subcategory of K(A).

Assume that A is closed under shifts. Then, A is closed under mapping cones.

Therefore, K(A ) is closed under the translation functor of K(A) and under map-

ping cones. Hence, K(A ) is a full triangulated subcategory of K(A); see [49,

Chapter II, Section 1.7]. Moreover, in view of the proof of Proposition 3.1.2 in

[49, Chapter III], we see that the quasi-isomorphisms in K(A ) form a localiz-

ing class compatible with the triangulation. Therefore, D(A ) is a triangulated

category; see [49, (II.1.6.1)]. The proof of the proposition is completed.

Remark. In the sequel, we shall say that a full additive subcategory A of C(A)

is derivable if it is closed under shifts, and in this case, D(A ) is called the

category derived from A . Some sufficient conditions for D(A ) to be a full

triangulated subcategory of D(A) can be found in [49, (II.1.7.1), (II.1.7.2)].

Let X. be a complex in C(A). A complex of projective objects P. is called a

projective resolution of X. if there exists a quasi-isomorphism f. : P.→ X.

in C(A), which is finite if P. is a bounded complex. Dually, a complex I. of
injective objects is called an injective coresolution of X. if there exists a quasi-

isomorphism g. : X. → I. in C(A), which is finite if I. is a bounded complex.

The following statement is evident.

1.7.7 Lemma. Let A be an abelian k-category. Consider a complex X. in C∗(A)

with ∗ ∈ {∅,+,−, b}.

(1) If X. admits a projective resolution P. in C∗(A), then X.∼= P. in D∗(A).

(2) If X. admits an injective coresolution I. in C∗(A), then X.∼= I. in D∗(A).

The following statement; see [61, (10.4.7)] says that it is easy to compute the

morphisms in the derived category starting (respectively, ending) in a complex

with a bounded above projective resolution (respectively, bounded below injective

so-resolution).

1.7.8 Lemma. Let A be an abelian k-category. Let P. ∈ C−(A) be a complex

of projective objects and I. ∈ C+(A) a complex of injective objects. Given any
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complex X. over A, the localization functor L : K(A) → D(A) induces two

isomorphisms

LP.,X. : HomK(A)(P
., X.) → HomD(A)(P

., X.)

and

LX.,I. : HomK(A)(X
., I.) → HomD(A)(X

., I.).

We shall need the following result.

1.7.9 Lemma. Let A be an abelian k-category.

(1) If P is a full additive subcategory of projective objects of A, then Kb(P) can

be regarded as a full triangulated subcategory of Db(A).

(2) If I is a full additive subcategory of injective objects of A, then Kb(I) can
be regarded as a full triangulated subcategory of Db(A).

Proof. We shall only prove Statement (1). It is evident that Kb(P) is a full

triangulated subcategory of Kb(A). Restricting the localization functor LbA :

Kb(A) → Db(A), we obtain a triangle-exact functor j : Kb(P) → Db(A). Let

P., U. ∈ Kb(P). Since Kb(P) is a full subcategory of K(P), we deduce from

Lemma 1.7.8 and Proposition 1.7.5(2) that

HomKb(P)(P
., U.) = HomK(A)(P

., U.) ∼= HomD(A)(P
., U.) ∼= HomDb(A)(P

., U.).

The proof of the lemma is completed.

Remark. We see from Proposition 1.7.5(2) that Kb(P) and Kb(I) can also be

regarded as a full triangulated subcategories of D(A).

To conclude this section, we shall study when an additive functor between cat-

egories of complexes induces a triangle-exact functor between derived categories.

The following statement is well known; see [49, (II.1.6.2)]. For the convenience

of the reader, we will provide a brief proof.

1.7.10 Proposition. Let A and B be additive k-categories. Consider an additive

functor F : C∗(A) → C∗(B), where ∗ ∈ {∅,−,+, b}, such that

(1) F ◦ [1] ∼= [1] ◦ F;
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(2) F sends acyclic complexes to acyclic complexes.

(3) F sends the cone of a morphism to the cone of its image;

(4) F sends null-homotopic morphisms to null-homotopic morphisms;

Then, F induces a commutative diagram of additive functors

C∗(A)
P ∗
A //

F
��

K∗(A)
L∗
A //

F
��

D∗(A)

F̃
��

C∗(B)
P ∗
B // K∗(B)

L∗
B // D∗(B),

where F and F̃ are triangle-exact..

Proof. By Statement (4), F induces an additive functor F : K∗(A) → K∗(B)
such that F ◦ P ∗

A = P ∗
B ◦ F. By Statements (1) and (3), F is triangle-exact. Let

f̄. : X.→ Y . inK∗(A) be a quasi-isomorphism. Then, there is a standard triangle

X.
f̄. // Y .

īf. // Cf.
p̄
f. // X.[1] in K∗(A), where Cf. is acyclic by Lemma 1.7.4.

By Statements (1) and (3), we have a standard triangle

F(X.)
F(f̄.) // F(Y .)

F(̄if.) // F(Cf.)
F(p̄

f.) // F(X.)[1]

inK∗(B), where F(Cf.) is acyclic by Statement (2). Again by Lemma 1.7.4, F(f̄.)
is a quasi-isomorphism. This shows that F sends quasi-isomorphisms to quasi-

isomorphisms. By the universal property of localization, there exists a unique

triangle-exact functor F̃ : D∗(A) → D∗(B) such that F̃ ◦ L∗
A = L∗

B ◦ F. The proof

of the proposition is completed.

Let F : A → B be an additive functor between additive k-categories. Then,

it induces an additive functor FC : C∗(A) → C∗(B) as follows. Given a complex

X. in C∗(A), we have a complex FC(X.) ∈ C∗(B) defined by FC(X.)n = F (Xn)

and dnFC(X.) = F (dnX) : F (X
n) → F (Xn+1), for all n ∈ Z. And given a morphism

f. : X.→ Y . in C∗(A), we have a morphism FC(f.) : FC(X.) → FC(Y .) in C∗(B)
defined by FC(f.)n = F (fn) : F (Xn) → F (Y n) for all n ∈ Z. The following

statement is well known; see, for example, [49, (V.1.1.1)] and [49, (V.1.2.2)]. For

the sake of the reader’s convenience, we shall include a short proof.
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1.7.11 Proposition. Let F : A → B be an exact functor between abelian k-

categories. Given ∗ ∈ {∅,−,+, b}, there exists a commutative diagram of functors

C∗(A)
P ∗
A //

FC

��

K∗(A)
L∗
A //

FK

��

D∗(A)

FD

��
C∗(B)

P ∗
B // K∗(B)

L∗
B // D∗(B),

where FK and FD are triangle-exact.

Proof. It is evident that FC has the properties in Statements (1) and (4) of

Proposition 1.7.10. As shown in Section 1.1 in [49, Chapter V], FC sends the

cone of a morphism in C∗(A) to the cone of its image. Finally, since F is exact,

FC sends acyclic complexes in C∗(A) to acyclic complexes. Now, the proposition

follows from Proposition 1.7.10. The proof of the proposition is completed.

1.8 Double complexes

In order to provide a tool for constructing our generalized Koszul duality,

we shall recall the double categories of complexes as defined in [16, section 4].

An additive k-category is called concrete if the objects are equipped with a k-

vector space structure, which is compatible with the composition of morphisms.

Throughout this section, A,B, C stand for full additive subcategories of concrete

abelian k-categories.

Let (M.., v..
M
, h..

M
) be a double complex over A, where v..

M
is the vertical differ-

ential and h..
M

is the horizontal one. Given i, j ∈ Z, the complexes (M i,., vi,.
M

) and

(M.,j, h.,j
M
) are called the i-th column and the j-th row of M.., respectively. A

double complex morphism f.. :M..→ N.. consists of morphisms f i,j :M i,j → N i,j

in A with i, j ∈ Z making

N i,j+1

M i,j+1

f i,j+1 88

N i,j
hi,j
N //

vi,j
N

OO

N i+1,j

M i,j

vi,j
M

OO

f i,j 88

hi,j
M //M i+1,j f i+1,j

88

commute for all i, j ∈ Z, that is, f i,. : M i,. → N i,. and f.,j : M.,j → N.,j are

complex morphisms, called the i-column and the j-th row of f.. respectively,
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for all i, j ∈ Z. In this way, the double complexes over A form an additive k-

category written as DC(A). In case A has countable direct sums, we shall define

a functor T : DC(A) → C(A) as follows. Given M.. ∈ DC(A), one defines its

total complex T(M..) ∈ C(A) by setting T(M..)n = ⊕i∈ZM
i,n−i and

dnT(M..) = (dnT(M..)(j, i))(j,i)∈Z×Z : ⊕i∈ZM
i,n−i → ⊕j∈ZM

j,n+1−j,

where dnT(M..)(j, i) : M
i,n−i → M j,n+1−j is defined such that dnT(M..)(i, i) = vi,n−i

M
;

dnT(M..)(i + 1, i) = hi,n−i
M

and dnT(M..)(j, i) = 0 if j /∈ i or i + 1. Given a morphism

f.. : M.. → N.., we define its total morphism T(f..) : T(M..) → T(N..) by

setting

T(f..)n = (T (f..)n(j, i))(j,i)∈Z×Z : ⊕i∈ZM
i,n−i → ⊕j∈ZN

j,n−j

for n ∈ Z, where T(f..)n(j, i) : M i,n−i → N j,n−j is given by T(f..)n(i, i) = f i,n−i

and T(f..)n(j, i) = 0 for all j ̸= i.

We shall study when the total complex of a double complex is acyclic. For

this purpose, we need some terminology. Let M.. ∈ DC(A). Given n ∈ Z,
the n-diagonal of M.. consists of M i,n−i with i ∈ Z. We shall say that M..

is n-diagonally bounded (respectively, bounded-above, bounded-below) if

M i,n−i = 0 for all but finitely many (respectively, positive, negative) integers i.

Moreover, M.. is called diagonally bounded (respectively, bounded-above,

bounded-below) if it is n-diagonally bounded (respectively, bounded-above,

bounded-below) for every n ∈ Z.

The following two statements; see [16, (4.2), (4.3)] tell us when the total

complex of a double complex is acyclic.

1.8.1 Lemma. Let A be a concrete additive category with countable direct sums.

If M..∈ DC(A) and n ∈ Z, then Hn(T(M..)) = 0 in case

(1) M.. is n-diagonally bounded-below with Hn−j(M.,j) = 0 for all j ∈ Z; or

(2) M.. is n-diagonally bounded-above with Hn−i(M i,.) = 0 for all i ∈ Z.

As a consequence, one obtains the Acyclic Assembly Lemma; see [61, (2.7.3)].

1.8.2 Proposition. Let A be a concrete additive category with countable direct

sums. If M..∈ DC(A), then T(M..) is acyclic in case M.. is diagonally bounded-

below with acyclic rows or diagonally bounded-above with acyclic columns.
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The following statement; see [16, (4.6)] tells us when the total morphism of a

double complex morphism is a quasi-isomorphism.

1.8.3 Lemma. Let A be a concrete additive category with countable direct sums.

Consider a morphism f.. : M..→ N.. in DC(A) such that f i,. :M i,.→N i,. is a

quasi-isomorphism, for every i ∈ Z. If M.. and N.. are diagonally bounded-above,

then T(f..) is a quasi-isomorphism.

Next, we recall a technique to extend a functor from an additive category

into a category of complexes to the category of complexes. Consider an additive

functor

F : A → C(B) :M → F (M).; f 7→ F (f).,

where B has countable direct sums. In order to extend F to C(A), one first

constructs a functor FDC : C(A) → DC(B) as follows. Given an object M. ∈
C(A), applying F component-wise yields a double complex

...
...

F (M.). : · · · // F (M i)j+1

OO

F (diM )j+1

// F (M i+1)j+1

OO

// · · ·

· · · // F (M i)j
F (diM )j

//

(−1)idj
F (Mi)

OO

F (M i+1)j

(−1)i+1dj
F (Mi+1)

OO

// · · ·

...

OO

...

OO

whose i-th column is ti(F (M i).), the i-th twist of the complex F (M i).. Then, one
puts FDC(M.) = F (M.).. Given a morphism f. : M.→ N. in C(A), applying F

component-wise yields a commutative diagram

F (N i)j+1

F (M i)j+1

F (f i)j+1 77

F (N i)j
F (diN )j

//

(−1)idj
F (Ni)

OO

F (N i+1)j,

F (M i)j

(−1)idj
F (Mi)

OO

F (f i)j 77

F (diM )j
// F (M i+1)j

F (f i+1)j

66
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for i, j ∈ Z. So, F (f.). = (F (f i)j)i,j∈Z : F (M.). → F (N.). is a morphism in

DC(B). Then, one puts FDC(f.) = F (f.)..

The following statement is quoted from [16, (4.8)], which collects some basic

properties of the extended functor FC and is a general version of the result stated

in [10, (3.7)].

1.8.4 Proposition. Let A and B be concrete additive categories such that B has

countable direct sums. Then, every additive functor F : A → C(B) extends to a

functor FC = T ◦ FDC : C(A) → C(B) with the following properties.

(1) If M is an object in A, then FC(M) = F (M).

(2) If M. is a complex in C(A), then FC(M.[1]) = FC(M.)[1].

(3) If f. is a morphism in C(A), then FC(Cf.) = CFC(f.); and in case f. is
null-homotopic, FC(f.) is null-homotopic.

We show that the extension of functors preserves the exactness and the faith-

fulness.

1.8.5 Proposition. Consider an additive functor F : A → C(B), where A and

B are concrete additive categories such that B has countable direct sums. If F is

exact or faithful, then FC is exact or faithful respectively.

Proof. Assume that F is exact. Let 0 // X. // Y . // Z. // 0 be a short

exact sequence in C(A). Then, we have short exact sequences

0 // F (X i)n−i // F (Y i)n−i // F (Zi)n−i // 0,

for all i, n ∈ Z. This yields a short exact sequence

0 // F C(X.)n // F C(Y .)n // F C(Z.)n // 0,

for every n ∈ Z. Thus, this gives rise to a short exact sequence

0 // F C(X.) // F C(Y .) // F C(Z.) // 0.

That is, F C is an exact functor.
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Suppose that F is faithful. Consider a morphism f. : X.→ Y . in C(A). By

definition, FC(f.) = T(F (f.).), where F (f.). is the double complex morphism

given by F (f i)j : F (X i)j → F (Y i)j, for i, j ∈ Z. Thus, for any n ∈ Z, we have

FC(f.)n = T(F (f.).)n = ⊕i∈Z F (f
i)n−i.

Since F is faithful, we see that

FC(f.) = 0 ⇒ ⊕i∈Z F (f
i)n−i = 0, for all n ∈ Z

⇒ F (f i)n−i = 0, for all i, n ∈ Z
⇒ F (f i)j = 0, for all i, j ∈ Z
⇒ F (f i).= 0, for all i ∈ Z
⇒ f i = 0, for all i ∈ Z
⇒ f.= 0.

So, F C is faithful. The proof of the proposition is completed.

We quote the following important statement from [16, (4.10)], which says that

the extension of functors is compatible with the composition of functors.

1.8.6 Proposition. Let A,B and C be concrete additive categories with B and C
having countable direct sums. If F : A → C(B) and G : B → C(C) are additive

functors, then (GC◦ F )C = GC◦ FC.

In view of Proposition 1.8.2, we see that the total complex of a double complex

is not necessarily acyclic even if the double complex has exact rows or exact

columns. Therefore, the extended functor FC does not send all acyclic complexes

to acyclic ones, and hence, it does not descend to the derived category D(A) as

stated in Proposition 1.7.10. We quote the following statement from[16, (4.9)],

which says that FC descends to categories derived from some suitable derivable

subcategories of C(A).

1.8.7 Theorem. Let A,B be concrete additive categories such that B has count-

able direct sums. Consider an additive functor F : A → C(B), sending acyclic

complexes to acyclic ones. Suppose that F C sends a derivable subcategory A of

C(A) into a derivable subcategory B of C(B).

(1) If FDC sends complexes in A to diagonally bounded-below double complexes,

then F C sends acyclic complexes in A to acyclic ones.
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(2) If F C sends acyclic complexes in A to acyclic ones, then it induces a com-

mutative diagram of functors

A //

FC

��

K(A ) //

FK

��

D(A )

FD

��
B // K(B) // D(B),

where FK and FD are triangle-exact.

We conclude this section by quoting the following statement from [16, (4.11)],

which says that functorial morphisms between functors can also be extended.

1.8.8 Lemma. Let A,B be concrete additive categories such that B has count-

able direct sums. Let F, G : A → C(B) be additive functors. Then every

functorial morphism η = (η.
M
)M∈A : F → G extends to a functorial morphism

ηC = (ηC
M.)M.∈C(A) : F

C → GC , where ηC
M. = T(η.

M.) : F
C(M.) → GC(M.) with

η.
M. : F (M

.).→ G(M.). given by ηj
Mi

: F (M i)j → G(M i)j with i, j ∈ Z;
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Chapter 2

Algebras and modules

The main objective of this chapter is to recall some background and collect

some preliminary results. The terminology and notation introduced in this section

will be used throughout the thesis. Let k denotes a commutative field. All tensor

products will be over k unless explicitly stated otherwise. An algebra is always

over k and does not necessarily have an identity unless explicitly stated otherwise,

and an ideal of an algebra is always a two-sided ideal.

2.1 Linear algebras

The content of this section is taken from [16, Section 1]. Given a set S, the
k-vector space spanned by S will be written as kS. The category of all k-vector

spaces and that of finite dimensional k-vector spaces will be denoted by Modk

and modk, respectively. We shall make a frequent use of the exact functor D =

Homk(−, k) : Modk → Modk, which restricts to a duality D : modk → modk.

The following result is important.

2.1.1 Lemma. Given U, V ;M,N ∈ Modk, we obtain a k-linear map

ρ : Homk(U, V )⊗ Homk(M,N) → Homk(U ⊗M,V ⊗N); f ⊗ g 7→ ρ(f ⊗ g),

where ρ(f ⊗ g)(u⊗m) = f(u)⊗ g(m) for u ∈ U and m ∈M , which is natural in

all variables. Moreover, ρ is an isomorphism in case U, V are finite dimensional,

or else, M,N are finite dimensional.

Proof. The first part of the lemma is evident. For the second part, we shall

consider only the case where U, V are finite dimensional. Let {u1, . . . , us} be
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a basis of U and {v1, . . . , vt} a basis of V . Consider the k-linear maps qi :

M → U ⊗ M ;m 7→ ui ⊗ m, and pj : V ⊗ N → N ;
∑t

l=1 vl ⊗ nl 7→ nj, and

fij : U → V ;
∑s

l=1 λlul 7→ λivj, for i = 1, . . . , s and j = 1, . . . , t.

Let w ∈ Homk(U, V ) ⊗ Homk(M,N) such that ρ(w) = 0. Since the fij
form a basis of Homk(U, V ), Then, we may write w =

∑s
i=1

∑t
j=1 fij ⊗ gij,

with gij ∈ Homk(M,N). Given any m ∈ M , we obtain
∑t

j=1vj ⊗ glj(m) =∑s
i=1

∑t
j=1fij(ul) ⊗ gij(m) = ρ(w)(ul ⊗ m) = 0 for l = 1, . . . , s. Therefore,

glj(m) = 0, and hence, glj = 0, for l = 1, . . . , s; j = 1, . . . , t. That is, w = 0.

Let h ∈ Homk(U ⊗M,V ⊗ N). Consider gij = pj ◦ h ◦ qi ∈ Homk(M,N).

Given w =
∑s

l=1 ul ⊗ml ∈ U ⊗M , we may write h(ul ⊗ml) =
∑t

j=1 vj ⊗ nlj, for

some nlj ∈ N . Then, glj(ml) = pj(h(ul ⊗ml)) = nlj. Now,

φ
(∑s

i=1

∑t
j=j fij ⊗ gij

)
(w) =

∑
i,j,l φ(fij ⊗ gij)(ul ⊗ml)

=
∑

1≤i,l≤s
∑

1≤j≤t fij(ul)⊗ gij(ml)

=
∑s

l=1

∑t
j=1(vj ⊗ nlj)

=
∑s

l=1h(ul ⊗ml)

= h(w).

Thus, φ(
∑s

i=1

∑t
j=j fij ⊗ gij) = h. The proof of the lemma is completed.

Remark. We shall identify f ⊗ g with ρ(f ⊗ g) in case U, V ∈ modk or M,N ∈
modk.

Observing that V ⊗ k ∼= V ∼= Homk(k, V ) for any V ∈ Modk, we obtain the

following immediate consequence of Lemma 2.1.1.

2.1.2 Corollary. Given U ∈ Modk and V ∈ Modk, we obtain

(1) a binatural k-linear isomorphism

σ : D(U)⊗ V → Homk(U, V ); f ⊗ v 7→ σ(f ⊗ v),

where σ(f ⊗ v)(u) = f(u)v for u ∈ U and v ∈ V, which is an isomorphism

in case U or V is finite dimensional.

(2) a binatural k-linear isomorphism

ρ : D(V )⊗D(U) → D(V ⊗ U); f ⊗ g 7→ ρ(f ⊗ g),

where ρ(f ⊗ g)(v ⊗ u) = f(v)g(u) for u ∈ U and v ∈ V, which is an

isomorphism in case U or V is finite dimensional.
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The following statement will be needed for our later investigation.

2.1.3 Lemma. Given morphisms f : U → M and g : N → V in modk, we

obtain a commutative diagram with vertical isomorphisms as follows:

U ⊗D(V )

θU,V

��

f⊗D(g) //M ⊗D(N)

θM,N

��
D(V ⊗D(U))

D(g⊗D(f)) // D(N ⊗D(M)).

We conclude this section with the following easy statement.

2.1.4 Lemma. Let V be a k-vector space, and let U be a subspace of V . If

v ∈ V \U , then there exist a subspaceW of V containing U such that V = W⊕kv.
Proof. Assume that v ∈ V \U . Let U be a k-basis of U . Being linearly inde-

pendent, U ∪ {v} extend to a k-basis W ∪ {v} of V . Letting W be the subspace

generated by W , we see that U ⊆ W and V = W ⊕ kv. The proof of the lemma

is completed.

2.2 Quivers and algebras

In this section, we shall fix some notions and terminology for quivers, which

will be used throughout this thesis. Let Q = (Q0, Q1) be a quiver, where Q0 is

a set of vertices and Q1 is a set of arrows between the vertices. Given an arrow

α : x → y in Q1, we call x the starting point and y the ending point of α;

and write s(α) = x and e(α) = y. One says that Q is finite if both Q0 and Q1

are finite sets; locally finite, that is, for any x ∈ Q0, the set of arrows α with

s(α) = x or e(α) = x is finite; gradable if Q0 = ∪i∈ZQi
0 such that every arrow

is of the form x → y, where x ∈ Qi, y ∈ Qi+1 and i ∈ Z. A path ρ of length

n ≥ 1 in Q is a sequence

ρ : x0
α1−→ x1

α2−→ x2 −→ · · · −→ xn−1
αn−→ xn

where αi ∈ Q1 for all 1 ≤ i ≤ n such that e(αi) = s(αi+1) for 1 ≤ i < n − 1.

Such a path will be denoted by ρ = αn · · ·α1. In this case, we call α1 the initial

arrow and αn the terminal arrow of ρ. Moreover, we associate with each vertex

x ∈ Q0 a trivial path εx, which is of length 0. A path of length n ≥ 1 is said to
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be a oriented cycle whenever its starting point and ending point coincide. In

particular, an oriented cycle of length 1 is called a loop.

Fix an integer n ≥ 0 and some vertices x, y of Q. We shall denote by Qn the

set of paths of length n and by Q(x, y) the set of paths from x to y. Moreover,

we shall write Qn(x, y), Q≤n(x, y), and Q≥n(x, y) for the subsets of Q(x, y) of

paths of length n, of length ≤ n, and of length ≥ n, respectively. Further, we

put Qn(x,−) = ∪z∈Q0Qn(x, z) and Qn(−, x) = ∪z∈Q0Qn(z, x). Finally, we define

Q≤n(x,−) = ∪z∈Q0 Q≤n(x, z) and Q≤n(−, x) = ∪z∈Q0 Q≤n(z, x), and similarly,

Q≥n(x,−) = ∪z∈Q0 Q≥n(x, z) and Q≥n(−, x) = ∪z∈Q0 Q≥n(z, x). For convenience,

we shall put Qs(x, y) = ∅ for an integer s < 0.

The opposite quiver ofQ is a quiverQo defined in such a way that (Qo)0 = Q0

and (Qo)1 = {αo : y → x | α : x → y ∈ Q1}. A non-trivial path ρ = αn · · ·α1

in Q(x, y), where αi ∈ Q1, corresponds to a non-trivial path ρo = αo
1 · · ·αo

n in

Qo(y, x). However, the trivial path in Q at a vertex x will be identified with the

trivial path in Qo at x.

2.3 Algebras given by a quiver with relations

In this thesis, an algebra does not necessarily have an identity, and an ideal

in an algebra is always a two-sided ideal unless stated otherwise. In this section,

we shall fix some notions and terminology for algebras defined by a quiver with

relations.

2.3.1 Definition. Let Q be a locally finite quiver. The path algebra kQ of Q

is the k-vector space having the set of all paths in Q as a basis. The product of

two paths αn · · ·α1 and βm · · · β1 is defined by

(βm · · · β1) (αn · · ·α1) =

{
βm · · · β1αn · · ·α1, if e (αn) = s (β1) ;

0, otherwise.

This multiplication is then extended by k-bilinearity to all elements in kQ.

The opposite algebra of kQ is the path algebra kQ◦ of the opposite quiver

Qo. Given ω =
∑s

i=1 λiρi ∈ kQ, where λi ∈ k and ρi are paths, we shall write

ω◦ =
∑s

i=1 λiρ
◦
i ∈ kQ◦.
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Then, we have an algebra anti-isomorphism kQ → kQ◦ given by ω 7→ ω◦ for

ω ∈ kQ.

Consider the path algebra kQ. An element ρ ∈ kQ is called quadratic if

ρ ∈ Q2 and homogeneous if ρ ∈ kQn for some n ≥ 1. Moreover, an element

ρ ∈ kQ(x, y) with x, y ∈ Q0 is called monomial if ρ = 0 or ρ = λp, where λ ∈ k

and p a path in Q, and polynomial otherwise.

Let R be an ideal of kQ. We write Rn = R ∩ kQn for n ≥ 0, R(x, y) =

R ∩ kQ(x, y) for x, y ∈ Q0, and Rn(x, y) = R ∩ kQn(x, y). Finally, we put

R(x,−) = ∪z∈Q0R(x, z) and R(−, y) = ∪z∈Q0R(z, y). We shall say that R is

quadratic or homogeneous if R is generated by a set of quadratic elements

or by a set of homogeneous elements in kQ, respectively. Moreover, R is called

a relation ideal if it is contained in (kQ+)2, where kQ+ is the ideal of kQ

generated by Q1.

Consider now a quotient algebra Λ = kQ/R, where R is a relation ideal of kQ.

Given x, y ∈ Q0. An element ρ =
∑s

i=1 λipi ∈ R(x, y) is called a relation for Λ

if the λi are non-zero scalars in k and the pi are pairwise distinct paths in Q(x, y)

such that
∑

i∈Σ λipi ̸∈ R for any ∅ ≠ Σ ⊂ {1, . . . , s}. In this case, the λipi are

called the summands of the relation ρ. In the sequel, we shall say that Λ is the

algebra defined by Q with relations in R. Moreover, we call Λ a quadratic or

graded algebra if R is a quadratic or homogeneous ideal, respectively.

Let us fix some notations for Λ = kQ/R, which will be used for the rest of

the thesis. Write γ̄ = γ + R ∈ Λ for γ ∈ kQ, and ex = ε̄x for x ∈ Q0. Then,

{ex | x ∈ Q0} is a complete set of orthogonal idempotents in Λ. The opposite

algebra of Λ is given by Λo = kQo/Ro, where Ro = {ρo | ρ ∈ R}. We shall write

γ̄ o = γo + Ro for γ ∈ kQ, but ex = εx + Ro for x ∈ Q0. In this way, we have an

algebra anti-isomorphism Λ → Λo given by γ̄ → γ̄o for γ̄ ∈ Λ.

A left Λ-module M is called unitary if M =
∑

x∈Q0
exM . In this case, we

shall write M(x) = exM , called the x-component, for all x ∈ Q0. We shall

denote by ModΛ the category of all unitary left Λ-modules, and by modbΛ the

full subcategory of ModΛ of finite dimensional modules.
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2.4 Locally noetherian algebras

Throughout this section, let Λ = kQ/R, where Q is a locally finite quiver and

R is a relation ideal. A left or right unitary Λ-module is called noetherian if

all of its submodules are finitely generated. We shall say that Λ is locally left

noetherian if Λea is noetherian for every a ∈ Q0; and locally right noetherian

if eaΛ is noetherian for every a ∈ Q0. As examples of locally noetherian algebras,

we introduce the following class of algebras.

2.4.1 Definition. Let Λ = kQ/R, where Q is a locally finite quiver and R is

a relation ideal. We say that Λ is multi-serial provided, for any α ∈ Q1, that

there exists at most one arrow β such that βα /∈ R and at most one arrow γ such

that αγ /∈ R.

Remark. It is evident that string algebras and special biserial algebras are

multi-serial; see [17, 59].

2.4.2 Proposition. Let Λ = kQ/R be a multi-serial algebra, where Q is a locally

finite quiver and R is a relation ideal. Then Λ is locally left and right noetherian.

Proof. Fix a ∈ Q0. Given α ∈ Q1(a,−), we claim that the left Λ-module Λα

is noetherian. For this purpose, we may assume that Λα is infinite dimensional.

Since Λ is multi-serial, Q contains an infinite path

a = a0
α1 // a1 // · · · // ai−1

αi // ai // · · ·

with α1 = α such that Λα has a k-basis {u1, u2, . . . , ui, . . . , }, where ui = ᾱi · · · ᾱ1.

Thus, every non-zero element u ∈ Λα is uniquely written as u =
∑n

i=1 λiui, where

λi ∈ k with λn ̸= 0, and we write deg(u) = n. Given non-zero elements u, v ∈ Λα,

it is not hard to to see that v = qu+w, where q ∈ Λ and w ∈ Λα such that w = 0

or deg(w) < deg(u). Using this fact, we deduce that if L is a non-zero left Λ-

submodule of Λα, then L = Λu, where u ∈ Λα with deg(u) being minimal. This

establishes our claim. Since Q is locally finite, Ja =
∑

α∈Q1(a,−) Λα is noetherian.

Since Λea/Ja is one-dimensional, we conclude that Λea is noetherian. Similarly,

we can show that eaΛ is a noetherian right Λ-module. The proof of the proposition

is completed.

Finally, we say that Λ is locally left bounded if Λea is finite dimensional for

any a ∈ Q0; locally right bounded if eaΛ is finite dimensional for any a ∈ Q0,
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and locally bounded if Λ is locally right and locally left bounded; compare [14,

(2.1)]. It is evident that a locally left or right bounded algebra is locally left or

right noetherian respectively.

2.5 Local trace function

Throughout this section, we let Λ = kQ/R, where Q is a locally finite quiver

and R is a relation ideal. In case Λ is finite dimensional, Lenzing’s trace function;

see [34] is localized to a local trace function in [29] for finite dimensional modules,

in order to establish the Strong No Loop Conjecture, that is, Q has no loop at

a vertex a if the corresponding simple module Sa is of finite projective dimension.

In this section, we shall further extend the notion of local trace function and

reformulate the main result in [29] under our most general setting.

We start with some notations and terminology. Given x ∈ Q0, we shall write

Px = Λex, which is clearly a projective module in ModΛ. We denote by [Λ,Λ]

the commutator group of Λ, that is the k-vector subspace of Λ generated

by the elements uv − vu with u, v ∈ Λ. And we write HH0(Λ) = Λ/[Λ,Λ],

called the 0-th Hochschild homology group of Λ. Given a ∈ Q0, we put

Λa = Λ/(
∑

x∈Q0\{a} ΛexΛ). Then, the canonical algebra projection Λ → Λa
induces a k-linear map Ha : HH0(Λ) → HH0(Λa). By definition, we see that

Ha(uv + [Λ,Λ]) = Ha(vu+ [Λ,Λ]), for all u, v ∈ Λ.

An index set for Q is a set Ω equipped with a map π : Ω → Q0. In this

case, we shall write ei = eπ(i) and Pi = Pπ(i) for i ∈ Ω . And for a ∈ Q0, we shall

write Ωa = π−1(a) and say that Ω is a-finite if Ωa is finite.

Fix a ∈ Q0 and an a-finite index set Ω . We write P (Ω) = ⊕i∈ΩPi with canon-

ical injections qi : Pi → P (Ω) and canonical projections pi : P
(Ω) → Pi. Consider

φ ∈ EndΛ(P
(Ω)). We may write φ = (uij)(i,j)∈Ω×Ω, where uij = (pjφqi)(ei) ∈

eiΛej. Observe that each row of the matrix (uij)(i,j)∈Ω×Ω has at most finitely

many non-zero entries. Since Ha(uii + [Λ,Λ]) = 0 for all i ∈ Ω\Ωa, we may

define the ea-trace tra(φ) of φ by setting

tra(φ) :=
∑

i∈ΩHa(uii + [Λ,Λ]) = Ha(
∑

i∈Ωa
uii + [Λ,Λ]) ∈ HH0(Λa).

In particular, tra(φ) = 0 if Ωa is empty.
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2.5.1 Lemma. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

relation ideal. Fix a vertex a of Q.

(1) Let φu : Λea → Λea be the right multiplication by some u ∈ eaΛea. Then

tra(φu) = ũ+ [Λa,Λa], where ũ = u+ (
∑

x∈Q0\a ΛexΛ) ∈ Λa.

(2) Let φ : P (Ω) → P (Θ) and ψ : P (Θ) → P (Ω) be Λ-linear morphisms, where Ω

and Θ are a-finite index sets for some a ∈ Q0. Then tra(φψ) = tra(ψφ).

Proof. Statement (1) follows immediately from the definition of the ea-trace. For

proving Statement (2), we consider the canonical injections qi : Pi → P (Ω) and

q′s : Ps → P (Θ) and the canonical projections pi : P
(Ω) → Pi and p

′
s : P

(Θ) → Ps,

for all i ∈ Ω and s ∈ Θ. Then, we may write φ = (uis)(i,s)∈Ω×Θ, where uis =

(p′sφqi)(ei) ∈ eiΛes, and ψ = (vsj)(s,j)∈Θ×Ω, where vsj = (pjψq
′
s)(es) ∈ esΛej.

Now, ψφ = (wij)(i,j)∈Ω×Ω, where

wij = (pj(ψφ)qi)(ei) =(pjψ)(
∑

s∈Θ(q
′
s((p

′
sφqi)(ei))

=(pjψ)(
∑

s∈Θ q
′
s(uis))

=
∑

s∈Θ(pjψq
′
s)(uis · es)

=
∑

s∈Θ uis · (pjψq′s)(es)
=
∑

s∈Θ uisvsj.

Similarly, φψ = (w′
st)(s,t)∈Θ×Θ, where w

′
st =

∑
i∈Ω vsiuit. By definition, we have

tra(ψφ) =
∑

i∈ΩHa(wii + [Λ,Λ])

=
∑

i∈ΩHa(
∑

s∈Θ uisvsi + [Λ,Λ])

=
∑

i∈Ω
∑

s∈ΘHa(uisvsi + [Λ,Λ])

and
tra(φψ) =

∑
s∈ΘHa(w

′
ss + [Λ,Λ])

=
∑

s∈ΘHa(
∑

i∈Ω vsiuis + [Λ,Λ])

=
∑

i∈Ω
∑

s∈ΘHa(uisvsi + [Λ,Λ]).

So, tra(φϕ) = tra(ϕφ). The proof of the lemma is completed.

Let a ∈ Q0. We shall denote by Proj(Λ, a) the full additive subcategory of

ModΛ generated by the projective modules isomorphic to some projective Λ-

module P (Ω), where Ω is an a-finite index set. Consider φ ∈ EndΛ(P ), where
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P ∈ Proj(Λ, a). Choosing a Λ-linear isomorphism ω : P → P (Ω), where Ω is an

a-finite index set, we define the ea-trace tra(φ) of φ by setting

tra(φ) := tra(ωφω
−1)

which is well-defined as shown below.

2.5.2 Lemma. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

relation ideal. Consider a projective module P ∈ Proj(Λ, a). Then, the ea-trace

tra(φ) is well-defined, for every φ ∈ EndΛ(P ).

Proof. Assume that ω : P → P (Ω) and θ : P → P (Θ) are Λ-linear isomorphisms,

where Ω and Θ are a-finite index sets for some a ∈ Q0. Given φ ∈ EndΛ(P ), by

Lemma 2.5.1(2), we have

tra(ωφω
−1) = tra((ωφθ

−1)(θω−1)) = tra((θω
−1)(ωφθ−1)) = tra(θφθ

−1).

The proof of the lemma is completed.

The following statement collects some basic properties of our local trace func-

tion; compare [29, (1.1)].

2.5.3 Proposition. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

relation ideal. Let P and P ′ be projective modules in Proj(Λ, a) for some a ∈ Q0.

(1) If φ, φ′ ∈ EndΛ(P ), then tra(φ+ φ′) = tra(φ) + tra(φ
′).

(2) If φ =

(
φ11 φ12

φ21 φ22

)
: P ⊕ P ′ → P ⊕ P ′ is a Λ-linear morphism, then

tra(φ) = tra(φ11) + tra(φ22).

(3) If φ : P → P ′ and ϕ : P ′ → P are Λ-linear morphisms, then

tra(φϕ) = tra(ϕφ).

(4) If ϕ : P → P ′ is an isomorphism and φ ∈ EndΛ(P ), then

tra(ϕφϕ
−1) = tra(φ).
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Proof. By the assumption, we have Λ-linear isomorphisms ω : P → P (Ω) and

θ : P ′ → P (Θ), where Ω and Θ are a-finite index sets for Q.

(1) Let φ, φ′ ∈ EndΛ(P ). Assume first that P = P (Ω). Write φ = (uij)(i,j)∈Ω×Ω

and φ′ = (vij)(i,j)∈Ω×Ω, where uij, vij ∈ eiΛej. Then, φ+φ′ = (uij + vij)(i,j)∈Ω×Ω.

By definition, we have

tra(φ) + tra(φ
′) =

∑
i∈ΩHa(uii + [Λ,Λ]) +

∑
i∈ΩHa(vii + [Λ,Λ])

=
∑

i∈ΩHa((uii + vii) + [Λ,Λ])

= tra(φ+ φ′).

In general, we have ωφω−1, ωφ′ω−1 ∈ EndΛ(P
(Ω)) such that ω(φ + φ′)ω−1 =

ωφω−1 + ωφ′ω−1. By definition, we have

tra(φ+ φ′) = tra(ω(φ+ φ′)ω−1) = tra(ωφω
−1) + tra(ωφ

′ω−1) = tra(φ) + tra(φ
′).

(2) Consider a Λ-linear morphism

φ =

(
φ11 φ12

φ21 φ22

)
: P ⊕ P ′ → P ⊕ P ′.

Suppose first that P = P (Ω) and P ′ = P (Θ). Then, we may write

φ =

(
φ11 φ12

φ21 φ22

)
=

(
(uij)(i,j)∈Ω×Ω (uit)(i,t)∈Ω×Θ

(usj)(s,j)∈Θ×Ω (ust)(s,t)∈Θ×Θ

)
,

where uij ∈ eiΛej, uit ∈ eiΛet, usj ∈ esΛej and ust ∈ esΛet. By definition,

tra(φ) =
∑

i∈Ωa
Ha(uii + [Λ,Λ]) +

∑
s∈Θa

Ha(uss + [Λ,Λ]) = tra(φ11) + tra(φ22).

In general, we have a Λ-linear isomorphism

ρ =

(
ω 0

0 θ

)
: P ⊕ P ′ → P (Ω) ⊕ P (Θ)

such that

ρφρ−1 =

(
ωφ11ω

−1 ωφ12θ
−1

θφ21ω
−1 θφ22θ

−1

)
: P (Ω) ⊕ P (Θ) → P (Ω) ⊕ P (Θ).

By definition, we have

tra(φ) = tra(ρφρ
−1) = tra(ωφ11ω

−1) + tra(θφ22θ
−1) = tra(φ11) + tra(φ22).
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(3) Given Λ-linear morphisms φ : P → P ′ and ϕ : P ′ → P , we obtain Λ-linear

morphisms ωϕθ−1 : P (Θ) → P (Ω) and θϕω−1 : P (Ω) → P (Θ). By Lemma 2.5.1(2),

tra(φϕ) = tra(θ(φϕ)θ
−1)

= tra((θφω
−1)(ωϕθ−1))

= tra((ωϕθ
−1)(θφω−1))

= tra(ωϕφω
−1)

= tra(ϕφ).

(4) Let φ ∈ EndΛ(P ) and let ϕ : P ′ → P be a Λ-linear isomorphism. By

Statement (3), we have tra(ϕφϕ
−1) = tra((φϕ

−1)ϕ) = tra(φ). The proof of the

proposition is completed.

Fix a ∈ Q0. Given M a module in ModΛ, a projective resolution

· · · // P−n d−n
// P 1−n · · · //// P 0 d0 //M // 0

is called called ea-bounded if P−n ∼= P (Ωn) for n ≥ 0, where the Ωn are a-finite

index sets for Q such that (Ωn)a is empty for all but finitely many n ≥ 0. In this

case, every φ ∈ EndΛ(M) induces a commutative diagram

· · · // P−n d−n
//

φ−n

��

P 1−n //

φ1−n

��

· · · // P 0 d0 //

φ0

��

M //

φ

��

0

· · · // P−n d−n
// P 1−n // · · · // P 0 d0 //M // 0,

and we define the ea-trace tra(φ) of φ by setting

tra(φ) :=
∑∞

n=0(−1)ntra(φ
−n) ∈ HH0(Λa).

In view of Proposition 2.5.3, we may establish the following important state-

ment; see, for details, [29, (1.3), (1.4)].

2.5.4 Proposition. Let Λ = kQ/R, where Q is a locally finite quiver and R is

a relation ideal.

(1) If M ∈ ModΛ admits an ea-bounded projective resolution, then tra(φ) is

well defined for every φ ∈ EndΛ(M).
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(2) Consider a commutative diagram with exact rows

0 // L
f //

φ
L

��

M
g //

φ
M

��

N //

φ
N

��

0

0 // L
f //M

g // N // 0

in ModΛ. If L and N admit ea-bounded projective resolutions, then so does

M and tra(φM
) = tra(φL

) + tra(φN
).
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Chapter 3

Graded algebras and graded

modules

The objective of this chapter is to investigate graded module categories over

a graded algebra given by a quiver with relations, especially to generalize some

classical results under the non-graded setting; compare [1] and [2].

Let Λ = kQ/R be a graded algebra, where Q is locally finite and R is a

homogeneous relation ideal of kQ. Then, Λ is a positively graded algebra with

Λ = ⊕i≥0Λi, where Λi = {γ̄ | γ ∈ kQi}.
To study graded module categories over Λ, we begin by constructing a crucial

tool for our investigation: a contravariant functor D : GModΛ → GModΛo,

which restricts to a duality D : gmodΛ → gmodΛo. In Section 4, we provide

descriptions of the morphisms in GProjΛ and GInjΛ, while in Section 5, we

delve into the graded radical and graded socle in GModΛ. In order to study the

graded projective covers and the graded injective envelopes, we explicitly describe

the finitely generated graded modules, the finitely cogenerated graded modules,

superfluous graded epimorphisms and essential graded monomorphisms. In the

final section, we shall introduce several Hom-finite Krull-Schmidt k-subcategories

of GModΛ.

3.1 General positively graded algebras

The purpose of this section is to recall the notions of general positively graded

algebras and graded modules from [52, 53]. It is important to note that our

algebras do not necessarily have an identity.
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3.1.1 Definition. A k-algebra A is called positively graded if there is a family

of k-vector subpaces {Ai}i≥0 of A such that

(1) A = ⊕i≥0Ai as a k-vector space, called the grading of A;

(2) AiAj ⊆ Ai+j, for all i, j ≥ 0.

Remark. Let A be a positively graded algebra. Then A0 is a subalgebra of A,

which does not necessarily have an identity.

For the rest of this section, A stands for a positively graded k-algebra.

3.1.2 Definition. Let A be a positively graded k-algebra. A left A-module M

is called graded provided that, for every i ∈ Z, there is a k-vector subspace Mi,

call the i-th homogeneous component, of M such that

(1) M = ⊕i∈ZMi as a k-vector space, called an A-grading;

(2) AiMj ⊆Mi+j, for all i ≥ 0 and j ∈ Z.

Remark. Clearly, A is a graded left A-module with A-grading A = ⊕i≥0Ai,

which is written as AA.

Let M = ⊕i∈ZMi be a graded left A-module. Given m ∈ M , we shall always

write m =
∑

i∈Zmi with mi ∈ Mi and finitely many nonzero mi. An element

mi ∈ Mi with i ∈ Z is called homogeneous of degree i. An A-submodule L

of M is said to be graded if L =
∑

i∈Z(Mi ∩ L), and in this case, L is a graded

left A-module with A-grading L = ⊕i∈ZLi, where Li = Mi ∩ L. In particular,

a graded submodule of AA is called a graded left ideal of A. The following

statement collects some well known properties of graded submodules of a graded

module. For the convenience of the reader, we include a proof.

3.1.3 Lemma. Let A be a positively graded k-algebra, and let M = ⊕i∈ZMi be a

graded left A-module.

(1) An A-submodule N of M is graded if and only if, given m =
∑

i∈Zmi ∈ N

with mi ∈Mi, we have mi ∈ N for all i ∈ Z.

(2) If L and N are graded submodules of M , then L+N and L∩N are graded

submodules of M .
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(3) If I is a graded left ideal of A and m is a homogeneous element of M , then

Im is a graded submodule of M.

(4) If L is a graded submodule of M , then the quotient M/L is a graded left A-

module with A-grading M/L = ⊕i∈Z(M/L)i, where (M/L)i = (Mi + L)/L.

Proof. (1) Let N be an A-submodule of M . Suppose first that N is a graded.

Let m =
∑

i∈Zmi ∈ N , where mi ∈ Mi. By definition, we can also write

m =
∑

i∈Zm
′
i, where m

′
i ∈Mi ∩N ⊆Mi. Thus, mi = m′

i ∈ N, for all i ∈ Z.
Conversely, assume that this condition is satisfied. Given m ∈ N , we may

write m =
∑

i∈Zmi, where mi ∈ Mi. By the condition, mi ∈ N , and hence,

mi ∈Mi ∩N . This shows that N =
∑

i∈Z(Mi ∩N).

(2) Let L and N be graded submodules ofM . Then L+N is an A-submodule

of M . Consider x ∈ L + N . We may assume that x = m +m′ with m ∈ L and

m′ ∈ N . Then m =
∑

i∈Zmi and m′ =
∑

i∈Zm
′
i, where mi ∈ Mi ∩ L and

m′
i ∈ Mi ∩ N . Then, x =

∑
i∈Z(mi + m′

i), where mi + m′
i ∈ Mi ∩ (L + N).

Therefore, L+N =
∑

i∈ZMi ∩ (L+N).

(3) Assume that I is a graded left ideal of A. Then, I = ⊕j∈ZIj where

Ij = Aj ∩ I. Consider m ∈ Ms with s ∈ Z. Clearly, Im is an A-submodule of

M. Let um ∈ Im, where u ∈ I. Writing u =
∑

j∈Z uj with uj ∈ Ij, we have

x =
∑

j∈Z(ujm) =
∑

i∈Z ui−sm, where ui−sm ∈ Mi ∩ (Im). This shows that

Im =
∑

i∈ZMi ∩ (Im).

(4) Let L be a graded submodule ofM . Observe thatM/L =
∑

i∈Z(Mi+L)/L.

By definition, Aj · (Mi + L)/L = (AjMi + L)/L ⊆ (Mi+j + L)/L, for all i, j ∈ Z.
Let

∑
i∈Z(mi + L) = 0̄, where mi ∈ Mi such that mi + L = 0̄ for all but finitely

many i ∈ Z. Without loss of generality, we may assume that mi = 0 for all but

finitely many i ∈ Z. Then, m =
∑

i∈Zmi ∈ L. By Statement (1), mi ∈ L for all

i ∈ Z. Thus, M/L = ⊕i∈Z(Mi + L)/L. The proof of the lemma is completed.

As an immediate consequence of Lemma 3.1.3, we obtain the following state-

ment.

3.1.4 Corollary. Let A be a positively graded k-algebra, and let M be a graded

left A-module. If m1, . . . ,mr ∈ M are homogeneous, then Am1 + · · ·+ Amr is a

graded submodule of M .

Proof. Assume that m1 is homogeneous of degree i. Then, Am1 = ⊕j≥0Ajm1,

which is clearly graded submodule of M . By Lemma 3.1.3(2), Am1 + · · ·+Amr

is a graded submodule of M . The proof of the corollary is completed.
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Let M be a graded left A-module. A graded submodule L of M is said

to be graded essential in M if M ̸= 0 and L ∩ N ̸= 0, for any non-zero

graded submodule N of M ; and graded superfluous in M if L is a proper

graded submodule of M and M is the only graded submodule of M such that

L+M =M . The following statement is evident.

3.1.5 Lemma. Let A be a positively graded k-algebra, and let M be a graded left

A-module.

(1) A graded submodule of M is graded superfluous if and only if it is contained

in a graded superfluous submodule of M .

(2) A graded submodule of M is graded essential if and only if it contains a

graded essential submodule of M .

Let M be a graded left A-module. One says that M is graded simple if it is

non-zero with exactly two graded submodules 0 and M ; graded semisimple if

it is a direct sum of graded simple modules. Moreover, a graded submodule L of

M is called graded maximal if there exists no graded submodule N of M with

L ⊊ N ⊊M. The following statement is well known.

3.1.6 Lemma. Let A be a positively graded k-algebra, and let M be a graded left

A-module. A graded submodule L of M is graded maximal if and only if M/L is

graded simple.

The following definitions will play an essential role in our later study of graded

modules.

3.1.7 Definition. Let A be a positively graded k-algebra, and letM be a graded

left A-module.

(1) The graded socle socM ofM is defined to be the sum of all graded simple

submodules of M in case M has graded simple submodules; and otherwise,

socM = 0.

(2) The graded radical radM of M is defined to be the intersection of all

maximal graded submodules of M if M has maximal graded submodules;

and otherwise, radM =M.
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(3) The graded top ofM is defined to be the graded quotient module topM =

M/radM .

Let M,N be graded left A-modules. An A-linear morphism f : M → N is

called graded if f(Mi) ⊆ Ni for all i ∈ Z. We shall write fi : Mi → Ni, where

i ∈ Z, for the maps obtained by restricting f . The following statement is well

known.

3.1.8 Proposition. Let A be a positively graded k-algebra, and let f : M → N

be a graded A-linear morphism of graded left A-modules.

(1) Imf = ⊕i∈Z(Imf)i is a graded submodule of N , where (Imf)i = Im(fi).

(2) Kerf = ⊕i∈Z(Kerf)i is a graded submodule of M , where (Kerf)i = Ker(fi).

(3) There is a one-one correspondence L 7→ L/Ker(f) from the class of graded

submodules L of M with Ker(f) ⊆ L ⊆M onto the class of graded submod-

ules of Im(f).

Let M = ⊕i∈ZMi be a graded left A-module. Given s ∈ Z, we define the

grading s-shift M⟨s⟩ of M by M⟨s⟩i =Mi+s for all i ∈ Z. And for a graded A-

linear morphism f : M → N , we define the grading s-shift f⟨s⟩ : M⟨s⟩ → N⟨s⟩
of f by f⟨s⟩i = fi+s, for all i ∈ Z. The following statement is evident.

3.1.9 Lemma. Let A be a positively graded k-algebra. If f :M → N is a graded

A-linear morphism of graded left A-modules, then Ker(f⟨s⟩) = (Kerf)⟨s⟩ and

Im(f⟨s⟩) = (Imf)⟨s⟩, for all s ∈ Z.

Let M = ⊕i∈ZMi be a graded left A-module. Given a k-vector space V ,

it is clear that M ⊗ V = ⊕i∈ZMi ⊗ V is a graded left A-module such that

a(m⊗ v) = (am)⊗ v, for all a ∈ A, m ∈M and v ∈ V . The following statement

is evident.

3.1.10 Lemma. Let A be a positively graded k-algebra. Given a graded left A-

module M and a k-vector space V , we have (M ⊗ V )⟨s⟩ = M⟨s⟩ ⊗ V, for all

s ∈ Z.
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3.2 Positively graded algebras given by a quiver

with relations

Throughout the rest of this chapter, we shall concentrate on graded algebras

given by a quiver with relations. For this purpose, we shall always assume that

Λ = kQ/R is a graded algebra, where Q is a locally finite quiver and R is

a homogeneous relation ideal of kQ. It is important to note that Λ does not

necessarily have an identity. The terminology, the notations and the results

stated in this section will be used frequently in the sequel.

A graded left Λ-module M = ⊕i∈ZMi is called unitary if M =
∑

x∈Q0
exM .

LetM be such a unitary graded left Λ-module. Since the ex in Λ with x ∈ Q0 are

pairwise orthogonal, it is easy to see thatM = ⊕x∈Q0 M(x), whereM(x) = exM ,

called the x-point component of M . As a consequence, M = ⊕i∈Z;x∈Q0 Mi(x),

where Mi(x) = exMi, called the (i, x)-piece of M . Given m ∈ M , by writing

m =
∑

(i,x)∈Z×Q0
mi,x with mi,x ∈Mi(x), we shall assume implicitly that mi,x = 0

for all but finitely pairs (i, x) ∈ Z×Q0. An element m ∈M will be called pure

if m ∈Mi(x) for some (i, x) ∈ Z×Q0.

The following easy statement is useful.

3.2.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a graded left Λ−module M . If N is a Λ-submodule of M , then

the following statements are equivalent:

(1) N is a graded Λ-submodule of M ;

(2) N =
∑

(i,x)∈Z×Q0
Ni,x, where Ni,x is a k-vector subspace of Mi(x);

(3) for any m =
∑

(i,x)∈Z×Q0
mi,x ∈ N with mi,x ∈ Mi(x), we have mi,x ∈ N

for all (i, x) ∈ Z×Q0.

Proof. Let N be a Λ-submodule of M . First, suppose that Statement (1) holds.

Given m ∈ N , we may write m =
∑

i∈Zmi, where mi ∈Mi. By Lemma 3.1.3(1),

mi ∈ N for all i ∈ Z. Since M is unitary, we have mi =
∑

x∈Q0
exmi with

exmi ∈ Mi(x) ∩ N for all (i, x) ∈ Z × Q0. Thus, N =
∑

(i,x)∈Z×Q0
(Mi(x) ∩ N).

In particular, Statement (2) holds.

Now, suppose that Statement (3) holds. Given anym ∈ N , we may writem =∑
(i,x)∈Z×Q0

mi,x where mi,x ∈ Mi(x). By Statement (3), mi,x ∈ N , and hence,
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mi,x ∈Mi(x)∩N for all (i, x) ∈ Z×Q0. This shows thatN =
∑

(i,x)∈Z×Q0
(Mi∩N).

In particular, Statement (2) holds.

Finally, suppose that Statement (2) holds, that is, N =
∑

(i,x)∈Z×Q0
Ni,x,

where Ni,x is a k-vector subspace of Mi(x). Then, any element m ∈ N can be

written as m =
∑

(i,x)∈Z×Q0
ni,x with ni,x ∈ Ni,x ⊆ Mi(x) ⊆ Mi. Assume that

m =
∑

(i,x)∈Z×Q0
mi,x with mi,x ∈ Mi(x). Then, mi,x = ni,x ∈ N for all (i, x) ∈

Z × Q0. Therefore, Statement (3) holds. Moreover, assume that m =
∑

∈Zmi,

where mi ∈ Mi. Observing that
∑

x∈Q0
ni,x ∈ Mi, we get mi =

∑
x∈Q0

ni,x ∈ N,

for all i ∈ Z. By Lemma 3.1.3(1), N is a graded submodule of M . That is,

Statement (1) holds. The proof of the lemma is completed.

Let f : M → N be a graded Λ-linear morphism between unitary graded left

Λ-modules. We shall write fi,x :Mi(x) → Ni(x), where i ∈ Z and x ∈ Q0, for the

maps obtained by restricting f . Observe that such a graded Λ-linear morphism

f is uniquely determined by a family of k-linear maps fi,x :Mi(x) → Ni(x) with

(i, x) ∈ Z×Q0 such that ufi,x(m) = fi+j,y(um), for all u ∈ eyΛjex andm ∈Mi(x).

Clearly, the unitary graded left Λ-modules together with the graded Λ-linear

morphisms form an abelian k-category, which will be denoted by GModΛ. Given

modulesM,N ∈ GModΛ, we shall write GHomΛ(M,N) for the k-vector space of

graded Λ-linear morphisms f :M → N . In particular, GEndΛ(M) = GHomΛ(M,M).

The following statement is evident.

3.2.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. A sequence of morphisms L
f //M

g // N in GModΛ is exact if and

only if the sequences Li(x)
fi,x //Mi(x)

gi,x // Ni,x(x) are exact in Modk, for all

(i, x) ∈ Z×Q0.

As in the classical case where graded algebras have an identity; see [52, page

7], the abelian category GModΛ has arbitrary direct sums and arbitrary products.

3.2.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider a family {Mσ}σ∈Σ of modules in GModΛ.

(1) The direct sumM = ⊕σ∈ΣMσ exists in GModΛ such thatMi(x) = ⊕σ∈Σ (Mσ)i(x)

for all (i, x) ∈ Z×Q0.

(2) The product N = Πσ∈ΣMσ exists in GModΛ such that Ni(x) = Πσ∈Σ (Mσ)i(x)

for all (i, x) ∈ Z×Q0.
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Proof. We shall only prove Statement (2), since the proof of Statement (1) is dual.

Put N = ⊕(i,x)∈Z×Q0Ni(x), where Ni(x) = Πσ∈Σ (Mσ)i(x). For any u ∈ exΛjey
and (mσ)σ∈Σ ∈ Ni(x), we define u · (mσ)σ∈Σ = (umσ)σ∈Σ ∈ Ni+j(y). This defines

a graded Λ-module structure of N. Let {pσ : N → Mσ}σ∈Σ be the family of

canonical projections, in which pπ : N → Mµ; (mσ)σ∈Σ 7→ mµ for all µ ∈ Σ.

Assume that L is a graded Λ-module with a family {fσ : L→Mσ}σ∈Σ of graded

Λ-linear morphisms. Fix (i, x) ∈ Z × Q0. Note that, by definition, Ni(x) is a

product of (Mσ)i(x). Then there is a unique k-linear map gi,x : Li(x) → Mi(x)

such that for each σ ∈ Σ the diagram

(Mσ)i(x) Ni(x)=Πσ∈Σ (Mσ)i(x)
(pσ)i,xoo

Li(x)

(fσ)i,x

OO

gi,x

44

commutes. Thus, we obtain a unique k-linear map g = (gi,x)(i,x) : L → M such

that the diagram

Mσ N
pσoo

L

g

99

fσ

OO

commutes, for each σ ∈ Σ . Next, we show that g is Λ-linear, or equivalently, the

diagram

Li+j(y)
gi+j,y //Mi+j(y)

Li(x)
gi,x //

u

OO

Mi(x)

u

OO

commutes for all u ∈ eyΛjex with (j, y) ∈ Z×Q0. Given m ∈ Li(x), we have

u(fi,x(m)) = u(((pσ)i,x ◦ gi,x)(m)) = u((pσ)i,x(gi,x(m))) = (pσ)i+j,y(u(gi,x(m)))

and

fi+j,y(um) = (pσ)i+j,y ◦ gi+j,y(um) = (pσ)i+j,y(gi+j,y(um))

for all σ ∈ Σ. Since u(fi,x(m)) = fi+j,y(um), we have

(pσ)i+j,y(u(gi,x(m))) = (pσ)i+j,y(gi+j,y(um))

for all σ ∈ Σ. This implies that u(gi,x(m)) = gi+j,y(um). Therefore, g is a Λ-linear

map. The proof of the proposition is completed.
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In the sequel, we shall need to consider various types of graded Λ-modules as

defined below.

3.2.4 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Let M ∈ GModΛ with M = ⊕i∈ZMi = ⊕x∈Q0M(x) = ⊕(i,x)∈Z×Q0Mi(x).

We shall say that M is

(1) finitely supported if M(x) = 0 for all but finitely many x ∈ Q0;

(2) finitely piece-supported if Mi(x) = 0 for all but finitely many (i, x) ∈
Z×Q0;

(3) bounded above if Mi = 0 for i≫ 0;

(4) bounded below if Mi = 0 for i≪ 0;

(5) bounded if Mi = 0 for all but finitely many i ∈ Z.

(6) locally finite dimensional if Mi is finite dimensional for all i ∈ Z;

(7) piecewise finite dimensional if Mi(x) is finite dimensional for every

(i, x) ∈ Z×Q0.

The full subcategories of GModΛ of finitely piece-supported modules, of boun-

ded below modules and of bounded above modules will be written as GModbΛ,

GMod+Λ, GMod−Λ, respectively. Moreover, we shall denote by gmodΛ the full

subcategory of GModΛ of piecewise finite dimensional modules, while the full

subcategories of gmodΛ of finite dimensional modules, of bounded below mo-

dules and of bounded above modules will be written as gmodbΛ, gmod+Λ, gmod−Λ,

respectively.

3.2.5 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then gmodΛ is an extension-closed abelian subcategory of GModΛ.

Proof. It amount to show that given an exact sequence

0 // L
f //M

g // N // 0

in GModΛ, we haveM ∈ gmodΛ if and only if L,N ∈ gmodΛ. Indeed, by Lemma

3.2.2, the sequence 0 // Li(x)
fi,x //Mi(x)

gi,x // Ni(x) // 0 is exact for each

(i, x) ∈ Z×Q0. Therefore, dimkMi(x) < ∞ for all (i, x) ∈ Z×Q0 if and only if

dimkLi(x) < ∞ and dimkNi(x) < ∞, for all (i, x) ∈ Z × Q0. The proof of the

lemma is completed.
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3.3 The contravariant functor D

Throughout this section, Λ = kQ/R is a graded algebra, where Q is a locally

finite quiver. We shall construct a contravariant functorD : GModΛ → GModΛo,

by applying D = Homk(−, k) to every piece of a graded Λ-module. This functor

restricts to a duality D : gmodΛ → gmodΛo. Our functor D is different from the

similar functor defined in [42, page 70], where D is applied to every homogeneous

component of a graded module, and the one defined in [16]; see also [26, 11],

where D is applied to every point-component of a non-graded module.

Let M be a module in GModΛ. First, we write DM = ⊕i∈Z(DM)i, where

(DM)i = ⊕x∈Q0 D(M−i(x)). Then for φ ∈ D(M−i(x)) and u ∈ exΛjey, we define

uo ·φ ∈ D(M−i−j(y)) by setting

(uo · φ)(m) = φ(um), for all m ∈M−i−j(y).

It is easy to verify that DM ∈ GModΛo with (DM)i(x) = D(M−i(x)) for all

(i, x) ∈ Z × Q0. Sometimes, we shall consider DM as a k-vector subspace of

DM = Homk(M,k) in the following way: given φ =
∑

(i,x)∈Z×Q0
φi,x ∈ DM with

φi,x ∈ D(Mi(x)), for m =
∑

(j,y)∈Z×Q0
mj,y ∈ M with mj,y ∈ Mj(y), put φ(m) =∑

(i,x)∈Z×Q0
φi,x(mi,x). Moreover, given a morphism f : M → N in GModΛ, we

obtain a morphism Df : DN → DM in GModΛo by setting (Df)i,x = D(f−i,x),

for all (i, x) ∈ Z × Q0. Clearly, this yields an additive contravariant functor

D : GModΛ → GModΛo.

3.3.1 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) If M ∈ GModΛ and s ∈ Z, then D(M⟨s⟩) = (DM)⟨−s⟩.

(2) Given M ∈ GModΛ and V ∈ Modk, there exists a binatural morphism

θ : DM ⊗DV → D(M ⊗ V )

in GModΛ, which is an isomorphism in case M ∈ gmodΛ or V ∈ modk.

(3) The functor D : GModΛ → GModΛo is exact, and it restricts to functors

D : GMod+Λ → GMod−Λo and D : GMod−Λ → GMod+Λo.

61



Proof. (1) Let M ∈ GModΛ. Given s ∈ Z, by definition, we see that

(DM)⟨−s⟩i = (DM)i−s = ⊕x∈Q0 D(Ms−i(x))

and

(DM⟨s⟩)i = ⊕x∈Q0 D(M⟨s⟩−i(x)) = ⊕x∈Q0 D(Ms−i(x)),

for all i ∈ Z. That is, D(M⟨s⟩) = (DM)⟨−s⟩.
(2) Let M ∈ GModΛ and V ∈ Modk. For any (i, x) ∈ Z×Q0, by definition

(DM ⊗DV )i(x) = (DM)i(x)⊗DV = D(M−i(x))⊗DV

and

(D(M ⊗ V ))i(x) = D((M ⊗ V )−i(x)) = D(M−i(x)⊗ V ).

Now by Corollary 2.1.2(2), we have a binatural k-linear map

θi,x : D(M−i(x))⊗DV → D(M−i(x)⊗ V ) : φ⊗ f → θi,x(φ⊗ f).

Let φ ∈ D((M−i(x)), f ∈ DV and u ∈ exΛjey with (i, x), (j, y) ∈ Z×Q0. For

m ∈M−i−j(y) and v ∈ V, as defined in Corollary 2.1.2(2), we have

(uo · θi,x(φ⊗ f))(m⊗ v) = θi,x(φ⊗ f)((um)⊗ v) = φ(um)f(v)

and
θi+j,y(u

o · (φ⊗ f))(m⊗ v) = θi+j,y((u
o · φ)⊗ f)(m⊗ v)

= ((uo · φ)(m))f(v)

= φ(um)f(v).

That is, uo · θi,x(φ ⊗ f) = θi+j,y(u
o · (φ ⊗ f)). Therefore, θ = (θi,x)(i,x)∈Z×Q0 is a

morphism in GModΛ. Since the θi,x are natural in Mi,x and V , we see that θ is

natural in M and V . Finally, if M ∈ gmodΛ or V ∈ modk, then it follows from

Corollary 2.1.2(2) that θi,x is a k-linear isomorphism for every (i, x) ∈ Z × Q0.

Thus, θ is an isomorphism.

(3) Let L
f //M

g // N be an exact sequence in GModΛ. Given any

(i, x) ∈ Z × Q0, by Lemma 3.2.2, the sequence Li(x)
fi,x //Mi(x)

gi,x // Ni,x(x)

is exact, and hence, the sequence D(Ni(x))
D(gi,x) // D(Mi(x))

D(fi,x) // D(Li,x(x)) is

exact. Again by Lemma 3.2.2, the sequence DN
Dg // DM

Df // DL is exact in

GModΛo. This proves the first part of Statement (3), and the second part follows

immediately from the definition of D. The proof of the proposition is completed.

The following statement says thatD converts direct sums into direct products.
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3.3.2 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Let {Mω}ω∈Ω be a family of modules in GModΛ. Then

D(⊕ω∈ΩMω) ∼= Πω∈ΩD(Mω).

Proof. Write M = ⊕ω∈ΩMω and N = Πω∈ΩD(Mω). Fix (i, x) ∈ Z × Q0. By

Proposition 3.2.3, Mi(x) = ⊕ω∈Ω(Mω)i(x) and Ni(x) = Πω∈Ω(D(Mω))i(x) =

Πω∈ΩD((Mω)−i(x)). For each ω ∈ Ω, denote by qω : (Mω)i(x) → Mi(x) the

canonical injection. It is well known that we have a k-linear isomorphism

Φi,x : (DM)i(x) = D(⊕ω∈Ω(Mω)−i(x)) → Πω∈ΩD((Mω)−i(x)) = Ni(x)

such that Φi,x(f) = (f ◦ qω)ω∈Ω for all f ∈ (DM)i(x). Given f ∈ (DM)i(x)

and u ∈ eyΛjex, where i, j ∈ Z and x, y ∈ Q0, it is a routine verification that

u · Φi,x(f) = Φi+j,y(u · f). Therefore, Φ = (Φi,x)(i,x)∈Z×Q0 : DM → N is a

morphism in GModΛ. The proof of the proposition is completed.

The next statement is our promised duality.

3.3.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) Given M ∈ GModΛ, there is a natural monomorphism ψM : M → D2M

in GModΛ, which is an isomorphism in case M ∈ gmodΛ.

(2) The contravariant functor D : gmodΛ→gmodΛo is a duality, which restricts

to dualities D : gmod+Λ → gmod−Λo and D : gmod−Λ → gmod+Λo.

Proof. Let M be a module in GModΛ. Given (i, x) ∈ Z × Q0, it is well known

that there is a canonical k-linear monomorphim

ψMi,x :Mi(x) → D2(Mi(x)) = (D2M)i(x)

given by the formula ψMi,x(m)(φ) = φ(m), for all φ ∈ D(Mi(x)) and m ∈ Mi(x).

We claim that this yields a graded Λ-linear morphism

ψM = (ψMi,x)(i,x)∈Z×Q0 :M → D2M,

or equivalently, the following diagram commutes

Mi(x)
ψM
i,x //

u

��

D2(Mi(x))

u

��
Mi+j(y)

ψM
i+j,y // D2(Mi+j(y))
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for u ∈ eyΛjex and (i, x), (j, y) ∈ Z × Q0. Indeed, for m ∈ Mi(x) and φ ∈
D(Mi+j(y)), we have

ψMi+j,y(um)(φ) = φ(um)

= (uo · φ)(m)

= ψMi,x(m)(uo · φ)
= (u · ψMi,x(m))(φ).

This establishes our claim. Next, consider a morphism f : M → N in GModΛ.

Fix (i, x) ∈ Z×Q0. For m ∈Mi(x) and φ ∈ D(Ni(x)), we have

(ψNi,x ◦ fi,x)(m)(φ) = ψNi,x(fi,x(m))(φ) = φ(fi,x(m)) = (φ ◦ fi,x)(m)

and
((D2f)i,x ◦ ψMi,x)(m)(φ) = (D2(fi,x)(ψ

M
i,x(m)))(φ)

= ((ψMi,x(m)) ◦D(fi,x))(φ)

= ψMi,x(m)(D(fi,x)(φ))

= ψMi,x(m)(φ ◦ fi,x)
= (φ ◦ fi,x)(m).

Thus, (ψNi,x ◦ fi,x)(m) = ((D2f)i,x ◦ ψMi,x)(m). So, ψNi,x ◦ fi,x = (D2f)i,x ◦ ψMi,x. This
shows that ψ is natural in M.

Finally, if M ∈ gmodΛ, then Mi(x) ∈ modk, and consequently, ψMi,x is a

k-linear isomorphism, for all (i, x) ∈ Z × Q0. That is, ψM is a graded isomor-

phism. Thus, Statement (2) follows from Proposition 3.3.1(3). The proof of the

proposition is completed.

Using the duality D : gmodΛ→gmodΛo, we have the following result.

3.3.4 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If f : M → N is left minimal in gmodΛ, then Df : DN → DM is right

minimal in gmodΛo.

(2) If f : M → N right minimal in gmodΛ, then Df : DN → DM is left

minimal in gmodΛo.

64



Proof. We shall only prove Statement (1), since Statement(2) is dual. Suppose

that f :M → N is left minimal in gmodΛ. Let g : DN → DN be a morphism in

gmodΛo such that Df ◦ g = Df . Then, Dg ◦D2f = D2f . By proposition 3.3.3,

we have ψN ◦ f = D2f ◦ ψM , where ψM : M → D2M and ψN : N → D2N are

graded isomorphisms. Thus, we see that

ψN ◦ f = D2f ◦ ψM = Dg ◦D2f ◦ ψM = Dg ◦ ψN ◦ f.

So, f = (ψN)−1 ◦Dg ◦ ψN ◦ f , where (ψN)−1 is an inverse of ψN . Since f is left

minimal, (ψN)−1 ◦Dg ◦ψN is a graded automorphism, and hence, so is Dg. This

shows that Df is right minimal. The proof of the Lemma is completed.

3.4 Graded projective modules and graded in-

jective modules

Throughout this section, let Λ = kQ/R be a graded k-algebra, where Q is

a locally finite quiver. Under our general setting of Λ without an identity, we

study graded projective Λ-modules and the graded injective Λ-modules. We shall

give an explicit description of the morphisms between graded projective modules

with a finitely piece-supported top and those between graded injective modules

with a finitely piece-supported socle. Moreover, we shall prove that, as under

the classical setting, GModΛ has enough projective objects and enough injective

objects.

To start with, we put Pa = Λea for each a ∈ Q0. Since Q is a locally finite,

Pa = ⊕i∈Z(Pa)i ∈ gmodΛ, where (Pa)i = Λiea. In particular, (Pa)i = 0 for i < 0.

In order to describe graded morphisms from such modules, we fix some notations

which will be used for the rest of this thesis. Let M be a module in GModΛ.

Given u ∈ eyΛsex with s ∈ Z and x, y ∈ Q0, the left multiplication by u yields a

k-linear map

M(u) :Mi(x) →Mi+s(y);m 7→ um,

for every i ∈ Z. On the other hand, given m ∈ Ms(a) with s ∈ Z and a ∈ Q0,

the right multiplication by m yields a graded Λ-linear morphism

M [m] : Pa⟨−s⟩ →M ; v 7→ vm.
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3.4.1 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider modules M ∈ GModΛ, W ∈ Modk and Pa⟨−s⟩ ⊗ V with

(s, a) ∈ Z×Q0 and V ∈ Modk. We have a k-linear monomorphism

φ
M
:Ms(a)⊗Homk(V,W ) → GHomΛ(Pa⟨−s⟩ ⊗ V,M ⊗W );m⊗f 7→M [m]⊗ f,

which is natural in M . Moreover, φ
M

is an isomorphism in case Ms(a) or V is

finite dimensional.

Proof. Consider M ∈ GModΛ and W ∈ Modk. We first show that the k-linear

map φ
M
stated in the proposition is natural inM . Given a morphism g :M → N

in GModΛ, we have a commutative diagram

Ms(a)⊗ Homk(V,W )
φM //

gs,a⊗id

��

GHomΛ(Pa⟨−s⟩ ⊗ V,M ⊗W )

(g⊗idW )∗
��

Ns(a)⊗ Homk(V,W )
φN // GHomΛ(Pa⟨−s⟩ ⊗ V,N ⊗W ),

where (g ⊗ idW )∗ = GHomΛ(Pa⟨−s⟩ ⊗ V, g ⊗ idW ). Indeed, we have

(φN ◦ (gs,a ⊗ id))(m⊗ f)(ea ⊗ v) = φN(gs,a(m)⊗ f)(ea ⊗ v)

= (M [gs,a(m)]⊗ f)(ea ⊗ v)

= gs,a(m)⊗ f(v)

and

((g ⊗ idW )∗ ◦ φM)(m⊗ f)(ea ⊗ v) = (g ⊗ idW )∗(M [m]⊗ f)(ea ⊗ v)

= (g ⊗ idW ) ◦ (M [m]⊗ f)(ea ⊗ v)

= (g ⊗ idW )(m⊗ f(v))

= gs,a(m)⊗ f(v)

for all m ∈Ms,a, f ∈ Homk(V,W ) and v ∈ V ; thus, we see that φN ◦ (gs,a⊗ id) =

(g ⊗ idW )∗ ◦ φM .
Choose a basis {mi | i ∈ Ω} of M−s(a). If ω =

∑
i∈Ω mi ⊗ fi ∈ ker(φ

M
) for

some fi ∈ Homk(V,W ), then φ
M
(ω)(ea ⊗ v) =

∑
i∈Ω mi ⊗ fi(v) = 0, and hence,

fi(v) = 0, for all v ∈ V and i ∈ Ω . That is, φ
M

is a monomorphism.

Consider f ∈ GHomΛ(Pa⟨−s⟩ ⊗ V,M ⊗ W ). Given v ∈ V , since ea ⊗ v ∈
Pa⟨−s⟩s ⊗ V , we see that f(ea ⊗ v) ∈ (M ⊗ V )s(a) = Ms(a)⊗ V , and hence, we

can uniquely write f(ea ⊗ v) =
∑

i∈Ω mi ⊗ wi,v, for some wi,v ∈ W . This yields,

for every i ∈ Ω , a k-linear map fi : V → W , sending v to wi,v. In case Ω is
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finite, f = φ
M
(
∑

i∈Ω mi ⊗ fi). Otherwise, choose a basis {vj | j ∈ ∆} of V and a

basis {wi | i ∈ Θ} of W . For (i, j) ∈ Θ×∆, we have θij ∈ Homk(V,W ) such that

θij(vj) = wi and θij(vp) = 0 for j ̸= p. For each j ∈ ∆, we may write uniquely

f(ea ⊗ vj) =
∑

i∈Θ mij ⊗ wi, where mij ∈Ms(a) with mij = 0 for all but finitely

many i ∈ Θ. In case ∆ is finite, mij = 0 for all but finitely many (i, j) ∈ Θ ×∆,

and f = φ
M
(
∑

(i,j)∈Θ⊗∆mij ⊗ θij). The proof of the proposition is completed.

Remark. By Proposition 3.4.1, Pa⟨−s⟩⊗V with (s, a) ∈ Z×Q0 and V ∈ Modk

are graded projective Λ-modules. Thus, the strictly full additive subcategory of

GModΛ generated by them will be written as GProjΛ. Moreover, we denote by

gprojΛ the strictly full additive subcategory of GModΛ generated by Pa⟨−s⟩ with
(s, a) ∈ Z×Q0.

As a special case of Proposition 3.4.1, we obtain the following useful result.

3.4.2 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. GivenM ∈ GModΛ and Pa⟨−s⟩ with (s, a) ∈ Z×Q0, we obtain a k-linear

isomorphism

φ
M
:Ms(a) → GHomΛ(Pa⟨−s⟩,M);m 7→M [m],

whose inverse is given by η
M
: GHomΛ(Pa⟨−s⟩,M) →Ms(a); f 7→ f(ea).

Proof. Let f ∈ GHomΛ(Pa⟨−s⟩,M). Observing that ea ∈ Pa⟨−s⟩s(a), we see that
m = f(ea) ∈Ms(a) such that f =M [m]. The proof of the corollary is completed.

We shall describe the morphisms in GProjΛ; compare [9, (7.6)]. To simplify

the notation, for u ∈ eaΛs−teb = Pb⟨−t⟩s, the right multiplication by u will be

simply written as

P [u] : Pa⟨−s⟩ → Pb⟨−t⟩; v 7→ vu.

This notation will be used for the rest of this thesis. Note, however, that it does

not distinguish P [u] from its grading shifts.

3.4.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider Pa⟨−s⟩ ⊗ V and Pb⟨−t⟩ ⊗W with (s, a), (t, b) ∈ Z × Q0

and V,W ∈ Modk. Then, we obtain a k-linear isomorphism

φ : eaΛs−teb⊗Homk(V,W )→GHomΛ(Pa⟨−s⟩⊗V, Pb⟨−t⟩⊗W );u⊗f 7→ P [u]⊗f.
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Proof. Write M = Pb⟨−t⟩ ⊗W . Then, Ms(a) = Pb⟨−t⟩s(a) = eaΛs−teb, which is

finite dimensional. By Proposition 3.4.1, we obtain a k-linear isomorphism φ as

stated in the proposition. The proof of the proposition is completed.

Given a ∈ Q0, we shall write P o
a = Λoea ∈ projΛo. Then Ia = DP o

a ∈ gmodΛ

with a Λ-grading Ia = ⊕i∈Z(Ia)i, where (Ia)i = ⊕x∈Q0(Ia)i(x) with (Ia)i(x) =

D(exΛ
o
−iea), for (i, x) ∈ Z×Q0. In particular, (Ia)i = 0 for i > 0. If f ∈ (Ia)i(x)

and u ∈ eyΛjex, then (u · f)(vo) = f(uovo) for any v ∈ eaΛ−i−jey. Therefore,

Ia(u) = D(P o
a (u

o)) : (Ia)i(x) → (Ia)i+j(y).

3.4.4 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Given M ∈ GModΛ and Ia⟨s⟩ ⊗ V with (s, a) ∈ Z×Q0 and V ∈ Modk,

we have a natural k-linear isomorphism

ψ
M
: GHomΛ(M, Ia⟨s⟩ ⊗ V ) → Homk(M−s(a), V ).

Proof. First, we have a k-linear isomorphism θa : Homk(eaΛ
o
0ea, V )→V;g 7→g(ea).

And given (i, x) ∈ Z×Q0, by Corollary 2.1.2(1), we have a k-linear isomorphism

σi,x : Ia⟨s⟩i(x)⊗ V = D(exΛ
o
−i−sea)⊗ V → Homk(exΛ

o
−i−sea, V )

so that σi,x(h⊗v)(uo) = h(uo)v, for h ∈ D(exΛ
o
−i−sea), u ∈ eaΛ−i−sex and v ∈ V .

Furthermore, given any graded morphism f :M → Ia⟨s⟩ ⊗ V , we have a k-linear

map f−s,a :M−s(a) → Ia⟨s⟩−s(a)⊗ V . This yields a natural k-linear map

ψ
M
: GHomΛ(M, Ia⟨s⟩ ⊗ V ) → Homk(M−s(a), V ); f 7→ θa ◦ σ−s,a ◦ f−s,a.

Suppose that ψ
M
(f) = 0. Fix (i, x) ∈ Z × Q0 and m ∈ Mi(x). We may

write fi,x(m) =
∑r

j=1 hj ⊗ vj, where hj ∈ D(exΛ
o
−i−sea) and the vj are k-linearly

independent in V . If u ∈ eaΛ−i−sex, then f−s,a(um) = ufi,x(m) =
∑r

j=1 uhj ⊗ vj.

Observing that uhj ∈ Ia⟨s⟩−s(a), we obtain

0 = ψ
M
(f)(um) =

∑r
j=1 σ−s,a(uhj ⊗ vj)(ea) =

∑r
j=1(uhj)(ea)vj =

∑r
j=1 hj(u

o)vj.

Thus, hj(u
o) = 0, for j = 1, . . . , r. Hence, hj = 0, for j = 1, . . . , r. In particular,

fi,x(m) = 0. Thus, fi,x = 0 for all (i, x) ∈ Z×Q0. So, ψM
is a monomorphism.

Consider now a k-linear map g :M−s(a) → V . Given (i, x) ∈ Z×Q0, we shall

define a k-linear map fi,x : Mi(x) → Ia⟨s⟩i(x)⊗ V . For any m ∈ Mi(x), we have

a k-linear map gi,x(m) : exΛ
o
−i−sea → V such that gi,x(m)(uo) = g(um) for all

u ∈ eaΛ−i−sex. This yields a k-linear map fi,x : Mi(x) → Ia⟨s⟩i(x) ⊗ V , sending

68



m to σ−1
i,x (gi,x(m)). In other words, σi,x(fi,x(m)) = gi,x(m), for all m ∈Mi(x). Let

v ∈ eyΛjex and m ∈Mi(x). Given u ∈ eaΛ−i−j−sey, we obtain

σi+j,y(fi+j,y(vm))(uo) = gi+j,y(vm)(uo) = g(uvm) = gi,x(m)((uv)o).

On the other hand, σ−1
i,x (gi,x(m)) =

∑r
p=1 hp⊗ vp, for some hp ∈ D(exΛ

o
−i−sea)

and vp ∈ V . Thus, vfi,x(m) =
∑r

p=1(vhp)⊗ vp with vhp ∈ D(eyΛ
o
−i−j−sea). So

σi+j,y(vfi,x(m))(uo)=
∑s

p=1(vhp)(u
o)vp=

∑s
p=1σi,x(hp⊗vp)((uv)o)=gi,x(m)((uv)o).

Thus, σi+j,y(vfi,x(m)) = σi+j,y(fi+j,y(vm)). Hence, fi+j,y(vm) = vfi,x(m). That

is, we have a graded Λ-linear morphism f = (fi,x)(i,x)∈Z×Q0 : M → Ia⟨s⟩ ⊗ V .

Clearly, ψ
M
(f) = g. The proof of the proposition is completed.

Remark. By Proposition 3.4.4, Ia⟨s⟩ ⊗ V with (s, a) ∈ Z × Q0 and V ∈ Modk

are graded injective Λ-modules. The strictly full additive subcategory of GModΛ

generated by them will be written as GInjΛ. Moreover, the strictly full additive

subcategory of GModΛ generated by Ia⟨s⟩ with (s, a) ∈ Z × Q0 will be denoted

by ginjΛ.

Fix a ∈ Q0. Observe that (Ia)0 = (Ia)0(a) = D(eaΛ
o
0ea) = D(kea). In

the sequel, we shall always denote by e⋆a the k-linear form in (Ia)0(a) such that

e∗a(ea) = 1. The following statement can be regarded as the dual statement of

Corollary 3.4.2.

3.4.5 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Let M be a module in GModΛ. Given m ∈M−s(a) with (s, a) ∈ Z×Q0,

there is a graded morphism f :M → Ia⟨s⟩, sending m to e⋆a.

Proof. Fix m ∈ M−s(a) with (s, a) ∈ Z × Q0. In view of Proposition 3.4.4, we

have a k-linear isomorphism

ψ
M
: GHomΛ(M, Ia⟨s⟩) → Homk(M−s(a), k); f 7→ θa ◦ f−s,a,

where θa : Homk(eaΛ
o
0ea, k) → k; g 7→ g(ea) is a k-linear isomorphism. Consider

a k-linear map h : M−s(a) → k, sending m to 1. Then, there exists a graded

morphism f :M → Ia⟨s⟩ such that ψ
M
(f) = h. Thus, we see that

1 = h(m) = ψ
M
(f)(m) = (θa ◦ f−s,a)(m) = θa(f−s,a(m)) = f−s,a(m)(ea).

That is, f−s,a(m) = e⋆a. The proof of the lemma is completed.
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Now, we shall describe the morphisms in GInjΛ. For this purpose, we fix some

notations, which will be used for the rest of this thesis. Given u∈eaΛt−seb with
s, t ∈ Z and a, b ∈ Q0, the right multiplication by uo yields a morphism P [uo] :

P o
b ⟨−t⟩→P o

a⟨−s⟩ in gprojΛo. Applying the duality D : gmodΛo → gmodΛ, we

obtain a morphism I[u] = D(P [uo]) : Ia⟨s⟩ → Ib⟨t⟩ in ginjΛ. Note that this

notation does not distinguish I[u] from its grading shifts.

3.4.6 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider Ia⟨s⟩ ⊗ V and Ib⟨t⟩ ⊗W with (s, a), (t, b) ∈ Z × Q0 and

V,W ∈ Modk. Then, we obtain a k-linear isomorphism

ϕ : eaΛt−seb⊗Homk(V,W )→GHomΛ(Ia⟨s⟩ ⊗ V, Ib⟨t⟩ ⊗W );u⊗f 7→ I[u]⊗f.

Proof. First, we have a canonical k-linear isomorphism

η : eaΛt−seb → D2(ebΛ
o
t−sea);u 7→ η(u),

such that η(u)(g) = g(uo) for all u ∈ eaΛt−seb and g ∈ D(ebΛ
o
t−sea). And by

2.1.1, we obtain a k-linear isomorphism

ρ : D2(ebΛ
o
t−sea)⊗Homk(V,W ) → Homk(D(ebΛ

o
t−sea)⊗V,W );φ⊗ f 7→ ρ(φ⊗ f)

such that ρ(φ⊗ f)(g ⊗ v) = φ(g)f(v), for all g ∈ D(ebΛ
o
t−sea) and v ∈ V .

As did in the proof of Proposition 3.4.4, we consider two k-linear isomorphisms

θb : Homk(ebΛ
o
0eb, V ) → W ; g 7→ g(eb) and

σ−t,b : D(ebΛ
o
0eb)⊗W → Homk(ebΛ

o
0eb,W ); g ⊗ w 7→ σ−t,b(g ⊗ w)

such that σ−t,b(g ⊗ w)(eb) = g(eb)w. Since (Ia⟨s⟩ ⊗ V )−t(b) = D(ebΛ
o
t−sea) ⊗ V ,

we obtain a k-linear isomorphism

ψ : GHomΛ(Ia⟨s⟩⊗V, Ib⟨t⟩⊗W )→Homk(D(ebΛ
o
t−sea)⊗V,W );h 7→ θb◦σ−t,b◦h−t,b.

Now, we obtain a k-linear isomorphism

ϕ = ψ−1◦ ρ ◦ (η ⊗ id) : eaΛt−seb⊗Homk(V,W )→GHomΛ(Ia⟨s⟩ ⊗ V, Ib⟨t⟩ ⊗W ).

Fix u ∈ eaΛt−seb and f ∈ Homk(V,W ). We claim that ϕ(u⊗f) = I[u]⊗f , or
equivalently, (ρ ◦ (η ⊗ id))(u⊗ f) = ψ(I[u]⊗ f). Indeed, given g ∈ D(ebΛ

o
t−sea)

and v ∈ V , we have

(ρ ◦ (η ⊗ id))(u⊗ f)(g ⊗ v) = ρ((η ⊗ id)(u⊗ f))(g ⊗ v)

= ρ(η(u)⊗ f)(g ⊗ v)

= (η(u)(g))f(v)

= g(uo)f(v)
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and
ψ(I[u]⊗ f)(g ⊗ v) = (θb ◦ σb ◦ (I[u]⊗ f)−t,b)(g ⊗ v)

= (θb ◦ σb)(I[u](g)⊗ f(v))

= σb(I[u](g)⊗ f(v))(eb)

= (I[u](g)(ea))f(v)

= g(uo)f(v).

That is, (ρ ◦ (η ⊗ id))(u ⊗ f)(g ⊗ v) = ψ(I[u] ⊗ f)(g ⊗ v). This establishes our

claim. The proof of the proposition is completed.

As an immediate consequence of Propositions 3.4.3 and 3.4.6, we obtain the

following statement, which shows an important difference between the graded

setting and the non-graded setting.

3.4.7 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Given a ∈ Q0, we have GEndΛ(Pa) ∼= GEndΛ(Ia) ∼= k; and in particular,

Pa and Ia are strongly indecomposable.

The following result is well known in case Λ has an identity; see [52, page 7].

3.4.8 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, GModΛ has enough projective objects and enough injective

objects.

Proof. Let M ∈ GModΛ. Given (i, x) ∈ Z×Q0, it is clear that we have a graded

morphism fi,x : Px⟨−i⟩ ⊗Mi(x) →M such that fi,x(u⊗m) = um for u ∈ Px⟨−i⟩
and m ∈ Mi(x). Consider ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x) with canonical inclusions

qs,a : Pa⟨−s⟩ ⊗Ms(a) → ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x), with (s, a) ∈ Z × Q0. By

the universal property of direct sums, there exists a unique graded morphism

f : ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗ Mi(x) → M such that f ◦ qs,a = fs,a for all (s, a) ∈
Z × Q0. Given m ∈ Mi(x) with (i, x) ∈ Z × Q0, we see that f(qi,x(ex ⊗m)) =

(f ◦ qi,x)(ex⊗m) = fi,x(ex⊗m) = m. Thus, f is a graded Λ-linear epimorphism.

That is, GModΛ has enough projective objects.

Since GModΛo has enough projective objects, by the above construction, we

have a graded epimorphism g : ⊕(i,x)∈Z×Q0P
o
x⟨i⟩ ⊗ D(Mi(x)) → DM . Applying

the exact functor D, we obtain a graded monomorphism

D(g) : D2M → D(⊕(i,x)∈Z×Q0P
o
x⟨i⟩ ⊗D(Mi(x))).
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In view of Propositions 3.3.1 and 3.3.2, we have

D(⊕(i,x)∈Z×Q0P
o
x⟨−i⟩ ⊗D(Mi(x))) ∼= Π(i,x)∈Z×Q0D(P o

x⟨−i⟩ ⊗D(Mi(x)))

∼= Π(i,x)∈Z×Q0D(P o
x⟨−i⟩)⊗D2(Mi(x))

= Π(i,x)∈Z×Q0Ix⟨i⟩ ⊗D2(Mi(x)),

which is graded injective by Proposition 3.4.4. Moreover, by Proposition 3.3.3(1),

there exists a graded monomorphism ψ :M → D2M . This yields a desired graded

monomorphism D(g) ◦ ψ : M → D(⊕(i,x)∈Z×Q0P
o
x⟨i⟩ ⊗ D(Mi(x))). The proof of

the proposition is completed.

3.5 Graded socle and graded radical

In this section, let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Put J = ⊕n>0Λn, which is a graded ideal of Λ. Under this setting, we

shall be able to describe the graded radical and the graded socle of a graded

Λ-modules. Moreover, we will provide some sufficient conditions for the graded

socle to be graded essential and the graded radical to be graded superfluous.

To start with, we shall describe all graded simple modules in GModΛ; compare

[2, (I.5.17)]. Fix a ∈ Q0. We put Sa = Pa/Jea, where Jea is a graded submodule

of Pa by Lemma 3.1.3(3). Since Pa = Jea+kea, we have Sa = k(ea+Jea). Thus,

Sa⟨n⟩ is graded simple for each n ∈ Z.

3.5.1 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then every graded simple module in GModΛ is isomorphic to Sa⟨−n⟩,
for some (n, a) ∈ Z×Q0.

Proof. Let S be a graded simple module in GModΛ. Then, there exists a non-zero

elementm ∈ Sn(a) for some (n, a) ∈ Z×Q0. By Corollary 3.1.4, Λm is a non-zero

graded submodule of S, and hence, S = Λm. By Corollary 3.4.2, we have a graded

Λ-linear epimorphism p : Pa⟨−n⟩ → S such that p(ea) = m. On the other hand,

by Lemma 3.1.3, Jm is also a graded submodule of S. Since Jm ⊆ ⊕i≥n+1Si, we

see that Jm ̸= S, and hence, Jm = 0. This implies that (JPa)⟨−n⟩ ⊆ Ker(p).

Therefore, p induces a graded epimorphism p̄ : Pa⟨−n⟩/(JPa)⟨−n⟩ → S. Since

Pa⟨−n⟩/(JPa)⟨−n⟩ = Sa⟨−n⟩, which is graded simple, we see that S ∼= Sa⟨−n⟩.
The proof of the Proposition is completed.

The following statement describes the graded socle of any graded Λ-module.
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3.5.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M = ⊕i∈ZMi = ⊕(i,x)∈Z×Q0Mi(x) in GModΛ.

(1) socM = ⊕(i,x)∈Z×Q0(socM)i(x) with (socM)i(x) = {m ∈Mi(x) | Jm = 0}.

(2) socM is contained in any essential graded submodule of M .

(3) If M∈GMod−Λ is non-zero, then socM is graded essential in M .

Proof. (1) Write Ni,x = {m ∈ Mi(x) | Jm = 0} for all (i, x) ∈ Z × Q0. By

Proposition 3.5.1, we see that (socM)i(x) ⊆ Ni,x. On the other hand, letm ∈ Ni,x

with (i, x) ∈ Z×Q0. By Corollary 3.1.4, Λm is a graded submodule of M . Since

Λex = Jex+kex, we see that Λm = Λexm = km. Thus, Λm = 0 or Λm is a graded

simple submodule of M . So, Λm ⊆ socM , and consequently, m ∈ (socM)i(x).

Thus, Ni,x ⊆ socM , and hence, (socM)i(x) = Ni,x.

(2) Let L be an essential graded submodule of M . If S is a simple graded

submodule of M , then L ∩ S is a non-zero graded submodule of S. Hence,

L ∩ S = S, that is, S ⊆ L. Therefore, socM ⊆ L.

(3) Assume thatM is bounded above. Let N be a non-zero graded submodule

of M . Then N contains a non-zero element mi ∈ Ni for some i. Since N is

bounded above, there exists some j ≥ 0 such that Λjmi ̸= 0 but Λj+1mi = 0.

Observing that Λj+1 = JΛj, we have J(Λjmi) = 0. By Statement (1), 0 ̸=
Λjmi ⊆ socM . This shows that socM is graded essential in M . The proof of the

lemma is completed.

Example. Consider the graded algebra Λ = kQ/R, where

Q : 1α
β

2

and R = ⟨βα⟩. Consider P1 = k⟨e1, β̄, ᾱ, · · · , ᾱi, · · · ⟩. By Lemma 3.5.2(1),

socP1 = k⟨ β̄⟩. Considering the graded submodule k⟨ᾱ, · · · , ᾱi, · · · ⟩ of P1, we see

that socP1 is not graded essential in P1. Indeed, P1 is not bounded above.

The following statement is well known for non-graded modules.

3.5.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. If f :M → N is a morphism in GModΛ, then f(socM) ⊆ socN .
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Proof. Let f : M → N be a morphism in GModΛ. Consider a pure element

m ∈ socM . Then f(m) is a pure element in N . By Lemma 3.5.2(1), Jm = 0,

and hence, Jf(m) = f(Jm) = 0. By Lemma 3.5.2(1) again, f(m) ∈ socN . The

proof of the proposition is completed.

Recall that e⋆a with a ∈ Q0 stands for the k-linear form in (Ia)0(a) such that

e∗a(ea) = 1.

3.5.4 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. If a ∈ Q0, then socIa = ke⋆a, which is graded essential in Ia.

Proof. Fix a ∈ Q0. Note that (Ia)0 = (DP o
a )0 = D(Λo

0ea) = ke⋆a = (Ia)0(a).

Since (Ia)i = 0 for i > 0, we have Je⋆a = 0. By Lemma 3.5.2(1), e⋆a ∈ (socIa)0(a).

So, (socIa)0 = ke⋆. Next, suppose that f is a non-zero function in (Ia)−i(x) =

D(eaΛiex) for some i > 0 and x ∈ Q0. By definition, there exists some u ∈ eaΛiex
such that f(uo) ̸= 0. Then, (u · f)(ea) = f(uo) ̸= 0. That is, u · f ̸= 0.

Observe that u ∈ J . Thus, by Lemma 3.5.2(1), f /∈ socIa. Therefore, socIa =

(socIa)0 = ke⋆a. Finally, since Ia is bounded above, by Lemma 3.5.2(3), socIa is

graded essential in Ia. The proof of the corollary is completed.

It is well known that a finitely generated non-zero module (not necessarily

graded) admits a maximal submodule; see, for example, [1, (2.8)]. We shall

describe all possible maximal graded submodules of a module M in GModΛ.

First, by Lemma 3.1.3, JM is a graded submodule of M . An element m in M

is called a top-element if m ∈ Mn(a)\JM for some (n, a) ∈ Z × Q0. In this

case, by Lemma 2.1.4, there exists a k-vector subspace Ln,a of Mn(a) containing

Mn(a)∩JM such thatMn(a) = Ln,a⊕km. Setting Li,x =Mi(x) for (i, x) ∈ Z×Q0

with (i, x) ̸= (n, a), we obtain a k-vector subspace L(m) =
∑

(i,x)∈Z×Q0
Li,x of M .

Note that this construction of L(m) is not unique.

3.5.5 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Let M be a module in GModΛ. If L is a graded submodule of M , then it

is graded maximal in M if and only if L = L(m) for some top-element m ∈ M ;

and in this case, JM ⊆ L.

Proof. Suppose that m is a top-element in Mn(a), where (n, a) ∈ Z × Q0. We

claim that L(m) =
∑

(i,x)∈Z×Q0
Li,x is a Λ-submodule of M . If this is not the

case, then there exist some m′ ∈ Li,x and u ∈ eyΛjex, where i, j ∈ Z and

x, y ∈ Q0, such that um′ ∈ Mi+j,y\Li+j,y. In view of the definition of L(m), we
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see that (i + j, y) = (n, a). If j > 0, then um′ ∈ Mn(a) ∩ JM ⊆ Ln,a = Li+j,y,

a contradiction. If j = 0, then (i, x) = (n, a) and u ∈ eaΛ0ea = kea, and

consequently, um′ ∈ km′ ⊆ Li,x = Li+j,y, a contradiction. Hence, our claim holds.

By Lemma 3.2.1, L(m) is a graded submodule ofM. By definition, L(m) contains

JM andM/L(m) is one-dimensional. By Lemma 3.1.6, L(m) is a maximal graded

submodule of M .

Conversely, assume that L is a maximal graded submodule of M . This yields

a graded simple Λ-module M/L = ⊕(i,x)∈Z×Q0(Mi(x) + L)/L. By Proposition

3.5.1, M/L ∼= Sa⟨−n⟩ for some (n, a) ∈ Z × Q0. Therefore, (Mn(a) + L)/L =

k(m+L) with m ∈Mn(a)\Ln(a), and Li(x) =Mi(x) for all (i, x) ∈ Z×Q0 with

(i, x) ̸= (n, a). As a consequence,Mn(a) = Ln(a)+km andMn(a)∩JM ⊆ Ln(a).

Since m ̸∈ Ln(a), we see that Mn(a) = Ln(a)⊕ km. By the above construction,

we have L = L(m). The proof of the lemma is completed.

Applying Lemma 3.5.5, we obtain the following important property of the

graded radical of a module in GModΛ, which is known in case Q is finite and

M ∈ GMod+Λ; see, for example, [42, Page 70].

3.5.6 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, radM = JM for any module M ∈ GModΛ.

Proof. Let M be a module in GModΛ with Λ-grading M = ⊕i∈ZMi. Suppose

first that M has no maximal graded submodule. By definition, radM = M . On

the other hand, by Lemma 3.5.5, M contains no top-element, that is, Mi(x) =

Mi(x) ∩ JM for all (i, x) ∈ Z×Q0. Thus, M = JM .

Suppose now thatM has maximal graded submodules. By Lemma 3.5.5, JM

is contained in every maximal graded submodule of M , and hence, JM ⊆ radM.

On the other hand, assume that m ∈ M\JM . Write m =
∑

(i,x)∈Z×Q0
mi,x with

mi,x ∈ Mi(x). By Lemma 3.2.1(3), mn,a ∈ Mn(a)\JM for some (n, a) ∈ Z×Q0,

that is, mn,a is a top-element in Mn(a). By Lemma 3.5.5, we may construct

a maximal graded submodule L(mn,a) of M such that mn,a /∈ L(mn,a)n,a. By

Lemma 3.2.1(1), m /∈ L(mn,a), and consequently, m /∈ radM . This shows that

radM ⊆ JM , and consequently, JM = radM . The proof of the proposition is

completed.

As an immediate consequence of Proposition 3.5.6, we obtain the following

statement, which is well known in case Q is finite.
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3.5.7 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then, rad(ΛΛ) = J. Moreover for any a ∈ Q0, radPa = Jea, which is the

unique maximal graded submodule of Pa.

The following statement is well known for non-graded modules.

3.5.8 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. If f :M → N is a morphism in GModΛ, then f(radM) ⊆ radN.

Proof. Let f : M → N be a morphism in GModΛ. By Proposition 3.5.6,

f(radM) = f(JM) = Jf(M) ⊆ radN . The proof of the corollary is completed.

It is well known that a finitely generated non-graded module is semisimple

if and only if it is artin and its radical is zero; see [1, (10.15)]. The following

statement is a generalized graded version of this fact.

3.5.9 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. A non-zero module M in GModΛ is graded semisimple if and only

if radM = 0.

Proof. Let M be a non-zero module in GModΛ. By Proposition 3.5.6, radM =

JM . Now, M is graded semisimple if and only if socM = M if and only if

(socM)i(x) =Mi(x), for all (i, x) ∈ Z×Q0. By Lemma 3.5.2(1), this is equivalent

to JMi(x) = 0, for all (i, x) ∈ Z × Q0, that is, JM = 0. The proof of the

proposition is completed.

3.5.10 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. A nonzero module M in GModΛ is graded semisimple if and only if DM

is graded semisimple.

Proof. Let M be a nonzero module in GModΛ. Suppose that JM = 0. Then,

given any f ∈ (DM)i(x) = D(M−i(x)) with (i, x) ∈ Z × Q0 and uo ∈ ey(Λ
o)jex

with j ≥ 1 and y ∈ Q0, we have (uo · f)(m) = f(um) = 0, for all m ∈ M−i−j(y).

That is, Jo ·DM = 0. Suppose that JM ̸= 0. Then, um ̸= 0 for some m ∈Mi(x)

with (i, x) ∈ Z×Q0 and u ∈ eyΛjex with j ≥ 1 and y ∈ Q0. Then, f(um) ̸= 0 for

some f ∈ D(Mi+j(y)). That is, (u
o ·f)(m) = f(um) ̸= 0, where f ∈ (DM)−i−j(y)

and uo ∈ ex(Λ
o)jey. Thus, J

o ·DM ̸= 0. In view of Propositions 3.5.6 and 3.5.9,

we see thatM is graded semisimple if and only if DM is graded semisimple. The

proof of the corollary is completed.

76



In general, the graded radical of a graded moduleM is not necessarily graded

superfluous in M . However, this is the case when M is bounded below; compare

[1, (9.18)].

3.5.11 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider a module M ∈ GMod+Λ.

(1) radM contains any superfluous graded submodule M .

(2) radM is graded superfluous in M .

Proof. (1) Let N be a superfluous graded submodule of M . If N ̸⊆ radM , then

there exists a non-zero pure element m ∈ N but m /∈ radM . By definition, m is

a top-element in M , and by Lemma 3.5.5, we may construct a maximal graded

submodule L(m) of M. Since m /∈ L(m), we obtain N + L(m) =M , contrary to

N being graded superfluous. Therefore, N ⊆ radM .

(2) Let N be a graded submodule of M such that radM +N =M . Suppose

that N ̸= M . Since M is bounded below, there exists a minimal s such that

Ns ̸=Ms. So, there exists m ∈Ms(a)\Ns(a) for some a ∈ Q0. By the minimality

of s, we see that Ms(a) ∩ JM ⊆ Ns(a). In particular, m is a top-element. By

Lemma 2.1.4, Ms(a) = Ls,a ⊕ km, where Ls,a is a subspace of Ms(a) containing

Ns(a). Since Ms(a) ∩ JM ⊆ Ls,a, by Lemma 3.5.5, L(m) is a maximal graded

submodule of M . Moreover, since Ns(a) ⊆ Ls,a, we have N ⊆ L(m). Since

radM ⊆ L(m), we obtain M = L(m), a contradiction. Thus, radM is graded

superfluous in M . The proof of the proposition is completed.

3.5.12 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Let M be a module in GMod+Λ.

(1) If radM =M , then M = 0.

(2) If M is non-zero, then topM is graded semisimple.

Proof. (1) Assume that radM = M . In particular, radM + 0 = M . Since radM

is graded superfluous in M by Proposition 3.5.11(2), M = 0.

(2) Suppose that M ̸= 0. By Statement (1), topM ̸= 0, and by Proposition

3.5.6, rad(topM) = J(M/JM) = 0. By Lemma 3.5.9, topM is graded semi-

simple. The proof of the corollary is completed.
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Remark. As will be shown in the following section, finitely generated graded

modules are bounded below. Thus, Corollary 3.5.12(1) includes the graded ver-

sion of Nakayama’s Lemma, which is known for positively graded rings with an

identity; compare [53, (2.9.2)]. In case Q is finite, this is stated without a proof

in [42, Page 70].

Example. Consider the graded algebra Λ = kQ, where

Q : 1α

Then, Λ = k⟨αi | i ≥ 0⟩, where α0 = e1. Thus, DΛ = ⊕i≥0(DΛ)−i with

(DΛ)−i = k⟨(αi)⋆⟩, where ⟨(αi)⋆⟩ are dual bases of ⟨αi⟩. In particular, DΛ /∈
GMod+Λ. Observe that αo · (αi)⋆ = (αi−1)⋆ for all i ≥ 1. By Proposition 3.5.6,

radDΛ = J · DΛ = DΛ. Thus, radDΛ is not graded superfluous in DΛ and

topDΛ = 0.

3.6 Finitely generated and finitely cogenerated

graded modules

Throughout this section, let Λ = kQ/R be a graded algebra, where Q is a

locally finite quiver. In this section, we will give explicit descriptions of finitely

generated modules and finitely cogenerated modules in GModΛ.

A moduleM in GModΛ is called finitely generated ifM = Λm1+· · ·+Λmr,

where m1, . . . ,mr are homogeneous elements in M , or equivalently, M = Λm1 +

· · ·+ Λmr, where m1, . . . ,mr are pure elements in M ; see (3.2.1). The following

result is essential to describe finitely generated graded modules.

3.6.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M in GModΛ. If radM is graded superfluous in M ,

then a set {m1, . . . ,mr} of elements in M is a generating set for M if and only

if {m1 + radM, . . . ,mr + radM} is a generating set for topM.

Proof. Suppose that radM is graded superfluous in M . We only need to show

the sufficiency. Suppose that {m1, . . . ,mr} is a set of pure elements such that

{m1 + radM, . . . ,mr + radM} is a generating set for topM . Given any m ∈ M ,

we have m+radM =
∑r

i=1(λimi+radM) with λi ∈ k, namely, m−
∑r

i=1 λimi ∈
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radM . Thus, radM +
∑r

i=1 Λmi = M , where
∑r

i=1 Λmi is a graded submodule

of M by Corollary 3.1.4. Since radM is graded superfluous, M =
∑r

i=1 Λmi. The

proof of the lemma is completed.

3.6.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Given a module M in GModΛ, the following statements are equivalent :

(1) M is finitely generated.

(2) M ∈ GMod+Λ such that topM is finite dimensional.

(3) radM is graded superfluous in M such that topM is finite dimensional.

Proof. Assume that M is finitely generated, say M =
∑r

i=1 Λmi, where mi ∈
Msi(ai) with (si, ai) ∈ Z×Q0. Then, topM is generated by m1+radM, . . . ,mr+

radM , and hence, it is finite dimensional. Now, Λmi = ⊕j≥0Λjmi = ⊕j≥si(Λmi)j,

for i = 1, . . . , r. Thus, M ∈ GMod+Λ. This shows that Statement (1) implies

Statement (2). By Proposition 3.5.11, Statement (2) implies Statement (3). And

by Lemma 3.6.1, Statement (3) implies Statement (1). The proof of the lemma

is completed.

Dually, a module M in GModΛ is called finitely cogenerated if socM is

graded essential in M and is finite dimensional; compare [1, (10.4), (10.6)].

3.6.3 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. A moduleM in GModΛ is finitely cogenerated if and only ifM ∈ GMod−Λ

and socM is finite dimensional.

Proof. Let M ∈ GModΛ. The sufficiency follows from Lemma 3.5.2(3). Assume

that M is finitely cogenerated. By Lemma 3.5.2(1), we see that socM has a k-

basis {m1, . . . ,mr}, where mi ∈Msi(ai) with (si, ai) ∈ Z×Q0. We may suppose

that s1 ≤ · · · ≤ sr. Then, socM ∩Mj = 0 for all j > sr. Suppose that Ms ̸= 0

for some s > sr. Let m ∈Ms be non-zero. Since socM is graded essential in M ,

there is some u ∈ Λt with t ≥ 0 such that 0 ̸= um ∈ socM . So, socM ∩Mt+s ̸= 0

with t + s > sr, a contradiction. This shows Mj = 0 for all j > sr. Therefore,

M ∈ GMod−Λ. The proof of the lemma is completed.

Example. In view of Lemma 3.6.3 and Corollary 3.5.4, we see that every module

in ginjΛ is finitely cogenerated.
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The following notions are important for our later study of graded projective

covers and graded injective envelopes.

3.6.4 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M in GModΛ. A set {m1, . . . ,mr} of pure elements

in M is called

(1) a top-basis for M if {m1 + radM, . . . ,mr + radM} is a k-basis of topM

and M is generated by m1, . . . ,mr;

(2) a socle-basis for M if {m1, . . . ,mr} is a k-basis of socM , and socM is

graded essential in M .

Example. Given a ∈ Q0, it is clear that {ea} is a top-basis for Pa, and by

Corollary 3.5.4, {e⋆a} is a socle-basis for Ia.

3.6.5 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M in GModΛ with {m1, . . . ,mr} a set of pure ele-

ments in M .

(1) If M ∈ GMod+Λ, then {m1, . . . ,mr} is a minimal generating set of M if

and only if {m1 + radM, . . . ,mr + radM} is a k-basis of topM ; and in this

case, {m1, . . . ,mr} is a top-basis for M .

(2) If M ∈ GMod−Λ, then {m1, . . . ,mr} is a socle-basis for M if and only if it

is a k-basis of socM .

Proof. (1) Assume that M ∈ GMod+Λ. By Proposition 3.5.11, radM is graded

superfluous inM . In view of Lemma 3.6.1, we see that {m1, . . . ,mr} is a minimal

generating set of M if and only if {m1 + radM, . . . ,mr + radM} is a minimal

generating set of topM. Since topM is graded semisimple by Corollary 3.5.12(2),

the latter condition is equivalent to {m1+radM, . . . ,mr+radM} being a k-basis

of topM.

(2) Let M be a module in GMod−Λ. By Lemma 3.5.2(3), socM is graded

essential in M . Thus, Statement (2) follows from the definition of a socle-basis.

The proof of the lemma is completed.

3.6.6 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Let M be a non-zero module in GModΛ. Then,
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(1) M is finitely generated if and only if it admits a top-basis ;

(2) M is finitely cogenerated if and only if it admits a socle-basis.

Proof. (1) The sufficiency follows from the definition. Suppose that M is finitely

generated. Then,M has a minimal generating set {m1, . . . ,mr} of pure elements.

By Lemma 3.6.2, M ∈ GMod+Λ, and by Lemma 3.6.5(1), {m1, . . . ,mr} is a top-

basis for M .

(2) The sufficiency follows from the definition of a socle-basis. Assume that

M is finitely cogenerated. By Lemma 3.2.1(3), socM has a k-basis {m1, . . . ,mr}
of pure elements. By Lemma 3.6.3, M ∈ GMod−Λ, and by Lemma 3.6.5(2),

{m1, . . . ,mr} is a socle-basis for M . The proof of the proposition is completed.

Further, given a module M ∈ GModΛ, we shall say that M is finitely gen-

erated in degree s if it is generated by finitely many homogeous elements of

degree s. and finitely cogenereated in degree −s if M is finitely cogenerated

and socM ⊆M−s. For instance, Pa⟨−s⟩ is finitely generated in degree s and Ia⟨s⟩
is finitely cogenerated in degree −s, for any (s, a) ∈ Z×Q0.

The following statements will be useful in our later construction of linear

projective resolutions and colinear injective coresolutions.

3.6.7 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M in GModΛ. Then,

(1) M is finitely generated in degree s if and only if Ms contains a top-basis for

M ; and in this case, M = ⊕i≥sMi and radM = ⊕i>sMi.

(2) M is finitely cogenerated in degree −s if and only if M−s contains a socle-

basis for M ; and in this case, M = ⊕i≤−sMi and socM =M−s.

Proof. (1) Assume that Ms contains a top-basis {m1, . . . ,mr} for M . By defi-

nition, M is generated by m1, . . . ,mr ∈ Ms. That is, M is finitely generated in

degree s. Conversely, suppose that M is finitely generated in degree s. Then,

Ms contains a minimal generating set {m1, . . . ,mr} of M , which consists of pure

elements. By Lemma 3.6.2, M ∈ GMod+Λ, and by Lemma 3.6.5, {m1, . . . ,mr}
is a top-basis for M . In particular, M = ΛMs = ⊕j≥0(ΛjMs). In particular,

Mi = 0 for all i < s. Thus, M = ⊕i≥sMi. This yields Mi = Λi−sMs ⊆ JMs for

all i > s. As a consequence, ⊕i>sMi ⊆ JMs ⊆ ⊕i>sMi. By Proposition 3.5.6,

radM = JM = JMs = ⊕i>sMi.
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(2) Suppose that M−s contains a socle-basis {m1, . . . ,mr} for M . By defini-

tion, socM is graded essential in M and socM = km1 + · · ·+ kmr ⊆M−s. Thus,

M is finitely cogenerated in degree −s. Conversely, assume that M is finitely

cogenerated in degree −s. By definition, socM is graded essential in M , finite

dimensional and contained in M−s. By Lemma 3.2.1, socM contains a k-basis

{m1, . . . ,mr} of pure elements in M−s. By definition, {m1, . . . ,mr} is a socle-

basis for M contained in M−s. As in the proof of Lemma 3.6.3, we see that

Mj = 0 for i > −s. Thus, M = ⊕i≤−sMi and JM−s = 0. By Lemma 3.5.2(1),

M−s ⊆ socM . Therefore, socM =M−s. The proof of the lemma is completed.

The following easy statement will be needed later.

3.6.8 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) A graded projective module P in gprojΛ is generated in degree s if and only

if P ∼= Pa1⟨−s⟩ ⊕ · · · ⊕ Par⟨−s⟩ for some a1, . . . , ar ∈ Q0.

(2) A graded injective module I in ginjΛ is cogenerated in degree −s if and only

if I ∼= Ia1⟨s⟩ ⊕ · · · ⊕ Iar⟨s⟩ for some a1, . . . , ar ∈ Q0.

Proof. (1) Let P ∈ gprojΛ. We may assume that P = Pa1⟨−s1⟩ ⊕ · · · ⊕Par⟨−sr⟩,
where si ∈ Z and ai ∈ Q0. Observe that Pai⟨−si⟩ is generated in degree si for

i = 1, . . . , r. Now, P ∈ gprojΛ is generated in degree s if and only if Pai⟨−si⟩ is
generated in degree s for i = 1, . . . , r if and only si = s, for i = 1, . . . , r. This

establishes Statement (1), and Statement (2) follows dually. The proof of the

lemma is completed.

3.7 Superfluous graded epimorphisms and es-

sential graded monomorphisms

In this section, let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. The objective of this section is to study superfluous epimorphisms and

essential monomorphisms in GModΛ.

The following statement is well known for non-graded modules, see [1, (5.13)

and (5.15)]. For the reader’s convenience, we shall include a proof.
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3.7.1 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) An epimorphism f :M → N in GModΛ is superfluous if and only if Ker(f)

is graded superfluous in M ; and in this case, f−1(radN) = radM .

(2) A monomorphism f : M → N in GModΛ is essential if and only if Im(f)

is graded essential in N ; and in this case, socN = f(socM).

Proof. (1) Let f : M → N be an epimorphism in GModΛ. By Proposition

3.5.6, radN = JN = Jf(M) = f(radM). Thus, f−1(radN) = radM + Ker(f).

Suppose that f is superfluous. Let L be a graded submodule of M such that

Ker(f)+L =M. Then, f ◦q : L→ N is a graded epimorphism, where q : L→M

is the inclusion morphism. Thus, q is a graded epimorphism, that is, L =M . So,

Ker(f) is graded superfluous in M . By Propositions 3.5.11(1), Ker(f) ⊆ radM ,

and consequently, f−1(radN) = radM.

Conversely, assume that Ker(f) is graded superfluous in M . Let g : L → M

be a graded morphism such that f ◦ g is a graded epimorphism. It is easy to

see that Ker(f) + Im(g) = M . Since Im(g) is a graded submodule of M by

Proposition 3.1.8, we obtain Im(g) =M . So, f is superfluous.

(2) Let f : M → N be a monomorphism in GModΛ. Assume that f is

essential. Let L be a graded submodule of N such that Im(f)∩L = 0. It is easy

to see that p ◦ f : M → N/L is a monomorphism, where p : N → N/L is the

canonical projection. Thus, p is a graded monomorphism, that is, L = 0. So,

Im(f) is graded essential in N. By Lemma 3.5.2(2), socN ⊆ Im(f). So, for any

pure element n ∈ socN , there exists a pure element m ∈M such that n = f(m).

Now, f(Jm) = Jf(m) = Jn = 0. Since f is a monomorphism, Jm = 0, and by

Lemma 3.5.2(1), m ∈ socM . This shows that socN ⊆ f(socM). On the other

hand, by Proposition 3.5.3, f(socM) ⊆ socN . Hence, socN = f(socM).

Conversely, suppose that Im(f) is graded essential in N. Let h : N → L be

a graded morphism such that h ◦ f is a graded monomorphism. Then, we have

Im(f) ∩ Ker(h) = 0. Since Ker(h) is a graded submodule of M by Proposition

3.1.8, we obtain Ker(h) = 0, that is, h is a graded monomorphism. So, f is

essential. The proof of the proposition is completed.

Remark. Proposition 3.7.1(1) says that a superfluous graded epimorphism f :

M → N induces a graded isomorphism f̄ : topM → topN.
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The following statement is well known for finite dimensional non-graded mod-

ules.

3.7.2 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) An epimorphism f : M → N in GMod+Λ is superfluous if and only if

Ker(f) ⊆ radM.

(2) A monomorphism f :M → N in GMod−Λ is essential if and only if socN ⊆
Im(f).

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

dual. Let f : M → N be an epimorphism in GMod+Λ. By Proposition 3.5.11,

radM is the largest superfluous graded submodule of M . By Lemma 3.7.1(1), f

is superfluous if and only if Ker(f) is graded superfluous in M ; and by Lemma

3.1.5(1), this is equivalent to Ker(f) ⊆ radM. The proof of the corollary is

completed.

The following statement is interesting.

3.7.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) Let f : M → N be an epimorphism in GModΛ. If M is finitely generated

(in degree s), then N is finitely generated (in degree s). And the converse

holds if f is superfluous.

(2) Let f :M → N be a monomorphism in GModΛ. If N is finitely cogenerated

(in degree −s), then M is finitely cogenerated (in degree −s). And the

converse holds if f is essential.

Proof. (1) The first part of the statement is evident. Suppose that f is superfluous

and that N is finitely generated. Write N = Λn1 + · · ·Λnr, where ni ∈ Nsi with

si ∈ Z. Since f is a graded epimorphism, ni = f(mi) with mi ∈ Msi , for

i = 1, . . . , r. Then, M = Ker(f) +
∑r

i=1 Λmi. Since Ker(f) is graded superfluous

in M by Proposition 3.7.1(1), M =
∑r

i=1 Λmi. That is, M is finitely generated.

If N is finitely generated in degree s, then s1 = · · · = sr = s. That is, M is

finitely generated in degree s.

84



(2) Suppose that N is finitely cogenerated. By Lemma 3.6.3, N ∈ GMod−Λ

and dimksocN < ∞. Since f is a monomorphism, M ∈ GMod−Λ. So, by

Lemma 3.5.2(3), socM is graded essential inM . Moreover since f(socM) ⊆ socN

by Proposition 3.5.3, dimksocM < ∞. Again by Lemma 3.6.3, M is finitely

cogenerated. If N is finitely cogenerated in degree −s, then socN ⊆ N−s, and

hence, socM ⊆M−s. That is, M is finitely cogenerated in degree −s.
Assume that f is essential and that M is finitely cogenerated. Then socM is

graded essential in M . Since f is a monomorphism, f(socM) is graded essential

in f(M). And since f(M) is graded essential in N by Proposition 3.7.1(2), we

see that socN = f(socM) is graded essential in N . Moreover, by Lemma 3.6.3,

socM is finite dimensional, and therefore, socN is finite dimensional. Again by

Lemma 3.6.3, N is finitely cogenerated. IfM is finitely cogenerated in degree −s,
then socM ⊆ M−s, and hence, socN ⊆ N−s. That is, N is finitely cogenerated

in degree −s. The proof of the proposition is completed.

To conclude this section, we shall concentrate on piecewise finite dimensional

graded Λ-modules.

3.7.4 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a morphism f :M → N in gmodΛ.

(1) If f is a superfluous epimorphism, then Df : DN → DM is an essential

monomorphism.

(2) If f is an essential monomorphism, then Df : DN → DM is a superfluous

epimorphism.

Proof. We shall only prove Statement (1), since Statement(2) is dual. By Propo-

sition 3.3.3(2), we have a duality D : gmodΛ → gmodΛo. Let f : M → N be

a superfluous epimorphism in gmodΛ. Then, Df : DN → DM is a graded

monomorphism in gmodΛo. Assume that g : DM → L is a morphism in gmodΛo

such that g ◦ Df is a graded monomorphism. Then, D2f ◦ Dg is a graded epi-

morphism. By Proposition 3.3.3(1), we have a commutative diagram

DL
Dg // D2M

D2f //

ϕM

��

D2N

ϕN

��
M

f // N,
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where ϕM and ϕN are graded isomorphisms. Thus, f ◦ϕM ◦Dg is a graded epimor-

phism. Since f is superfluous, Dg is a graded epimorphism, and consequently, g

is a graded monomorphism. Therefore, Df is essential in gmodΛo. The proof of

the lemma is completed.

The following statement is well known for finite dimensional non-graded mod-

ules.

3.7.5 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) IfM ∈ gmod+Λ, then soc(DM) ∼= D(topM) and DM/soc(DM) ∼=D(radM).

(2) If M ∈ gmod−Λ, then top(DM) ∼= D(socM) and rad(DM) ∼= D(M/socM).

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

dual. Let M be a nonzero module in gmod+Λ. Consider the canonical short

exact sequence

0 // radM
g //M

f // topM // 0

in gmod+Λ. This yields a short exact sequence

0 // D(topM)
Df // DM

Dg // D(radM) // 0

in gmod−Λo. By Proposition 3.7.2(1), f is superfluous, and by Lemma 3.7.4(1),

Df is essential. Thus, soc(DM) ⊆ Im(Df) by Lemma 3.7.1(2). On the other

hand, by Corollary 3.5.12, topM is graded semi-simple, and by Corollary 3.5.10,

so is D(topM). Then, by Proposition 3.5.3, Im(Df) ⊆ soc(DM). Therefore,

soc(DM) = Im(Df) ∼= D(topM). As a consequence,D(radM) ∼= DM/soc(DM).

The proof of the proposition is completed.

3.8 Graded projective covers and graded injec-

tive envelopes

Throughout this section, let Λ = kQ/R be a graded algebra, where Q is a

locally finite quiver. The objective of this section is to study projective covers and

injective envelopes in GModΛ, which will be called graded projective covers

and graded injective envelopes, respectively. We start with an immediate

consequence of Corollary 3.7.2 as follows.
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3.8.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) An epimorphism f : P →M in GModΛ with P a bounded below projective

module is a graded projective cover of M if and only if Ker(f) ⊆ radP.

(2) A monomorphism f : M → I in GModΛ with I a bounded above injective

module is an injective envelope of M if and only if socI ⊆ Im(f).

In particular, we may describe the graded projective cover and the graded

injective envelope for each graded simple module. This will be used frequently in

the sequel.

3.8.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Given any a ∈ Q0, the graded simple module Sa admits

(1) a graded projective cover pa : Pa → Sa, sending ea to ea + Jea;

(2) a graded injective envelope qa : Sa → Ia, sending ea + Jea to e⋆a.

Proof. Let a ∈ Q0. Since Ker(pa) = radPa, by Lemma 3.8.1(1), pa is a graded

projective cover. Next, Sa = (Sa)0(a) = k(ea + Jea). By Lemma 3.4.5, we have

a graded morphism qa : Sa → Ia, which is necessarily a monomorphism, sending

ea + radPa to e⋆a. By Corollary 3.5.4, Im(qa) = ke⋆a = socIa, and by Lemma

3.8.1(2), qa is a graded injective envelope. The proof of the lemma is completed.

The above result can be extended to any bounded below semisimple modules.

3.8.3 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. If M ∈ GMod+Λ is graded semisimple, then it has a graded projective

cover

f : ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x) →M

such that f(ex ⊗mi,x) = mi,x, where ex ∈ Px⟨−i⟩i(x) and mi,x ∈Mi(x).

Proof. Let M ∈ GMod+Λ be graded semisimple. By Lemma 3.5.2, JM = 0.

Thus, M = ⊕(i,x)∈Z×Q0Mi(x), where Mi(x) is a semisimple graded submodule of

M concentrated in the (i, x)-piece. Clearly, for any (i, x) ∈ Z × Q0, we have a

graded isomorphism g(i, x) : Sx⟨−i⟩ ⊗Mi(x) →Mi(x), sending (ex + Jex)⊗mi,x
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to mi,x, where (ex + Jex) ∈ Sx⟨−i⟩i(x) and mi,x ∈ Mi(x). This yields a graded

isomorphism

g = ⊕(i,x)∈Z⊗Q0g(i, x) : ⊕(i,x)∈Z×Q0Sx⟨−i⟩ ⊗Mi(x) →M.

Consider the short exact sequence

0 // (radPx)⟨−i⟩ // Px⟨−i⟩
px⟨−i⟩ // Sx⟨−i⟩ // 0

in GModΛ, where px : Px → Sx is the canonical projection, we obtain a short

exact sequence

0 // ⊕(i,x)∈Z×Q0(radPx)⟨−i⟩ ⊗Mi(x) // ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x)

⊕(i,x)∈Z×Q0
px⟨−i⟩

// ⊕(i,x)∈Z×Q0Sx⟨−i⟩ ⊗Mi(x) // 0

in GModΛ. This gives rise to a graded epimorphism

f = g ◦ (⊕(i,x)∈Z×Q0px⟨−i⟩) : ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x) →M

with Ker(f) = ⊕(i,x)∈Z×Q0(radPx)⟨−i⟩ ⊗Mi(x). Now, by Proposition 3.5.6,

rad(⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x)) = J(⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗Mi(x))

= ⊕(i,x)∈Z×Q0(JPx)⟨−i⟩ ⊗Mi(x)

= ⊕(i,x)∈Z×Q0(radPx)⟨−i⟩ ⊗Mi(x).

That is, Ker(f) = rad(⊕(i,x)∈Z⊗Q0Px⟨−i⟩ ⊗Mi(x)). Moreover, since Mi(x) = 0

for i ≪ 0, we see that ⊕(i,x)∈Z⊗Q0Px⟨−i⟩ ⊗Mi(x) is bounded below. By Lemma

3.8.1(1), f is a graded projective cover ofM. The proof of the lemma is completed.

Now, we are ready to construct graded projective covers for bounded below

graded modules.

3.8.4 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. If M ∈ GMod+Λ, then M admits a graded projective cover p
M
: P →M,

where P is a graded projective module in GMod+Λ.

Proof. LetM be a non-zero module in GMod+Λ. By Corollary 3.5.12(2), topM is a

semisimple graded module in GMod+Λ. In view of Lemma 3.8.3, we have a graded

projective cover f : P = ⊕(i,x)∈Z×Q0Px⟨−i⟩ ⊗ Vi,x → topM with Ker(f) = radP ,
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where Vi,x = (topM)i(x). Then, there exists a graded morphism p
M

: P → M

such that the diagram

P
p
M //

f ""

M

g

��
topM

commutes, where g is the canonical projection with Ker(g) = radM . Since M

is bounded below, by Proposition 3.7.2(1), g is superfluous. Since g ◦ p
M

is a

graded epimorphism, so is p
M
. On the other hand, Ker(p

M
) ⊆ Ker(f) = radP.

By Lemma 3.8.1(1), pM is a graded projective cover of M . The proof of the

proposition is completed.

Remark. We do not know if every module in GMod−Λ admits an injective

envelope.

Next, we shall describe how to construct graded projective covers for finitely

generated graded modules and graded injective envelopes for finitely co-generated

graded modules; compare [37, (1.1)].

3.8.5 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, a module M in GModΛ admits

(1) a graded projective cover f : Pa1⟨−s1⟩ ⊕ · · · ⊕ Par⟨−sr⟩ →M, sending eai to

mi if and only if {m1, . . . ,mr} with mi ∈Msi(ai) is a top-basis for M ;

(2) a graded injective envelope g :M→Ia1⟨s1⟩ ⊕ · · · ⊕ Iar⟨sr⟩, sending mi to e
⋆
ai

if and only if {m1, . . . ,mr} with mi ∈M−si(ai) is a socle-basis for M.

Proof. (1) Let {m1, . . . ,mr} be a top-basis forM , where mi ∈Msi(ai). In view of

Corollary 3.4.2, we obtain a graded morphism f : Pa1⟨−s1⟩⊕ · · ·⊕Par⟨−sr⟩ →M,

sending eai to mi. Since M =
∑r

i=1 Λmi, we see that f is a graded epimorphism.

Let u ∈ Ker(f). Write u =
∑r

i=1(λieai + ui) with λi ∈ k and ui ∈ JPai⟨−si⟩.
Then

∑r
i=1(λimi + uimi) = f(u) = 0, that is,

∑r
i=1 λimi ∈ radM . Hence,∑r

i=1 λi(mi+radM) = 0 inM/radM , and consequently, λi = 0 for all i = 1, . . . , r.

So, u =
∑r

i=1 ui ∈ rad(Pa1⟨−s1⟩⊕ · · · ⊕Par⟨−sr⟩). Therefore, by Lemma 3.8.1(1),

f is a graded projective cover.

Conversely, suppose that f : P = Pa1⟨−s1⟩ ⊕ · · · ⊕ Par⟨−sr⟩ →M is a graded

projective cover, sending eai to mi. Obviously, M is generated by {m1, . . . ,mr},
and hence, topM is generated by {m1 + radM, . . . ,mr + radM}. Assume that
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∑r
i=1 λi(mi + radM) = 0, that is,

∑r
i=1 λimi ∈ radM , where λi ∈ k. By Propo-

sition 3.7.1, radP = f−1(radM). Thus,
∑r

i=1 λimi = f(u) for some u ∈ radP .

Then,
∑r

i=1 λieai − u ∈ Ker(f). By Lemma 3.8.1(1), Ker(f) ⊆ radP . Thus,∑r
i=1 λieai ∈ radP = ⊕r

i=1rad(Pai⟨−si⟩). Therefore, λieai ∈ rad(Pai⟨−si⟩), and
consequently, λi = 0, for all i = 1, . . . , r. This shows that {m1, . . . ,mr} is a top

basis for M .

(2) First, suppose that g :M → Ia1⟨s1⟩⊕ · · ·⊕ Iar⟨sr⟩ = I is a graded injective

envelope, sending mi to e
⋆
ai
. In view of Corollary 3.5.4, we see that {e⋆a1 , . . . , e

⋆
ar}

is a k-basis of ⊕r
i=1soc(Iai⟨si⟩) = socI. Now, since I is bounded above, so is

M . Thus, socM is graded essential in M by Lemma 3.5.2(3). We claim that

{m1, . . . ,mr} is a k-basis of socM. Assume that
∑r

i=1 λimi = 0, λi ∈ k. Then,

g(
∑r

i=1 λimi) =
∑r

i=1 λie
⋆
ai
= 0, and hence, λi = 0 for all i = 1, . . . , r. Moreover,

if m ∈ socM , then g(m) ∈ socI by Corollary 3.5.3. Hence, g(m) =
∑r

i=1 λie
⋆
ai
=∑r

i=1 λig(mi), where λi ∈ k. Hence, m =
∑r

i=1 λimi. This establishes our claim.

Therefore, {m1, . . . ,mr} is a socle-basis for M.

Conversely, suppose that socM is graded essential in M and has a k-basis

{m1, . . . ,ms}, where mi ∈M−si(ai) with (si, ai) ∈ Z×Q0, for i = 1, . . . , r. Then,

socM = km1⊕· · ·⊕kmr, where kmi is a graded simple submodule ofM. In view

of Lemma 3.4.5, there exists a graded monomorphism q : socM → Ia1⟨s1⟩ ⊕ · · · ⊕
Iar⟨sr⟩ = I, sending mi to e

⋆
ai
. Thus, there exists a graded morphism g : M → I

such that g ◦ h = q, where h : socM → M is the inclusion map. In particular,

g(mi) = e⋆ai , for i = 1, . . . , r, and hence, socI = ke⋆a1 ⊕ · · · ⊕ ke⋆ar ⊆ Im(g).

Moreover, since M is bounded above, by Proposition 3.7.2(2), h is an essential

graded monomorphism. Since g◦h = q, we see that g is a graded monomorphism.

By Lemma 3.8.1(2), g is a graded injective envelope of M . The proof of the

proposition is completed.

As a consequence of Propositions 3.8.5 and 3.7.3, we obtain the following

useful statement.

3.8.6 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) A module M ∈ GModΛ is finitely generated if and only if it admits a

graded projective cover over gprojΛ; and in this case, M is a locally finite

dimensional module in gmod+Λ.

(2) A module M ∈ GModΛ is finitely cogenerated if and only if it admits a
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graded injective envelope over ginjΛ; and in this case, M is a locally finite

dimensional module in gmod−Λ.

Proof. (1) By Proposition 3.6.6(1), a moduleM ∈ GModΛ is finitely generated if

and only if M admits a top-basis; and by Proposition 3.8.5(1), this is equivalent

to M admitting a graded projective cover over gprojΛ. Since Q is locally finite,

every Pa with a ∈ Q0 is a locally finite dimensional module in gmod+Λ, and so

is every module P in gprojΛ. Thus, if f : P → M is a projective cover with

P ∈ gprojΛ, then M is a locally finite dimensional module in gmod+Λ.

(2) Similarly, we deduce from Propositions 3.6.6(2) and 3.8.5(2) that a module

M ∈ GModΛ is finitely cogenerated if and only if there exists a graded injective

envelope g : M → I, where I ∈ ginjΛ. In this case, I ∼= DP , for some P ∈
gprojΛo. As seen above, P is a locally finite dimensional module in gmod+Λo.

Thus, I is a locally finite dimensional module in gmod−Λ, and so isM . The proof

of the corollary is completed.

The following statement will be useful for our later investigation.

3.8.7 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M a module in GModΛ.

(1) If f : P → M is a graded projective cover of M over gprojΛ, then Df :

DM → DP is a graded injective envelope of DM over DP ∈ ginjΛo.

(2) If g : M → I is a graded injective envelope of M over ginjΛ, then Dg :

DI → DM is a graded projective cover of DM over gprojΛo.

Proof. Let f : P → M be a graded projective cover of M , where P ∈ gprojΛ.

By 3.7.4(1), Df : DM → DP is an essential monomorphism in gmodΛo, where

DP ∈ ginjΛo. By definition, Df is a graded injective envelope of DM over

DP ∈ ginjΛo. This establishes Statement (1). And Statement (2) follows dually.

The proof of the lemma is completed.

3.9 Hom-finite Krull-Schmidt exact categories

of graded modules

Throughout this section let Λ = kQ/R be a graded algebra, where Q is a

locally finite quiver. The main objective of this section is to introduce several
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Hom-finite Krull-Schmidt k-subcategories of GModΛ, which will play an impor-

tant role in our later investigation. We start with the following important result,

which does not hold under the non-graded setting.

3.9.1 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then

(1) gprojΛ is Hom-finite Krull-Schmidt and contains all finitely generated pro-

jective modules in GModΛ.

(2) ginjΛ is Hom-finite Krull-Schmidt and contains all finitely cogenerated in-

jective modules in GModΛ.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

dual. In view of Proposition 3.4.3, we see that gprojΛ is Hom-finite. And being

generated by the strongly indecomposable objects Pa⟨−s⟩ with (s, a) ∈ Z×Q0; see

(3.4.7), gprojΛ is Krull-Schmidt. Finally, let P be a finitely generated projective

module in GModΛ. By Corollary 3.8.6(1), P admits a graded projective cover

f : U → P with U ∈ gprojΛ. Since idP : P → P is also a graded projective cover

of P, by Lemma 1.3.6, P ∼= U . The proof of the proposition is completed.

More generally, we have the following statement.

3.9.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M ∈ gmodΛ.

(1) If P ∈ gprojΛ, then dimkGHomΛ(P,M) <∞.

(2) If I ∈ ginjΛ, then dimkGHomΛ(M, I) <∞.

Proof. (1) Let P ∈ gprojΛ. We may assume that P = ⊕r
i=1Pai⟨−si⟩, where

(si, ai) ∈ Z×Q0. By Corollary 3.4.2, we have

GHomΛ(P,M) ∼= ⊕r
i=1GHomΛ(Pai⟨−si⟩,M) ∼= ⊕r

i=1Msi(ai).

Since M is piecewise finite dimensional, we have

dimkGHomΛ(P,M) ≤
r∑
i=1

dimkMsi(ai) <∞.
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(2) Let I ∈ ginjΛ. Since DI ∈ gprojΛo and DM ∈ gmodΛo, by Statement (1),

dimkGHomΛo(DI,DM) <∞. In view of Proposition 3.3.3(2), we have a k-linear

isomorphism

GHomΛ(M, I) ∼= GHomΛo(DI,DM).

Therefore, dimkGHomΛ(M,N) <∞. The proof of the lemma is completed.

In the sequel, we shall write gmod+,bΛ and gmod−,bΛ for the full subcategories

of GModΛ of finitely generated modules and of finitely cogenerated modules,

respectively. By Corollary 3.8.6, both are subcategories of gmodΛ.

3.9.3 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, the duality D : gmodΛ → gmodΛo restricts to two dualities

D : gmod+, bΛ → gmod−, bΛo and D : gmod−, bΛ → gmod+, bΛo.

Proof. By Proposition 3.3.3(2), we have a duality D : gmodΛ → gmodΛo. Let

M ∈ gmod+, bΛ. By Corollary 3.8.6(1), M has a graded projective f : P → M

with P ∈ gprojΛ. Then, by Lemma 3.8.7(1), D(f) : DM → DP is a graded

injective envelope with DP ∈ ginjΛo. Thus, DM is finitely cogenerated by

Corollary 3.8.6(2). So, D : gmod+, bΛ → gmod−, bΛo is a duality. Dually, one can

prove that the second part of the proposition. The proof of the proposition is

completed.

Recall that gmodbΛ denotes the full subcategory of GModΛ of finite dimen-

sional modules.

3.9.4 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then gmod+,bΛ and gmod−,bΛ are Hom-finite Krull-Schmidt extension-

closed subcategories of GModΛ such that their intersection is gmodbΛ.

Proof. Let M,N ∈ gmod+,bΛ. By Corollary 3.8.6(1), M has a graded pro-

jective cover f : P → M with P ∈ gprojΛ. Applying the left exact functor

GHomΛ(−, N), we obtain the exact sequence

0 // GHomΛ(M,N)
GHomΛ(f,N) // GHomΛ(P,N).

By Lemma 3.9.2(1), dimkGHomΛ(P,N) <∞, and hence, dimkGHomΛ(M,N) <

∞. So, gmod+,bΛ is Hom-finite. It is evident that gmod+,bΛ is closed under direct

summands. By Proposition 1.3.2, gmod+,bΛ is Krull-Schmidt.

Let 0 // X
g // Y

h // Z // 0 be an exact sequence in GModΛ, where

X,Z ∈ gmod+,bΛ. Assume that X =
∑s

i=1 Λm
′
i and Z =

∑t
i=1 Λm

′′
i , where the
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m′
i and the m′′

i are homogeneous elements. Since h is a graded epimorphism,

m′′
i = g(mi) for some homogeneous element mi ∈ Y , i = 1, . . . , t. It is easy to

check that Y =
∑t

i=1 Λmi +
∑s

i=1 Λg(m
′
i), that is, Y is finitely generated.

Finally, in view of Lemmas 3.6.2 and 3.6.3, we see that gmodbΛ is contained

in both gmod+,bΛ and gmod−,bΛ. IfM ∈ GModΛ is finitely generated and finitely

cogenerated, then it follows from Corollary 3.8.6 that M is locally finite dimen-

sional and bounded, and consequently, M is finite dimensional. The proof of the

proposition is completed.

Remark. By Proposition 3.9.4, gmod+,bΛ and gmod−,bΛ are exact k-categories.

Note that they are not abelian in general.

A module M in GModΛ is called noetherian if every graded submodule of

M is finitely generated. Note that, by Theorem 5.4.7 in [53], a graded module is

noetherian in GModΛ if and only if it is noetherian as a non-graded module.

3.9.5 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) If Λ is locally left noetherian, then gmod+,bΛ is abelian.

(2) If Λ is locally right noetherian, then gmod−,bΛ is abelian.

Proof. (1) Suppose that Λ is locally left noetherian. Consider a morphism

f : M → N in gmod+,bΛ. In view of Proposition 3.7.3, the cokernel of f

lies in gmod+,bΛ. By Corollary 3.8.6(1), M admits a graded projective cover

g : ⊕r
i=1Pai⟨−si⟩ → M , where (si, ai) ∈ Z × Q0. By the hypothesis, we see that

⊕r
i=1Pai⟨−si⟩ is noetherian, and hence, so is M ; see, for example, [1, (10.12)]. In

particular, the kernel of f lies in gmod+,bΛ. Therefore, gmod+,bΛ is an abelian

subcategory of GModΛ.

(2) Assume that Λ is locally right noetherian. That is, Λo is locally left

noetherian. By Statement (1), gmod+,bΛo is abelian, and by Proposition 3.9.3, so

is gmod−,bΛ. The proof of the proposition is completed.

Recall that Λ is locally left bounded if Λea with a ∈ Q0 are finite dimensional,

and it is locally right bounded if Λoea with a ∈ Q0 are finite dimensional. The

following statement will be useful in our later study.
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3.9.6 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) If Λ is locally left bounded, then gmod+,bΛ = gmodbΛ.

(2) If Λ is locally right bounded, then gmod−,bΛ = gmodbΛ.

Proof. (1) Suppose that Λ is locally left bounded. Let M ∈ gmod+,bΛ. Write

M =
∑r

i=1 Λmi, where mi ∈ Msi(ai) with (si, ai) ∈ Z × Q0. Since Λeai is finite

dimensional, so is Λmi = Λeaimi. Thus, M ∈ gmodbΛ, and hence, gmod+,bΛ =

gmodbΛ.

(2) Assume that Λ is locally right bounded. That is, Λo is locally left bounded.

By Statement (1), gmod+,bΛo contains only finite dimensional modules, and by

Proposition 3.9.3, so does gmod−,bΛ. That is, gmod−,bΛ = gmodbΛ. The proof of

the proposition is completed.

Next, we shall introduce finitely presented and finitely co-presented graded

modules, which will play an essential role in our later study of the existence of

almost split sequences.

3.9.7 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. A module M ∈ GModΛ is said to be

(1) finitely presented if it admits a graded projective presentation

P−1 d−1
// P 0 d0 //M // 0,

where P 0, P−1 ∈ gprojΛ.

(2) finitely copresented if it admits a graded injective co-presentation

0 //M d0 // I0 d1 // I1,

where I0, I1 ∈ ginjΛ.

The following statement will be needed in our later study.

3.9.8 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.
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(1) A finitely presented graded module in GModΛ admits a minimal graded

projective presentation over gprojΛ.

(2) A finitely copresented graded module in GModΛ admits a minimal graded

injective copresentation over ginjΛ.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

dual. Let M ∈ GModΛ with a graded projective presentation

P−1 d−1
// P 0 d0 //M // 0,

where P−1, P 0 ∈ gprojΛ. In particular, M and Ker(d0) are finitely generated.

By Corollary 3.8.6(1), M has a graded projective cover u0 : U0 → M with

U0 ∈ gprojΛ. Consider the following commutative diagram with exact rows

0 // Ker(u0) v //

g

��

U0 u0 //

f
��

M // 0

0 // Ker(d0)

g′

��

w // P 0

f ′

��

d0 //M // 0

0 // Ker(u0) v // U0 u0 //M // 0.

In particular, u0 ◦ f ′ ◦ f = u0. Since u0 is right minimal by Lemma 1.3.6(1),

f ′ ◦ f is an automorphism of U0, and consequently, g′ ◦ g is an automorphism

of Ker(u0). Therefore, Ker(u0) is a direct summand of Ker(d0). Since Ker(d0)

is finitely generated, so is Ker(u0). By Corollary 3.8.6(1), Ker(u0) admits a

graded projective cover h : U−1 → Ker(u0) with U−1 ∈ gprojΛ. By Lemma 1.3.7,

we obtains a right minimal graded morphism u−1 = j ◦ h : U−1 → U0, where

j : Ker(u0) → P 0 is the inclusion map. That is, we have a minimal graded

projective presentation U−1 u−1
// U0 u0 //M // 0 over gprojΛ. The proof of

the lemma is completed.

In the sequel, we shall denote by gmod+, pΛ (respectively, gmod−, iΛ) the full

additive subcategory of gmodΛ generated by the finitely presented (respectively,

co-presented) modules.

3.9.9 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, the duality D : gmodΛ → gmodΛo restricts to two dualities

D : gmod+, pΛ → gmod−, iΛo and D : gmod−, pΛ → gmod+, iΛo.
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Proof. By proposition 3.3.3(2), we have a duality D : gmodΛ → gmodΛo. Let

M ∈ gmod+, pΛ with a graded projective presentation

P−1 d−1
// P 0 d0 //M // 0,

where P−1, P 0 ∈ gprojΛ. Applying the duality D, we obtain an injective copre-

sentation

0 // DM
D(d0) // DP 0 D(d−1) // DP−1

ofDM over ginjΛo. So, the dualityD : gmodΛ→gmodΛorestricts to a functorD :

gmod+, pΛ → gmod−, iΛo. Similarly, the duality D : gmodΛo→gmodΛ restricts to

a functor D : gmod−, iΛo → gmod+, pΛ. Therefore, D : gmod+, pΛ → gmod−, iΛo is

a duality. Dually, we have a duality D : gmod−, pΛ → gmod+, iΛo. The proof of

the proposition is completed.

The following statement does not hold under the general non-graded setting.

3.9.10 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a lo-

cally finite quiver. Then, gmod+, pΛ and gmod−, iΛ are Hom-finite Krull-Schmidt

extension-closed subcategories of GModΛ such that their intersection is gmodbΛ.

Proof. By Proposition 3.9.4, gmod+, pΛ is Hom-finite, and by Proposition 2.1 in

[3], gmod+, pΛ is extension-closed in GModΛ. We claim that it is closed under di-

rect summands. Indeed, letM ∈ gmod+, pΛ with a graded projective presentation

P−1 d−1
// P 0 d0 //M // 0 over gprojΛ. Then, Ker(u0) is finitely generated.

Assume that M = L⊕N with a canonical injection q : L → M and a canonical

projection p : M → L. In particular, L ∈ gmod+, bΛ. By Corollary 3.8.6(1), L

has a graded projective cover u0 : U0 → L with U0 ∈ gprojΛ. Hence, we obtain

a commutative diagram with exact rows

0 // Ker(u0) v //

g

��

U0 u0 //

f
��

L //

q

��

0

0 // Ker(d0)

g′

��

w // P 0

f ′

��

d0 //M

p

��

// 0

0 // Ker(u0) v // U0 u0 // L // 0.

In particular, u0 ◦f ′ ◦f = u0. Since u0 is right minimal by Lemma 1.3.6(1), f ′ ◦f
is an automorphism of U0, and hence, g′ ◦ g is an automorphism of Ker(u0). So,
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Ker(u0) is a direct summand of Ker(d0), and hence, it is finitely generated. There-

fore, L admits a graded projective presentation over gprojΛ. This establishes our

claim. By Proposition 1.3.2, gmod+, pΛ is Krull-Schmidt. Moreover, in view of

Proposition 3.9.9, we see that gmod−, iΛ is also a Hom-finite Krull-Schmidt and

extension-closed subcategory of GModΛ.

Finally, by Proposition 3.9.4, the intersection of gmod+, pΛ and gmod−, iΛ lies

in gmodbΛ. Conversely, let M ∈ gmodbΛ. In particular, there exists some t ∈ Z
such that Mi = 0 for all i ≥ t. By Corollary 3.9.5, M admits a graded projective

cover f : P →M with P ∈ gprojΛ. Write L = Ker(f). Then L = ⊕i∈ZLi, where

Li ⊆ Pi for all i ∈ Z. Since f is a graded morphism, Li = Pi for all i ≥ t. If i > t,

then Li = Pi = Ji−tPt ⊆ radL. Therefore, topL = ⊕i≤t(Li+radL)/radL. On the

other hand, since P is locally finite dimensional and bounded below; see (3.8.6),

⊕i≤tPi is finite dimensional. As a consequence, ⊕i≤tLi is finite dimensional, and

so is topL. Being bounded below, L is finitely generated by Lemma 3.6.2. By

Corollary 3.8.6(1), Ker(f) admits a graded projective cover over gprojΛ. So,

M ∈ gmod+, pΛ. Dually, we may show that M ∈ gmod−,iΛ. The proof of the

proposition is completed.

Remark. By Proposition 3.9.10, gmod+,pΛ and gmod−,iΛ are exact k-categories.

Note that they are not abelian in general.

As an analogue of Proposition 3.9.5, we have the following statement.

3.9.11 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) If Λ is locally left noetherian, then gmod+,pΛ is abelian.

(2) If Λ is locally right noetherian, then gmod−,iΛ is abelian.

Proof. (1) Suppose that Λ is locally left noetherian. Let f : P → P ′ be a

morphism in gprojΛ. By Proposition 3.9.5(1), Ker(f) ∈ gmod+,bΛ. Thus, by

Corollary 3.8.6(1), we have a graded projective cover g : U → Ker(f) with

U ∈ gprojΛ. This yields an exact sequence U
q◦g // P

f // P ′ in gprojΛ, where

q : Ker(f) → P is the inclusion morphism. Now, by Proposition 2.1 in [3],

gmod+,pΛ is closed under kernels and cokernels. Therefore, gmod+,pΛ is abelian.

(2) Assume that Λ is locally right noetherian. That is, Λo is locally left

noetherian. By Statement (1), gmod+,pΛo is abelian, and by Proposition 3.9.9,

so is gmod−,iΛ. The proof of the proposition is completed.
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We conclude this section with the following result, which will be useful in the

study of almost split sequences for graded representations of any locally finite

quiver.

3.9.12 Proposition. Let Q be a locally finite quiver. Then gmod+,p(kQ) and

gmod−,i(kQ) are Hom-finite Krull-Schmidt hereditary abelian subcategories of

gmodkQ such that their intersection is gmodb(kQ).

Proof. By Proposition 3.9.10, gmod+,p(kQ) is Hom-finite and Krull-Schmidt.

It is well known that the category of all unitary kQ-modules is hereditary; see

[20, (8.2)]. In particular, GExt2kQ(M,N) = 0 for all M,N ∈ gmod+,p(kQ).

That is, gmod+,p(kQ) is hereditary. Let f : P → P ′ be a morphism in gprojΛ.

Since GMod+,p(kQ) has enough projective objects by Proposition 3.4.8, Im(f)

is projective, and hence, P ∼= Ker(f) ⊕ Im(f). Since gprojΛ is Krull-Schmidt,

Ker(f) ∈ gprojΛ. Now, by Proposition 2.1 in [3], gmod+,p(kQ) is closed under

kernels and cokernels. Therefore, gmod+,p(kQ) is abelian. This establishes the

first part of the statement, and the second part follows dually. The proof of the

proposition is completed.
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Chapter 4

Auslander-Reiten theory over a

graded algebra arising from a

locally finite quiver

In this chapter, we shall study the existence of almost split sequences in

GModΛ and almost split triangles in the derived categories of graded modules.

For this purpose, we shall first construct a Nakayama functor for graded mod-

ules. Using the Nakayama functor, we give a novel, more categorical, proof

of Auslander-Reiten formulas, eliminating the need for tensor product functors,

compare [31]. As a consequence, we prove that GModΛ has almost split se-

quences. In the final section, by using the link between the Nakayama functor

and the almost split triangles, we investigate the existence of almost split trian-

gles in the bounded derived category of piecewise finite dimensional graded Λ-

modules for bounded complexes of finitely generated Λ-modules and for bounded

complexes of finitely cogenerated Λ-modules.

4.1 Graded Nakayama functor

The objective of this section is to construct a Nakayama functor for graded

modules, which is essential for the existence of almost split sequences in the

graded module category and almost split triangles in derived categories of graded

modules.

We start by constructing the contravariant functor (−)t as follows. Given

M ∈ GModΛ, put M t = ⊕i∈Z(M
t)i, where (M t)i = ⊕x∈Q0GHomΛ(M⟨−i⟩, Px).
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For u ∈ exΛjey and f ∈ GHomΛ(M⟨−i⟩, Px), put f⟨−j⟩ : M⟨−i−j⟩ → Px⟨−j⟩,
considering the morphism P [u] : Px⟨−j⟩ → Py, we define

uo ·f = P [u]◦f⟨−j⟩ ∈ GHomΛ(M⟨−i−j⟩, Py),

that is, (uo ·f)(m) = (f⟨−j⟩)(m)u, for allm ∈M⟨−i⟩. In this way,M t ∈ GModΛo.

Given a morphism g : M → N , we define a morphism gt : N t → M t by setting

(gt)i,x = GHomΛ(g⟨−i⟩, Px), for all (i, x) ∈ Z × Q0. This yields a contravariant

functor (−)t : GModΛ → GModΛo.

4.1.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then the contravariant functor (−)t : GModΛ → GModΛo is left exact.

Proof. Let L //M // N // 0 be an exact sequence in GModΛ. Fix

(i, x) ∈ Z×Q0. Then, L⟨−i⟩ //M⟨−i⟩ // N⟨−i⟩ // 0 is an exact sequence

in GModΛ. Applying the left exact functor GHomΛ(−, Px), we obtain an exact

sequence

0 // GHomΛ(N⟨−i⟩, Px) // GHomΛ(M⟨−i⟩, Px) // GHomΛ(L⟨−i⟩, Px).

That is, the sequence 0 // (N t)i(x) // (M t)i(x) // (Lt)i(x) is eaxct. By

Proposition 3.2.2, 0 // N t //M t // Lt is an exact sequence in GModΛo.

The proof of the lemma is completed.

4.1.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If M ∈ GModΛ and V ∈ modk, then ((M ⊗ V )⟨s⟩)t ∼=M t⟨−s⟩ ⊗DV, for

s ∈ Z.

(2) We have a duality (−)t : gprojΛ → gprojΛo such that P t
a
∼= P o

a , for all

a ∈ Q0.

Proof. Let M ∈ GModΛ and V ∈ modk. Using first the adjunction isomorphism

and then applying Lemma 2.1.2, we obtain

GHomΛ(M ⊗ V, Px) ∼= Homk(V,GHomΛ(M,Px))

∼= GHomΛ(M,Px)⊗DV,

for x ∈ Q0. Now, in view of the definition of (−)t, we see that

(M ⊗ V )t ∼= M t ⊗DV
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and M⟨s⟩t =M t⟨−s⟩. Then, Statement (1) follows.

Fix a ∈ Q0. Given any (i, x) ∈ Z × Q0, by Proposition 3.4.3, we obtain a

k-linear isomorphism

fai,x : exΛ
o
i ea → GHomΛ(Pa⟨−i⟩, Px) : vo → P [v].

It is easy to see that fai+j,y(u
ovo) = uofai,x(v

o), for u ∈ exΛjey and v ∈ eaΛiex.

That is, fa = (fai,x)(i,x)∈Z×Q0 : P
o
a → P t

a is an isomorphism in gprojΛo. Similarly,

we may construct an isomorphism ga : (P o
a )
t → (P o

a )
o = Pa in projΛ. This yields

an isomorphism ζa = ga ◦ (fa)t : P tt
a → Pa in gprojΛ.

Fix u ∈ eaΛseb. Consider the graded morphisms P [u] : Pa → Pb⟨s⟩ and

P [uo] : P o
b ⟨−s⟩ → P o

a , the right multiplication by u and uo respectively. Given

v ∈ ebΛi−sex, we have P [uv] =P [v] ◦P [u]⟨−i⟩, that is,

fai,x(P [u
o]i,x(v

o))=GHom(P [u]⟨−i⟩,Px)(f bi−s,x(vo)).

So, fai,x ◦ P [uo]i,x = P [u]ti,x ◦ f b⟨−s⟩i,x, and hence, fa ◦ P [uo] = P [u]t ◦ f b⟨−s⟩.
Similarly, P [u] ◦ ga = gb⟨s⟩ ◦ P [uo]t. This implies P [u] ◦ ζa = ζb⟨s⟩ ◦ P [u]tt. Since
every morphism in HomΛ(Pa, Pb⟨s⟩) is of the form P [u]; see (3.4.3), ζa is natural

in Pa.

Now, let U and V be two indecomposable projective modules in gprojΛ. Then

there are two graded isomorphisms ϑa : U → Pa⟨s⟩ and ϑb : V → Pb⟨t⟩ for some

a, b ∈ Q0 and s, t ∈ Z. This yields two commutative diagram

(Pa⟨s⟩)tt
ζa // Pa⟨s⟩ (Pb⟨t⟩)tt

ζb // Pb⟨t⟩

U tt

ϑtt
a

OO

ζ
U // U

ϑa and

OO

V tt

ϑtt
b

OO

ζ
V // V

ϑb

OO

for some graded isomorphisms ζ
U
: U tt → U and ζ

V
: V tt → V. On the other hand,

given a graded morphism h : U → V , by Corollary 3.4.3, we have a commutative

diagram

U
ϑa //

h

��

Pa⟨s⟩
P [u]

��
V

ϑb // Pb⟨t⟩
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for some u ∈ eaΛt−seb. Now, observe the following diagram

(Pa⟨s⟩)tt
ζa //

P [u]tt

��

Pa⟨s⟩

P [u]

��

U tt
ζ
U //

htt

��

ϑtt
a

bb

U

h
��

ϑa

==

V tt
ζ
V //

ϑtt
b

||

V
ϑb

!!
(Pb⟨t⟩)tt

ζb // Pb⟨t⟩ ,

we see that
ϑb ◦ h ◦ ζ

U
= P [u] ◦ ϑa ◦ ζU
= P [u] ◦ ζa ◦ ϑtta
= ζb ◦ P [u]tt ◦ ϑtta
= ζb ◦ ϑttb ◦ htt

= ϑb ◦ ζV ◦ htt.

Since ϑb is a graded isomorphism, h ◦ ζ
U
= ζ

V
◦ htt. Therefore, ζa extends to a

natural isomorphism ζ
U
: U tt → U for each U ∈ projΛ. Thus, id ∼= (−)t ◦ (−)t.

The proof of the lemma is completed.

Composing the functors (−)t and D yields two functors ν = D ◦ (−)t :

GModΛ → GModΛ and ν− = (−)t ◦ D : GModΛ → GModΛ. By Proposition

3.3.3 and Lemma 4.1.2, they restrict respectively to functors ν : gprojΛ → ginjΛ

and ν− : ginjΛ→ gprojΛ.

4.1.3 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) The restricted functors ν : gprojΛ → ginjΛ and ν− : ginjΛ → gprojΛ are

mutually quasi-inverse such that ν(Pa⟨s⟩⊗V ) ∼= Ia⟨s⟩⊗V, for s ∈ Z and

V ∈modk.

(2) Given M ∈ GModΛ and P ∈ gprojΛ, there exists a binatural k-linear

isomorphism

ΦP,M : GHomΛ(M, νP ) → D(GHomΛ(P,M)).
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Proof. By Proposition 3.3.3 and Lemma 4.1.2, both D : gprojΛo → ginjΛ

and (−)t : gprojΛ → gprojΛo are dualities. Thus, ν : gprojΛ → ginjΛ and

ν− : ginjΛ → gprojΛ are mutually quasi-inverse. Given V ∈ modk, in view of

Proposition 3.3.1(2) and Lemma 4.1.2, we see that

ν(Pa⟨s⟩ ⊗ V ) ∼= D(P o
a ⟨−s⟩ ⊗DV ) ∼= Ia⟨s⟩ ⊗ V.

This establishes Statement (1).

Fix M ∈ GModΛ and Pa⟨s⟩ with (s, a) ∈ Z×Q0. By Lemma 4.1.2, we have a

natural isomorphism fa⟨−s⟩ : P o
a ⟨−s⟩ → P t

a⟨−s⟩ in gprojΛo, and hence, a natural

isomorphism D(fa)⟨s⟩ : (νPa)⟨s⟩ → Ia⟨s⟩ in ginjΛ. This gives rise to a k-linear

isomorphism

ρ s,a
M

= GHomΛ(M,D(fa)⟨s⟩) : GHomΛ(M, (νPa)⟨s⟩) → GHomΛ(M, Ia⟨s⟩),

which is binatural in M and Pa⟨s⟩. Next, by Corollary 3.4.2, we obtain a k-linear

isomorphism ηs,a
M

: GHomΛ(Pa⟨s⟩,M) →M−s(a), which is clearly binatural in M

and Pa⟨s⟩. This yields a binatural k-isomorphism

Dηs,a
M

: DM−s(a) → DGHomΛ(Pa⟨s⟩,M).

Finally, we have a k-linear isomorphism θa : D(eaΛ
o
0ea) → k : h 7→ h(ea). Apply-

ing Proposition 3.4.4 for the case V = k, we get a k-linear isomorphism

ψs,a
M

: GHomΛ(M, Ia⟨s⟩) → D(M−s(a)); g 7→ θa ◦ g−s,a,

which is clearly natural in M . Consider u ∈ eaΛt−seb and the graded morphisms

P [u] : Pa⟨s⟩ → Pb⟨t⟩ and P [uo] : P o
b ⟨−t⟩ → P o

a ⟨−s⟩. Setting I[u] = D(P [uo]), we

claim that the following diagram commutes

GHomΛ(M, Ia⟨s⟩)
ψs,a
M //

GHomΛ(M,I[u])
��

D(M−s(a))

D(M(u))
��

GHomΛ(M, Ib⟨t⟩)
ψt,b
M //D(M−t(b)).

Consider g ∈ GHomΛ(M, Ia⟨s⟩). By definition, we have ψt,bM
(GHomΛ(M, I[u])(g)) =

θb ◦ I[u]−t,b ◦ g−t,b and D(M(u))(ψs,a
M

(g)) = θa ◦ g−s,a ◦M(u). Moreover, given

m ∈M−t(b), we have

(θa ◦ g−s,a ◦M(u))(m) = g−s,a(um)(ea) = (ug−t,b(m))(ea) = g−t,b(m)(uo).
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On the other hand,

(I[u]−t,b ◦ g−t,b)(m) = D(P [uo])(g−t,b(m)) = g−t,b(m) ◦ P [uo],

and hence,

(θb ◦ I[u]−t,b ◦ g−t,b)(m) = (g−t,b(m) ◦ P [uo])(eb) = g−t,b(m)(uo).

Our claim holds. Since every morphism in HomΛ(P
o
b ⟨−t⟩, P o

a ⟨−s⟩) is of the form

P [uo]; see (3.4.3), ψs,a
M

is natural in Pa⟨s⟩. Thus, we obtain a binatural k-linear

isomorphism

ΦPa⟨s⟩,M = D(ηs,a
M

) ◦ ψs,a
M

◦ ρs,a
M

: GHomΛ(M, νPa⟨s⟩) → D(GHomΛ(Pa⟨s⟩,M)).

Now, let U ∈ gprojΛ be indecomposable. Suppose that ϑa : U → Pa⟨s⟩ is

a graded isomorphism for some (s, a) ∈ Z × Q0 and δa is an inverse of ϑa. We

shall show that ΦPa⟨s⟩,M extends to a binatural k-linear isomorphism ΦU,M . The

composite σ of graded isomorphisms

νU σ //

ν(ϑa)
��

D(Uo)

(νPa)⟨−s⟩
D(fa)⟨s⟩ // D(P o

a⟨−s⟩) = Ia⟨s⟩

D(δoa)

OO

gives rise to a k-isomorphism

ρU
M
= GHomΛ(M,σ) : GHomΛ(M, νU) → GHomΛ(M,D(Uo)),

which is binatural in M and U . Composing Dηs,a
M

and D(GHomΛ(δa,M)) yields

a binatural k-linear isomorphism

φU
M
= D(GHomΛ(δa,M)) ◦Dηs,a

M
: DM−s(a) → DGHomΛ(U,M);

and composing GHomΛ(M,D(ϑo
a)) and ψ

s,a
M

yields a k-linear isomorphism

ωUM = ψs,a
M

◦GHomΛ(M,D(ϑo
a)) : GHomΛ(M,DUo) → DM−s(a),

which is natural in M . Let h : U → V be a graded morphism, where U and

V are indecomposable projective modules. Considering a graded isomorphism

ϑb : V → Pb⟨t⟩ with (t, b) ∈ Z × Q0, by Corollary 3.4.3, we have a commutative

diagram

U
ϑa //

h

��

Pa⟨s⟩
P [u]
��

V
ϑb // Pb⟨t⟩
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for some u ∈ eaΛt−seb. Considering the following diagram

GHomΛ(M,DUo)

GHomΛ(M,D(ho))

��

ωU
M //

GHomΛ(M,D(ϑoa)) ))

DM−s(a)

D(M(u))

��

GHomΛ(M, Ia⟨s⟩)
ψs,a
M

55

GHomΛ(M,I[u])

��
GHomΛ(M, Ib⟨t⟩)

ψt,b
M

))
GHomΛ(M,DV o)

GHomΛ(M,D(ϑob))
55

ωV
M // DM−t(b) ,

we see that

D(M(u)) ◦ ωUM = D(M(u)) ◦ ψs,a
M

◦GHomΛ(M,D(ϑo
a))

= ψt,b
M

◦GHomΛ(M, I[u]) ◦GHomΛ(M,D(ϑo
a))

= ψt,b
M

◦GHomΛ(M,D(ϑo
b)) ◦GHomΛ(M,D(ho))

= ωVM ◦GHomΛ(M,D(ho)).

Hence, ωUM is natural in U . Therefore, we obtain a binatural k-linear isomorphism

ΦU,M = φUM ◦ ωUM ◦ ρUM : GHomΛ(M, νU) → D(GHomΛ(U,M)).

It is well-known that ΦPa⟨s⟩,M extends to a binatural k-linear isomorphism ΦU,M
for all U ∈ projΛ. The proof of the theorem is completed.

Remark. By Theorem 4.1.3, the functor ν : gprojΛ → GModΛ is a Nakayama

functor as defined in [38, (5.4)].

4.2 Almost split sequences for graded modules

In case Q is a finite quiver, Martinez-Villa established the existence of al-

most split sequences in the category of finitely presented graded Λ-modules; [44,

(1.7.1)]. In this section, we supply a new, more categorical, proof of Auslander-

Reiten formulas which does not rely on the tensor product functors but the

Nakayama functor; compare [7, (IV.4.5)]. As a consequence, we shall extend

Martinez-Villa’s result to the locally finite case.
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We shall denote byGModΛ the projectively stable category of GModΛ, and by

GModΛ the injectively stable category of GModΛ. By Lemma 1.5.1 and Propo-

sition 3.4.8, we see that GModΛ is the quotient category of GModΛ modulo the

morphisms factoring through graded projective modules in GModΛ, and GModΛ

is the quotient category of GModΛ modulo the morphisms factoring through

graded injective modules in GModΛ. Given M,N ∈ GModΛ, we shall write

GHomΛ(M,N) = GHomΛ(M,N)/P(M,N)

and

GHomΛ(M,N) = GHomΛ(M,N)/I(M,N).

Moreover, we shall write

GEndΛ(M) = GHomΛ(M,M) and GEndΛ(M) = GHomΛ(M,M).

The following easy statement is well known. For the convenience of the reader,

we will provide a brief proof.

4.2.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M,N ∈ GModΛ.

(1) If there exists an epimorphism f : P → N in GModΛ with P graded pro-

jective, then there exists an exact sequence

GHomΛ(M,P )
GHomΛ(M,f) // GHomΛ(M,N) //GHomΛ(M,N) // 0.

(2) If there exits a monomorphism f : M → I in GModΛ with I graded injec-

tive, then there exists an exact sequence

GHomΛ(I,N)
GHomΛ(f,N)// GHomΛ(M,N) //GHomΛ(M,N) // 0.

Proof. We shall only prove Statement (2), since the proof of Statement (1) is

dual. Let f : M → I be a monomorphism in GModΛ with I graded injective.

Consider the following sequence

GHomΛ(I,N)
GHomΛ(M,f) // GHomΛ(M,N)

p //GHomΛ(M,N) // 0,

where p is the canonical epimorphism. Since I is graded injective, we have

Im(GHomΛ(M, f)) ⊆ I(M,N). On the other hand, given g ∈ I(M,N), we have
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g = g1 ◦ g2 for some graded morphisms g1 : I
′ → N and g2 : N → I ′ in GModΛ

with I ′ injective module. Since f is a monomorphism, there exists a graded mor-

phism h : I → I ′ such that g2 = h◦f . That is, GHomΛ(M, f)(g1 ◦h) = g. Hence,

Im(GHomΛ(M, f)) ⊇ I(M,N). Therefore, Im(GHomΛ(M, f)) = I(M,N). The

proof of the lemma is completed.

We denote by gmod+, pΛ the full subcategory of GModΛ generated by the

finitely presented graded modules without non-zero graded projective direct sum-

mands, and by gmod
−, i
Λ the full subcategory of GModΛ generated by the finitely

co-presented graded modules without non-zero graded injective direct summands.

By Lemma 4.2.1, we see that gmod+, pΛ is a dense full subcategory of the quo-

tient category of gmod+, pΛ modulo the morphisms factoring through modules

in gprojΛ, and gmod
−, i
Λ is a dense full subcategory of the quotient category of

gmod−, iΛ modulo the morphisms factoring through modules in ginjΛ.

4.2.2 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then gmod+, pΛ and gmod
−, i
Λ are Hom-finite and Krull-Schmidt.

Proof. By Proposition 3.9.10, gmod+, pΛ and gmod−, iΛ are Hom-finite and Krull-

Schmidt. So are their quotient categories by Lemma 1.2.4. The proof of the

proposition is completed.

For each M ∈ gmod+, pΛ, by Lemma 3.9.8(1), we fix a minimal graded pro-

jective presentation

P−1 d−1
// P 0 d0 //M // 0,

where P−1, P 0 ∈ gprojΛ. Applying the functor (−)t, by Lemma 4.1.1, we obtain

an exact sequence

0 //M t (d0)t // (P 0)t
(d−1)t// (P−1)t // Coker(d−1)t // 0

in gmodΛo. We define the transpose of M to be TrM = Coker(d−1)t.

4.2.3 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M ∈ gmod+, pΛ.

(1) M is graded projective if and only if TrM = 0.

(2) If M = X ⊕ Y , then TrM ∼= TrX ⊕ TrY .
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Proof. (1) Suppose that M is graded projective. Then the sequence

0 //M
id //M // 0

is a minimal graded projective presentation ofM . By definition, TrM is a cokernel

of the morphism M t → 0, which is zero.

Suppose that TrM = 0. Let P−1 d−1
// P 0 d0 //M // 0 be a minimal

graded projective presentation of M . By definition, we get a graded projective

presentation (P 0)t
(d−1)t// (P−1)t // TrM // 0. Since TrM = 0 and (P−1)t is

projective, (d−1)t is a retraction. Because (−)t is a duality by Lemma 4.1.2(2),

d−1 is a section. This yields a split short exact sequence

0 // P−1 d−1
// P 0 d0 //M // 0.

In particular, M is graded projective.

(2) Assume thatM = X⊕Y . Consider two minimal graded projective presen-

tations V −1 v−1
// V 0 v0 // X // 0 and W−1 w−1

//W 0 w0
// Y // 0 . Then,

M admits a minimal graded projective presentation

V −1 ⊕W−1

 v−1 0

0 w−1


// V 0 ⊕W 0

 v0 0

0 w0


// X ⊕ Y // 0.

Thus, by definition, it easy to see that TrM ∼= TrX ⊕ TrY . The proof of the

lemma is completed.

4.2.4 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Let M ∈ gmod+, pΛ admitting a minimal graded projective presentation

P−1 d−1
// P 0 d0 //M // 0.

(1) The graded projective presentation (P 0)t
(d−1)t// (P−1)t // TrM // 0 is

minimal.

(2) TrM has no non-zero graded projective direct summands.

(3) ϑM :M → Tr2M is a graded isomorphism.

(4) M is indecomposable and non-projective if and only if so is TrM .
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Proof. (1) Assume that (P 0)t
(d−1)t// (P−1)t u // TrM // 0 is not minimal.

Consider first the case where u is not a graded projective cover. By Lemma

3.8.2, there exists a graded projective cover f : V −1 → TrM . Thus, we may

assume that

u = (f, 0) : (P−1)t = V −1 ⊕W−1 → TrM,

where W−1 ̸= 0. Then Im(d−1)t = Ker(u) = Ker f ⊕W−1, and hence,

(d−1)t =

(
h1
h2

)
: (P 0)t → V −1 ⊕W−1,

where h2 : (P
0)t → W−1 is a graded epimorphism. Since W−1 is graded projec-

tive, we may write

h2 = (0, g) : (P 0)t = V 0 ⊕W 0 → W−1,

where g : W 0 → W−1 is a graded isomorphism. Therefore,

(d−1)t =

(
p q

0 g

)
: (P 0)t = V 0 ⊕W 0 → V −1 ⊕W−1 = (P−1)t.

Since (−)t is a duality by Lemma 4.1.2(2), d−1 is isomorphic to the graded mor-

phism (
pt 0

qt gt

)
: (V −1)t ⊕ (W−1)t → (V 0)t ⊕ (W 0)t.

Therefore, the minimal graded projective presentation of M is isomorphic to an

exact sequence

(V −1)t ⊕ (W−1)t

 pt 0

qt gt


// (V 0)t ⊕ (W 0)t

(
d1 d2

)
//M // 0.

Since gt is a graded isomorphism, d2 = 0 and (W 0)t ̸= 0. This is contrary to d0

being a graded projective cover.

Next, suppose that the co-restriction of (d−1)t to Im(d−1)t is not a graded

projective cover. Since Im(d−1)t is finitely generated, there exists a graded pro-

jective cover v : V 0 → Im(d−1)t by Lemma 3.8.2. Thus, (d−1)t is isomorphic to

a morphism (v, 0) : V ⊕W → (P−1)t, where W ̸= 0. Since (−)t is a duality by

Lemma 4.1.2(2), d−1 is isomorphic to the morphism(
vt

0

)
: P−1 → V t ⊕W t.
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Therefore, the minimal graded projective presentation of M is isomorphic to the

following exact sequence

P−1

 vt
0


// V t ⊕W t u′ //M // 0.

This yields M ∼= Coker(vt) ⊕ W t, where W t is a non-zero projective module,

a contradiction to the assumption on M . This establishes the second part of

Statement (1).

(2) Assume that TrM = V ⊕ X, where V is a non-zero graded projective

module. By Proposition 3.9.10, X admits a minimal graded projective presenta-

tion W−1 w−1
//W 0 w0

// X // 0 over gprojΛo. Then, TrM admits a minimal

graded projective presentation

W−1

 0

w−1


// V ⊕W 0

 1 0

0 w0


// V ⊕X // 0.

By Statement (1), it is isomorphic to

(P 0)t
(d−1)t// (P−1)t // TrM // 0.

Since (−)t is a duality, d−1 is isomorphic to the morphism

(0, (w−1)t) : V t ⊕ (W 0)t → (W−1)t.

So, the restriction of d−1 to a non-zero direct summand V t of P−1 is zero, a

contradiction.

(3) Since (−)t : gprojΛ → gprojΛo is a duality by Lemma 4.1.2(2), we have a

graded morphism ϑM :M → Tr2M making the following diagram

P−1 d−1
//

∼=
��

P 0 d0 //

∼=
��

M //

ϑM
��

0

(P−1)tt
(d−1)tt // (P 0)tt

(d0)tt // Tr2M // 0

commute, where rows are exact and columns are graded isomorphisms. In par-

ticular, ϑM is a graded isomorphism.

(4) By Statement (3), it suffices to prove the necessity. Assume that M is

indecomposable and non-projective, and assume to the contrary that TrM =
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X ⊕ Y is a nontrivial direct sum decomposition. By Statement (2), X and Y

are not graded projective. By Statement (3) and Lemma 4.2.3, M ∼= Tr2M ∼=
TrX ⊕ TrY , where TrX ̸= 0 and TrY ̸= 0. This is a contradiction. So, TrM

is indecomposable, and by Statement (2), it is non-projective. The proof of the

proposition is completed.

The following statement is important in our investigation, which corresponds

to Auslander’s result for an arbitrary ring with an identity; see [4, Chapter I,

Section 3]. Here, we provide a detailed proof.

4.2.5 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, we have a duality Tr : gmod+, pΛ → gmod+, pΛo.

Proof. For each non-zero object M ∈ gmod+, pΛ, we fix a minimal graded projec-

tive presentation

P−1 d−1
// P 0 d0 //M // 0.

By Proposition 4.2.4, TrM has no non-zero projective summands and has a min-

imal graded projective presentation in gmodΛo as follows:

(P 0)t
(d−1)t // (P−1)t // TrM // 0.

Consider a morphism f = f+P(M,N) in gmod+, pΛ, where f ∈ GHomΛ(M,N).

We shall define Tr(f) as follows. First, we have a commutative diagram

P−1 d−1
//

f−1

��

P 0 d0 //

f0

��

M //

f

��

0

L−1 q−1
// L0 q0 // N // 0,

where the lower row is a minimal graded projective presentation of N . Applying

the contravariant functor (−)t, we obtain a commutative diagram with exact rows

(P 0)t
(d−1)t// (P−1)t // TrM // 0

(L0)t

(f0)t

OO

(q−1)t// (L−1)t

(f−1)t

OO

// TrN

f ′

OO

// 0.

Set Tr(f) = f ′ + P(TrN,TrM). We claim that Tr(f) is well-defined. Indeed,

assume that f = g + P(M,N) for some g ∈ GHomΛ(M,N) and that we have a
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commutative diagram

P−1 d−1
//

g−1

��

P 0 d0 //

g0

��

M //

g

��

0

L−1 q−1
// L0 q0 // N // 0,

which induces a commutative diagram

(P 0)t
(d−1)t// (P−1)t u // TrM // 0

(L0)t

(g0)t

OO

(q−1)t// (L−1)t v //

(g−1)t

OO

TrN //

g′

OO

0.

Since L0 is graded projective, by Lemma 4.2.1, f − g = q0 ◦ h for some graded

morphism h :M → L0. Since q
0 ◦ (f 0 − g0) = (f − g) ◦ d0 = q0 ◦ h ◦ d0, there is a

graded morphism h0 : P 0 → L−1 such that q−1 ◦ h0 = f 0 − g0 − h ◦ d0, and thus,

(h0)t ◦ (q−1)t = (f 0)t − (g0)t − (d0)t ◦ ht. Observe that

((f−1)t − (g−1)t) ◦ (q−1)t = (d−1)t ◦ ((f−0)t − (g−0)t) = (d−1)t ◦ (h0)t ◦ (q−1)t.

Then, there exists a graded morphism w : TrN → (P−1)t such that

w ◦ v = (f−1)t − (g−1)t)− (d−1)t ◦ (h0)t.

Moreover, we see that

(f ′ − g′) ◦ v = u ◦ ((f−1)t − (g−1)t) = u ◦ (w ◦ v + (d−1)t ◦ (h0)t) = u ◦ w ◦ v.

Since v is a graded epimorphism, f ′ − g′ = u ◦w, that is, f ′ − g′ factors through

(P−1)t. Thus, f ′+P(TrN,TrM) = g′+P(TrN,TrM). This establishes our claim.

This defines a contravariant functor Tr : gmod+, pΛ → gmod+, pΛo. Similarly, we

have a contravariant functor Tr : gmod+, pΛo → gmod+, pΛ.

We shall construct a natural isomorphism ϑ : idgmod+, pΛ → Tr2. Indeed, by

Proposition 4.2.4(2), we obtain a minimal graded projective presentation

(P−1)tt
(d−1)tt // (P 0)tt

(d0)tt // Tr2M // 0

over gprojΛ. By Proposition 4.2.4(3), we have a graded isomorphism ϑM :M →
Tr2M . This induces a graded isomorphism ϑM : M → Tr2M in gmod+, pΛ. It

remains to show that ϑM is natural in M . Let f : M → N be a morphism in
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gmod+, pΛ, where f ∈ GHomΛ(M,N). Then, we have a commutative diagram

with exact rows

P−1 d−1
//

f−1

��

P 0 d0 //

f0

��

M

f
��

// 0

L−1 q−1
// L0 q0 // N // 0.

We have obtained a commutative diagram with exact rows

(P 0)t
(d−1)t// (P−1)t // TrM // 0

(L0)t

(f0)t

OO

(q−1)t// (L−1)t

(f−1)t

OO

// TrN

f ′

OO

// 0

such that Tr(f) = f ′ + P(TrN,TrM). Applying the contravariant functor (−)t

yields a commutative diagram with exact rows

(P−1)tt
(d−1)tt //

(f−1)tt

��

(P 0)tt
(d0)tt //

(f0)tt

��

Tr2M

f ′′

��

// 0

(L−1)tt
(q−1)tt // (L0)tt

(q0)tt // Tr2N // 0.

By definition, Tr2(f) = f ′′ +P(M,N). Now, as seen above, we have a commuta-

tive diagram with exact rows

L−1 q−1
//

ηL−1 ∼=
��

L0 q0 //

ηL0 ∼=
��

N //

ϑN ∼=
��

0

(L−1)tt
(q−1)tt // (L0)tt

(q0)tt // Tr2N // 0

in gmodΛ, where the upper row is a minimal graded projective presentation.

Consider the following diagram

P−1 d−1
//

f−1

��

ηP−1

##

P 0

ηP 0

!!

d0 //

��

M

f

��

ϑM
!!

(P−1)tt

��

// (P 0)tt

��

// Tr2M

f ′′

��

L−1

ηL−1

##

// L0

ηL0

!!

// N
ϑN
!!

(L−1)tt
(q−1)tt // (L0)tt

(q0)tt // Tr2N.
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In view of this diagram, we see that

ϑN ◦ f ◦ d0 = ϑN ◦ q0 ◦ f 0

= (q0)tt ◦ ηL0 ◦ f 0

= (q0)tt ◦ (f 0)tt ◦ ηP 0

= f ′′ ◦ (d0)tt ◦ ηP 0

= f ′′ ◦ ϑM ◦ d0.

Since d0 is a graded epimorphism, ϑN ◦ f = f ′′ ◦ ϑM . This yields a commutative

diagram

M
ϑM //

f

��

Tr2M

Tr2(f)

��
N

ϑN // Tr2N.

That is, we have a natural isomorphism ϑ : idgmod+, pΛ → Tr2. Similarly, we have

a natural isomorphism ϱ : idgmod+, pΛo → Tr2. The proof of the proposition is

completed.

Remark. In case Q is a finite quiver, Proposition 4.2.5 was stated by Martinez-

Villa in [4, Section 1.4] without a proof.

The following statement is important.

4.2.6 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver.

(1) Let M ∈ gmod+, pΛ with a minimal graded projective presentaion

P−1 d−1
// P 0 d0 //M // 0

over gprojΛ. Then there exists in gmodΛ an exact sequence

0 // DTrM // νP−1 ν(d
−1)// νP 0 ν(d0) // νM // 0.

(2) Let N ∈ gmod−, iΛ with a minimal graded injective co-presentation

0 // N
d0 // I0

d1 // I1

over ginjΛ. Then there exists in gmodΛ an exact sequence

0 // ν−N // ν−I0
ν−(d−1)// ν−I1

ν−(d0) // TrDN // 0.
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Proof. (1) Since the functor (−)t is left exact by Lemma 4.1.1, we obtain an exact

sequence

0 //M t (d0)t // (P 0)t
(d−1)t // (P−1)t // TrM // 0,

which lies in gmodΛo by Lemma 3.2.5. Recalling that νM = DM t, by Proposition

3.3.1(3), we obtain an exact sequence

0 // D(TrM) // νP−1 ν(d−1) // νP 0 ν(d0) // νM // 0

in gmodΛ.

(2) Applying the exact functor D, in view of Lemma 3.8.7(2), we obtain a

minimal graded projective presentation

DI1
D(d1) // DI0

D(d0) // DN // 0

in gmodΛo over gprojΛo. Applying the left exact functor (−)t, by Lemma 4.1.1,

we obtain an exact sequence

0 // ν−N // ν−I0
ν−(d0) // ν−I1

ν−(d1) // Tr(DN) // 0

in gmodΛ, where ν−N = (DN)t. The proof of the proposition is completed.

Combing Proposition 4.2.5 and 4.2.6, we obtain immediately the following

result.

4.2.7 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Then, we have two mutually quasi-inverse equivalences

τ = D ◦ Tr : gmod+, pΛ → gmod
−, i
Λ

and

τ− = Tr ◦D : gmod
−, i
Λ → gmod+, pΛ,

called the Auslander-Reiten translations.

We shall need the following statement to prove the graded Auslander-Reiten

formula.
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4.2.8 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider a short exact sequence

0 // L
f //M

g // N // 0

in GModΛ. If X ∈ gmod+, pΛ, then we have an exact sequence of k-vector spaces

0 // GHomΛ(N, τX)
GHomΛ(g,τX)// GHomΛ(M, τX)

GHomΛ(f,τX) // GHomΛ(L, τX)

// DGHomΛ(X,N) // DGHomΛ(X,M) // DGHomΛ(X,L) // 0.

Proof. Let X ∈ gmod+, pΛ with a minimal graded projective presentaion

P−1 d−1
// P 0 d0 // X // 0

over gprojΛ. By Proposition 4.2.6(1), we have an exact sequence

0 // τX // νP−1 ν(d−1) // νP 0.

Fix Y ∈ GModΛ. Applying the left exact functor GHomΛ(Y,−) yields an exact

sequence

0 // GHomΛ(Y, τX) // GHomΛ(Y, νP
−1)

GHomΛ(Y, ν(d
−1)) // GHomΛ(Y, νP

0).

On the other hand, applying the right exact functor DGHomΛ(−, Y ) to the first

exact sequence, in view of Theorem 4.1.3(2), we obtain a commutative diagram

with exact lower row

GHomΛ(Y, νP
−1)

∼=
��

GHomΛ(Y, ν(d
−1)) // GHomΛ(Y, νP

0)

∼=
��

DGHomΛ(P
−1, Y )

DHomΛ(d
−1,Y ) // DGHomΛ(P

0, Y )
D(d0)∗// DGHomΛ(X, Y ) // 0,

where (d0)∗ = GHomΛ(d
0, Y ). This yields an exact sequence

GHomΛ(Y, νP
−1)

GHomΛ(Y, ν(d
−1)) // GHomΛ(Y, νP

0) // DGHomΛ(X, Y ) // 0.
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Now, since νP−1 and νP 0 are graded injective, we obtain a commutative diagram

with exact rows and exact columns

0

��

0

��

0

��
0 // GHomΛ(N, τX) //

��

GHomΛ(M, τX) //

��

GHomΛ(L, τX)

��
0 // GHomΛ(N, νP

−1) //

��

GHomΛ(M, νP−1) //

��

GHomΛ(L, νP
−1) //

��

0

0 // GHomΛ(N, νP
0) //

��

GHomΛ(M, νP 0) //

��

GHomΛ(L, νP
0) //

��

0

DGHomΛ(X,N) //

��

DGHomΛ(X,M)

��

// DGHomΛ(X,L) //

��

0.

0 0 0

Using the Snake Lemma, we obtain the desired exact sequence stated in the

proposition. The proof of the proposition is completed.

We also need the following statement.

4.2.9 Proposition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. Consider a short exact sequence

0 // L
f //M

g // N // 0

in GModΛ. If X ∈ gmod−, iΛ, then we have an exact sequence of k-vector spaces

0 // D2GHomΛ(τ
−X,L) // D2GHomΛ(τ

−X,M) // D2GHomΛ(τ
−X,N)

// DGHomΛ(L,X) // DGHomΛ(M,X) // DGHomΛ(N,X) // 0.

Proof. Let X ∈ gmod−, iΛ with a minimal graded projective presentaion

0 // X
d0 // I0

d1 // I1

over ginjΛ. By Proposition 4.2.6(2), we have an exact sequence

ν−I0
ν−(d1) // ν−I1 // τ−X // 0.
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Fix Y ∈ GModΛ. Applying the left exact functor D2GHomΛ(−, Y ) yields an

exact sequence

0 //D2GHomΛ(τ
−X, Y ) //D2GHomΛ(ν

−I1, Y )
D2GHomΛ(ν

−d1,Y )//D2GHomΛ(ν
−I0, Y ).

On the other hand, applying the right exact functor DGHomΛ(Y,−) to the first

exact sequence, in view of Theorem 4.1.3(2), we obtain a commutative diagram

with exact upper row

DGHomΛ(Y, I
1)

DGHomΛ(Y,d
1) // DGHomΛ(Y, I

0)
Dd0∗ // DGHomΛ(Y,X) // 0

D2GHomΛ(ν
−I1, Y )

∼=

OO

D2GHomΛ(ν
−d1,Y )// D2GHomΛ(ν

−I0, Y ),

∼=

OO

where d0∗ = GHomΛ(Y, d
0). This yields an exact sequence

D2GHomΛ(ν
−I1, Y )

D2GHomΛ(ν
−d1,Y )// D2GHomΛ(ν

−I0, Y ) // DGHomΛ(Y,X) // 0.

Now, since ν−I0 and ν−I1 are projective, we obtain a commutative diagram with

exact rows and exact columns

0

��

0

��

0

��
0 // D2GHomΛ(τ

−X,L) //

��

D2GHomΛ(τ
−X,M) //

��

D2GHomΛ(τ
−X,N)

��
0 // D2GHomΛ(ν

−I1, L) //

��

D2GHomΛ(ν
−I1,M) //

��

D2GHomΛ(ν
−I1, N) //

��

0

0 // D2GHomΛ(ν
−I0, L) //

��

D2GHomΛ(ν
−I0,M) //

��

D2GHomΛ(ν
−I0, N) //

��

0

DGHomΛ(L,X) //

��

DGHomΛ(M,X)

��

// DGHomΛ(N,X) //

��

0.

0 0 0

Using the Snake Lemma, we obtain the desired exact sequence stated in the

proposition. The proof of the proposition is completed.

We are ready to obtain the graded Auslander-Reiten formula. The classical

approach to this well known formula consists of the following two identifications;
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see [4, (I.3.4)] and the corollary to [44, (1.6.3)]. First, the covariant stable Hom

functor given by a finitely presented module is identified with the Tor1 functor

given by its transpose; see [4, (I.3.2)] and [44, (1.6.3)]. Secondly, the dual of the

Tor1 functor given by a module is identified by the adjunction isomorphism with

the contravariant Ext1 functor given by its dual; see [4, (I.3.3)], [18, (VI.5.1)] and

[44, (1.6.1)]. Our approach is to apply the Nakayama functor; see (4.1.3), which

does not pass through the Tor1 functor and does not involve the tensor product

over the algebra or the adjunction isomorphism.

4.2.10 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M,N ∈ GModΛ.

(1) If M ∈ gmod+, pΛ, then there exists a k-linear isomorphism

DGHomΛ(M,N) ∼= GExt1Λ(N, τM),

which is natural in N.

(2) If N ∈ gmod−, iΛ, then there exists a k-linear isomorphism

D2GExt1Λ(τ
−N,M) ∼= DGHomΛ(M,N),

which is natural in M.

Proof. (1) Assume that M ∈ gmod+, pΛ. By Proposition 3.4.8, there exists a

short exact sequence 0 // L
q // P

p // N // 0 in GModΛ with P being

graded projective. Applying GHomΛ(−, τM) yields an exact sequence

0 // GHomΛ(N, τM)
p∗ // GHomΛ(P, τM)

q∗ // GHomΛ(L, τM)

// GExt1Λ(N, τM) // 0,

where p∗ = GHomΛ(p, τM) and q∗ = GHomΛ(q, τM). In particular, we obtain

an isomorphism Coker(q∗) ∼= GExt1Λ(N, τM), which is natural in M . On the

other hand, in view of Lemma 4.2.1(1), we have an exact sequence

0 // DGHomΛ(M,N) // DGHomΛ(M,N)
DGHomΛ(M,p)// DGHomΛ(M,P ).

This yields an isomorphism DGHomΛ(M,N) ∼= Ker(DGHomΛ(M, p)), which is

natural in M . Further, by Proposition 4.2.8, we have an exact sequence

0 // GHomΛ(N, τM)
p∗ // GHomΛ(P, τM)

q∗ // GHomΛ(L, τM)
η //
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DGHomΛ(M,N)
DGHomΛ(M,p)// DGHomΛ(M,P ) // DGHomΛ(M,L) // 0.

This yields an isomorphism

Ker(DGHomΛ(M, p)) = Im(η)∼=Coker(q∗),

which is clearly natural inM . As a consequence, we obtain a natural isomorphism

DGHomΛ(M,N)∼=GExt1Λ(N, τM).

(2) Assume that N ∈ gmod−, iΛ. By Proposition 3.4.8, there exists a short

exact sequence 0 //M
q // I

p // L // 0 in GModΛ with I being graded

injective. Put U = τ−N . Applying the functor GHomΛ(τ
−N,−), since I is

graded injective, we obtain an exact sequence

0 // GHomΛ(τ
−N,M)

q∗ // GHomΛ(τ
−N, I)

p∗ // GHomΛ(τ
−N,L)

// GExt1Λ(τ
−N,M) // 0,

where p∗ = GHomΛ(τ
−N, p) and q∗ = GHomΛ(τ

−N, q). Applying the exact

functor D2 yields an exact sequence

0 // D2GHomΛ(τ
−N,M)

D2(q∗) // D2GHomΛ(τ
−N, I)

D2(p∗) // D2GHomΛ(τ
−N,L)

// D2GExt1Λ(τ
−N,M) // 0.

Hence, we have an isomorphism D2GExt1Λ(τ
−N,M) ∼= Coker(D2(p∗)), which is

natural in N . On the other hand, we deduce from Lemma 4.2.1(2) that

0 // DGHomΛ(M,N) // DGHomΛ(M,N)
DGHomΛ(M,q)// DGHomΛ(I,N)

is an exact sequence. In particular, we obtain an isomorphismDGHomΛ(M,N) ∼=
Ker(DGHomΛ(M, q)), which is natural in N. Further, by Proposition 4.2.9, we

have an exact sequence

D2GHomΛ(τ
−N,M) // D2GHomΛ(τ

−N, I)
D2(p∗)// D2GHomΛ(τ

−N,L)
η //

DGHomΛ(M,N)
DGHomΛ(M,q) // DGHomΛ(I,N) // DGHomΛ(L,N) // 0.
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This yields an isomorphism

Ker(DGHomΛ(M, q)) = Im(η)∼=Coker(D2(p∗)),

which is clearly natural in N . As a consequence, we obtain a natural isomorphism

DGHomΛ(M,N) ∼= D2GExt1Λ(τ
−N,M).

The proof of the theorem is completed.

Remark. (1) The non-graded version of Theorem 4.2.10(1) was established by

Auslander and Reiten for modules over any ring; see [4, (I. 3.4)].

(2) In case Q is finite, Theorem 4.2.10(1) was established by Martinez-Villa in

case M is finitely presented and N is locally finite dimensional; see [44, Page 42].

We shall also need the following easy statement.

4.2.11 Lemma. Let Σ be a local k-algebra. Then DΣ has a non-zero socle as a

left Σ-module and as a right Σ-module.

Proof. We shall consider only the left Σ -moduleDΣ . Let p : Σ → Σ/radΣ be the

canonical projection. Applying the left exact functor D, we obtain an injection

D(p) : D(Σ/radΣ ) → D(Σ ). Fix a non-zero element φ ∈ D(Σ/radΣ ). Then

D(p)(φ) = φ◦p is a non-zero element in D(Σ ). For any u ∈ radΣ and v ∈ Σ , we

have (u · (φ ◦ p))(v) = (φ ◦ p)(vu) = φ(p(vu)) = 0. That is, 0 ̸= φp ∈ soc(DΣ ).

The proof of the lemma is completed.

The following is one of the main results of this thesis.

4.2.12 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If M ∈ gmod+, pΛ is indecomposable and non-projective, then there exists

an almost split sequence

0 // τM // E //M // 0

in GModΛ, which is contained in gmodΛ.

(2) If N ∈ gmod−, iΛ is indecomposable and non-injective, then there exists an

almost split sequence

0 // N // E // τ−N // 0

in GModΛ, which is contained in gmodΛ.
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Proof. (1) Let M ∈ gmod+, pΛ be indecomposable and non-projective. Then, by

Proposition 4.2.4(4), TrM ∈ gmod+, pΛo is indecomposable and non-projective.

By Proposition 3.9.9, τM is indecomposable and non-injective in gmod−, iΛ. So,

by Proposition 3.9.10, GEndΛ(M) and GEndΛ(τM) are local. Now, by Theorem

4.2.10(1), there exists a natural isomorphism

ΨM : GExt1Λ(−, τM) → DGHomΛ(M,−).

In particular, ΨM,M : GExt1Λ(M, τM) → DGEndΛ(M) is a right GEndΛ(M)-

linear isomorphism. Since GEndΛ(M) is local, by Lemma 4.2.11, DGEndΛ(M)

has a non-zero GEndΛ(M)-socle. In particular, the intersection of the image of

ΨM,M and the socle of DGEndΛ(M) is non-zero. By Theorem 3.6 in [38], there

exists an almost split sequence as stated in Statement (1).

(2) Let N ∈ gmod−, iΛ be indecomposable and non-injective. Then, DN ∈
gmod+, pΛo is indecomposable and non-projective by Proposition 3.9.9, and thus,

τ−N ∈ gmod+, pΛ is indecomposable and non-projective by Proposition 4.2.4(4).

So, by Proposition 3.9.10, GEndΛ(N) and GEndΛ(τ
−N) are local. Now, by

Theorem 4.2.10(2), there exists a functorial isomophism

ΨN : D2GExt1Λ(τ
−N,−) → DGHomΛ(−, N).

In particular, ΨN : D2GExt1Λ(τ
−N,N) → DGEndΛ(N) is a left GEndΛ(N)-

linear isomorphism. On the other hand, it is well known that there exists a

natural monomorphism ΦN : GExt1Λ(τ
−N,−) → D2GExt1Λ(τ

−N,−). This yields

a natural monomorphism ΘN = ΦN ◦ΨN : GExt1Λ(τ
−N,−) → DGHomΛ(−, N).

Since GEndΛ(N) is finite k-dimensional by Proposition 4.2.2, so are DGEndΛ(N)

and D2GExt1Λ(τ
−N,N). Thus, ΦN,N : GExt1Λ(τ

−N,N) → D2GExt1Λ(τ
−N,N) is

an isomorphism. This yields a left GEnd(N)-linear isomorphism

ΘN,N : GExt1Λ(τ
−N,N) → DGEndΛ(N).

Observing that GEndΛ(N) is local, by Lemma 4.2.11, the left GEndΛ(N)-module

DGEndΛ(N) has a non-zero socle. In particular, the intersection of the image

of ΘN,N and the socle of DGEndΛ(N) is non-zero. By Theorem 3.6 in [38, 3.6],

there exists an almost split sequence as stated in Statement (2). The proof of the

theorem is completed.

Remark. (1) To the best of our knowledge, the non-graded version of Theorem

4.2.12(2) is only known under certain finiteness condition on Λ; see [8, (V.1.15)];

and compare also [26].
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(2) In case Q is a finite quiver; see , Martinez-Villa stated an almost split sequence

in GModΛ as stated in Theorem 4.2.12(1); [44, (1.7.1)]. However, the proof given

there shows only that the almost split sequence is in gmodΛ; see [44, (1.6.1)];

compare also [19, (3.5)].

As a special case of Theorem 4.2.12, gmod+,pΛ has almost split sequences on

the left for finite dimensional modules, and gmod−,iΛ has almost split sequences

on the right for finite dimensional modules.

4.2.13 Corollary. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver, and let M be an indecomposable finite dimensional module in GModΛ.

(1) If M is non-projective, then gmod−,iΛ has an almost split sequence

0 // τM // E //M // 0.

(2) If M is non-injective, then gmod+,pΛ has an almost split sequence

0 //M // E // τ−M // 0.

Proof. We shall prove only Statement (1), since the proof of Statement (2) is

dual. By Proposition 3.9.10, M ∈ gmod+,pΛ ∩ gmod−,iΛ. If M is not projective,

by Theorem 4.2.12, there exists an almost split sequence

0 // τM // L //M // 0

in gmodΛ, where τM ∈ gmod−,iΛ by Proposition 4.2.7. Since L ∈ gmod−,iΛ by

Proposition 3.9.10, this is an almost split sequence in gmod−,iΛ. The proof of the

corollary is completed.

We shall strengthen the existence of almost split sequences in gmod+,pΛ or

gmod−,iΛ under the locally right or left bounded setting.

4.2.14 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If Λ is locally right bounded, then gmod+,pΛ has almost split sequences on

the right; and an indecomposable non-injective module is the starting term

of an almost split sequence if and only if it is finite dimensional.
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(2) If Λ is locally left bounded, then gmod−,iΛ has almost split sequences on the

left; and an indecomposable non-projective module is the ending term of an

almost split sequence if and only if it is finite dimensional.

(3) If Λ is locally bounded, then gmodbΛ has almost split sequences.

Proof. We shall prove only Statement (1), since Statement (2) is dual and State-

ment (3) follows immediately from the first two statements. Assume that Λ is

locally right bounded. By Proposition 3.9.6(2), gmod−,iΛ = gmodbΛ, and hence,

by Proposition 3.9.10, gmod−,iΛ ⊆ gmod+,pΛ.

Now, let M ∈ gmod+,pΛ be indecomposable. If M is not graded projective,

then, by Theorem 4.2.12, there is an almost split sequence

0 // τM // L //M // 0

in gmodΛ. Since τM ∈ gmod−,iΛ ⊆ gmod+,pΛ, this is an almost split sequence

in gmod+,pΛ. So, the first part of Statement (1) holds. And the sufficiency of the

second part follows directly from Corollary 4.2.13(2). Assume that there exists

an almost split sequence

0 //M // L // N // 0

in gmod+,pΛ. In particular, N ∈ gmod+,pΛ, and hence, M = τN ∈ gmod−,iΛ.

By Proposition 3.9.10, M is finite dimensional. The proof of the theorem is

completed.

Example. Consider the graded algebra Λ = kQ/R, where

α

β

γ

1

2

3 δ

4Q :
ζ1 ζ2

5 6 · · ·

andR = k⟨γα−δβ⟩. SinceQ has no infinite path with an ending point, Λ is locally

right bounded. By Theorem 4.2.14(1), gmod−,iΛ has almost split sequences on

the right. Clearly, S1 has a minimal graded projective resolution

0 // P4
P [δ̄−γ̄] // P2 ⊕ P3

(P [ᾱ] P [β̄])
// P1

// S1
// 0.

Then, radP1 ∈ gmod+,pΛ is not graded injective. Moreover, since rad2P1
∼= P4, we

see that radP1 is indecomposable of infinite dimension. By Theorem 4.2.14(1),
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there exists no almost split sequence in gmod+,pΛ starting with radP1. Thus,

gmod+,iΛ does not have almost split sequences on the left. In a dual fashion, one

can construct graded algebras Λ such that gmod−,iΛ has almost split sequences

on the left but not on the right.

In case Q is a strongly locally finite quiver, the existence of almost split

sequences in the category of finitely presented representations has been studied

in [11, (3.7)]. As a special case of Theorem 4.2.14, we obtain the following result.

4.2.15 Theorem. Let Q be a locally finite quiver.

(1) If Q has no infinite path with an ending point, then gmod+,p(kQ) has almost

split sequences on the right.

(2) If Q has no infinite path with a starting point, then gmod−,i(kQ) has almost

split sequences on the left.

(3) If Q has no infinite path, then gmodb(kQ) has almost split sequences.

Proof. If Q has no infinite path with an ending point(respectively, starting point),

then kQ is locally right (respectively, left) bounded. Thus, Statements (1) and

(2) follow from Theorem 4.2.14 (1) and (2), respectively. Finally, Statement (3)

follows immediately from the first two statements. The proof of the theorem is

completed.

4.3 Graded almost split triangles

The objective of this section is to study the existence of almost split triangles

in the derived categories of graded modules.

4.3.1 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) The categories Kb(gprojΛ) and Kb(ginjΛ) are Hom-finite and Krull-Schmidt.

(2) The Nakayama functor induces two mutually quasi-inverse triangle equiva-

lences ν : Kb(gprojΛ) → Kb(ginjΛ) and ν− : Kb(ginjΛ) → Kb(gprojΛ).
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Proof. Since gprojΛ is Hom-finite and Krull-Schmmidt; see (3.9.1), Cb(gprojΛ)

is Hom-finite and closed under taking direct summands. In particular, the idem-

potents in Cb(gprojΛ) split. Hence, Cb(gprojΛ) is Krull-Schmidt. And conse-

quently, Kb(gprojΛ) is Hom-finite and Krull-Schmidt; see [36, page 431]. Next,

the Nakayama functor ν : gprojΛ → GModΛ induces two mutually quasi-inverse

equivalences ν : gprojΛ → ginjΛ and ν− : ginjΛ → gprojΛ; see (4.1.3). Applying

them componentwise, we obtain two mutually quasi-inverse triangle equivalences

ν : Kb(gprojΛ) → Kb(ginjΛ) and ν− : Kb(ginjΛ) → Kb(gprojΛ). The proof of

the lemma is completed.

Note that Kb(gprojΛ) and Kb(ginjΛ) are full triangulated subcategories of

each ofDb(gmodΛ),D(gmodΛ) andD(GModΛ) by Lemma 1.7.9. On the other

hand,D(gmodΛ) is not necessarily a triangulated subcategory ofD(GModΛ).

4.3.2 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. If P.∈Kb(gprojΛ) is indecomposable, then there exists an almost split

triangle

νP.[−1] //M. // P. // νP.

in each of Db(gmodΛ),D(gmodΛ) and D(GModΛ).

Proof. Let P. be an indecomposable complex in Kb(gprojΛ). By Lemma 4.3.1,

both P. and νP. are strongly indecomposable. Consider the Nakayama functors

ν : gprojΛ→ gmodΛ and ν : gprojΛ→GModΛ; see (4.1.3). By the result stated

in [38, (5.8)], we obtain a desired almost split triangle in each of Db(gmodΛ),

D(gmodΛ), andD(GModΛ). The proof of the theorem is completed.

We shall study the existence of almost split triangles in the bounded derived

category of piecewise finite dimensional graded Λ-modules for bounded complexes

of finitely generated Λ-modules and for bounded complexes of finitely cogenerated

Λ-modules.

4.3.3 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver.

(1) If Λ is locally left noetherian, then Db(gmod+,bΛ) is a full Krull-Schmidt

triangulated subcategory of D(gmodΛ).

(2) If Λ is locally right noetherian, then Db(gmod−,bΛ) is a full Krull-Schmidt

triangulated subcategory of D(gmodΛ).
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Proof. Suppose that Λ is locally left noetherian. By Proposition 3.9.5(1), gmod+,bΛ

is an abelian subcategory of gmodΛ, and by Corollary 3.8.6, every module in

gmod+,bΛ has a graded projective resolution over gprojΛ. Thus, Db(gmod+,bΛ)

is a full triangulated subcategory of D(gmodΛ); see [9, (1.11)]. Given M,N ∈
gmod+,bΛ, we deduce from Lemma 3.9.2 that GExtiΛ(M,N) is finite dimensional

for all i ≥ 0. As a consequence, Db(gmod+,bΛ) is Hom-finite and Krull-Schmidt;

see [32, Corollary B]. This establishes Statement (1).

Suppose that Λ is locally right noetherian. By Proposition 3.9.3, we have a

duality D : gmod+,bΛo → gmod−,bΛ. Thus, Statement (2) follows from Statement

(1). The proof of the lemma is completed.

The following result is analogous to Happel’s result under the finite dimen-

sional non-graded setting; see [28, (2.3)].

4.3.4 Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver

such that Λ is locally left and right noetherian.

(1) Given an indecomposable complex M. ∈ Db(gmod+,bΛ), there exists an al-

most split triangle N. // L. //M. // N.[1] in Db(gmodΛ) if and

only if M. has a finite projective resolution over gprojΛ; and in this case,

N. ∈ Db(gmod−,bΛ).

(2) Given an indecomposable complex N. ∈ Db(gmod−,bΛ), there exists an al-

most split triangle N. // L. //M. // N.[1] in Db(gmodΛ) if and

only if N. has a finite injective coresolution over ginjΛ; and in this case,

M. ∈ Db(gmod+,bΛ).

Proof. We shall prove only Statement (1). Assume thatM. is an indecomposable

complex in Db(gmod+,bΛ). Since gmod+,bΛ is abelian with enough projective ob-

jects, M. has a truncated projective resolution P.∈ C−(gprojΛ); see [25, (7.5)].

If P.∈ Cb(gprojΛ), thenM. ∼= P. in Db(gmodΛ). By Theorem 4.3.2, there exists

an almost split triangle

νN. // L. //M. // νN.[1]

in Db(gmodΛ), where N = νP.[−1] is a complex over ginjΛ ⊆ gmod−,bΛ. Con-

versely, if there exists an almost split triangle

N. // L. //M. // N.[1]
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in Db(gmodΛ), then it follows from Theorem 5.2 in [38] that M. has a bounded

projective resolution over gprojΛ. The proof of the theorem is completed.

Remark. In case Λ is multi-serial, it is locally right and left noetherian. Hence,

both statements in Theorem 4.3.4 hold.

Next, we shall study the existence of almost split triangles in the bounded

derived category of finite dimensional graded Λ-modules. The following statement

is analogous to Happel’s result stated in [28, (1.5)].

4.3.5 Theorem. Let Λ = kQ/R be a locally bounded graded algebra, where Q is

a locally finite quiver. Consider an indecomposable complex M. in Db(gmodbΛ).

(1) There exists in Db(gmodbΛ) an almost split triangle

N. // L. //M. // N.[1]

if and only if M. has a finite projective resolution over gprojΛ.

(2) There exists in Db(gmodbΛ) an almost split triangle

M. // L. // N. //M.[1]

if and only if M. has a finite injective coresolution over ginjΛ.

Proof. Since Λ is locally bounded, both gprojΛ and ginjΛ are contained in

gmodbΛ. Thus, gmodbΛ is an abelian category with enough projective objects

and enough injective objects. Thus, the necessity stated in Statements (1) and

(2) follow immediately from Corollary 5.3 in [38]. On the other hand, by Theo-

rem 4.1.3, we have a Nakayama functor ν : gprojΛ → gmodbΛ, which restricts to

an equivalence ν : gprojΛ → ginjΛ. Now the sufficiency stated in Statements (1)

and (2) follow from Theorem 5.8 in [38]. The proof of the theorem is completed.

To conclude this section, we shall specialize in the case where Λ = kQ.

4.3.6 Theorem. Let Q be a locally finite quiver.

(1) If Q has no infinite path with an ending point, then Db(gmod+,p(kQ)) has

almost split triangles on the right.
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(2) If Q has no infinite path with a starting point, then Db(gmod−,i(kQ)) has

almost split sequences on the left.

(3) If Q has no infinite path, then gmodb(kQ) has almost split triangles.

Proof. Suppose that Q has no infinite path with an ending point. Then kQ is

locally right bounded. In view of Proposition 3.9.12, we see that gmod+,p(kQ)

is a hereditary abelian subcategory of gmodΛ with enough projective objects.

Since ginjΛ is contained in gmod+,p(kQ), by Theorem 4.1.3, we have a Nakayama

functor ν : gprojΛ → gmod+,p(kQ). Let M. be an indecomposable complex in

Db(gmod+,p(kQ)). Since gmod+,p(kQ) is hereditary, M. is isomorphic to a stalk

complex; see [33, (3.1)]. By Proposition 3.9.12, M. ∼= P., where P. is a 2-term

complex over gprojΛ. By Theorem 5.8 in [38], Db(gmod+,p(kQ)) has an almost

split triangle

νP. // L. //M. // νP.[1].

This establishes Statement (1). Dually, Statement (2) holds. Finally, if Q has

no infinite path, then gmod+,p(kQ) = gmod−,i(kQ) = gmodb(kQ). Therefore,

Statement (3) follows immediately from the first two statements. The proof of

the theorem is completed.
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Chapter 5

Koszul algebras

The objective of this chapter is to provide a combinatorial description of the

local Koszul complexes and the quadratic dual. Using this local viewpoint, we

can describe the linear projective resolution and the colinear injective coresolution

of a graded simple module in terms of subspaces of the quadratic dual if they

exist. This enables us to show that a quadratic algebra is Koszul if and only if

every graded simple module has a colinear injective coresolution if and only if

the opposite algebra or the quadratic dual is Koszul. This generalizes Beilinson,

Ginzburg and Soergel’s results stated in [13, (2.2.1), (2.9.1)]. We shall also include

two applications: a new class of Koszul algebras and a stronger version of the

Extension Conjecture for finite dimensional Koszul algebras with a noetherian

Koszul dual.

5.1 Linear projective resolutions and colinear

injective coresolutions

In this section, let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. We shall introduce the notions of linear projective n-presentation and

colinear n-copresentations.

5.1.1 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M ∈ gmodΛ and n ≥ 1.

(1) In case M is generated in degree s, a projective n-presentation

P−n d−n
// P 1−n // · · · // P−1 d−1

// P 0 d0 //M // 0
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of M over gprojΛ is called linear in case P−i is generated in degree s + i

for i = 0, . . . , n, and d−n is right minimal.

(2) In case M is cogenerated in degree −t, an injective n-copresentation

0 //M
d0 // I0

d1 // I1 // · · · // In−1 dn // In

ofM over ginjΛ is called colinear in case I i is cogenerated in degree −t−i,
for i = 0, . . . , n, and dn is left minimal.

Remark. It is easy to see that a linear projective n-presentation and a colinear

injective n-copresentation are minimal.

The following statement is important for our later investigation.

5.1.2 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider M ∈ gmodΛ. A sequence

P−n d−n
// P−n+1 // · · · // P−1 d−1

// P 0 d0 //M // 0

is a linear projective n-presentation of M over gprojΛ if and only if the sequence

0 // DM
Dd0 // DP 0 Dd−1

// DP−1 // · · · // DP 1−n Dd−n
// DP−n

is a colinear injective n-copresentation of DM over ginjΛo.

Proof. By Proposition 3.3.3(2), one of the two sequences stated in the lemma is

exact if and only if the other one is exact. By Lemma 3.3.4, d−n is right minimal

if and only if Dd−n is left minimal. Moreover, by Corollary 3.6.8, M is generated

in degree s if and only if DM is cogenerated in degree −s, and P−i is generated in

degree s+ i if and only if DP−i is cogenerated in degree −s− i, for i = 0, 1, . . . , n.

The proof of the lemma is completed.

As an example, we have the following well known statement. For the conve-

nience of the reader, we will provide a brief proof.

5.1.3 Lemma. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a graded simple module Sa with a ∈ Q0.

(1) If Q1(a,−) = {αi :a → bi | i = 1, . . . , r}, then Sa admits a linear projective

presentation

Pb1⟨−1⟩ ⊕ · · · ⊕ Pbr⟨−1⟩ (P [ᾱ1],··· ,P [ᾱr])// Pa
pa // Sa // 0.
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(2) If Q1(−, a)={βj :cj → a | j = 1, . . . , s}, then Sa admits a colinear injective

copresentation

0 // Sa
qa // Ia

(I[β̄1],··· ,I[β̄s])T// Ic1⟨1⟩ ⊕ · · · ⊕ Ics⟨1⟩.

Proof. (1) Assume that Q1(a,−) = {αi :a → bi | i = 1, . . . , r}. Let pa : Pa → Sa
be the canonical projection. In particular, Ker(pa) = radPa. Clearly, radPa has a

top-basis {ᾱ1, · · · , ᾱr}, where ᾱi∈(radPa)1(bi). By Proposition 3.8.5(1), we have

a graded projective cover f : P = Pb1⟨−1⟩ ⊕ · · · ⊕ Pbr⟨−1⟩ → Ker(pa) such that

(P [ᾱ1], · · · , P [ᾱr]) = g ◦ f , where g : Ker(pa) → Pa is the inclusion morphism.

Moreover, since P is generated in degree 1, we obtain a desired linear projective

presentation of Sa.

(2) By Lemma 5.1.2, applying D to the linear projective presentation of So
a

yields a desired colinear injective copresentation of Sa. The proof of the lemma

is completed

For our purpose, we quote the following statement from [16, (2.13)]; see also

[15].

5.1.4 Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

Then Λ is a quadratic algebra if and only if every graded simple Λ-module admits

a linear projective 2-presentation.

Now, we introduce the notions of a linear resolution and a colinear coresolu-

tion.

5.1.5 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Consider a module M ∈ gmodΛ.

(1) In case M is generated in degree s, a graded projective resolution

· · · // P−n d−n
// P 1−n // · · · // P−1 d−1

// P 0 d0 //M // 0

of M over gprojΛ is called linear if P−n is generated in degree s+n for all

n ≥ 0.

(2) In case M is cogenerated in degree −t, a graded injective coresolution

0 // I0
d1 // I1 // · · · // In−1 dn // In // · · ·

of M over ginjΛ is called colinear if In is cogenerated in degree −t−n for

all n ≥ 0.

133



Remark. It is easy to see that a linear projective resolution and a colinear

injective coresolution are minimal.

We are ready to recall the notion of a Koszul algebra from [16, (2.14)], which

is essentially the same as the classical one; see [13, (1.2.1)] and [48, (5.4)].

5.1.6 Definition. Let Λ = kQ/R be a graded algebra, where Q is a locally

finite quiver. We shall call Λ a Koszul algebra if every graded simple Λ-module

admits a linear projective resolution over projΛ.

Remark. (1) By Theorem 5.1.4, a Koszul algebra is quadratic; compare [13,

(2.3.3)].

(2) It is clear that Λ is Koszul if and only if Sa admits a linear projective resolution

over projΛ, for every a ∈ Q0.

Example. The path algebra kQ of any locally finite quiver Q is a Koszul algebra.

Indeed, for any a ∈ Q0 with Q1(a,−) = {αi : a→ bi | i = 1, . . . , r}, we see that

· · · // 0 // Pb1⟨−1⟩ ⊕ · · · ⊕ Pbr⟨−1⟩ (P [ᾱ1],··· ,P [ᾱr]) // Pa // Sa // 0

is a linear projective resolution of Sa.

5.2 Local Koszul complexes

Most of the content of this section is taken with a slight modification from

[16, Section 2]; see also [15]. The main objective is to describe explicitly the local

Koszul complexes. Throughout this section, Λ = kQ/R is a quadratic algebra,

where Q is a locally finite quiver.

We start with some notations and terminology. Given α : y → x ∈ Q1, we

have a left derivation ∂α : kQ → kQ, the k-linear map sending a path ρ to δ

if ρ = αδ; and to 0 if α is not a terminal arrow of ρ; and a right derivation

∂α : kQ→ kQ, the k-linear map sending a path ρ to δ if ρ = δα; and to 0 if α is

not an initial arrow of ρ. In particular, ∂α and ∂α send kQn to kQn−1 for n > 0

and vanishes on kQ0.

Fix a ∈ Q0 and n > 0. For α ∈ Q1(y, x), we have a graded Λ-linear morphism

P [ᾱ] : Px⟨−n⟩ → Py⟨1− n⟩ and a k-linear map ∂α : kQn(a, x) → kQn−1(a, y). In
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view of Lemma 2.1.1, we obtain a k-linear map

∂−na (y, x) =
∑

α∈Q1(y,x)
P [ᾱ]⊗ ∂α : Px⟨−n⟩ ⊗ kQn(a, x) → Py⟨1−n⟩ ⊗ kQn−1(a, y),

which is clearly a morphism in gprojΛ, for any x, y ∈ Q0. The following statement

is useful for later calculation, which is quoted from [16, (3.2)].

5.2.1 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. Consider the graded morphism ∂−na (y, x) with a, x, y ∈ Q0 and n > 0 as

defined above. Given u∈Px⟨−n⟩, δ ∈ kQn−1(a, y) and ζ ∈ kQ1(y, x), we have

∂−na (y, x)(u⊗ ζδ) = uζ̄ ⊗ δ.

Fix a, x ∈ Q0. We put R(n)(a, x) = kQn(a, x) for n = 0, 1, and

R(n)(a, x) = ∩0≤j≤n−2 kQn−2−j(−, x) ·R2 · kQj(a,−)

for n ≥ 2. In particular, R(2)(a, x) = R2(a, x). Put R
(n)(a,−) = ⊕x∈Q0 R

(n)(a, x)

for n ≥ 0. The following statement collects some important properties of these

subspaces.

5.2.2 Lemma. Let R be a quadratic ideal of kQ, where Q is a locally finite

quiver. Consider a, x ∈ Q0 with Q1(−, x)={αi : yi → x | i = 1, . . . , r} and n ≥ 1.

(1) If γ ∈ R(n)(a, x) and α ∈ Q1(y, x), then ∂α(γ) ∈ R(n−1)(a, y); and conse-

quently, γ =
∑r

i=1 αiγi, for some γi ∈ R(n−1)(a, yi).

(2) If ρ =
∑r

i=1 ζiρi with ρi ∈ R(n−1)(a, yi) and ζi ∈ kQ1(yi, x), then ρ ∈
R(n)(a, x) if and only if ρ ∈ R2(−, x) · kQn−2(a,−).

Proof. The proof of the first part of Statement (1) is presented in [16, (3.1)], and

the second part follows immediately from the first part. Moreover, Statement

(2) follows directly from the definition of R(n)(a, x). The proof of the lemma is

completed.

Fix a ∈ Q0. Given n ≥ 0, since Q is locally finite, we obtain a module

K−n
a = ⊕x∈Q0Px⟨−n⟩ ⊗R(n)(a, x) ∈ gprojΛ.
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For n ≥ 1, we write K1−n
a = ⊕y∈Q0Py⟨1−n⟩⊗R(n−1)(a, y); and by Lemma 5.2.2(1),

we obtain a graded morphism

∂−na (y, x) =
∑

α∈Q1(y,x)
P [ᾱ]⊗ ∂α : Px⟨−n⟩ ⊗R(n)(a, x) → Py⟨1−n⟩ ⊗R(n−1)(a, y),

for x, y ∈ Q0. This yields a graded Λ-linear morphism

∂−na = (∂−na (y, x))(y,x)∈Q0×Q0 : K−n
a → K1−n

a ,

for n ≥ 1. The following statement is quoted from [16, (3.3)], see also [15].

5.2.3 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. Given any a ∈ Q0, the above construction yields a complex

K.a : · · · // K−n
a

∂−n
a // K1−n

a
// · · · // K−1

a

∂−1
a // K0

a
// 0 // · · ·

over gprojΛ such that Ker(∂−na )⊆radK−n
a , if n > 0; and otherwise, K−n

a = 0.

In the sequel, we shall call K.a the local Koszul complex at a for Λ. Since

K0
a = Pa ⊗ kεa, we have a graded projective cover ∂0a : K0

a → Sa, sending ea ⊗ εa
to ea+radPa. The following statement is a reformulation of Theorem 3.4 in [16];

see also [15].

5.2.4 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. If a ∈ Q0 and n > 0, then Sa has a linear projective n-presentation

over gprojΛ if and only if

K−n
a

∂−n
a // K1−n

a
// · · · // K−1

a

∂−1
a // K0

a

∂0a // Sa // 0

is a linear projective n-presentation of Sa.

Combining Theorem 5.1.4 and Proposition 5.2.4, we obtain immediately the

following result; compare [13, (2.6.1)].

5.2.5 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. Then Λ is Koszul if and only if Λ is quadratic and K.a is a graded projective

resolution of Sa, for every a ∈ Q0.
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5.3 Quadratic dual

Throughout this section, Λ = kQ/R is a quadratic algebra, where Q is a

locally finite quiver. We shall recall the definition of the quadratic dual of Λ from

[16, Section 3]. Note that the classical quadratic dual is defined to be the tensor

algebra of the dual space of the generating space under a finiteness condition; see

[13, (1.2.4), (2.8.1)].

We start with some notation. Fix n ≥ 0. Given ξ ∈ Qn, let ξ
∗ ∈ D(kQn)

such that ξ∗(η) = 1 if η = ξ; and ξ∗(η) = 0 otherwise, for any η ∈ Qn. Given

γ =
∑
λiξi ∈ kQn with λi ∈ k and ξi ∈ Qn, we write γ∗ =

∑
λiξ

∗
i . This yields a

k-linear isomorphism

ψn : kQo
n → D(kQn) : γ

o → γ∗.

Given ξ ∈ kQn(x, y), for the sake of simplicity, the restriction of ξ∗ to

kQn(x, y) is also written as ξ∗. Since Q is locally finite, {ξ∗ | ξ ∈ Qn(x, y)}
is the dual basis of Qn(x, y) in D(kQn(x, y)). We shall need the following easy

statement for later calculation, which is quoted from [16, (3.5)].

5.3.1 Lemma. Let Q be a locally finite quiver with x, y, z ∈ Q0 and s, t ≥ 0.

(1) If ξ∈kQs(x, y) and ζ∈Q1(y, z), then (ζξ)∗(η) = ξ∗(∂ζ(η)), for all η∈ kQs+1.

(2) If ξ ∈ kQs(x, y) and ζ ∈ kQt(y, z), then (ζξ)∗(γδ) = ζ∗(γ)ξ∗(δ), for all δ ∈
kQs and γ ∈ kQt.

Given x, y ∈ Q0 and n ≥ 2, we denote by R !
2(y, x) the k-vector subspace of

kQo
2(y, x) spanned by the elements ρo with ρ ∈ kQ2(x, y) such that ρ∗ vanishes on

R2(x, y). The quadratic ideal R! of R is the two-sided ideal of kQo generated

by the R !
2(y, x) with x, y ∈ Q0. We are ready to quote the following definition

from [16, (3.7)]; compare [13, (2.8.1)], [42, Section 1] and [48, Section 4.1].

5.3.2 Definition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. The quadratic dual of Λ is the algebra

Λ! = kQo/R!

where R! is the quadratic dual of R.
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The following statement is quoted from [16, (3.8)].

5.3.3 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. Then Λ! and Λo are quadratic with (Λ!)! = Λ and (Λo)! = (Λ!)o.

5.4 A characterization of Koszul algebras

In this section, we shall show that a quadratic algebra is Koszul if and only

if its quadratic dual or its opposite algebra is Koszul if and only if every graded

simple module admits a co-linear injective coresolution. This generalizes the

result stated in [16, (3.13)] where the algebra is assumed to be locally finite

dimensional and extends the results in [13, Section 2] where the graded algebra

is assumed to have an identity.

Throughout this section, unless otherwise explicitly stated, Λ = kQ/R is

a quadratic algebra, where Q is a locally finite quiver. First, we reformulate

an alternative description of the local Koszul complexes for Λ in terms of the

quadratic dual Λ! = kQo/R! from [16, Section 3]. For this purpose, we fix some

notations for Λ!. We shall write γ̄ ! = γo + R! for γ ∈ kQ+, but ex = εx + R! for

x ∈ Q0. Then, Λ! is graded as Λ! = ⊕n∈Z(Λ
!)n, where (Λ!)n = {γ̄ ! | γ ∈ kQn}

for n ≥ 0, and Λ!
n = 0 for n < 0. Given x ∈ Q0, we write P !

x = Λ!ex, and

S!
x = P !

x/radP
!
x, and I

!
x = D((Λ!)oex).

Fix a∈Q0. Given n ∈ Z, we set P−n
a =⊕x∈Q0(Px⟨−n⟩⊗D(eaΛ

!
nex)) ∈ gprojΛ.

For n > 0, we write P1−n
a = ⊕y∈Q0(Py⟨1−n⟩⊗D(eaΛ

!
n−1ey)). Given α∈Q1(y, x),

the right multiplication by ᾱ! gives rise to a k-linear map P [ᾱ!] : eaΛ
!
n−1ey →

eaΛ
!
nex, and hence, a k-linear map DP [ᾱ!] : D(eaΛ

!
nex) → D(eaΛ

!
n−1ey). In view

of Lemma 2.1.1, we obtain a k-linear map

P [ᾱ]⊗DP [ᾱ!] : Px⟨−n⟩ ⊗D(eaΛ
!
nex) → Py⟨1− n⟩ ⊗D(eaΛ

!
n−1ey),

which is clearly a graded Λ-linear morphism. Thus, we have a graded Λ-linear

morphism

ℓ−na (y, x) =
∑

α∈Q1(y,x)
P [ᾱ]⊗DP [ᾱ!] :Px⟨−n⟩⊗D(eaΛ

!
nex)→Py⟨1−n⟩⊗D(eaΛ

!
n−1ey)

for x, y ∈ Q0. This yields a graded Λ-linear morphism

ℓ−na = (ℓ−na (y, x))(y,x)∈Q0×Q0 : P−n
a → P1−n

a
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for n ≥ 1. Otherwise, P−n
a = 0 for all n < 0. Therefore, we get a double infinite

sequence

P.a : · · · // P−n
a

ℓ−n
a // P1−n

a
// · · · // P−1

a

ℓ−1
a // P 0

a
// 0 // · · · ,

of morphisms in gprojΛ. This is indeed a complex gprojΛ by the following state-

ment, whose proof is similar to that of Lemma 3.9 in [16].

5.4.1 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. Given a ∈ Q0, the sequence P.a as constructed above is isomorphic to the

local Koszul complex K.a at a.

Next, we shall reformulate an explicit description of the colinear injective

coresolution, if it exists, of a graded simple module from [16, Section 3]. For

the sake of simplicity, we put Λ̂ = (Λ!)o = kQ/(R!)o. Write γ̂ = γ + (R!)o for

γ ∈ kQ+ and ex = εx + (R!)o for x ∈ Q0. In this way, we have Λ̂ = ⊕n∈ZΛ̂n,

where Λ̂n = {γ̂ | γ ∈ kQn} for n ≥ 0, and Λ̂n = 0 for n < 0. Moreover, we put

P̂x = Λ̂ex and Ŝx = P̂x/radP̂x, for all x ∈ Q0.

Fix a ∈ Q0. Given n ∈ Z, we set Ina = ⊕x∈Q0(Ix⟨n⟩ ⊗ exΛ
!
nea) ∈ ginjΛ. For

n > 0, we write In−1
a = ⊕y∈Q0(Iy⟨n − 1⟩ ⊗ eyΛ

!
n−1ea). For each α ∈ Q1(x, y),

we have a morphism I[ᾱ] : Iy⟨n − 1⟩ → Ix⟨n⟩ in ginjΛ; see (3.4.6) and a k-linear

morphism P !
a(ᾱ

!) : eyΛ
!
n−1ea → exΛ

!
nea, that is the left multiplication by ᾱ!. In

view of Lemma 2.1.1, we have a k-linear map

I[ᾱ]⊗ P !
a(α

!) : Iy⟨n− 1⟩ ⊗ eyΛ
!
n−1ea → Ix⟨n⟩ ⊗ exΛ

!
nea,

which is clearly a morphism in ginjΛ. Thus, we have a morphism

dna(x, y) =
∑

α∈Q1(x,y)
I[ᾱ]⊗ P !

a(α
!) : Iy⟨n− 1⟩ ⊗ eyΛ

!
n−1ea → Ix⟨n⟩ ⊗ exΛ

!
nea

in ginjΛ, for each (x, y) ∈ Q0 ×Q0. This yields a morphism

dna = (dna(x, y))(x,y)∈Q0×Q0 : In−1
a → Ina

for n > 0. Otherwise, Ina = 0 for all n < 0. And consequently, we have a double

infinite sequence

I.a : · · · // 0 // I0
a

d1a // I1
a

// · · · // In−1
a

dna // Ina // · · ·

of morphisms in ginjΛ. The following statement is a reformulation of Lemma

3.11 in [16, (3.5)] with a slightly detailed proof.
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5.4.2 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. Given a ∈ Q0, the sequence I.a as constructed above is a complex

over ginjΛ, which is a truncated graded injective coresolution of Sa if and only if

Sa admits a colinear injective coresolution over ginjΛ.

Proof. Fix a ∈ Q0. By Proposition 5.3.3, (Λo)! = Λ̂. Let P.ao be the complex over

gprojΛo for So
a as stated in Lemma 5.4.1, that is the complex

· · · // P−n
ao

ℓ−n
// P1−n
ao

// · · · // P−1
ao

ℓ−1
// P0
ao

// 0 // · · · ,

where P−n
ao =⊕x∈Q0(P

o
x⟨−n⟩⊗D(eaΛ̂nex)), P1−n

ao =⊕y∈Q0(P
o
y ⟨1−n⟩⊗D(eaΛ̂n−1ey))

and ℓ−n = (
∑

α∈Q1(x,y)
P [ᾱo]⊗DP [α̂])(y,x)∈Q0×Q0 .

First, we shall show that D(P.ao)∼= I.a. Given any n ≥ 0, since Q is locally

finite, eaΛ̂n is finite dimensional. In view of Proposition 3.3.1(2), D(P−n
ao ) =

⊕x∈Q0(Ix⟨n⟩ ⊗ D2(eaΛ̂nex)) and D(ℓ−n) = (I[ᾱ] ⊗ D2P [α̂])(y,x)∈Q0×Q0 . More-

over, since Λ̂ = (Λ!)o, we have a k-linear isomorphism σnx : eaΛ̂nex → exΛ
!
nea,

sending γ̂ 7→ γ̄ !. Composing this with the canonical k-linear isomorphism

φnx : D2(eaΛ̂nex) → eaΛ̂nex, we obtain a k-linear isomorphism

θnx = σnx ◦φnx : D2(eaΛ̂nex) → exΛ
!
nea.

Given α ∈ Q1(x, y), it is easy to verify that we have a commutative diagram

D2(eaΛ̂n−1ey)
φn−1
y //

D2P [α̂]
��

eaΛ̂n−1ey
σn−1
y //

P [α̂]
��

eyΛ
!
n−1ea

P !
a(ᾱ

!)
��

D2(eaΛ̂nex)
φn
x // eaΛ̂nex

σn
x // exΛ

!
nea

This yields a complex isomorphism D(P.ao) ∼= I.a, given by the graded isomor-

phisms

⊕x∈Q0(id⊗ θnx) : ⊕x∈Q0(Ix⟨n⟩⊗D2(eaΛ̂nex)) → ⊕x∈Q0(Ix⟨n⟩⊗exΛ!
nea)

with n ∈ Z. Now, suppose that Sa has a colinear injective coresolution I. over
ginjΛ. In view of Proposition 5.1.2, we see that D(I.) is a linear projective res-

olution of So
a over gprojΛo. By Theorem 5.2.5 and Lemma 5.4.1, we see that

D(I.) ∼= P.ao . Therefore, I.∼= D2(I.) ∼= D(P.ao) ∼= I.a. The proof of the proposi-

tion is completed.

The following statement is a generalization of Theorem 3.13 in [16], which is

under the assumption that exΛey is finite dimensional for all x, y ∈ Q0.
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5.4.3 Theorem. Let Λ = kQ/R be a graded algebra, where Q is a locally finite

quiver. The following statements are equivalent.

(1) The algebra Λ is Koszul.

(2) The opposite algebra Λo is Koszul.

(3) The algebra Λ is quadratic and Λ! is Koszul.

(4) Every graded simple Λ-module has a colinear injective coresolution over

ginjΛ.

Proof. In view of Lemma 5.1.2, we see that Statements (4) and (2) are equivalent.

Assume now that Λ is Koszul. Fix a ∈ Q0. Since Λo is quadratic; see (5.1.4), in

view of Theorem 5.1.4 and Lemma 5.1.2, we may assume that Sa has a colinear

injective (n− 1)-copresentation

0 // Sa
d0 // I0 d1 // I1 // · · · // In−2 dn−1

// In−1

over ginjΛ, for some n ≥ 2. We denote by cn : In−1 → Cn the cokernel of dn−1.

Given b ∈ Q0 and p ∈ Z, since socIn−1 ⊆ Ker(cn), it is well known that

GExtnΛ(Sb⟨p⟩, Sa) ∼= GHomΛ(Sb⟨p⟩, Cn);

see (1.4.5). Since Λ is Koszul, Sb has a linear projective resolution

· · · // P−i // P 1−i // · · · // P−1 // Pb // Sb // 0

over projΛ. So,

GHomΛ(Sb⟨p⟩, Cn) ∼= GExtnΛ(Sb, Sa⟨−p⟩)∼= GHomΛ(P
−n, Sa⟨−p⟩).

Since P−n is generated in degree n and Sa⟨−p⟩ is generated in degree p, we have

GHomΛ(Sb⟨p⟩, Cn) = 0 for all but finitely many b ∈ Q0 and for all p ̸= n. Hence,

socCn is finitely generated in degree −n. Since In−1 is finitely cogenerated,

socCn is graded essential in Cn. That is, Cn is finitely cogenerated in degree −n.
By Proposition 3.8.5(2), there exists a graded injective envelope qn : Cn → In,

where In ∈ ginjΛ is cogenerated in degree −n. Thus, Sa has a colinear injective n-
copresentation over ginjΛ. By induction, Sa has a colinear injective coresolution

over ginjΛ. Thus Statement (4) holds, and consequently, Statement (2) holds.
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We shall also establish Statement (3). Indeed, by Proposition 5.3.3, Λ! is

quadratic with (Λ!)! = Λ. By Lemma 5.4.1, the local Koszul complex at a of Λ!

is isomorphic to the complex

P.
a!
: · · · // P−n

a!
ℓ−n
// P1−n

a!
// · · · // P−1

a!
ℓ−1
// P0

a!
// 0 // · · · ,

where P−n
a!

=⊕x∈Q0(P
!
x⟨−n⟩⊗D(eaΛnex)) and P1−n

a!
=⊕y∈Q0(P

!
y⟨1−n⟩⊗D(eaΛn−1ey)),

and ℓ−n = (
∑

α∈Q1(x,y)
P [ᾱ!] ⊗DP [ᾱ])(y,x)∈Q0×Q0 . Fix n > 0. We claim that P.

a!

is exact in degree −n. That is, for any (s, b) ∈ Z×Q0 the sequence

(∗) ⊕z∈Q0 (ebΛ
!
s−1ez ⊗D(eaΛn+1ez))

ℓ−n−1
n+s,b // ⊕x∈Q0(ebΛ

!
sex ⊗D(eaΛnex))

ℓ−n
n+s,b // ⊕y∈Q0(ebΛ

!
s+1ey ⊗D(eaΛn−1ey))

is exact, where ℓ−nn+s,b=(
∑

α∈Q1(x,y)
P [ᾱ!]⊗DP [ᾱ])(y,x)∈Q0×Q0.

If s < 0, then ebΛ
!
sex = 0, and (∗) is evidently exact. In case s = 0, it becomes

0 // ebΛ
!
0eb ⊗D(eaΛneb)

ℓ−n
n,b // ⊕y∈Q0(ebΛ

!
1ey ⊗D(eaΛn−1ey)),

where ℓ−nn,b = (ℓ−nn,b(y, b))y∈Q0 with ℓ−nn,b(y, b) =
∑

α∈Q1(b,y)
P [ᾱ!]⊗DP [ᾱ]. Consider

0 ̸= f ∈ D(eaΛneb). Since n > 0, there exist β ∈ Q1(b, y) and u ∈ eaΛn−1ey with

y ∈ Q0 such that f(uβ̄) ̸= 0, that is, (DP [β̄])(f)(u) ̸= 0. So, (DP [β̄])(f) ̸= 0.

Now, ℓ−nn,b(y, b)(eb⊗f) =
∑

α∈Q1(b,y)
ᾱ!⊗ (DP [ᾱ])(f), which is non-zero. Thus, ℓ−nn,b

is a monomorphism. That is, the sequence (∗) is exact in this case.

Let s > 0. By Proposition 5.2.5 and Lemma 5.4.1, Sb has a linear graded pro-

jective resolution P.b, which is exact in degree −s. Writing P−s
b = ⊕x∈Q0(Px⟨−s⟩⊗

D(ebΛ
!
sex)), and restricting it to the (n+s, a)-piece, we obtain an exact sequence

(∗∗) ⊕y∈Q0 (eaΛn−1ey ⊗D(ebΛ
!
s+1ey))

ℓ−s−1
b,n+s,a // ⊕x∈Q0(eaΛnex ⊗D(ebΛ

!
sex))

ℓ−s
b,n+s,a // ⊕z∈Q0(eaΛn+1ez ⊗D(ebΛ

!
s−1ez)),

where ℓ−s−1
b,n+s,a = (

∑
α∈Q1(x,y)

P [ᾱ] ⊗ DP [ᾱ!])(x,y)∈Q0×Q0 . Applying D to (∗∗), we
obtain an exact sequence isomorphic to (∗); see (2.1.3). Our claim holds. Thus,

P.
a!
is a linear projective resolution of S!

a; see (5.2.4). So, Λ! is Koszul.

As we have shown, Statement (1) implies Statements (2) and (3). In case Λ

is quadratic, (Λo)o = Λ and (Λ!)! = Λ. Thus, each of Statements (2) and (3)

implies Statement (1). The proof of the theorem is completed.
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Remark. (1) In case Q0 is finite, the equivalence of the first three conditions is

due to Beilinson, Ginzburg and Soergel; see [13, (2.2.1), (2.10.2)].

(2) In case Λ is Koszul, one calls Λ! the Koszul dual of Λ.

Example. Consider Λ = kQ/(kQ+)2, where Q is a locally finite quiver. Then

Λ! = kQop, which is Koszul. By Theorem 5.4.3, Λ is Koszul.

5.5 A new class of Koszul algebras

It is well known that some special classes of algebras are Koszul, including

hereditary algebras and radical square zero algebras; see [42, 1.6], exterior al-

gebras and symmetric algebras; see [13, page 476], and monomial algebras; see

[42, 2.19]. In this section, we shall apply the Koszul complexes to study when a

quadratic multi-serial algebra is Koszul. As a consequence, we obtain a new class

of Koszul algebras.

To start with, we shall introduce a condition (∗) for a quadratic multi-serial

algebra Λ = kQ/R as follows: Given a polynomial relation
∑s

i=1 λiβiαi ∈ R2(x, z)

with λi ∈ k and αi, βi ∈ Q1, if there exist arrows γ ∈ Q1(a, x) and ζ ∈ Q1(z, b)

with ζβ1 /∈ R2, then αiγ is a summand of a relation inR2(a,−), for all i = 2, . . . , s.

5.5.1 Lemma. Let Λ = kQ/R be a quadratic multi-serial algebra, satisfying the

condition (∗). Consider a polynomial relation
∑s

i=1 λiβiαi ∈ R2(x, z) with λi ∈ k,

αi ∈ Q1(x, yi) and βi ∈ Q1(yi, z), such that ζβ1 /∈ R2 for some ζ ∈Q1(z,−). If

ξ ∈R(n−1)(a, x) with n ≥ 1 then, for each 2 ≤ i ≤ s, there exists ηi ∈ kQn(a, yi)

such that βiξ + ηi ∈ R(n)(a, yi) and αiηi ∈ R2(−, z) · kQn−1(a,−).

Proof. Let ξ ∈R(n−1)(a, x). If n = 1, then we take ηi = 0, for each 1 < i ≤ s.

Let n ≥ 2. Choose a k-basis {ξ1, . . . , ξt} with ξj ∈ R(n−2)(a, bj) of R
(n−2)(a,−).

Then, ξ =
∑t

j=1 σj ξj with σj ∈ kQ1(bj, x); see (5.2.2).

Fix 1 < i ≤ s. If αiσj ∈ R2(bi, yl) for all 1 ≤ j ≤ t, then αiξ ∈ R(n)(a, yi); see

(5.2.2), and we take ηi = 0. Otherwise, let Ji be the set of j ∈ {1, . . . , t} such that

αiσj /∈ R2(bj, yi). Fix j ∈ Ji. Since Λ is multi-serial, σj = λjθj+ δj, where λj ∈ k

and θj, δj ∈ Q1(bj, x) such that λjαiθj /∈ R2(bj, yi) and αiδj ∈ R2(bj, yi). By the

condition (∗), there exists a polynomial relation ωj = λjαiθj +
∑rj

l=1 λjlαilθjl in

R2(bj, yi), where λjl ∈ k; θjl ∈ Q1(bj, cjl) and αil ∈ Q1(cjl, yi). Since Λ is multi-

serial, αil ̸= αi for 1 ≤ l ≤ rj. Since βiαi /∈ R2(x, z), we have βiαil ∈ R2(cjl, z) for

1 ≤ l ≤ rj. By the induction hypothesis, there exists ηjl ∈ kQn−1(a, cjl) such that
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ξjl = λjlθjlξj+ηjl∈R(n−1)(a, cjl) and αilηjl ∈ R2(−, yi)·kQn−2(a,−), for 1≤ l≤rj.
Set ηi=

∑
j∈Ji;1≤l≤rjαilξjl ∈ kQn(a, yi). Then, βiηi ∈R2(−, z) · kQn−1(a,−). Put

χi = αiξ+ηi. Then, χi = αiξ+
∑

j∈Ji;1≤l≤rjαjlξjl, where ξ, ξjl ∈ R(n−1)(a,−). On

the other hand, we can verify that

χi=
∑

j∈Ii(ωj+αiδj)ξj+
∑

j /∈Iiαiσjξj+
∑

j∈Ji;1≤l≤rjαilηjl ∈ R2(−, yi)·kQn−2(a,−).

By Lemma 5.2.2(2), χi ∈ R(n)(a, yi). The proof of the lemma is completed.

The following is the promised new class of Koszul algebras; compare [24,

(2.2)].

5.5.2 Theorem. Let Λ = kQ/R be a quadratic multi-serial algebra with Q a

locally finite quiver. If the condition (∗) or its dual is satisfied, then Λ is a

Koszul algebra.

Proof. It is evident that Λ satisfies the dual condition of (∗) if and only if Λo

satisfies the condition (∗). By Theorem 5.4.3, we may assume that the condition

(∗) is satisfied. By Theorem 5.2.5, it amounts to show for any a ∈ Q0 that K.a is
exact in all negative degrees. By Theorem 5.1.4 and Proposition 5.2.4, we may

assume n ≥ 2. It suffices to prove that Ker (∂−na ) ⊆ Im (∂−n−1
a ). Recall that

K−n
a = ⊕y∈Q0Py⟨−n⟩ ⊗R(n)(a, y).

Consider a non-zero element u in Ker(∂−na ) ⊆ radK−n
a . Since K−n

a s generated

in degree n, we may assume that u ∈ Ker(∂−na )m(b) for b∈Q0 and m > n. Then,

u∈⊕y∈Q0Py⟨−n⟩m(b)⊗R(n)(a, y) = ⊕y∈Q0ebΛm−ney ⊗R(n)(a,y).

Let s be minimal such that u =
∑s

l=1 θ̄l ⊗ ρl, where θl ∈ Qm−n(yl, b) and ρl ∈
R(n)(a, yl). Note that θ̄1, . . . , θ̄s are k-linear independent in ebΛm−n. Choose a

k-basis {ξ1, . . . , ξt} of R(n−1)(a,−), where ξj ∈ R(n−1)(a, xj); and since Λ is multi-

serial, ebΛm−n−1 has a k-basis {η̄1, . . . , η̄r}, where ηi ∈ Qm−n−1(zi, b) with zi ∈ Q0.

Then, ρl =
∑t

j=1ζlj ξj with ζlj ∈ kQ1(xj, yl); see (5.2.2) and θ̄l =
∑r

i=1 η̄i δ̄il with

δil ∈ kQ1(yl, zi), for l = 1, . . . , s.

(1) For any 1 ≤ j ≤ t, we have
∑s

l=1 θ̄lζ̄lj =
∑r

i=1

∑s
l=1 η̄iδ̄ilζ̄lj = 0.

Indeed since u =
∑t

j=1

∑s
l=1 θ̄l ⊗ ζljξj, we have ∂−na (u) =

∑t
j=1(

∑s
l=1 θ̄lζ̄lj)⊗

ξj = 0; see (5.2.1). Since the ξj are k-linearly independent,∑s
l=1 θ̄lζ̄lj=

∑r
i=1

∑s
l=1 η̄iδ̄ilζ̄lj = 0,
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for 1 ≤ j ≤ t. This establishes Statement (1).

(2) If m = n+ 1, then u ∈ Im(∂−n−1
a ).

If m = n + 1, then ebΛm−n−1 = ebΛ0 = keb. In particular, r = 1 and η1 = εb.

By Statement (1), we obtain∑s
l=1 δ1lζlj =

∑r
i=1 ηi(

∑s
l=1 δilζlj) ∈R2(xj, b), for j = 1, . . . , t.

Put χ1 =
∑s

l=1 δ1lρl =
∑s

l=1(
∑t

j=1 δ1lζlj)ξj ∈ R2(−, z1) · kQn−1(xj,−). Then, by

Lemma 5.2.2(2), χ1 ∈ R(n+1)(a, z1) such that ∂−n−1
a (η̄1 ⊗ χ1) =

∑s
l=1 θ̄l ⊗ ρl = u.

This establishes Statement (2).

We assume now that m ≥ n + 2. Then, θ̄l =
∑r

i=1 η̄i δ̄il, for δil ∈ kQ1(yl, zi)

and non-trivial ηi ∈ Qm−n−1(zi, b). Since Λ is multi-serial, we may assume that δil
is a monomial, for i = 1, . . . , r; l = 1, . . . , s. We shall consider another derivation

∂α : kQ→ kQ for any α ∈ Q1, which sends a path ρ to η if ρ = ηα; and 0 if α is

not an initial arrow of ρ.

(3) If δilζlj /∈ R2(xj, zi), then ζlj has a summand λljαlj, where λlj ∈ k and

αlj ∈ Q1(xj, yl), such that λljδilαlj is a summand of a polynomial relation in R2.

Suppose that δipζpq /∈ R2(xq, zi) for some 1 ≤ i ≤ r; 1 ≤ p ≤ s; 1 ≤ q ≤ t.

Then, δip is a non-zero monomial in kQ1(yp, zi) and ζpq has a non-zero summand

λpqαpq, where αpq ∈ k and αpq ∈ Q1(xq, yp), such that λpqδipαpq /∈ R2(xq,zi). By

Statement (1), we may write
∑s

l=1 θlζlq =
∑h

j=1 νjωjκj, where κj ∈ Qnj(xq,−)

with nj some non-negative integer, ωj ∈ R2 and νj ∈ kQm−n−nj−1(−, b).
Assume, for each 1 ≤ j ≤ h, that nj > 0 or ∂αpq(ωj) = 0. Applying ∂αpq to

the above equation, we obtain
∑s

l=1 λlθl ∈Rm−n(−, b), where λl = ∂αpq(ζlq) ∈ k.
Since λp = λpq ̸= 0, contrary to θ̄1, . . . , θ̄s being k-linearly independent. Thus, we

may assume that n1 = 0 and αpq is the initial arrow of a monomial summand of

ω1 ∈ R2(xq,−). Since Λ is multi-serial with λpqδip(αpq /∈ R2(xq, zi), we see that

λpqδip(αpq) is a summand of ω1, which is a polynomial relation in R2(xq, zi). This

establishes Statement (3).

(4) For each 1 ≤ i ≤ r, there exists some element χi ∈ R(n+1)(a, zi) such that

∂−n−1
a (η̄i ⊗ χi) =

∑s
l=1 η̄iδ̄il ⊗ ρl.

Fix 1 ≤ i ≤ r. If η̄iδ̄i1 = 0 for all l = 1, . . . , s, then we take χi = 0. Otherwise,

denote by L the set of l with 1 ≤ l ≤ s such that η̄iδ̄il ̸= 0; and for l ∈ L, denote

by Jl the set of j with 1 ≤ j ≤ t such that δilζlj /∈ R2(xj, zi). Fix (j, l) ∈ L× Jl.

Since Λ is multi-serial, we may write ζlj = αlj + σlj such that δilσlj ∈ R2(xj, zi)

and αlj is a monomial with δilαlj ̸∈ R2(xj, zi). By Statement (3), we have a
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polynomial relation ωlj = δilαlj+
∑rlj

p=1 γ
p
ilβ

p
lj in R2(xj, zi), where β

p
lj ∈ Q1(xj, c

p
lj)

with cplj ∈ Q0 and γpil is a monomial in kQ1(c
p
lj, zi). Since ηi is a non-trivial

path with η̄iδ̄il ̸= 0, we have η̄iγ̄
p
il = 0 for all 1 ≤ p ≤ rlj. And by Lemma

5.5.1, there exists ξplj ∈ kQn(a, c
p
lj) such that ρplj = βpljξj + ξplj ∈ R(n)(a, cplj) and

γpilξ
p
lj ∈ R2(−, zi) · kQn−1(a,−), for each 1 ≤ p ≤ rlj. Now, we put

χi =
∑

l∈Lδilρl +
∑

l∈L;j∈Jl;1≤p≤rljγ
p
ilρ

p
lj,

where ρl, ρ
p
lj ∈ R(n)(a,−). Observing that ρl =

∑t
j=1ζlj ξj, we can verify that

χi=
∑

l∈L;j∈Jl(ωlj + δilσlj)ξj +
∑

l∈L;j /∈Jlδilζljξj +
∑

l∈L;j∈Jl;1≤p≤tljγ
p
ilξ

p
lj.

Since δilζlj ∈ R2(xj, zi) for (l, j) ∈ L×Jl, we get χi ∈ R2(−, zi) ·kQn−1(a,−). By

Lemma 5.2.2(2), χi ∈ R(n+1)(a, zi), and hence, η̄i ⊗ φi ∈ K−n−1
a . Further, since

η̄iγ̄
p
il = 0 for (l, j) ∈ L × Jl and 1 ≤ p ≤ rlj and η̄iδ̄il = 0 for l /∈ Li, we deduce

that ∂−n−1
a (η̄i⊗χi) =

∑
l∈Lη̄iδ̄il⊗ρl =

∑s
l=1 η̄iδ̄il⊗ρl. This proves Statement (4).

Finally, w =
∑r

i=1 η̄i⊗ χi ∈ K−n−1
a is such that ∂−n−1

a (w) =
∑s

l=1 θ̄l ⊗ ρl = u.

The proof of the theorem is completed.

Example. Consider the quadratic special biserial algebra Λ = kQ/R, where

1
α

2

β1

β2

γ1

5
δ

6

3

4 γ2

Q :

(1) If R = ⟨β2α, δγ1, γ1β1 + γ2β2⟩, then Λ does not satisfies the condition (⋆)

and its dual. Clearly, S1 has a minimal graded projective resolution

0 // P6⟨−4⟩ P [δ̄γ̄2] // P4⟨−2⟩ P [β̄2] // P2⟨−1⟩ P [ᾱ] // P1
P [e1] // S1

// 0.

Since P6⟨−4⟩ is generated in degree 4, Λ is not a Koszul algebra.

(2) If R = ⟨β2α, δγ2, γ1β1 + γ2β2⟩, then Λ satisfies the condition (⋆) and its

dual. By Theorem 5.5.2, Λ is Koszul. Indeed, as shown below, every graded

simple module in GModΛ admits a linear graded projective resolution

• 0 // P4⟨−2⟩ // P2⟨−1⟩ // P1
// S1

// 0,

• 0 // P5⟨−2⟩ // P3⟨−1⟩ ⊕ P2⟨−1⟩ // P2
// S2

// 0,

• 0 // P5⟨−1⟩ // P3
// S3

// 0,

• 0 // P6⟨−2⟩ // P5⟨−1⟩ // P4
// S4

// 0,

• 0 // P6⟨−1⟩ // P5
// S5

// 0.
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5.6 Extension Conjecture for Koszul algebras

The objective of this section is to apply our previous results to establish a

stronger version of the Extension Conjecture for Koszul algebras whose Koszul

dual is locally left or right noetherian. In this section, we shall mainly consider

non-graded modules over Koszul algebras. We recall the Extension Conjecture

from [29, (2.6)] as follows.

5.6.1 Conjecture. Let A be an artin algebra, and let S be a simple A-module.

If Ext1A(S, S) ̸= 0, then ExtnA(S, S) ̸= 0 for infinitely many integers n > 0.

Let Λ = kQ/R be a Koszul algebra, where Q is locally finite. Recall that Λ

is locally left noetherian if Px is noetherian as a non-graded left Λ-module for

any x ∈ Q0; and locally right noetherian if exΛ is noetherian as non-graded right

Λ-module for any x ∈ Q0.

5.6.2 Lemma. Let Λ = kQ/R be a locally left noetherian Koszul algebra, where

Q is a locally finite quiver. Let a ∈ Q0 such that Λ!ea is finite dimensional. Then

the ea-trace is defined for every endomorphism in gmod+,bΛ.

Proof. By the assumption, Λ!
tea = 0 for some t > 0. By Theorem 5.4.3 and

Proposition 5.4.2, Sa has a graded injective coresolution

I. : 0 // Sa // I0 // I1 // · · · // In // · · ·

where In = ⊕x∈Q0(Ix⟨n⟩ ⊗ exΛ
!
nea), for all n ∈ Z. In particular, Ina = 0 for

n > t. ConsiderM ∈ gmod+,bΛ. Since Λ is locally left noetherian, by Proposition

3.9.5(1), gmod+,bΛ is abelian. In view of Corollary 3.8.6(1), we see that M has a

minimal graded projective resolution

P. : · · · // P−n // · · · // P−1 // P 0 //M // 0

over gprojΛ. For s ∈ Z, GHomΛ(P
−n, Sa⟨s⟩) ∼= GExtnΛ(M,Sa⟨s⟩). By Proposition

1.4.6, we see that GHomΛ(P
−n, Sa⟨s⟩) is a sub-quotient of GHomΛ(M, In⟨s⟩).

Thus, given n > t, GHomΛ(P
−n, Sa⟨s⟩) = 0, that is, Pa⟨s⟩ is not a direct summand

of P−n for any s ∈ Z. Forgetting the graduation, we see that P. is a projective

resolution of M over projΛ such that Pa is not direct summand of P−n for all

n > t. In other words, P. is an ea-bounded projective resolution of M over

projΛ. Thus, the ea-trace is defined for every endomorphism of M . The proof of

the lemma is completed.
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The following statement is a local version of Lenzing’s result in [34] for locally

left noetherian Koszul algebras.

5.6.3 Proposition. Let Λ = kQ/R be a locally left noetherian Koszul algebra,

where Q is a locally finite quiver with a loop σ at a vertex a. If Λ!ea is finite

dimensional, then σ̄ is not nilpotent.

Proof. Assume that Λ!ea is finite dimensional with σ̄r = 0 for some r > 0.

ConsiderM (i) = Λσ̄i ∈ gmod+,bΛ for i ≥ 0, where σ̄0 = ea. Let φ
(i) :M (i) →M (i)

be the right multiplication by σ̄, for i ≥ 0. By Lemma 5.6.2, tra(φ
(i)) is defined

for i ≥ 0. Now, since φ(i)(M (i)) ⊆ M (i+1), we have a commutative diagram with

exact rows

0 //M (i+1) //

φ(i+1)

��

M (i) //

φ(i)

��

M (i)/M (i+1) //

0
��

0

0 //M (i+1) //M (i) //M (i)/M (i+1) // 0,

and by Proposition 2.5.4(2), tra(φ
(i)) = tra(φ

(i+1)) for all i ≥ 0. In view of Lemma

2.5.1(1), we see that

(σ̄ +
∑

x∈Q\{a} ΛexΛ) + [Λa,Λa] = tra(φ
(0)) = tra(φ

(r)) = 0.

That is, σ̄ +
∑

x∈Q0\{a}ΛexΛ ∈ [Λa,Λa], and hence, σ̄ ∈
∑

x∈Q0\{a}ΛexΛ + [Λ,Λ].

Observing that exΛey ⊆ radΛ if x ̸= y and eau = uea for any u ∈ eaΛea, we

deduce that σ̄∈ rad2Λ, contrary to R being generated in degree 2. Thus, σ̄ is not

nilpotent in Λ. The proof of the proposition is completed.

We are ready to obtain the main result of this section.

5.6.4 Theorem. Let Λ = kQ/R be a Koszul algebra such that Λ! is locally left

noetherian, where Q is a locally finite quiver containing a loop σ at some vertex

a. If Λea is finite dimensional, then ExtnΛ(Sa, Sa) ̸= 0 for n ≥ 1.

Proof. By Theorem 5.2.5 and Lemma 5.4.1, Sa has a linear projective resolution

P. : · · · // P−n // · · · // P−1 // P 0 // Sa // 0,

where P−n = ⊕x∈Q0(Px⟨−n⟩ ⊗D(eaΛ
!
nex)) for n ≥ 0. Assume that Λea is finite

dimensional. Since Λ! is locally left noetherian with (Λ!)! = Λ, by Proposition

5.6.3, 0 ̸= (σ̄!)n ∈ eaΛ
!
nea for all n ≥ 0. Since D(eaΛ

!
nea) ̸= 0, we see that Pa⟨−n⟩
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is a direct summand of P−n, for n ≥ 1. That is, GExtnΛ(Sa, Sa⟨−n⟩) ̸= 0, and

hence, ExtnΛ(Sa, Sa) ̸= 0 for n ≥ 1. The proof of the theorem is completed.

Example. Consider the algebra Λ = kQ/R, where Q is the quiver

1 α2
β

γ

δ
3

ζ

η
4σ

and R = ⟨α2 + βγ, αβ, γβ, γα, ση, σζ⟩. It is easy to see that Λ is a multi-serial

algebra satisfying the condition (∗). By Theorem 5.5.2, Λ is Koszul. Note that

Λ! = kQo/R!, where Qo is the quiver

1 αo
2

βo

γo
δo

3
ζo

ηo

4σo

and R! = ⟨(αo)2 − γoβo, δoβo, (σo)2⟩. We claim that Λ! is left noetherian. Indeed,

P !
3 = k⟨e3⟩ and P !

4 = k⟨e4, σ̄!, η̄!, ζ̄ !, η̄!σ̄!, ζ̄ !σ̄!⟩, which are finite dimensional.

Since γ̄!β̄! = (ᾱ!)2 and δ̄!β̄! = 0, we see that P !
1 = k⟨β̄!, (ᾱ!)n, β̄!(ᾱ!)n | n ≥ 0⟩,

where (ᾱ!)0 = e1. Thus, every element of P !
1 is of the form β̄!f(ᾱ!)+ g(ᾱ!), where

f and g are polynomials. Let M be a non-zero graded Λ!-submodule of P !
1. Since

γ̄!ᾱ! = 0 and β̄!β̄! = 0, there exists a non-zero polynomial g such that g(ᾱ!) ∈M .

We may assume that g is of minimal degree s. Then M≤s = ⊕0≤i≤sMs is finite

dimensional such thatM = ΛM≤s. So P
!
1 is noetherian. Again since γ̄!β̄! = (ᾱ!)2,

we see that

P !
2 = k⟨e2, δ̄!, γ̄!, β̄!γ̄!, (ᾱ!)nγ̄!, β̄!(ᾱ!)nγ̄! | n ≥ 1⟩.

Similarly, we can prove that P !
2 is noetherian. This establishes our claim. Now,

since Λe1 is finite dimensional, by Theorem 5.6.4, ExtiΛ(S1, S1) ̸= 0 for all i ≥
1. On the other hand, ExtiΛ(S4, S4) = 0 for all i ≥ 2. Indeed, Λe4 is infinite

dimensional.

As a consequence of Theorem 5.6.4, we obtain the following statement, which

is stronger than the Extension Conjecture for finite dimensional Koszul algebras

with a noetherian Koszul dual.

5.6.5 Theorem. Let Λ = kQ/R be a finite dimensional Koszul algebra such

that Λ! is left or right noetherian. If Q contains a loop at some vertex a, then

ExtnΛ(Sa, Sa) ̸= 0, for every n ≥ 1.
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Proof. Let σ be a loop in Q at some vertex a. Suppose that Λ! is left noetherian.

Since Λea is finite dimensional, by Theorem 5.6.4, ExtnΛ(Sa, Sa) ̸= 0, for every

n ≥ 1. Suppose now that Λ! is locally right noetherian. Then, (Λ!)o is locally left

noetherian. By Theorem 5.4.3 and Proposition 5.3.3,Λo is a finite dimensional

Koszul algebra with (Λo)! = (Λ!)o. Since σo is a loop inQo at a, ExtnΛo(So
a, S

o
a) ̸= 0,

for every n ≥ 1. Since Λ is finite dimensional, we have a dualityD = Homk(−, k) :
modbΛo → modbΛ. This yields ExtnΛ(Sa, Sa) ̸= 0, for every n ≥ 1. The proof of the

theorem is completed.

Remark. Since a multi-serial algebra is locally left and right noetherian; see

(2.4.2), the Extension Conjecture holds for finite dimensional Koszul algebras

with a multi-serial Koszul dual.
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Chapter 6

Generalized Koszul dualities

The main objective of this chapter is to describe our generalized Koszul dual-

ities for a Koszul algebra, which include the classical Koszul duality of Beilinson,

Ginzburg and Soergel stated in [13, (2.12.1)]; see also [48, Theorem 30]. In the

locally bounded Koszul case, we shall obtain two equivalences of bounded derived

categories, one for finitely piece-supported graded modules and one for finite di-

mensional graded modules. This generalizes the result stated in [13, (2.12.6)].

6.1 Koszul Functors

In this section, we shall construct two Koszul functors for a quadratic algebra

given by a locally finite quiver, which are adapted from the Koszul functors for

a quadratic algebra given by a locally finite gradable quiver in the non-graded

setting; see [16, Section 5].

Throughout this section, Λ = kQ/R is a quadratic algebra, where Q is a

locally finite quiver. Let us recall some notations which will be frequently used

in this chapter. First, Λ! = kQo/R! = {γ̄! | γ ∈ kQ}, where γ̄! = γo + R!; and

Λ̂ = (Λ!)o = kQ/(R!)o = {γ̂ | γ ∈ kQ}, where γ̂ = γ + (R!)o. Then, for x ∈ Q0,

we have P !
x = Λ!ex and I !x = DP̂x, where P̂x =Λ̂ex.

We start with defining the right Koszul functor F : GModΛ → C(GModΛ!)

as follows; compare [16, page 35]; and also [15, page 63]. Let M ∈ GModΛ and

n ∈ Z. We put

F(M)n = ⊕x∈Q0(P
!
x⟨n⟩ ⊗Mn(x)).
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Writing F(M)n+1 = ⊕y∈Q0(P
!
y⟨n+1⟩ ⊗Mn+1(y)), we define

dnF(M) = (dnF(M)(y, x))(y,x)∈Q0×Q0 : F(M)n → F(M)n+1

with

dnF(M)(y, x) =
∑

α∈Q1(x,y)
P [ᾱ!]⊗M(ᾱ) : P !

x⟨n⟩ ⊗Mn(x) → P !
y⟨n+1⟩ ⊗Mn+1(y),

where P [ᾱ!] : P !
x⟨n⟩ → P !

y⟨n+1⟩ is the Λ!-linear morphism given by the right

multiplication by ᾱ!, and M(ᾱ) :Mn(x) →Mn+1(y) is the k-linear map given by

left multiplication by ᾱ. Given a morphism f : M → N in GModΛ and n ∈ Z,
we put

F(f)n = ⊕x∈Q0(id⊗ fn,x) : ⊕x∈Q0(P
!
x⟨n⟩ ⊗Mn(x)) → ⊕x∈Q0(P

!
x⟨n⟩ ⊗Nn(x)),

where fn,x :Mn(x) → Nn(x) is the k-linear map obtained by restricting f .

We define the left Koszul functor G : GModΛ → C(GModΛ!) in a similar

fashion as follows. Let M ∈ GModΛ and n ∈ Z. We set

G(M)n = ⊕x∈Q0(I
!
x⟨n⟩ ⊗Mn(x)).

Writing G(M)n+1 = ⊕y∈Q0(I
!
y⟨n+1⟩ ⊗Mn+1(y)), we put

dnG(M) = (dnG(M)(y, x))(y,x)∈Q0×Q0 : G(M)n → G(M)n+1

with

dnG(M)(y, x) =
∑

α∈Q1(x,y)
I[ᾱ!]⊗M(ᾱ) : I !x⟨n⟩ ⊗Mn(x) → I !y⟨n+1⟩ ⊗Mn+1(y),

where I[ᾱ!] : I !x⟨n⟩ → I !y⟨n+1⟩ is the D-dual of P [α̂] : P̂y⟨−n−1⟩ → P̂x⟨−n⟩. And
given a morphism f :M → N in GModΛ and n ∈ Z, we set

G(f)n = ⊕x∈Q0(id⊗ fn,x) : ⊕x∈Q0(I
!
x⟨n⟩ ⊗Mn(x)) → ⊕x∈Q0(I

!
x⟨n⟩ ⊗Nn(x)).

The following statement is a generalization of Proposition 5.1 in [16] where

the quiver Q is assumed to be gradable.

6.1.1 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. The above construction yields functors F : GModΛ → C(GModΛ!)

and G : GModΛ → C(GModΛ!), which are full, faithful and exact.
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Proof. We only verify that G is an exact functor. Fix M ∈ GModΛ and n ∈ Z.
Write G(M)n = ⊕x∈Q0(I

!
x⟨n⟩⊗Mn(x)) and G(M)n+2 = ⊕z∈Q0(I

!
z⟨n+2⟩⊗Mn+2(z)).

For (z, x) ∈ Q0 × Q0, write Q2(x, z) = {α1β1, . . . , αsβs}, where αi, βi ∈ Q1. In

view of the definition of G, we see that dn+1
G(M)◦ dnG(M)=(dnz,x)(z,x)∈Q0×Q0 , where

dnz,x=
∑s

i=1I
!
x[β̄

!
iᾱ

!
i]⊗M(ᾱiβ̄i) :I

!
x⟨n⟩ ⊗Mn(x) → I !z⟨n+2⟩ ⊗Mn+2(z).

Choose a k-basis {ρ1, . . . , ρr, ρr+1, . . . , ρs} of kQ2(x, z), where {ρ1, . . . , ρr} is

a k-basis of R2(x, z). There exists a k-basis {η1, . . . , ηr, ηr+1, . . . , ηs} of kQ2(x, z)

such that {η⋆1, . . . , η⋆r , η⋆r+1, . . . , η
⋆
s} is the dual basis of {ρ1, . . . , ρr, ρr+1, . . . , ρs}.

Then, {η⋆1, . . . , η⋆s} is the dual basis of {ρ1, . . . , ρs} and {ηor+1, . . . , η
o
s} is a k-basis

of R!
2(z, x). Observe that ρ̄i = 0 for 1 ≤ i ≤ r, and η̄!j = 0 and for r < j ≤ s. On

the other hand, by Corollary 2.1.2, we have a k-linear isomorphism

σ : D(kQ2(x, z))⊗ kQ2(x, z) → Endk(kQ2(x, z)); f ⊗ γ 7→ [δ 7→ f(δ)γ].

Since {α1β1, . . . , αsβs} and {ρ1, . . . , ρs} are k-bases of kQ2(x, z), we see that

σ(
∑s

i=1(αiβi)
⋆⊗αiβi) = id = σ(

∑s
i=1η

⋆
i ⊗ρi). So,

∑s
i=1(αiβi)

⋆⊗αiβi =
∑s

i=1η
⋆
i ⊗

ρi. In view of the canonical k-linear isomorphism D(kQ2(x, z)) → kQo
2(z, x), we

obtain
∑s

i=1(αiβi)
o ⊗ αiβi =

∑s
i=1η

o
i ⊗ ρi. Applying the tensor product of the

canonical projections kQ2(x, z) → ezΛ2ex and kQo
2(z, x) → exΛ

!
2ez, we obtain∑s

i=1 β̄
!
iᾱ

!
i ⊗ ᾱiβ̄i =

∑s
i=1 η̄

!
i ⊗ ρ̄i.

Moreover, we clearly have a k-linear morphism

ψ : exΛ
!
2ez ⊗ ezΛ2ex → HomΛ(I

!
x⟨n⟩, I !z⟨n+2⟩)⊗ Homk(Mn(x),Mn+2(z)),

sending η̄! ⊗ ρ̄ to I[η̄!]⊗M(ρ̄). Applying this to the above equation, we obtain∑s
i=1I[β̄

!
iᾱ

!
i]⊗M(ᾱiβ̄i) =

∑s
i=1I[η̄

!
i]⊗M(ρ̄i) = 0.

Therefore, dn+1
G(M) ◦ dnG(M) = 0. That is, G(M). is a complex in C(GModΛ!).

Next, given a morphism f : M → N in GModΛ, it is easy to verify that

G(f)n+1 ◦ dnG(M) = dnG(N) ◦ G(f)n, for n ∈ Z. This yields a morphism of complexes

G(f). : G(M). → G(N).. Since the tensor product is over a field, G is exact and

faithful. Finally, consider a morphism f. : G(M).→ G(N). in C(GModΛ!), where

M,N ∈ GModΛ. Write

fn = (fn(y, x))(y,x)∈Q0×Q0 : ⊕x∈Q0 (I
!
x⟨n⟩ ⊗Mn(x)) → ⊕y∈Q0 (I

!
y⟨n⟩ ⊗Nn(y)),
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where fn(y, x) : I !x⟨n⟩ ⊗ Mn(x) → I !y⟨n⟩ ⊗ Nn(y) is a graded morphism. In

view of Proposition 3.4.6, we see that fn(y, x) = 0 if y ̸= x; and otherwise,

fn(y, x) = idI!x ⊗ gn,x, for some gn,x ∈ Homk(Mn(x), Nn(x)). This implies

fn = ⊕x∈Q0(idI!x ⊗ gn,x) : ⊕x∈Q0 (I
!
x⟨n⟩ ⊗Mn(x)) → ⊕x∈Q0 (I

!
x⟨n⟩ ⊗Nn(x)).

Let (z, x) ∈ Q0 × Q0 with Q1(x, z) ̸= 0. We deduce from the equation

fn+1 ◦ dnG(M) = dnG(N) ◦ fn that

(fn+1 ◦ dnG(M))(z, x) = (dnG(N) ◦ fn)(z, x) : I !x⟨n⟩ ⊗Mn(x) → I !z⟨n+1⟩ ⊗Nn+1(z),

namely,
∑

α∈Q1(x,z)
I[ᾱ!]⊗ (N(ᾱ) ◦ gn,x) =

∑
α∈Q1(x,z)

I[ᾱ!]⊗ (gn+1,z ◦M(ᾱ)). By

the uniqueness stated in Proposition 3.4.6, N(ᾱ) ◦ gn,x = gn+1,z ◦M(ᾱ), for every

arrow α ∈ Q1(x, z). This yields g = (gn,x)(n,x)∈Z×Q0 is a Λ-linear graded morphism

from M to N such that G(g) = f . That is, G is full. The proof of the proposition

is completed.

Let X. be a complex in C(GModΛ). Given s ∈ Z, we define the grading

s-shift X.⟨s⟩ by setting (X.⟨s⟩)n = Xn⟨s⟩ and dnX.⟨s⟩ = dnX⟨s⟩ for all n ∈ Z.

6.1.2 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. If X. is a complex in C(GModΛ), then

(1) (X.⟨s⟩)⟨t⟩ = X.⟨s+ t⟩, for all s, t ∈ Z;

(2) Hn(X.⟨s⟩) = Hn(X.)⟨s⟩, for all n, s ∈ Z.

Proof. Statement (1) is evident. Let X. ∈ C(GModΛ). Given s, n ∈ Z, in view

of Lemma 3.1.9, we have

Hn(X.⟨s⟩) = Ker(dnX.⟨s⟩)/Im(dn−1
X.⟨s⟩)

= Ker(dnX⟨s⟩)/Im(dn−1
X ⟨s⟩)

= (Ker(dnX)/Im(dn−1
X ))⟨s⟩

= Hn(X.)⟨s⟩.

The proof of the lemma is completed.

The following statement tells us how the Koszul functors F and G are related

to the grading shift of graded modules and the shift of complexes; compare [48,

Proposition 20].
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6.1.3 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally fi-

nite quiver. If M ∈ GModΛ and s ∈ Z, then ts(F(M).[s]) = F(M⟨s⟩).⟨s⟩ and

ts(G(M).[s]) = G(M⟨s⟩).⟨s⟩, where t is the twist functor.

Proof. We shall only prove the first part, since the proof of the second part is

similar. Let M ∈ GModΛ and s, n ∈ Z. By definition,

ts(F(M).[s])n = (F(M).[s])n = F(M)n+s =⊕x∈Q0(P
!
x⟨n+ s⟩ ⊗Mn+s(x))

and dnts(F(M).[s]) = (−1)sdnF(M).[s] = dn+sF(M). On the other hand, by definition,

F(M⟨s⟩)n = ⊕x∈Q0(P
!
x⟨n⟩ ⊗Mn+s(x)).

Writing F(M⟨s⟩)n+1 = ⊕y∈Q0(P
!
y⟨n+ 1⟩ ⊗Mn+s+1(y)), we have

dnF(M⟨s⟩) = (dnF(M⟨s⟩)(y, x))(y,x)∈Q0×Q0 : F(M⟨s⟩)n → F(M⟨s⟩)n+1,

where

dnF(M⟨s⟩)(y, x)=
∑

α∈Q1(x,y)
P [ᾱ!]⊗M(ᾱ) : P !

x⟨n⟩⊗Mn+s(x)→P !
y⟨n+1⟩⊗Mn+s+1(y).

Therefore,

(F(M⟨s⟩).⟨s⟩)n = F(M⟨s⟩)n⟨s⟩ = ⊕x∈Q0(P
!
x⟨n+ s⟩ ⊗Mn+s(x)) = ts(F(M).[s])n,

and

dnF(M⟨s⟩).⟨s⟩=d
n
F(M⟨s⟩)⟨s⟩=(dnF(M⟨s⟩)(y, x)⟨s⟩)(y,x)∈Q0×Q0 ,

where dnF(M⟨s⟩)(y, x)⟨s⟩ is the morphism∑
α∈Q1(x,y)

P [ᾱ!]⊗M(ᾱ) : P !
x⟨n+ s⟩ ⊗Mn+s(x)→P !

y⟨n+ s+ 1⟩ ⊗Mn+s+1(y).

So, dnF(M⟨s⟩)(y, x)⟨s⟩ = dn+sF(M)(y, x) for all (y, x) ∈ Q0 × Q0, and consequently,

dnF(M⟨s⟩)⟨s⟩ = dn+sF(M). Therefore, d
n
F(M⟨s⟩).⟨s⟩ = dnts(F(M).[s]), for all n ∈ Z. This shows

that ts(F(M).[s]) = F(M⟨s⟩).⟨s⟩. And similarly, ts(G(M).[s]) = G(M⟨s⟩).⟨s⟩.
The proof of the lemma is completed.

We shall need the following statement.

6.1.4 Corollary. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. If M is a module in GModΛ, then Hn−s(F(M⟨s⟩).) = Hn(F(M).)⟨−s⟩
and Hn−s(G(M⟨s⟩).) = Hn(G(M).)⟨−s⟩, for all n, s ∈ Z.
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Proof. LetM ∈ GModΛ. Fix s, n ∈ Z. Since t is an automorphism of C(GModΛ),

applying Lemmas 6.1.3 and 6.1.2(2), we see that

Hn(F(M).) = Hn−s(F(M).[s])
= Hn−s(ts(F(M).[s]))
= Hn−s(F(M⟨s⟩).⟨s⟩)
= Hn−s(F(M⟨s⟩).)⟨s⟩.

By Lemma 6.1.2(1), we have Hn−s(F(M⟨s⟩).) = Hn(F(M).)⟨−s⟩. Similarly,

Hn−s(G(M⟨s⟩).) = Hn(G(M).)⟨−s⟩. The proof of the Corollary is completed.

To conclude this section, we shall show that the Koszul functors are compat-

ible with tensor products and arbitrary direct sums. Let (X., d.X) be a complex

in C(GModΛ). Given V ∈ Modk, we shall define X.⊗V to be the complex such

that (X.⊗ V )n = Xn ⊗ V and dnX⊗V = dnX ⊗ idV for all n ∈ Z.

6.1.5 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver.

(1) If M ∈ GModΛ and V ∈ Modk, then F(M ⊗ V ). = F(M). ⊗ V and

G(M ⊗ V ). = G(M).⊗ V .

(2) IfMσ with σ ∈ Σ are modules in GModΛ, then F(⊕σ∈ΣMσ)
.= ⊕σ∈Σ F(Mσ)

.

and G(⊕σ∈ΣMσ)
.= ⊕σ∈Σ G(Mσ)

..

Proof. (1) Let M ∈ GModΛ and V ∈ Modk. Fix n ∈ Z. By definition,

F(M ⊗ V )n = ⊕x∈Q0(P
!
x⟨n⟩ ⊗Mn(x)⊗ V )

= (⊕x∈Q0P
!
x⟨n⟩ ⊗Mn(x))⊗ V

= F(M)n ⊗ V.

Writing F(M ⊗ V )n+1 = ⊕y∈Q0(P
!
y⟨n+1⟩ ⊗Mn+1(y)⊗ V ), we have

dnF(M⊗V ) = (dnF(M⊗V )(y, x))(y,x)∈Q0×Q0 : F(M ⊗ V )n → F(M ⊗ V )n+1,

where dnF(M⊗V )(y, x) is the morphism∑
α∈Q1(x,y)

P [ᾱ!]⊗ (M ⊗ V )(ᾱ) : P !
x⟨n⟩ ⊗Mn(x)⊗ V → P !

y⟨n+1⟩ ⊗Mn+1(y)⊗ V.

On the other hand, writing F(M)n+1⊗V = (⊕y∈Q0P
!
y⟨n+1⟩⊗Mn+1(x))⊗V , we

have

dnF(M)⊗V = (dnF(M)⊗V (y, x))(y,x)∈Q0×Q0 : F(M)n ⊗ V → F(M)n+1 ⊗ V,

156



where dnF(M)⊗V (y, x) is the morphism∑
α∈Q1(x,y)

P [ᾱ!]⊗M(ᾱ)⊗ idV : P !
x⟨n⟩ ⊗Mn(x)⊗ V → P !

y⟨n+1⟩ ⊗Mn+1(y)⊗ V.

Since (M ⊗ V )(ᾱ) =M(ᾱ)⊗ idV for any α ∈ Q1(x, y) with (y, x) ∈ Q0 ×Q0,

we have dnF(M⊗V ) = dnF(M)⊗V . This shows that F(M ⊗ V ). = F(M).⊗ V . And

similarly, G(M ⊗ V ). = G(M).⊗ V .

(2) Let {Mσ}σ∈Σ be a family of modules in GModΛ. By Proposition 3.2.3(1),

we see that
F(⊕σ∈ΣMσ)

n = ⊕x∈Q0(P
!
x⟨n⟩ ⊗ (⊕σ∈ΣMσ)n(x))

= ⊕σ∈Σ ⊕x∈Q0 (P
!
x⟨n⟩ ⊗ (Mσ)n(x))

= ⊕σ∈ΣF(Mσ)
n.

Writing F(⊕σ∈ΣMσ)
n+1 = ⊕y∈Q0(P

!
y⟨n+1⟩ ⊗ (⊕σ∈Σ(Mσ)n+1(y))), we have

dnF(⊕σ∈ΣMσ) = (dnF(⊕σ∈ΣMσ)(y, x))(y,x)∈Q0×Q0 : F(⊕σ∈ΣMσ)
n → F(⊕σ∈ΣMσ)

n+1,

where

dnF(⊕σ∈ΣMσ)(y, x) : P
!
x⟨n⟩ ⊗ (⊕σ∈Σ(Mσ)n(x)) → P !

y⟨n+1⟩ ⊗ (⊕σ∈Σ(Mσ)n+1(y))

is the morphism defined by

dnF(⊕σ∈ΣMσ)(y, x) =
∑

α∈Q1(x,y)
P [ᾱ!]⊗ (⊕σ∈ΣMσ)(ᾱ).

On the other hand, given σ ∈ Σ, write F(Mσ)
n+1 = ⊕y∈Q0(P

!
y⟨n+1⟩⊗(Mσ)n+1(y)).

Then, we have

dnF(Mσ) = (dnF(Mσ)(y, x))(y,x)∈Q0×Q0 : F(Mσ)
n → F(Mσ)

n+1,

where dnF(Mσ)
(y, x) is the morphism∑

α∈Q1(x,y)
P [ᾱ!]⊗Mσ(ᾱ) : P

!
x⟨n⟩ ⊗ (Mσ)n(x) → P !

y⟨n+1⟩ ⊗ (Mσ)n+1(y).

Thus, we see that

dnF(⊕σ∈ΣMσ)(y, x) =
∑

α∈Q1(x,y)
P [ᾱ!]⊗ (⊕σ∈ΣMσ)(ᾱ)

=
∑

α∈Q1(x,y)
P [ᾱ!]⊗ (⊕σ∈ΣMσ(ᾱ))

= ⊕σ∈Σ(
∑

α∈Q1(x,y)
P [ᾱ!]⊗Mσ(ᾱ))

= ⊕σ∈Σd
n
F(Mσ)(y, x)

= dn⊕σ∈ΣF(Mσ)(y, x); for all (y, x) ∈ Q0 ×Q0.

That is, dnF(⊕σ∈ΣMσ)
= dn⊕σ∈ΣF(Mσ)

. Consequently, F(⊕σ∈ΣMσ)
. = ⊕σ∈ΣF(Mσ)

..
And similarly, we can show that G(⊕σ∈ΣMσ)

. = ⊕σ∈Σ G(Mσ)
.. The proof of the

lemma is completed.
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6.2 Complex Koszul functors

In this section, we shall extend the Koszul functors to obtain the complex

Koszul functors. They are the graded version of those defined in [16, Section 5]

under the non-graded setting and the assumption that the quiver is locally finite

gradable.

Throughout this section, we always assume that Λ = kQ/R is a quadratic

algebra, where Q is a locally finite quiver. As described in Section 1.8, the

right Koszul functor F : GModΛ → C(GModΛ!) and the left Koszul functor

G : GModΛ → C(GModΛ!) extend to two additive functors

FDC : C(GModΛ) → DC(GModΛ!);M. 7→ F(M.). ; f. 7→ F(f.).;

and

GDC : C(GModΛ) → DC(GModΛ!);M. 7→ G(M.). ; f. 7→ G(f.)..

For convenience, we shall describe these functors explicitly in the following

statement, which follows immediately from the definition of the Koszul functors.

6.2.1 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. If M.∈ C(GModΛ), then

(1) the double complex F(M.). is given by

F(M i)j = ⊕x∈Q0(P
!
x⟨j⟩ ⊗M i

j(x)); for all i, j ∈ Z.

(2) the double complex G(M).). is given by

G(M)i)j = ⊕x∈Q0(I
!
x⟨j⟩ ⊗M i

j(x)); for all i, j ∈ Z.

Composing these functors with the functor T : DC(GModΛ!) → C(GModΛ!),

sending a double complex to its total complex; see (1.8), we obtain two additive

functors

FC = T ◦ FDC : C(GModΛ) → C(GModΛ!)

and

GC = T ◦ GDC : C(GModΛ) → C(GModΛ!),

which are called the right and the left complex Koszul functors, respectively.

They are explicitly described in the following statement.
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6.2.2 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver.

(1) The right complex Koszul functor FC : C(GModΛ) → C(GModΛ!) is faith-

fully exact such, for M. ∈ C(GModΛ) and n ∈ Z, that

FC(M.)n = ⊕i∈Z;x∈Q0(P
!
x⟨n−i⟩ ⊗M i

n−i(x)).

(2) The left complex Koszul functor GC : C(GModΛ) → C(GModΛ!) is faith-

fully exact such, for M. ∈ C(GModΛ) and n ∈ Z, that

GC(M.)n = ⊕i∈Z;x∈Q0(I
!
x⟨n−i⟩ ⊗M i

n−i(x)).

Proof. We shall only prove Statement (1). By Proposition 6.1.1, F is faithful and

exact, and by Proposition 1.8.5, FC is faithful and exact. Let M. ∈ C(GModΛ).

By definition, FC(M.). = T(F(M.).). Fix n ∈ Z. In view of Lemma 6.2.1, the

n-diagonal of the double complex F(M.). consists of

F(M i)n−i = ⊕x∈Q0(P
!
x⟨n−i⟩ ⊗M i

n−i(x)); for all i ∈ Z.

Therefore,

FC(M.)n = T(F(M.).)n = ⊕i∈ZF(M i)n−i = ⊕i∈Z;x∈Q0(P
!
x⟨n−i⟩ ⊗M i

n−i(x)).

The proof of the proposition is completed.

Now, we shall compose the Koszul functors and the complex Koszul functors.

For this purpose, we need the following statement, which follows immediately

from the definition of the Koszul functors.

6.2.3 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. If M ∈ GModΛ, then

(1) the double complex F(G(M).). is given by

F(G(M)i)j = ⊕a,x∈Q0(Pa⟨j⟩ ⊗ (I !x)i+j(a)⊗Mi(x))

= ⊕a,x∈Q0(Pa⟨j⟩ ⊗D(eaΛ̂−i−jex)⊗Mi(x)); for all i, j ∈ Z.

(2) the double complex G(F(M).). is given by

G(F(M)i)j = ⊕a,x∈Q0(Ia⟨j⟩ ⊗ (P !
x)i+j(a)⊗Mi(x))

= ⊕a,x∈Q0(Ia⟨j⟩ ⊗ ea Λ
!
i+jex ⊗Mi(x)); for all i, j ∈ Z.
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6.2.4 Proposition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver.

(1) The functor FC◦ G : GModΛ → C(GModΛ) is faithfully exact such that

(FC◦ G)(M)n = ⊕i∈Z;a,x∈Q0(Pa⟨n−i⟩ ⊗D(eaΛ̂−nex)⊗Mi(x)),

for all M ∈ GModΛ and n ∈ Z.

(2) The functor GC ◦ F : GModΛ → C(GModΛ) is faithfully exact such that

(GC ◦ F)(M)n = ⊕i∈Z;x,a∈Q0(Ia⟨n−i⟩ ⊗ eaΛ
!
nex ⊗Mi(x)),

for all M ∈ GModΛ and n ∈ Z.

Proof. We shall only prove Statement (1), since the proof of Statement (2) is

similar. By Propositions 6.1.1 and 6.2.2, FC and G are faithfully exact, and

hence, FC◦G is faithfully exact. Let M ∈ GModΛ. By definition, G(M). is given
by G(M)i = ⊕x∈Q0(I

!
x⟨i⟩ ⊗Mi(x)) for all i ∈ Z. Moreover,

(FC◦ G)(M).= FC(G(M).) = T(F(G(M).).).

Given n ∈ Z, in view of Lemma 6.2.3(1), we see that the n-diagonal of the double

complex F(G(M).). consists of

F(G(M)i)n−i = ⊕a,x∈Q0(Pa⟨n− i⟩ ⊗D(eaΛ̂−nex)⊗Mi(x)); for all i ∈ Z.

Thus,

(FC◦G)(M)n = ⊕i∈ZF(G(M)i)n−i = ⊕i∈Z;a,x∈Q0(Pa⟨n−i⟩⊗D(eaΛ̂−nex)⊗Mi(x)).

The proof of the proposition is completed.

To extend the above composite functors, we need the following statement,

which follows immediately from the definition of the Koszul functors and Propo-

sition 6.2.4.

6.2.5 Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. If M. ∈ C(GModΛ), then

(1) the double complex (FC◦ G)(M.). is given by

(FC◦G)(M i)j = ⊕s∈Z;a,x∈Q0(Pa⟨j−s⟩⊗D(eaΛ̂−jex)⊗M i
s(x)); for all i, j ∈ Z.
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(2) the double complex (GC◦ F)(M.). is given by

(GC ◦ F)(M i)j = ⊕s∈Z;x,a∈Q0(Ia⟨j−s⟩ ⊗ eaΛ
!
jex ⊗M i

s(x)); for all i, j ∈ Z.

Now, we are able to describe the extension of the composite functors of the

Koszul functors and the complex Koszul functors.

6.2.6 Proposition. Let Λ = kQ/R be a Koszul algebra, where Q is a locally

finite quiver.

(1) The functor (FC◦ G)C : C(GModΛ)→C(GModΛ) is faithfully exact such,

for M. ∈ C(GModΛ) and n ∈ Z, that

(FC◦ G)C(M.)n= ⊕i,j∈Z;a,x∈Q0(Pa⟨n−i−j⟩⊗D(eaΛ̂i−nex)⊗M i
j(x)).

(2) The functor (GC◦ F)C : C(GModΛ)→C(GModΛ) is faithfully exact such,

for M. ∈ C(GModΛ) and n ∈ Z, that

(GC◦F)C(M.)n = ⊕i,j∈Z; a,x∈Q0 (Ix⟨n−i−j⟩ ⊗ eaΛ
!
n−iex ⊗M i

j(a)).

Proof. We shall only verify Statement (1), since the verification of Statement (2) is

similar. By Proposition 6.2.4, FC ◦G is faithfully exact, and by Proposition 1.8.5,

so is (FC◦G)C . Let M. ∈ C(GModΛ). Then, (FC◦G)C(M.) = T((FC ◦G)(M.).).
Fix n ∈ Z. By Lemma 6.2.5, the n-diagonal of (FC◦ G)(M.). consists of

(FC◦G)(M i)n−i = ⊕j∈Z;a,x∈Q0(Pa⟨n−i−j⟩⊗D(eaΛ̂i−nex)⊗M i
j(x)); for all i ∈ Z.

As a consequence, we have

(FC◦ G)C(M.)n = ⊕i∈Z (FC◦ G)(M i)n−i

= ⊕i,j∈Z;a,x∈Q0(Pa⟨n−i−j⟩⊗D(eaΛ̂i−nex)⊗M i
j(x)).

The proof of the proposition is completed.

6.3 Derived Koszul functors

In this section, we shall show that each complex Koszul functor descends to

a 2-real parametrized family of derived Kozul functors from categories derived

from subcategories of the category of complexes of a quadratic algebra to those
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derived from those derived from subcategories of the category of complexes of

its quadratic dual. These include the two derived functors constructed in [48,

Section 5]. The key ingredients of this section are adapted from those in [16,

Section 5] which are in the non-graded setting and under the assumption that

the quiver is gradable.

Throughout this section, we always assume that Λ = kQ/R is a quadratic

algebra, where Q is a locally finite quiver. As mentioned in Section 1.8, the right

complex Koszul functor FC : C(GModΛ) → C(GModΛ!) and the left complex

Koszul functor GC : C(GModΛ) → C(GModΛ!) do not descend to the whole

derived category D(GModΛ). Therefore, we need to consider some derivable

subcategories of C(GModΛ). For this purpose, we shall view a complex M. of
graded modules M i = ⊕j∈ZM

i
j as a bigraded k-vector space M i

j with i, j ∈ Z.

6.3.1 Definition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. Given p, q ∈ R with p ≥ 1 and q ≥ 0, we denote

(1) by C ↓
p,q(GModΛ) the full subcategory of C(GModΛ) of complexes M. such

that M i
j = 0 for i+ pj ≫ 0 or i− qj ≪ 0 ; in other words, M. concentrates

in a lower triangle formed by two lines of slopes −1
p
and 1

q
, respectively;

(2) by C ↑
p,q(GModΛ) the full subcategory of C(GModΛ) of complexes M. such

that M i
j = 0 for i+ pj ≪ 0 or i− qj ≫ 0; in other words, M. concentrates

in an upper triangle formed by two lines of slopes −1
p
and 1

q
, respectively.

Remark. (1) Taking p = 1 and q = 0, we cover the categories C↓(Λ) and C↑(Λ)

as defined in [13, (2.12)]; see also [48, (2.4)].

(2) The categories C ↓
p,q(GModΛ) are pairwise distinct derivable subcategories

of C(GMod−Λ) containing Cb(GMod−Λ).

(3) The categories C ↑
p,q(GModΛ) are pairwise distinct derivable subcategories

of C(GMod+Λ) containing Cb(GMod+Λ).

(4) The triangular regions in which the complexes of these categories are

concentrated can be visualized as follows:
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i

j

C ↑
p,q(GModΛ)

C ↓
p,q(GModΛ)

Let A be an abelian subcategory of GModΛ. We denote by C ↓
p,q(A) the full

subcategory of C ↓
p,q(GModΛ) of complexes of graded modules in A, byK ↓

p,q(A) the

quotient category modulo null-homotopic morphisms of C ↓
p,q(A), and by D ↓

p,q(A)

the localization at quasi-isomorphisms of K ↓
p,q(A). We define categories C ↓

p,q(A),

K ↑
p,q(A) and D ↑

p,q(A) in the same fashion. In other words, D ↓
p,q(A) and D ↑

p,q(A)

are categories derived from C ↓
p,q(A) and C

↑
p,q(A), respectively.

In order to show that the complex Koszul functors descend to these derived

categories, we shall restrict complexes of graded modules to obtain complexes

of k-vector spaces. Consider a complex M. and a morphism f. : M. → N. in
C(GModΛ). Fix i ∈ Z. By restricting M. and f. to the degree i, we obtain a

complex

M.
i : · · · //Mn−1

i

(dn−1
M )i //Mn

i

(dnM )i //Mn+1
i

// · · ·

and a morphism f.i : M
.
i → N.i in C(Modk). Similarly, restricting an object M..

and a morphism f.. : M.. → N.. in DC(GModΛ) to the degree i, we obtain an

object M..
i and a morphism f..i :M..

i → N..i in DC(Modk).

6.3.2 Lemma. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver.

(1) If M.∈ C(GModΛ), then Hn(M.)i ∼= Hn(M.
i ) for all i ∈ Z.

(2) If f. : M.→ N. is a morphism in C(GModΛ), then Hn(f.)i ∼= Hn(f.i), for
all n, i ∈ Z.
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(3) If M.. is an object in DC(GModΛ), then T(M..)i = T(M..
i ), for all i ∈ Z.

(4) If f.. is a morphism in DC(GModΛ), then T(f..)i = T(f..i ), for all i ∈ Z.

Proof. (1) Consider a complex (M., d.) in C(GModΛ). In view of Proposition

3.1.8, we see that

Hn(X.) =
Kerdn

Imdn−1
=

⊕i∈ZKer(dni )

⊕i∈ZIm(dn−1
i )

∼= ⊕i∈Z
Ker(dni )

Im(dn−1
i )

= ⊕i∈ZH
n(X.i ).

Thus, Hn(M.)i ∼= Hn(M.
i ) for all i ∈ Z.

(2) Let f. : M.→ N. be a morphism in C(GModΛ). Fix n ∈ Z. We have a

commutative diagram with exact rows

0 // Imdn−1
M

qnM //

f̃n

��

KerdnM
pnM //

f̄n

��

Hn(M.)

Hn(f.)
��

// 0

0 // Imdn−1
N

qnN // KerdnN
pnN // Hn(N.) // 0,

where f̃n and f̄n are induced from fn. For any i ∈ Z, we have a commutative

diagram with exact rows

0 // (Imdn−1
M )i

(qnM )i //

f̃ni
��

(KerdnM)i
(pnM )i //

f̄ni
��

Hn(M.)i

Hn(f.)i
��

// 0

0 // (Imdn−1
N )i

(qnN )i // (KerdnN)i
(pnN )i // Hn(N.)i // 0.

By Proposition 3.1.8, this is the commutative diagram with exact rows

0 // Im(dn−1
M )i

(qnM )i //

f̃ni
��

Ker(dnM)i
(pnM )i //

f̄ni
��

Hn(M.)i

Hn(f.)i
��

// 0

0 // Im(dn−1
N )i

(qnN )i // Ker(dnN)i
(pnN )i // Hn(N.)i // 0.

Therefore, Hn(f.)i ∼= Hn(f.i).
(3) Let (M.., v.., h..) be an object in DC(GModΛ), where v.. is the vertical dif-

ferential and h.. is the horizontal differential. Fix i, n ∈ Z. Then, by Proposition

3.2.3(1),

T(M..)ni = (⊕j∈ZM
j,n−j)i = ⊕j∈ZM

j,n−j
i = T(M..

i ).
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Moreover,

(dnT(M..))i = ((dnT(M..)(l, j)i)(l,j)∈Z×Z : T(M..)ni → T(M..)n+1
i = (⊕l∈ZM

l,n−l)i,

where dnT(M..)(l, j)i : M
j,n−j
i → M l,n−l

i is defined such that dnT(M..)(j, j)i = vj,n−ji ;

dnT(M..)(j + 1, j)i = hj,n−ji and dnT(M..)(l, j)i = 0 if j ̸= l or l + 1. On the other

hand,

dnT(M..i ) = (dnT(M..i )(l, j))(l,j)∈Z×Z : T(M..
i )

n → T(M..
i )

n+1 = (⊕l∈ZM
l,n−l
i ),

where dnT(M..i )(l, j) : M j,n−j
i → M l,n−l

i is defined such that dnT(M..i )(j, j) = vj,n−ji ;

dnT(M..i )(j + 1, j) = hj,n−ji and dnT(M..i )(l, j) = 0 if j ̸= l or l + 1. So, (dnT(M..))i =
dnT(M..i ). Therefore, T(M..)i = T(M..

i ), for all i ∈ Z.
(4) Let f.. : M.. → N.. be a morphism in DC(GModΛ). Fix i, n ∈ Z. By

definition,

T(f..)ni = (T(f..)ni (l, j))(l,j)∈Z×Z : (⊕j∈ZM
j,n−j)i → (⊕l∈ZN

l,n−l)i,

where T(f..)ni (l, j) : M j,n−j
i → N l,n−l

i is given by T(f..)ni (j, j) = f j,n−ji and

T(f..)ni (l, j) = 0 for all j ̸= l. On the other hand,

T(f..i )n = (T(f..i )n(l, j))(l,j)∈Z×Z : ⊕j∈ZM
j,n−j
i → ⊕l∈ZN

l,n−l
i ,

where T(f..i )n(l, j) : M j,n−j
i → N l,n−l

i is given by T(f..i )n(j, j) = f j,n−ji and

T(f..i )n(l, j) = 0 for all j ̸= l. So, T(f..)ni = T(f..i )n. Consequently, T(f..)i =
T(f..i ), for all i ∈ Z. The proof of the lemma is completed.

We are ready to have the main result of this section. It is adapted from

Theorem 5.3 in [16], which is in the non-graded setting and under the assumption

that the quiver is gradable.

6.3.3 Theorem. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver. Consider p, q ∈ R with p ≥ 1 and q ≥ 0.

(1) The right complex Koszul functor FC induces a commutative diagram of

functors

C ↓
p,q(GModΛ)

FC
p,q

��

// K ↓
p,q(GModΛ)

FK
p,q

��

// D ↓
p,q(GModΛ)

FD
p,q

��

C ↑
q+1,p−1(GModΛ!) // K ↑

q+1,p−1(GModΛ!) // D ↑
q+1,p−1(GModΛ!),

where GModΛ and GModΛ! can be replaced simultaneously by gmodΛ and

gmodΛ!, respectively.
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(2) The left complex Koszul functor GC induces a commutative diagram of func-

tors

C ↑
p,q(GModΛ) //

GC
p,q

��

K ↑
p,q(GModΛ) //

GK
p,q

��

D ↑
p,q(GModΛ)

GD
p,q

��

C ↓
q+1,p−1(GModΛ!) // K ↓

q+1,p−1(GModΛ!) // D ↓
q+1,p−1(GModΛ!),

where GModΛ and GModΛ! can be replaced simultaneously by gmodΛ and

gmodΛ!, respectively.

Proof. (1) Let M.∈C ↓
p,q(GModΛ), say M i

j = 0 for i + pj >s or i− qj <t, where

s, t∈Z. Fix n, r ∈ Z. In view of Proposition 6.2.2(1), we have

FC(M.)nr = ⊕i≤n+r;x∈Q0((P
!
x)n+r−i ⊗M i

n−i(x)).

Fix some i ≤ n + r. If n + (q + 1)r < t, then i − q(n − i) < t; and if

n− (p− 1)r > s, then i + p(n− i)>s. Thus, FC(M.)nr =0 if n+(q + 1)r < t or

n−(p−1)r > s. That is, FC(M.)n ∈ C ↑
q+1,p−1(GModΛ!). This yields a functor

FC
p,q : C

↓
p,q(GModΛ) → C ↑

q+1,p−1(GModΛ!).

Given n ∈ Z, by Proposition 6.2.1(1), the n-diagonal of the double complex

F(M.). consists of

F(M i)n−i = ⊕x∈Q0 (P
!
x⟨n−i⟩ ⊗M i

n−i(x)); for any i ∈ Z.

If i < (nq + t)(1 + q)−1, then M i
n−i = 0, and hence, F(M i)n−i = 0. Thus,

F(M.). is diagonally bounded below. By Theorem 1.8.7(1), FC
p,q sends acyclic

complexes to acyclic ones, and by Theorem 1.8.7(2), FC
p,q induces a commuta-

tive diagram as stated in Statement (1). Assume now that the Mi(x) are finite

dimensional for all (i, x) ∈ Z×Q0. Given y ∈ Q0, we have

FC(M.)nr (y) = ⊕i≤n+r;x∈Q0(eyΛ
!
n+r−iex ⊗M i

n−i(x)).

It is easy to see that FC(M.)nr (y) ̸= 0 only if (qn + t)(q + 1)−1 ≤ i ≤ n + r.

So FC(M.)nr (y) is finite dimensional. Thus, FC(M.). ∈ C(gmodΛ!). That is, FC

restricts to a functor FC
p,q : C

↓
p,q(gmodΛ) → C ↑

q+1,p−1(gmodΛ!). As seen above, it

induces a diagram as stated in Statement (1) with GModΛ and GModΛ! replaced

simultaneously by gmodΛ and gmodΛ!, respectively.
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(2) Similarly, GC restricts to functors GCp,q : C ↑
p,q(GModΛ) → C ↓

q+1,p−1(GModΛ!)

and GCp,q : C ↑
p,q(gmodΛ) → C ↓

q+1,p−1(gmodΛ!). Let N. be an acyclic complex in

C(GModΛ). Then, GC(N.) = T(G(N.).). Fix r ∈ Z. In view of Proposition

6.3.2(2), GC(N.)r = T(G(N.).r). Since G is exact, the double complex G(N.). has
acyclic rows, and so does the double complex G(N.).r. Given n ∈ Z, by Lemma

6.2.1(2), the n-diagonal of G(N.).r consists of

G(N i)n−ir = ⊕x∈Q0((I
!
x)n+r−i ⊗N i

n−i(x)); for any i ∈ Z.

If i < n + r, then (I !x)n+r−i = 0, and hence, G(N i)n−ir = 0. Thus, G(N.).r
is diagonally bounded-below. By Proposition 1.8.2, T(G(N.).r) is acyclic. That

is, GC(N.)r is acyclic, for all r ∈ Z. By Lemma6.3.2(1), GC(N.) is acyclic. By

Theorem 1.8.7(2), GC induces a commutative diagram as stated in Statement (2).

The proof of the theorem is completed.

Remark. In case p = 1 and q = 0, Theorem 6.3.3 has been established for

positively graded quadratic categories; see [48, Proposition 20].

(2) By Theorem 1.8.7, the functors FD
pq and GDpq in Theorem 6.3.3 are triangle-

exact , which will be called the right and the left derived Koszul functors,

respectively.

Next, we shall show that the complex Koszul functors descend always to the

bounded derived category of finitely piece-supported graded modules. For this

purpose, we observe that Kb(GProjΛ) and Kb(GInjΛ) are full triangulated sub-

categories of Db(GModΛ), while Kb(gprojΛ) and Kb(ginjΛ) are full triangulated

subcategories of Db(gmodΛ); see (1.7.9).

6.3.4 Theorem. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver.

(1) The right Koszul functor F : GModΛ→ C(GModΛ!) induces a commutative

diagram of functors

C b(GModbΛ)

FC

��

// K b(GModbΛ)

FK

��

// Db(GModbΛ)

FD

��

C b(GProjΛ!) // K b(GProjΛ!) // Db(GModΛ!),

where GModbΛ, GProjΛ! and GModΛ! can be replaced simultaneously by

gmodbΛ, gprojΛ! and gmodΛ!, respectively.
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(2) The left Koszul functor G : GModΛ→ C(GModΛ!) induces a commutative

diagram of functors

C b(GModbΛ)

GC

��

// K b(GModbΛ)

GK

��

// Db(GModbΛ)

GD

��

C b(GInjΛ!) // K b(GInjΛ!) // Db(GModΛ!),

where GModbΛ, GInjΛ!and GModΛ!can be replaced simultaneously by gmodbΛ,

ginjΛ! and gmodΛ!, respectively.

Proof. We shall only prove Statement (1). Let M.∈ Cb(GModbΛ). There exist

integers s, t > 0 such that M i
j ̸= 0 only if −s ≤ i ≤ s and −t ≤ j ≤ t. Given

n ∈ Z, by Proposition 6.2.2(1), we have

FC(M.)n = ⊕(i,x)∈Z×Q0(P
!
x⟨n−i⟩ ⊗M i

n−i(x)).

Since M i
n−i ̸= 0 only if −s− t ≤ n ≤ s+ t, the complex FC(M.) is bounded.

And since the M i are finitely piece-supported, M i
n−i(x) ̸= 0 only for finitely

many pairs (i, x) with −s ≤ i ≤ s and x ∈ Q0. Thus, FC(M.) ∈ Cb(GProjΛ!).

This yields a functor FC : Cb(GModbΛ) → Cb(GProjΛ!). As seen in the proof of

Theorem 6.3.3, it induces a commutative diagram as stated in Statement (1).

Suppose that M. ∈ Cb(gmodbΛ). Then, the M i
n−i(x) are finite dimensional.

So, FC(M.) ∈Cb(gprojΛ). This yields a functor FC : Cb(gmodbΛ)→ Cb(gprojΛ!).

As seen above, it induces a commutative diagram as stated in Statement (1) with

GModbΛ, GProjΛ! and GModΛ! replaced by gmodbΛ, gprojΛ! and gmodΛ!, respec-

tively. The proof of the theorem is completed.

In case Λ! is locally left or locally right bounded, as shown below, the functor

FD : Db(GModbΛ) → Db(GModΛ!) or GD : Db(GModbΛ) → Db(GModΛ!) co-

restricts to Db(GModbΛ!), respectively.

6.3.5 Corollary. Let Λ = kQ/R be a quadratic algebra, where Q is a locally

finite quiver.

(1) In case Λ! is locally left bounded, the right Koszul functor F : GModΛ →
C(GModΛ!) induces a commutative diagram of functors

C b(GModbΛ)

FC

��

// K b(GModbΛ)

FK

��

// Db(GModbΛ)

FD

��

C b(GProjΛ!) // K b(GProjΛ!) // Db(GModbΛ!),

168



where GModbΛ, GProjΛ! and GModbΛ! can be replaced simultaneously by

gmodbΛ, gprojΛ! and gmodbΛ!, respectively.

(2) In case Λ! is locally right bounded, the left Koszul functor G : GModΛ →
C(GModΛ!) induces a commutative diagram of functors

C b(GModbΛ)

GC

��

// K b(GModbΛ)

GK

��

// Db(GModbΛ)

GD

��

C b(GInjΛ!) // K b(GInjΛ!) // Db(GModbΛ!),

where GModbΛ, GInjΛ! and GModbΛ! can be replaced simultaneously by

gmodbΛ, gprojΛ! and gmodbΛ!, respectively.

Proof. Suppose that Λ! is left locally bounded, that is, P !
x is finite dimen-

sional for every x ∈ Q0. Then, GProjΛ! ⊆ GModbΛ! and gprojΛ! ⊆ gmodbΛ!.

Therefore, Kb(GProjΛ!) and Kb(gprojΛ!) are full triangulated subcategories of

Db(GModbΛ!) and Db(gmodbΛ!), respectively. Now, Statement (1) follows from

Theorem 6.3.4(1). Dually, Statement (2) follows from Theorem 6.3.4(2). The

proof of the corollary is completed.

Remark. By Theorem 1.8.7, the functors FD : Db(GModbΛ) → Db(GModbΛ!)

and GD :Db(GModbΛ)→Db(GModbΛ!) are triangle-exact, which will be called the

right and the left bounded derived Koszul functors, respectively.

6.4 Koszul dualities

The objective of this section is to show that the derived Koszul functors for a

Koszul algebra and those for its Koszul dual form two 2-real parametrized family

of dualities, which contain particularly the classical Koszul duality of Beilinson,

Ginzburg and Soergel; see [13, (2.12.1)]; also [48, Theorem 30]. The key ingre-

dients of this section are adapted from those in [16, Section 5] which are in the

non-graded setting and under the assumption that the quiver is gradable.

Throughout this section, let Λ = kQ/R be a Koszul algebra, where Q is a

locally finite quiver. We start with the following important property of Koszul

functors; see [13, (1.2.6)] and [48, Theorem 30].
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6.4.1 Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. If a ∈ Q0, then S !
a has F(Ia)

. as a truncated linear projective resolution

and G(Pa). as a truncated colinear injective coresolution.

Proof. Fix a ∈ Q0. Since Λ! is Koszul; see (5.4.3), S!
a has a truncated colinear

injective coresolution I.
a!
; see (5.4.2). Since (Λ!)! = Λ; see (5.3.3), in view of

the definition of G, we see that G(Pa). = I.
a!
. Next, by Lemma 5.4.1, S!

a has a

truncated linear projective resolution P.
a!
as follows :

· · · // P−n
a!

ℓ−n
// P1−n

a!
// · · · // P−1

a!
ℓ−1
// P0

a!
// 0 // · · · ,

where P−n
a!

=⊕x∈Q0(P
!
x⟨−n⟩⊗D(eaΛnex)) and P1−n

a!
=⊕y∈Q0(P

!
y⟨1−n⟩⊗D(eaΛn−1ey)).

Moreover, ℓ−n = (ℓ−n(y, x))(y,x)∈Q0×Q0 , where

ℓ−n(y, x)=
∑

α∈Q1(x,y)
P [ᾱ!]⊗DP [ᾱ] :P !

x⟨−n⟩⊗D(eaΛnex)→P !
y⟨1−n⟩⊗D(eaΛn−1ey).

On the other hand, for any n ∈ Z, we have

F(Ia)
−n = ⊕x∈Q0(P

!
x⟨−n⟩ ⊗ (Ia)−n(x)) = ⊕x∈Q0(P

!
x⟨−n⟩ ⊗D(exΛ

o
nea)).

In particular, F(Ia)
−n = P−n

a!
= 0, for all n < 0. Fix an integer n ≥ 1. Write

F(Ia)
1−n = ⊕y∈Q0(P

!
y⟨1−n⟩⊗D(eyΛ

o
n−1ea)). Then, d

−n
F(Ia)

= (d−nF(Ia)
(y, x))(y,x)∈Q0×Q0 ,

where

d−nF(Ia)
(y, x) : P !

x⟨−n⟩ ⊗D(exΛ
o
nea) → ⊕y∈Q0P

!
y⟨1− n⟩ ⊗D(eyΛ

o
n−1ea)

is given by

d−nF(Ia)
(y, x) =

∑
α∈Q1(x,y)

P [ᾱ!]⊗ Ia(ᾱ) =
∑

α∈Q1(x,y)
P [ᾱ!]⊗DP o

a (ᾱ
o).

Consider the canonical k-linear isomorphism θnx : eaΛnex → exΛ
o
nea; γ̄ 7→ γ̄o.

This yields a k-linear isomorphism Dθnx : D(exΛ
o
nea) → D(eaΛnex). Given any

α ∈ Q1(x, y), it is easy to verify that the diagram

eaΛnex

θnx
��

P [ᾱ] // eaΛn+1ey

θn+1
y

��
exΛ

o
nea

P o
a (ᾱ

o) // eyΛ
o
n+1ea

commutes. Hence, DP [ᾱ] ◦Dθnx = Dθn−1
y ◦DP o

a (ᾱ
o). Therefore,

ℓ−n(y, x) ◦ (id⊗Dθnx) = (id⊗Dθn−1
y ) ◦ d−nF(Ia)

(y, x),
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for all (y, x) ∈ Q0 ×Q0. That is, the graded Λ-linear isomorphisms

⊕x∈Q0(id⊗Dθnx) : ⊕x∈Q0(P
!
x⟨−n⟩ ⊗D(exΛ

o
nea)) → ⊕x∈Q0(P

!
x⟨−n⟩ ⊗D(exΛnea))

with n ∈ Z form a complex isomorphism F(Ia)
.∼= P.

a!
. The proof of the lemma

is completed.

Remark. Lemma 6.4.1 is adapted from Lemma 5.4 in [16], which is in the

non-graded setting and under the assumption that Q is gradable.

More generally, composing the left Koszul functor and the right complex

Koszul functor yields graded projective resolution for graded modules.

6.4.2 Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider FC ◦ G : GModΛ→ C(GModΛ). Given M ∈ GModΛ, there

exists a natural quasi-isomorphism η.
M
: (FC ◦ G)(M).→M .

Proof. Let M ∈ GModΛ. By definition, (FC ◦ G)(M).= T(F(G(M).).). For any
n ∈ Z, by Proposition 6.2.4(1),

(∗) (FC ◦ G)(M)n = ⊕i∈Z;a,x∈Q0(Pa⟨n−i⟩ ⊗D(eaΛ̂−nex)⊗Mi(x)).

So, (FC◦ G)(M)n = 0 for n > 0. We shall divide the rest of the proof into two

statements.

Statement 1. If n < 0, then Hn((FC ◦ G)(M).) = 0.

Indeed, fix some n < 0. Note that Hn((FC ◦ G)(M).) = Hn(T(F(G(M).).)).
For any i ∈ Z, as described in Section 1.7, the i-th column of F(G(M).). is

ti(F(G(M)i).) = ⊕x∈Q0t
i(F(I !x⟨i⟩ ⊗Mi(x))

.) = ⊕x∈Q0t
i(F(I !x⟨i⟩).)⊗Mi(x),

where t is the twist functor. Since n < 0, by Lemma 6.4.1, Hn(F(I !x)
.) = 0, for

any x ∈ Q0. Now, for all i ∈ Z and x ∈ Q0, it follows from Corollary 6.1.4 that

Hn−i(ti(F(I !x⟨i⟩).)) = Hn−i(F(I !x⟨i⟩).) = Hn(F(I !x)
.)⟨−i⟩ = 0.

So, Hn−i(ti(F(G(M)i).)) ∼= ⊕x∈Q0H
n−i(ti(F(I !x⟨i⟩).)⊗Mi(x) = 0, for all i ∈ Z.

Fix p ∈ Z. Consider the double complex F(G(M).).p. Given i ∈ Z, the i-th
column of F(G(M).).p is the complex ti(F(G(M)i).)p. It follows from Lemma

6.3.2(1) that Hn−i(ti(F(G(M)i).)p) = Hn−i(ti(F(G(M)i).))p = 0.

On the other hand, we deduce from Lemma 6.2.3(1) that the n-diagonal of

F(G(M).).p consists of

F(G(M)i)n−ip = ⊕a,x∈Q0(Λp+n−iea ⊗ (I !x)n(a)⊗Mi(x)); for all i∈Z.
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In particular, F(G(M)i)n−ip = 0 for all i > n + p. So, F(G(M).).p is n-diagonally

bounded-above. Applying Lemma 1.8.1, we see that Hn(T(F(G(M).).p)) = 0,

that is, Hn((FC◦G)(M).p) = 0, for any p ∈ Z. So, Hn((FC◦G)(M).) = 0. This

establishes Statement 1.

To conclude the proof, it suffices to show that H0((FC◦ G)(M).) is naturally
isomorphic to M . In view of the equation (∗), we see that the 1-diagonal of

F(G(M).). is null. Since (I !x ⊗ M)(ᾱ!) = I !x(ᾱ
!) ⊗ idM for α ∈ Q1(a, x), the

0-diagonal and the (−1)-diagonal of F(G(M).). are illustrated as

⊕b∈Q0(Pb⟨−i⟩ ⊗ (I !b)0(b)⊗Mi(b))

⊕a,x∈Q0(Pa⟨−i−1⟩ ⊗ (I !x)−1(a)⊗Mi(x))

vi,−i−1

OO

hi,−i−1
// ⊕c∈Q0(Pc⟨−i−1⟩⊗(I !c)0(c)⊗Mi+1(c)),

where vi,−i−1 = (vi,−i−1(b, a, x))(b,a,x)∈Q0×Q0×Q0 with

vi,−i−1(b, a, x) =

{ ∑
α∈Q1(x,a)

(−1)iP [ᾱ]⊗ I !x(ᾱ
!)⊗ id, if b = x;

0, if b ̸= x,

and hi,−i−1 = (hi,−i−1(c, a, x))(c,a,x)∈Q0×Q0×Q0 with

hi,−i−1(c, a, x) =

{ ∑
α∈Q1(x,a)

id⊗ I[ᾱ!]⊗M(ᾱ), if c = a;

0, if c ̸= a.

In particular,

(FC◦ G)(M)−1 = ⊕i∈Z;a,x∈Q0 (Pa⟨−i− 1⟩ ⊗ (I !x)−1(a)⊗Mi(x)),

where (I !x)−1(a) = D(eaΛ̂1ex) has a k-basis {β̂⋆ | β ∈ Q1(x, a)}, that is the dual

basis of {β̂ |β ∈ Q1(x, a)}. Moreover, by Proposition 6.2.4(1),

(FC ◦ G)(M)0 = ⊕(i,b)∈Z×Q0Pb⟨−i⟩ ⊗ (I !b)0(b)⊗Mi(b),

where (I !b)0(b) = D(ebΛ̂0eb) with a k-basis {ê⋆b}.
Statement 2. Let d−1 is the differential of degree −1 of (FC◦ G)(M).. We

have a natural graded epimorphism

η
M
: (FC◦G)(M)0→M;

∑
(i,b)∈Z×Q0

ui,b⊗ ê⋆b ⊗mi,b 7→
∑

(i,b)∈Z×Q0
(−1)

i(i+1)
2 ui,bmi,b,

such that η0
M
◦ d−1 = 0.
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Indeed, the existence and the naturality of η
M

are evident. Consider an ele-

ment ω ∈ (FC◦ G)(M)−1. We may assume that

ω ∈ Pa⟨−i−1⟩ ⊗ I !x⟨i⟩−i−1(a)⊗Mi(x)

for some i ∈ Z and a, x ∈ Q0. Further, we may assume that ω = u0 ⊗ β̂⋆0 ⊗m0,

for some u0 ∈ Pa⟨−i−1⟩, β0 ∈ Q1(x, a) and m0 ∈ Mi(x). Write P̂x = Λ̂ex. For

α ∈ Q1(x, a), since (ᾱ!)o = α̂, we obtain I !x(ᾱ
!) = DP̂x(α̂) and I !x[ᾱ

!] = DP [α̂].

Thus, I !x(ᾱ
!)(β̂⋆0)(ex) = β̂⋆0(α̂) and I[ᾱ

!](β̂⋆0)(ea) = β̂⋆0(α̂). Hence,

I !x(ᾱ
!)(β̂⋆0) = I[ᾱ!](β̂⋆0) =

{
ê⋆x; if α = β0;

0, otherwise.

This yields

d−1(ω) = (−1)i
∑

α∈Q1(x,a)
(P [ᾱ]⊗ I !x(ᾱ

!)⊗ id)(u0 ⊗ β̂⋆0 ⊗m0)

+
∑

α∈Q1(x,a)
(id⊗ I[ᾱ!]⊗M(ᾱ))(u0 ⊗ β̂⋆0 ⊗m0) (∗∗)

= (−1)i(u0β̄0)⊗ ê⋆x ⊗m0 + u0 ⊗ ê⋆a ⊗ (β̄0m0).

Since u0 ∈ Pa⟨−i−1⟩ and u0β̄0 ∈ Px⟨−i⟩, we obtain

(η
M
◦ d−1)(ω) = (−1)

i(i+1)
2

+i(u0β̄0m0) + (−1)
(i+1)(i+2)

2 (u0β̄0m0) = 0.

This establishes Statement 2.

It remains to verify that Ker(d−1) ⊆ Im(η
M
). Fix ω ∈ Ker(η

M
). We may

assume that

ω ∈ (FC◦ G)(M)0p(a) = ⊕i≤p;x∈Q0(eaPx⟨−i⟩p ⊗ (I !x)0(x)⊗Mi(x)),

where eaPx⟨−i⟩p = eaΛp−iex, for some pair (p, a) ∈ Z × Q0. Thus, we may find

some is ≤ · · · ≤ i2 ≤ i1 = p and x1, . . . , xs ∈ Q0 such that ω =
∑s

j=1 γ̄j⊗ê⋆xj⊗mj,

where the γ̄j with γj ∈ Qp−ij(xj, a) are pairwise distinct and mj ∈ Mij(xj). In

particular, γ1 = εa. We shall proceed by induction on the minimal integer nω for

which ω can be written in this form and nω =
∑s

j=1(p− ij).

If nω = 0, then s = 1 and m1 = ±η
M
(ω) = 0, and hence, ω = 0. Suppose

that nω > 0. Since γj ̸= γ1 = εa, we may write γj = σjβj with βj ∈ Q1(xj, yj)

and σj ∈ Qp−ij−1(yj, a), for 2 ≤ j ≤ s. Set σ =
∑s

j=2(−1)ij σ̄j ⊗ β̂⋆j ⊗mj, where

σ̄j ∈ Pyj⟨−ij−1⟩p. In view of the equations (∗∗), we obtain

d−1(σ) =
∑s

j=2((−1)2ij(σ̄j β̄j)⊗ ê⋆xj ⊗mj + (−1)ij σ̄j ⊗ ê⋆yj ⊗ (β̄jmj))

= ω + ea ⊗ ê⋆a ⊗ (−m1) +
∑s

j=2 σ̄j ⊗ ê⋆yj ⊗ (−1)ij(β̄jmj).
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Put ω′ = d−1(σ)−ω = ea⊗ ê⋆a⊗ (−m1)+
∑s

j=2 σ̄j⊗ ê⋆yj ⊗ (−1)ij(β̄jmj). Then,

ω′ ∈ Ker(η
M
) with nω′ < nω. Thus ω′ ∈ Im(d−1), and hence, ω ∈ Im(d−1). The

proof of the lemma is completed.

As shown below, composing the right Koszul functor and the left complex

Koszul functor yields graded injective coresolutions for bounded above graded

modules.

6.4.3 Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider GC ◦ F : GModΛ→C(GModΛ). Given M ∈ GMod−Λ, there

exists a natural quasi-isomorphism ζ.
M

:M → (GC◦F)(M)..

Proof. Let M ∈ GMod−Λ. Assume that r is an integer such that Mi = 0 for all

i ≥ r. For any n ∈ Z, by Proposition 6.2.4(2),

(GC ◦ F)(M)n = ⊕i∈Z;x,a∈Q0(Ia⟨n−i⟩ ⊗ eaΛ
!
nex ⊗Mi(x)).

In particular, (GC◦F)(M)n = 0 for n < 0. We shall split the rest of the proof

into several statements.

Recall that (GC◦ F)(M).= T(G(F(M).).). For any i ∈ Z, the i-th column of

G(F(M).). is the following complex

ti(G(F(M)i).) = ⊕a∈Q0 t
i(G(P !

a⟨i⟩ ⊗Mi(a))
.) = ⊕a∈Q0t

i(G(P !
a⟨i⟩).)⊗Mi(a).

Statement 1. Given any integers n, i, we have

Hn−i(ti(G(F(M)i).)) ∼= ⊕a∈Q0 H
n(G(P !

a)
.)⟨−i⟩ ⊗Mi(a).

Indeed, fix some n, i ∈ Z. We deduce from Lemma 6.4.1 that

Hn−i(ti(G(P !
a⟨i⟩).)) = Hn−i(G(P !

a⟨i⟩).) = Hn(G(P !
a)
.)⟨−i⟩.

Since F(M)i = ⊕a∈Q0P
!
a⟨i⟩ ⊗Mi(a) by definition, it follows from Lemma 6.1.5

and the above equation that

Hn−i(ti(G(F(M)i).)) = ⊕x∈Q0H
n−i(ti(G(P !

a⟨i⟩).⊗Mi(a))
∼= ⊕x∈Q0H

n−i(ti(G(P !
a⟨i⟩).)⊗Mi(a)

∼= ⊕x∈Q0H
n(G(P !

a)
.)⟨−i⟩ ⊗Mi(a).

This establishes Statement 1.

Statement 2. If n > 0, then Hn((GC ◦ F)(M).) = 0.
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Indeed, fix some n > 0. Note that Hn(GC◦ F)(M).) = Hn(T(G(F(M).).)). It
follows from Lemma 6.2.3(2) that the n-diagonal of the double complex G(F(M).).

consists of

(∗) G(F(M)i)n−i = ⊕x,a∈Q0(Ix⟨n− i⟩ ⊗ exΛ
!
nea ⊗Mi(a)); for all i ∈ Z.

Since Mi = 0 for all i ≥ r, we see that G(F(M)i)n−i = 0 for all i ≥ r. That is,

G(F(M).). is n-diagonally bounded-above.

On the other hand, for any i ∈ Z, the i-th column of G(F(M).). is the

ti(G(F(M)i).). Since n > 0, it follows from Lemma 6.4.1 that Hn(G(P !
a)
.) = 0.

Thus, it follows from Statement 1 that

Hn−i(ti(G(F(M)i).)) ∼= ⊕a∈Q0 H
n(G(P !

a)
.)⟨−i⟩ ⊗Mi(a) = 0.

Thus, by Lemma 1.8.1, Hn(T(G(F(M).).)) = 0. That is, Hn((GC◦F)(M).) = 0.

This establishes Statement 2.

To conclude that proof, it suffices to construct a natural graded isomorphism

M → H0((GC◦F)(M).). Indeed, by Proposition 6.2.4(2), we see that

(GC◦F)(M)0 = ⊕i∈Z; a∈Q0 (Ia⟨−i⟩ ⊗ eaΛ
!
0ea ⊗Mi(a)).

Given (i, a) ∈ Z×Q0, we shall construct a morphism

f ia :M → Ia⟨−i⟩ ⊗ eaΛ
!
0ea ⊗Mi(a)

in GModΛ. For this purpose, we define a k-linear map

f ia,j :Mj → Ia⟨−i⟩j ⊗ eaΛ
!
0ea ⊗Mi(a)

for every j ∈ Z, where Ia⟨−i⟩j = D(Λo
i−jea). Clearly, f

i
a,j = 0 in case j > i. Fix j

with j ≤ i. We have a k-linear map

ψia,j :Mj → Homk(Λ
o
i−jea, eaΛ

!
0ea ⊗Mi(a));w 7→ ψia,j(w),

where ψia,j(w) sends γ̄o to ea ⊗ γ̄w, for γ ∈ kQi−j(−, a). Since Λo
i−jea is finite

dimensional, in view of Corollary 2.1.2(1), we obtain a k-linear isomorphism

θia,j : D(Λo
i−jea)⊗ eaΛ

!
0ea ⊗Mi(a) → Homk(Λ

o
i−jea, eaΛ

!
0ea ⊗Mi(a)).

Now, put f ia,j = (θ ia,j)
−1 ◦ψia,j :Mj → Ia⟨−i⟩j ⊗ eaΛ

!
0ea⊗Mi(a), which can be

computed in the following way.
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Statement 3. Let {γ̄o1, . . . , γ̄os} with γp ∈ kQi−j(−, a) be a k-basis of Λo
i−jea

with dual basis {γ̄o,⋆1 , . . . , γ̄o,⋆s }. Then f ia,j(w) =
∑s

p=1 γ̄
o,⋆
p ⊗ ea⊗γ̄pw, for w ∈Mj.

Indeed, every γ̄o ∈ Λo
i−jea is written as γ̄o =

∑s
t=1 λt γ̄

o
t with λt ∈ k. Given

w ∈Mj, by the definition given in Corollary 2.1.2(1), we obtain

θia,j(
∑s

p=1 γ̄
o,⋆
p ⊗ ea ⊗ γ̄pw)(γ̄o) = ea ⊗ (

∑s
t=1 λtγ̄

o
t )w = ψia,j(w)(γ̄

o).

Thus, θia,j(
∑s

p=1 γ̄
o,⋆
p ⊗ ea ⊗ γ̄pw) = ψia,j(w). This establishes Statement 3.

Statement 4. Given (i, a) ∈ Z×Q0, there exists a natural graded Λ-linear

morphism f ia :M → Ia⟨−i⟩⊗ eaΛ
!
0ea⊗Mi(a) such that (f ia)j = f ia,j, for all j ∈ Z.

Indeed, given α ∈ Q1 and j ≤ i, we clearly have a commutative diagram

Mj

ψi
a,j //

M(ᾱ)

��

Hom((P o
a )i−j, eaΛ

!
0ea ⊗Mi(a))

Hom(P o
a (ᾱ

o),eaΛ!
0ea⊗Mi(a))

��

Ia⟨−i⟩j ⊗ eaΛ
!
0ea ⊗Mi(a)

θia,joo

Ia⟨−i⟩(ᾱ)⊗id⊗id
��

Mj+1

ψi
a,j+1 // Hom((P o

a )i−j−1, eaΛ
!
0ea ⊗Mi(a)). Ia⟨−i⟩j+1 ⊗ eaΛ

!
0ea ⊗Mi(a)

θia,j+1oo

So, f ia is a graded Λ-linear morphism. Similarly, one can verify that f ia is

natural in M . This establishes Statement 4.

Fix i ∈ Z. Given a ∈ Q0, by Statement 4, we obtain a natural graded Λ-linear

morphism gia :M → Ia⟨−i⟩ ⊗ eaΛ
!
0ea ⊗Mi(a) where

(gia)j = (−1)
(i−1)i

2 f ia,j,

which will be written as gia,j, for all j ∈ Z. Let w =
∑

x∈Q0;j∈Zwx,j ∈ M with

wx,j ∈ exMj. If gia(wj,x) = gia,j(wj,x) ̸= 0 for some a ∈ Q0, then f ia,j(wj,x) ̸= 0.

Hence, j ≤ i, and by Statement 3, kQi−j(x, a) ̸= 0. Since Q is locally finite,

gia(w) = 0 for all but finitely many a ∈ Q0. Therefore, we have a graded Λ-linear

morphism

gi = (gia)a∈Q0 :M → G(F(M)i)−i = ⊕a∈Q0(Ia⟨−i⟩ ⊗ eaΛ
!
0ea ⊗Mi(a))

where

gij = (gia,j)a∈Q0 :Mj → ⊕a∈Q0((Ia⟨−i⟩)j ⊗ eaΛ
!
0ea ⊗Mi(a)),

for all j ∈ Z.
Statement 5. There exists a natural graded monomorphism

ζ
M
= (gi)i∈Z :M → (GC◦F)(M)0 = ⊕i∈ZG(F(M)i)−i.
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Observe that G(F(M)i)−i = 0, for all i ≥ r. Let w =
∑

j∈Zwj ∈ M with

wj ∈ Mj. If gi(wj) =
∑

a∈Q0
gia(wj) = gia,j(wj) ̸= 0 for some i, then j ≤ i, and

hence, j ≤ i < r. As a consequence, gi(w) = 0 for all but finitely many i ∈ Z.
Thus, we obtain a graded Λ-linear morphism ζ

M
= (gi)i∈Z : M → (GC◦ F)(M)0,

which is clearly natural in M . Assume that ζ
M
(w) = 0, for some w ∈ Mj with

j ∈ Z. In particular, gj(w) = 0, that is, gjj (wj) =
∑

a∈Q0
gja,j(w) = 0. Thus,

gja,j(w) = 0, and hence, f ja,j(w) = 0, for all a ∈ Q0. Since {ea} is a basis of

Λo
j−jea, by Statement 3, eo,⋆a ⊗ ea ⊗ eaw = 0, and hence, eaw = 0, for all a ∈ Q0.

That is, w = 0. So ζ
M

is a monomorphism. Statement 5 is established.

In view of the equation (∗), we see that the (−1)-diagonal of G(F(M).). is
null, while the 0-diagonal and the 1-diagonal can be illustrated as follows :

⊕b∈Q0 (Ib⟨−i⟩⊗ebΛ!
0eb⊗Mi(b))

hi,−i
// ⊕a,x∈Q0(Ix⟨−i⟩⊗exΛ!

1ea⊗Mi+1(a))

⊕c∈Q0(Ic⟨−i−1⟩⊗ecΛ!
0ec⊗Mi+1(c)),

vi+1,−i−1

OO

where hi,−i = (hi,−i(a, x, b))a,x,b∈Q0 with

hi,−i(a, x, b) =

{∑
α∈Q1(x,a)

id⊗ P [ᾱ!]⊗M(ᾱ), if b = x;

0, if b ̸= x,

and vi+1,−i−1=(vi+1,−i−1(a,x,c))a,x,c∈Q0 with

vi+1,−i−1(a,x,c)=

{∑
α∈Q1(x,a)

(−1)i+1I[ᾱ]⊗P !
a (ᾱ

!)⊗id, if c = a;

0, if c ̸= a.

Statement 6. If we denote by d0 the differential of degree 0 of the complex

(GC◦ F)(M)., then d0◦ ζ
M
= 0.

It amounts to show, for any i ∈ Z, that the diagram

⊕x∈Q0(Ix⟨−i⟩⊗exΛ!
0ex⊗Mi(x))

⊕x∈Q0
hi,−i(a,x,x)

// ⊕a,x∈Q0(Ix⟨−i⟩⊗exΛ!
1ea⊗Mi+1(a))

M
(gi+1

a )a∈Q0 //

(gix)x∈Q0

OO

⊕a∈Q0(Ia⟨−i−1⟩⊗eaΛ!
0ea⊗Mi+1(a)),

⊕a∈Q0
vi+1,−i−1(a,x,a)

OO

is anti-commutative, or equivalently, the diagram

⊕x∈Q0(Ix⟨−i⟩j ⊗exΛ!
0ex⊗Mi(x))

⊕hi,−i(a,x,x)j// ⊕a,x∈Q0(Ix⟨−i⟩j ⊗exΛ!
1ea⊗Mi+1(a))

Mj

(gi+1
a,j )a∈Q0 //

(gix,j)x∈Q0

OO

⊕a∈Q0(Ia⟨−i−1⟩j ⊗ eaΛ
!
0ea ⊗Mi+1(a))

⊕vi+1,−i−1(a,x,a)j

OO
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is anti-commutative for all i, j ∈ Z, where Ix⟨−i⟩j = D(Λo
i−jex). Indeed, this is

evident in case j > i. Fix i ≥ j and a, x ∈ Q0. Then, we have a k-linear isomor-

phism θij : D(Λo
i−jex)⊗ exΛ

!
1ea ⊗Mi+1(a) → Homk(Λ

o
i−jex, exΛ

!
1ea ⊗Mi+1(a)) as

stated in Corollary 2.1.2(1). Consider α ∈ Q1(x, a) and w ∈ Mj. We choose a

k-basis {δ̄o1, . . . , δ̄os} for Λo
i−jex. By Statement 3, we obtain

(id⊗ P [ᾱ!]⊗M(ᾱ))(gix,j(w)) = (−1)
(i−1)i

2

∑s
p=1 δ̄

o,⋆
p ⊗ ᾱ! ⊗ ᾱδ̄pw.

As a consequence, we see that

θij
[
(id⊗ P [ᾱ!]⊗M(ᾱ))(gix,j(w))

]
(δ̄op) = (−1)

(i−1)i
2 (ᾱ! ⊗ ᾱδ̄pw), p = 1, . . . , s.

On the other hand, for any k-basis {γ̄o1 , . . . , γ̄ot } of Λo
i+1−jea, by Statement 3,

(I[ᾱ]⊗ Pa(ᾱ
!)⊗ id)(gi+1

a,j (w)) = (−1)
i(i+1)

2

∑t
q=1(γ̄

o,⋆
q ◦ P [ᾱo])⊗ ᾱ! ⊗ γ̄qw.

And hence, for any 1 ≤ p ≤ s, we obtain

θij
[
(I[ᾱ]⊗Pa(ᾱ!)⊗ id)(gi+1

a,j (w))
]
(δ̄op) = (−1)

i(i+1)
2

∑t
q=1γ̄

o,⋆
q (δ̄op ᾱ

o) · (ᾱ! ⊗ γ̄qw).

Fix 1 ≤ p ≤ s. If δ̄op ᾱ
o = 0, then ᾱδ̄p = 0. In this case, we see trivially that

θij
[
(id⊗P [ᾱ!]⊗M(ᾱ))(gij,x(w))

]
(δ̄op) = (−1)iθij

[
(I[ᾱ]⊗Pa(ᾱ!)⊗id)(gi+1

j,a (w))
]
(δ̄op).

If δ̄op ᾱ
o ̸= 0, then Λo

i+1−jea has a basis {γ̄o1 , . . . , γ̄ot }, where γ̄o1 = δ̄op ᾱ
o. Noting

that γ̄1 = ᾱδ̄p, we obtain

θij
[
(I[ᾱ]⊗Pa(ᾱ!)⊗ id)(gi+1

j,a (w))
]
(δ̄op) = (−1)

i(i+1)
2 (ᾱ!⊗ ᾱδ̄pw)

= (−1)iθij
[
(id⊗P [ᾱ!]⊗M(ᾱ))(gij,x(w))

]
(δ̄op).

Thus, (I[ᾱ]⊗Pa(ᾱ!)⊗ id)(gi+1
j,a (w)) = (−1)i(id⊗P [ᾱ!]⊗M(ᾱ))(gij,x(w)). It is now

is easy to see that

(hi,−ij (a, x, x) ◦ gij,x)(w) + (vi+1,−i−1
j (a, x, a) ◦ gi+1

j,a )(w) = 0.

Our claim is established. Thus, Statement 6 holds.

It remains to show that Ker(d0) ⊆ Im(ζ
M
). Let ω =

∑
i∈Z ω

i ∈ Ker(d0),

where

ωi ∈ G(F(M)i)−i = ⊕c∈Q0 (Ic⟨−i⟩ ⊗ ecΛ
!
0ec ⊗Mi(c)).

Since Mi = 0 for all i ≥ r, we see that ωi = 0 for all i ≥ r. We proceed by

induction on the maximal integernω ≤ r such that ωi = 0 for all i < nω. If

nω = r, then ω = 0 ∈ Im(ζ
M
). Assume that nω < r and write n = nω. Since
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d0(ω) = 0, we have vn,−n(ωn) = −hn−1,1−n(ωn−1) = 0. Applying Statement 1, we

see that

H−n(tn(G(F(M)n).))) ∼= ⊕c∈Q0 H
0(G(Pa).)⟨−n⟩ ⊗Mn(c).

It follows from Lemma 6.4.1 that the n-th column of G(F(M).). is a truncated
colinear injective coresolution of ⊕c∈Q0(Sc ⊗ ecΛ

!
0ec ⊗ Mn(c)), which is graded

semisimple. Therefore, ωn ∈ Ker(vn,−n) = Soc(G(F(N)n)−n). Now, we may

write ωn =
∑

c∈Q0
eo,⋆c ⊗ ec ⊗ uc, where uc ∈Mn(c) = ecMn. Putting

u = (−1)
(n−1)n

2

∑
c∈Q0

uc ∈Mn,

we obtain ζ
M
(u) =

∑
i∈Z u

i, where ui = gi(u) = gin(u) ∈ G(F(M)i)−i. It follows

from Statement 3 that

un =
∑

c,a∈Q0
(−1)

(n−1)n
2 gna,n(wc)

=
∑

c,a∈Q0
fna,n(wc)

=
∑

c,a∈Q0
eo,⋆c ⊗ ea ⊗ eawc

=
∑

c∈Q0
eo,⋆c ⊗ ec ⊗ wc.

Put ν = ω − ζ
M
(u) =

∑
i∈Z(ω

i − ui) ∈ Ker(d0). If i < n, then gin(u) = 0, and

hence, ωi − ui = 0. Since un = ωn, we have nω < nν . Thus, ν ∈ Im(ζ
M
), and

hence, ω ∈ Im(ζ
M
). The proof of the lemma is completed.

The next statement describes a projective resolution for every complex in

C ↑
p,q(GModΛ) in terms of the extension of the composite of the left Koszul functor

and the right complex Koszul functor.

6.4.4 Proposition. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider (FC◦ G)C : C(GModΛ)→C(GModΛ). Let M.∈ C ↑
p,q(GModΛ)

for some p, q ∈ R with p ≥ 1 and q ≥ 0. There exists a natural quasi-isomorphism

ηCM. : (FC◦ G)C(M.) →M..

Proof. Consider FC ◦ G : GModΛ → C(GModΛ) and the embedding functor

κ : ModΛ → C(ModΛ). In view of Lemma 6.4.2, we obtain a functorial morphism

η = (η.M)M∈ModΛ : FC ◦ G → κ, where η.M : (FC ◦ G)(M) → M is a quasi-

isomorphism, for any M ∈ ModΛ. By Lemma 1.8.8, η extends to a functorial

morphism ηC : (FC ◦ G)C → κC = idC(ModΛ), where (FC ◦ G)C = T(FC ◦ G), such
that

ηCM. = T(η.M.) : (FC ◦ G)C(M.) →M.,
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where η.M. : (FC ◦ G)(M.).→ κ(M.). is the double complex morphism given by

ηj
M i : (FC ◦ G)(M i)j → κ(M i)j with i, j ∈ Z.

We claim that T(η.M.) is a quasi-isomorphism. By Lemma 6.3.2(2) and (4),

this is equivalent to T((η.M.)s) being a quasi-isomorphism for any s ∈ Z. Fix an

integer s ∈ Z. Consider the following double complex morphism

(η.M.)s=((ηj
M i)s)i,j∈Z : (FC◦ G)(M.).s → κ(M.).s.

For any i ∈ Z, the i-th column of (η.M.)s is

(η.M i)s : t
i((FC ◦ G)(M i).)s→ ti(κ(M i).)s,

which is a quasi-isomorphism by Lemma 6.3.2. Moreover, κ(M.).s is clearly diag-

onally bounded above. Given n ∈ Z, we deduce from Lemma 6.2.5(1) that the

n-diagonal of (FC ◦ G)(M.).s consists of

(FC◦G)(M i)n−is = ⊕j∈Z; a,x∈Q0 (Λn+s−i−jea⊗D(eaΛ̂i−nex)⊗M i
j(x)); for all i ∈ Z.

By the assumption on M., there exists some t ∈ Z such that M i
j = 0 for all

i, j with i− qj > t. Fix some i > (q(n + s) + t)(q + 1)−1. If j > n + s− i, then

Λn+s−i−j = 0; and otherwise, M i
j = 0 since i − qj ≥ i − q(n + s − i) > t. Thus,

(FC ◦ G)(M.).s is also diagonally bounded-above. By Lemma 1.8.3, T((η.M.)s) is
a quasi-isomorphism, for any s ∈ Z. This establishes our claim. That is, ηCM. is a
quasi-isomorphism. The proof of the proposition is completed.

The following statement describes an injective co-resolution for every complex

over GMod−Λ in terms of the extension of the composite of the right Koszul

functor and the left complex Koszul functor.

6.4.5 Proposition. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider (GC ◦F)C : C(GModΛ) → C(GModΛ). Let M.∈ C(GMod−Λ).

There exists a natural quasi-isomorphism ζCM.:M
.→ (GC ◦ F)C(M.).

Proof. Consider the embedding functor κ : GMod−Λ → C(GModΛ) and the

functor GC ◦ F : GMod−Λ → C(GModΛ). By Lemma 6.4.3, we have a functorial

morphism ζ = (ζ.M)M∈Mod−Λ : κ → GC ◦ F , where ζ.M : M → (GC ◦ F)(M)

is a quasi-isomorphism for all M ∈ GMod−Λ. By Lemma 1.8.8, ζ extends to a

functorial morphism ζC : idGMod−Λ = κC→(GC◦F)C = T(GC ◦ F) such that

ζCM.= T(ζ.M.) :M.→ (GC ◦ F)C(M.),
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where ζ.M. : κ(M
.). → (GC ◦ F)(M.). is the double complex morphism given by

ζj
M i : κ(M

i)j → (GC ◦ F)(M i) j with i, j ∈ Z.
We claim that T(ζ.M.) is a quasi-isomorphism. Indeed, for any i ∈ Z, the i-th

column of ζ.M. is ζ
.
M i : ti(κ(M i).) → ti((GC ◦ F)(M i).), which is clearly a quasi-

isomorphism. Moreover, κ(M.). is evidently diagonally bounded above. Given

any n ∈ Z, by Lemma 6.2.5(2), the n-diagonal of (GC ◦ F)(M.). consists of

(GC ◦ F)(M i)n−i = ⊕j∈Z;x,a∈Q0(Ia⟨n−i−j⟩ ⊗ eaΛ
!
n−iex ⊗M i

j(x)); for all i ∈ Z.

Thus, (GC ◦ F)(M i)n−i = 0 for any i > n. So, (GC◦ F)(M.). is n-diagonally
bounded above for all n ∈ Z. That is, (GC ◦ F)(M.). is diagonally bounded

above. By Lemma 1.8.3, T(ζ.M.) is a quasi-isomorphism, that is, ζCM. is a quasi-

isomorphism. The proof of the proposition is completed.

We are ready to prove the main result of this section, which includes the

classical Koszul duality of Belinson, Ginzburg and Soergel; see [13].

6.4.6 Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider p, q ∈ R with p ≥ 1 and q ≥ 0.

(1) The right derived Koszul functor FD
p,q : D

↓
p,q(GModΛ) → D ↑

q+1,p−1(GModΛ!)

and the left derived Koszul functor

GDq+1,p−1 :D
↑
q+1,p−1(GModΛ!)→D ↓

p,q(GModΛ)

are mutually quasi-inverse, where GModΛ and GModΛ! can be replaced

simultaneously by gmodΛ and gmodΛ!, respectively.

(2) The left derived Koszul functor GDp,q : D ↑
p,q(GModΛ) → D ↓

q+1,p−1(GModΛ!)

and the right derived Koszul functor

FD
q+1,p−1 : D

↓
q+1,p−1(GModΛ!) → D ↑

p,q(GModΛ)

are mutually quasi-inverse, where GModΛ and GModΛ! can be replaced

simultaneously by gmodΛ and gmodΛ!, respectively.

Proof. Note that C ↓
p,q(GModΛ) ⊆ C(GMod−Λ). Given N. ∈ C ↓

p,q(GModΛ), by

Proposition 1.8.6 and Theorem 6.3.3, (GC ◦ F)C(N.) = (GCq+1,p−1 ◦ FC
p,q)(N

.).
Thus, we have a natural quasi-isomorphism ζCN. : N

. → (GCq+1,p−1 ◦ FC
p,q)(N

.), by
Proposition 6.4.5.
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Given M. ∈ C ↑
q+1,p−1(GModΛ!), by Proposition 1.8.6 and Theorem 6.3.3,

(FC
p,q ◦ GCq+1,p−1)(M

.) = (FC ◦ G)C(M.). And by proposition 6.4.4, we have a

natural quasi-isomorphism ηCM. : (FC
p,q ◦ GCq+1,p−1)(M

.) = (FC ◦ G)C(M.) →M..
This yields a natural isomorphism ζDN. : N

. → (GDq+1,p−1 ◦ FD
p,q)(N

.) for every
N.∈D ↓

p,q(GModΛ), and a natural isomorphism ηDM. : (FD
p,q ◦ GDq+1,p−1)(M

.)→M.

for every M. ∈ D ↑
q+1,p−1(GModΛ!). This implies that the derived Koszul functors

FD
p,q : D ↓

p,q(GModΛ) → D ↑
q+1,p−1(GModΛ!) and GDq+1,p−1 : D

↑
q+1,p−1(GModΛ!) →

D ↓
p,q(GModΛ) are also mutually quasi-inverse. Using the same argument, we see

that FD
p,q : D

↓
p,q(gmodΛ) → D ↑

q+1,p−1(gmodΛ!) and GDq+1,p−1 : D
↑
q+1,p−1(gmodΛ!)→

D ↓
p,q(gmodΛ) are mutually quasi-inverse. This establishes Statement (1). Simi-

larly, Statement (2) holds. The proof of the theorem is completed.

Remark. In case p = 1 and q = 0, the first part of Theorem 6.4.6(1) and (2) has

been established in [13, (2.12.1)] under the assumption that Λ has an identity,

while the second part of Theorem 6.4.6(1) and (2) has been proved for a positively

graded Koszul category in [48, Theorem 30].

The following statement says that the bounded derived Koszul functors are

also triangle equivalences under some local boundedness conditions.

6.4.7 Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver.

(1) If Λ is locally right bounded and Λ! is locally left bounded, then the bounded

derived Koszul functors FD : Db(GModbΛ) → Db(GModbΛ!) and GD :

Db(GModbΛ!) → Db(GModbΛ) are mutually quasi-inverse, where GModbΛ

and GModbΛ! can be replaced simultaneously by gmodbΛ and gmodbΛ!, re-

spectively.

(2) If Λ is locally left bounded and Λ! is locally right bounded, then the bounded

derived Koszul functors GD : Db(GModbΛ) → Db(GModbΛ!) and FD :

Db(GModbΛ!) → Db(GModbΛ) are mutually quasi-inverse, where GModbΛ

and GModbΛ! can be replaced simultaneously by gmodbΛ and gmodbΛ!, re-

spectively.

Proof. Suppose that Λ is right locally bounded and Λ! is left locally bounded. By

Corollary 6.3.5, we have triangle exact functors FD:Db(GModbΛ)→Db(GModbΛ!)

and GD: Db(GModbΛ!)→Db(GModbΛ). By the same argument used in the proof
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of Theorem 6.4.6, we conclude that they are mutual quasi-inverse. The proof of

the theorem is completed.

Remark. (1) In case Λ is of finite dimensional and Λ! is left noetherian, Theorem

6.4.7(3) is established by Beilinson, Ginzburg and Soergel in [13, (2.12.6)].

(2) Assume thatQ has no infinite path with an ending point or no infinite path

with a starting point. Then Λ is locally right or left bounded and Λ! is locally left

or right bounded, respectively. By Theorem 6.4.7, Db(GModbΛ) ∼= Db(GModbΛ!)

and Db(gmodbΛ) ∼= Db(gmodbΛ!).

6.5 Koszul functors, Auslander-Reiten transla-

tions and Serre functors

The objective of this section is to show how the derived Koszul functors are

related to Auslander-Reiten translations and Serre functors in various derived

categories of graded modules over a quadratic algebra and over a Koszul algebra.

Throughout this section, unless otherwise explicitly stated, Λ = kQ/R is a

quadratic algebra, where Q is a locally finite quiver. First of all, by making

use of the bounded derived Koszul functors FD : Db(gmodbΛ!) → Db(gmodΛ)

and GD : Db(gmodbΛ!)→Db(gmodΛ); see (6.3.4), we may describe some almost

split triangles in Db(gmodΛ) in terms of bounded complexes of finite dimensional

graded Λ!-modules; compare [10, (5.2)].

6.5.1 Theorem. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. If M.∈ Cb(gmodbΛ!) such that FD(M.) or GD(M.) is indecomposable in

Db(gmodΛ), then there exists an almost split triangle

GD(M.)[−1] // N. // FD(M.) // GD(M.)

in each of Db(gmodΛ), D(gmodΛ) and D(GModΛ).

Proof. By Theorem 6.3.5(3), we have functors FC : Cb(gmodbΛ!)→ Cb(gprojΛ)

and GC : Cb(gmodbΛ!) → Cb(ginjΛ). Let M. ∈ Cb(gmodbΛ!). By Proposition

6.2.2(1), FC(M.)n = ⊕(i,x)∈Z×Q0(P
!
x⟨n−i⟩⊗M i

n−i(x)), for all n ∈ Z. Since ⊕i∈ZM
i

is finite dimensional, FC(M.) ∈ Cb(gprojΛ!). Applying Theorem 4.1.3 and Propo-

sition 6.2.2(2), we have νFC(M.)n ∼= ⊕(i,x)∈Z×Q0(I
!
x⟨n−i⟩ ⊗M i

n−i(x)) = GC(M.)n,
for all n ∈ Z. That is, GC(M.) ∼= νFC(M.). In particular, FK(M.) is indecom-

posable in Kb(gprojΛ) if and only if GK(M.) is indecomposable in Kb(ginjΛ).
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If FD(M.) or GD(M.) is indecomposable in Db(gmodΛ), then FK(M.) is inde-

composable in Kb(gprojΛ) and GK(M.) is indecomposable in Kb(ginjΛ). And in

this case, by Theorem 4.3.2, there exists a desired almost split triangle in each of

Db(gmodΛ), D(gmodΛ) and D(GModΛ). The proof of the theorem is completed.

Remark. The almost split triangle stated in Theorem 6.5.1 explains our termi-

nology of “left” Koszul functor and “right” Koszul functor.

Example. Let Λ = kQ/R be a Koszul algebra with a ∈ Q0. By Lemma 6.4.1,

FD(I !a)
∼= GD(P !

a)
∼= Sa in D

b(gmodΛ). It is well known that S is indecomposable

in Db(gmodΛ); see [49, (III.3.4.7)]. If I !a or P
!
a is finite dimensional, then Sa is the

ending or starting term respectively of an almost split triangle in Db(gmodΛ).

Next, we shall consider the case where Λ is a Koszul algebra. A complex over

gmodΛ is called derived indecomposable if it is indecomposable in D(gmodΛ).

In case Λ! is locally bounded, we shall establish the existence of almost split trian-

gles in Db(gmodΛ) for bounded derived indecomposable complexes over gmodbΛ

and describe the Auslander-Reiten translates using bounded derived Koszul func-

tors.

6.5.2 Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver.

(1) Every bounded derived-indecomposable complex M. over gmodbΛ is the end-
ing term of an almost split triangle in Db(gmodΛ) if and only if Λ! is locally

right bounded ; and in this case, τM.∼= GD(GD(M.))[−1].

(2) Every bounded derived-indecomposable complexM. over gmodbΛ is the start-

ing term of an almost split triangle in Db(gmodΛ) if and only if Λ! is locally

left bounded ; and in this case, τ−M.∼= FD(FD(M.))[1].

(3) Every bounded derived-indecomposable complexM. over gmodbΛ is the start-

ing term, as well as the ending term, of an almost split triangle in Db(gmodΛ)

if and only if Λ! is locally bounded.

Proof. We shall only prove Statement (1). Given any a ∈ Q0, by Lemma 5.4.1, Sa
has a projective resolution P.a in gmodΛ with P−n

a = ⊕x∈Q0(Px⟨−n⟩⊗D(eaΛ
!
nex)),

for all n ∈ Z. Then, EndDb(gmodΛ)(Sa) ∼= HomK(gmodΛ)(P
.
a, Sa)

∼= k; see [61,

(10.4.7)]. Thus, Sa is strongly indecomposable in D(gmodΛ). If Sa is the ending
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term of an almost split triangle in Db(gmodΛ), then P.a is bounded; see [38,

(5.2)]. In particular, eaΛ
!
n = 0 for all but finitely many n ≥ 0, that is, eaΛ

! is

finite dimensional. This establishes the necessity of Statement (1).

Suppose that Λ! is locally right bounded. Then ginjΛ! ⊆ gmodbΛ!. Con-

sider M. ∈ Cb(gmodbΛ), which is indecomposable in Db(gmodΛ). By Corollary

6.3.5(3), GC(M.)∈Cb(ginjΛ!)⊆Cb(gmodbΛ!). By Theorem 6.3.4(3), FC(GC(M.))∈
Cb(gprojΛ). Thus, by Proposition 6.4.4 and Lemma 1.8.6, FD(GD(M.)) ∼=M..
Now, it follows from Theorem 6.5.1 that there exists an almost split triangle

GD(GD(M.))[−1] // N. //M. // GD(GD(M.))

in Db(gmodΛ). The proof of the theorem is completed.

Example. Let Λ = kQ, where Q is a locally finite quiver. Then Λ! = kQo/R!,

where R! is the ideal generated by all paths of length two. Since Λ! is locally

bounded, by Theorem 6.5.2, every indecomposable complex in Db(gmodbΛ) is

the starting term, as well as the ending term, of an almost split triangle in

Db(gmodΛ).

Finally, we shall concentrate on the bounded derived category of finite dimen-

sional graded Λ-modules.

6.5.3 Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Then Db(gmodbΛ) is Hom-finite and Krull-Schmidt.

Proof. Let M ∈ gmodbΛ. By Lemma 6.4.2, we obtain a quasi-isomorphism η.
M
:

(FC◦G)C(M).→M with (FC◦G)C(M)n=⊕(i,x)∈Z×Q0(Pa⟨n−i⟩⊗(I !x)n(a)⊗Mi(x)).

Since Mi(x) = 0 for all but finitely many (i, x), we see that (FC ◦ G)C(M).

is a graded projective resolution of M over gprojΛ. Given N ∈ gmodbΛ, we

deduce from Lemma 3.4.2 that GExtiΛ(M,N) is finite dimensional for all i ≥ 0.

Therefore, Db(gmodbΛ) is Hom-finite and Krull-Schmidt; see [32, Corollary B].

The proof of the lemma is completed.

In the locally bounded Koszul case, we shall establish the existence of almost

split triangles in Db(gmodbΛ) and describe the Serre functors in terms of the

bounded derived Koszul functors.

6.5.4 Theorem. Let Λ = kQ/R be a locally bounded Koszul algebra, where Q is

a locally finite quiver.
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(1) There exist almost split triangles in Db(gmodbΛ) on the right if and only if

Λ! is right locally bounded ; and in this case,

GD◦ GD : Db(gmodbΛ) → Db(gmodbΛ)

is a right Serre functor.

(2) There exist almost split triangles in Db(gmodbΛ) on the left if and only if

Λ! is left locally bounded ; and in this case,

FD ◦ FD : Db(gmodbΛ) → Db(gmodbΛ)

is a left Serre functor.

(3) There exist almost split triangles in Db(gmodbΛ) if and only if Λ! is locally

bounded ; and in this case, GD◦ GD : Db(gmodbΛ)→Db(gmodbΛ) is a right

Serre equivalence and FD◦ FD : Db(gmodbΛ)→Db(gmodbΛ) is a left Serre

equivalence.

Proof. We shall only prove Statement (1). Since Λ is locally bounded, gprojΛ and

ginjΛ are subcategories of gmodbΛ. Given a ∈ Q0, by Lemma 5.4.1, Sa has a linear

projective resolution P.a over gprojΛ with P−n
a =⊕x∈Q0(Px⟨−n⟩ ⊗D(eaΛ

!
nex)). If

Sa is the ending term of an almost split triangle in Db(gmodbΛ), then it has

a finite projective resolution over gprojΛ; see [38, (5.2)]. So, P.a is a bounded

complex over gprojΛ. In particular, eaΛ
!
n = 0 for n ≫ 0. That is, eaΛ

! is finite

dimensional.

Suppose that Λ! is right locally bounded. LetM. ∈ Db(gmodbΛ) be indecompo-

sable. Since Λ is left locally bounded, by Theorem 6.4.7(3), M.∼=FD(GD(M.)).
By Theorem 4.1.3 and Proposition 6.2.2, we deduce that ν(FD(GD(M.))) ∼=
GD(GD(M.)). Considering the Nakayama functor ν : gprojΛ →gmodbΛ, we obtain

an almost split triangle

GD(GD(M.))[−1] // N. //M. // GD(GD(M.))

in Db(gmodbΛ); see [38, (5.8)]. This implies that

GD◦ GD :Db(gmodbΛ)→Db(gmodbΛ)

is a right Serre functor; see [55, (I.2.3)]. The proof of the theorem is completed.

Remark. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite quiver

with no infinite path. Since Λ and Λ! are locally bounded, Db(gmodbΛ) and

Db(gmodbΛ!) are equivalent and have almost split triangles; see (6.4.7) and (6.5.4).
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In case R = 0, one can probably describe the Aulsander-Reiten components of

gmodbkQ, as is done for modbkQ; see [11]. Since Λ! = kQ/(kQ+)2, this will

yield a description of the Auslander-Reiten components for Db(gmodbkQ) and

Db(gmodbkQ/(kQ+)2), as is done for Db(modbkQ) and Db(modbkQ/(kQ+)2); see

[10, 11].
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