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ABSTRACT

Given a quiver Q (possibly infinite) and a set of relations ρ on Q, we say that the

algebra Λ = kQ/⟨ρ⟩ is locally semi-perfect if it is locally finite-dimensional and eaΛea

is local for all a ∈ Q0. In the first part of this dissertation, we prove the existence of

almost split sequences in ModΛ, the category of unital modules over Λ, ending in non-

projective finitely presented indecomposables, for locally semi-perfect algebras which we

call ‘bounded on the left’. Using a duality functor, we then prove the existence of almost

split sequences in modΛ, the category of locally finite-dimensional unital modules over

Λ, starting at non-injective finitely copresented indecomposables, for locally semi-perfect

algebras which we call ‘bounded on the right’.

In the second part, we give a combinatorial characterization of the finitely presented and

finitely co-presented string modules over locally finite-dimensional string algebras. We

also give an explicit description of their syzygys and cosyzygys respectively.
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SOMMAIRE

Étant donné un carquois Q ( peut-être infini ) et un ensemble de relations ρ sur Q, nous

disons que l’algèbre Λ = kQ/⟨ρ⟩ est localement semi-parfaite si elle est localement de

dimension finie et si l’algèbre eaΛea est locale pour tout a ∈ Q0. Dans la première partie de

ce mémoire, nous prouvons l’existence de suites presque scindées dans ModΛ, la catégorie

des modules unitaires sur Λ, se terminant par des indécomposables non-projectifs de

présentation finie, pour les algèbres localement semi-parfaites qui s’appellent ‘bornées à

gauche’. En utilisant un foncteur de dualité, nous prouvons ensuite l’existence de suites

presque scindées dans modΛ, la catégorie des modules unitaires localement de dimension

finie sur Λ, commençant par des indécomposables non injectifs de coprésentation finie,

pour des algèbres localement semi-parfaites qui s’appellent ‘bornées à droite’.

Dans la deuxième partie, nous donnons une caractérisation combinatoire des modules

de cordes de présentation et coprésentaton finie sur les algèbres de cordes localement

de dimension finie. Nous donnons aussi une description explicite de leurs syzygies et

cosyzygies respectivement.
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INTRODUCTION

An important tool in the study of the representation theory of finite dimensional algebras

has been the theory of representations of finite quivers along with the Auslander-Reiten

theory of irreducible morphisms and almost split sequences. However, from the per-

spective of covering theory, it has become important to study locally finite-dimensional

algebras defined by locally finite quivers with relations. One of the natural questions

is the existence of almost split sequences in the module category over such an algebra.

For this purpose, we shall need some further finiteness conditions. Indeed, we shall con-

sider locally semi-perfect algebras, that is locally finite-dimensional algebras such that

the idempotents associated with the vertices of the quiver are primitive. We shall prove

the existence of almost split sequences for finitely presented modules (resp. finitely co-

presented modules) over locally semi-perfect algebras which are left (resp. right) locally

bounded. For this purpose, we introduce a Nakayama functor by using a slightly mod-

ified standard duality, which allows us to define the Auslander-Reiten translate, prove

the Auslander-Reiten formula, and derive the existence of almost split sequences for

such modules. As a consequence, one obtains immediately the existence of almost split

sequences in the category of finite-dimensional modules over the covering of a finite-

dimensional algebra.

In the second part of the thesis, we study the representation theory of string algebras,
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where we drop the classical finiteness conditions imposed by Butler and Ringel [11]. In

particular, we give a combinatorial characterization of the strings for which the string

modules are finitely presented or finitely copresented, along with calculating their syzygies

and cosyzygies. String algebras with the finiteness conditions imposed by Butler and

Ringel are a class of tame algebras whose representation theory is highly combinatorial

in nature, and hence easier to study. By definition, such a string algebra is the path

algebra of a quiver with relations that satisfies certain conditions designed to restrict the

structure of the indecomposable projective and injective modules. This definition is a

specialization of the definition of a special biserial algebra, for which the restrictions on

the quiver imply that all indecomposable projective modules are biserial.

In [11], Butler and Ringel classified the indecomposable finite-dimensional modules over

such algebras in terms of string and band modules, where they credited their method

to Gel’fand and Ponomarev [14]. They also classified all the irreducible maps between

these modules and, hence, the Auslander-Reiten sequences. As mentioned before, they

imposed a finiteness condition on these algebras which implied that they were finite-

dimensional if the quiver had finitely many vertices. These are what we will call locally

bounded string algebras in this dissertation. These conditions were dropped by William

Crawley-Boevey in [12], where he classified the finitely controlled modules (A module M

is finitely controlled if, for every vertex v, the set evM is contained in a finitely generated

submodule of M) over such algebras in terms of string and band modules. The next

task would be to classify the irreducible morphisms and almost split sequences for such

modules.

The dissertation is organized as follows. In Chapter 1, we introduce the relevant back-

ground and terminology related to quivers and algebras associated with them. In partic-

ular, we define the notions of locally semi-perfect algebras and prove some preliminary

results about them. Chapter 2 is used to introduce the basics of Auslander-Reiten theory,
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irreducible morphisms, almost split sequences, etc., for finite-dimensional algebras. In

Chapter 3, we upgrade these basics to the case of locally semi-perfect algebras to show

the existence of almost split sequences for them. Chapter 4 is devoted to the definitions

of modules associated with these strings and bands, along with a description of certain

projective and injective string modules. In Chapter 5, we classify the strings for which

the associated modules are finitely presented, which turn out to be the same as strings

for which these modules are finitely generated. In particular, we give an explicit descrip-

tion of the syzygies of such modules. Chapter 6 deals with the dual of these results–we

classify the strings for which the associated modules are finitely copresented, which turn

out to be the same as the strings for which these modules are finitely cogenerated.
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CHAPTER 1

Quivers and algebras

In this chapter, we will introduce the notion of quivers and the path algebras associated to

them along with some examples. We will further define certain special kinds of algebras

called ‘locally semi-perfect’ algebras, which will be our main object of study.

Throughout this chapter, k will denote an algebraically closed field. All ideals of algebras

will be two-sided unless stated otherwise.

1.1 Quivers and path algebras

In this section, we define the notion of a quiver, its path algebra, and its representations.

Definition 1.1.1. A quiver Q is a quadruple (Q0,Q1, s, t), where Q0,Q1 are sets and

s, t ∶ Q1 → Q0 are functions.

The elements of Q0 and Q1 are called the vertices and the arrows of the quiver respec-

tively. For each α ∈ Q1, s(α) is said to be the source of α while t(α) is said to be its

target. We denote this as α ∶ s(α) → t(α) or s(α) αÐ→ t(α). A vertex a ∈ Q0 is said to be
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a source vertex if it is not the target of any arrow. Dually, a vertex a ∈ Q0 is said to be

a sink vertex if it is not the source of any arrow. We call the quiver Q finite if both Q0

and Q1 are finite and we call it locally finite if for each pair of vertices (a, b) ∈ Q0 ×Q0,

the set of arrows starting at a and ending at b is finite. For a quiver Q = (Q0,Q1, s, t),

we define its opposite quiver, Q○, as the quiver (Q0,Q1, t, s), i.e., the quiver obtained by

reversing the direction of the arrows.

Throughout this work, we will use the letter Q to denote a locally finite quiver.

Definition 1.1.2. Let n > 0. A path of length n in Q is a sequence ρ = α1⋯αn, where

αi ∈ Q1 for all i such that 1 ≤ i ≤ n, satisfying s(αi+1) = t(αi) for all i such that 1 ≤ i < n.

In addition to this, to each x ∈ Q0, we associate a trivial path εx of length 0.

We will denote the length of a path ρ by l(ρ).

Example 1.1.1. The following graph is a quiver with Q0 = {1,2,3,4,5} and

1 2 4 5

3

δ

β

α

ν1

ν2

µ

γ

Q1 = {α,β, γ, δ, ν1, ν2, µ}. There is no source while vertex 5 is a sink. Some examples of

paths are α2β, βγν1µ, ε2.

We can extend the definitions of the functions s, t to all paths as follows: for x ∈ Q0,

set t(εx) = s(εx) ∶= x, and for ρ = α1⋯αn, a path of length n > 0, set t(ρ) ∶= t(αn) and

s(ρ) ∶= s(α1). We call a path of length ≥ 1 an oriented cycle if its source and target

coincide. We say that a quiver Q is acyclic if it does not contain any oriented cycles.

Definition 1.1.3. A k-algebra A is a k-vector space together with a binary operation ⋅

such that for all a, b, c ∈ A and λ ∈ k,
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1) a ⋅ (b + c) = a ⋅ b + a ⋅ c.

2) (a + b) ⋅ c = a ⋅ c + b ⋅ c.

3) λ(a ⋅ b) = (λa) ⋅ b = a ⋅ (λb).

4) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).

We define the dimension of a k-algebra A to be its dimension as a k-vector space.

The above definition implies that for a k-algebra A, the multiplication is determined by

its values on a k-basis elements of A.

We are now ready to define the path algebra associated to a quiver. Let kQ be the

k-vector space having the set of paths in Q as a basis. In order to turn kQ into a k

algebra, it is enough to define the multiplication of the basis elements. Let ρ = α1⋯αn,

ρ′ = β1⋯βn′ be two non-trivial paths in Q. Then we define

ρ ⋅ ρ′ = { α1⋯αnβ1⋯βn′ , if t(ρ) = s(ρ′);
0, otherwise.

Similarly, for x,x′ ∈ Q0, we define

ρ ⋅ εx = {
ρ, if t(ρ) = x;
0, otherwise.

εx ⋅ ρ = {
ρ, if s(ρ) = x;
0, otherwise.

εx ⋅ εx′ = {
εx, if x′ = x;
0, otherwise.

Definition 1.1.4. Let Q be a quiver. The path algebra of Q, denoted by kQ, is defined

to be the algebra generated as a k-vector space by the paths in Q of length ≥ 0 under the

above multiplication.
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The above definition shows that kQ is infinite-dimensional if Q0 is infinite or if Q con-

tains cycles. Conversely, if Q is acyclic with finite Q0, then kQ is finite-dimensional [5,

Lemma 1.4]. We also have the following lemma characterizing the quivers for which kQ

is unital.

Lemma 1.1.1. The algebra kQ has an identity if and only if Q0 is finite.

Proof. Suppose Q0 is finite. Let λ = ∑a∈Q0
εa. Then for any path ρ, ρ ⋅λ = ρ ⋅ εt(ρ) = ρ and

λ ⋅ ρ = εs(ρ) ⋅ ρ = ρ. Therefore, kQ has an identity element given by ∑a∈Q0
εa. Conversely,

suppose Q0 is infinite and 1 = ∑mi=1 λiwi is the identity element, where λi ∈ k are non-zero

scalars and wi are paths in Q. Since Q0 is infinite, there exists a ∈ Q0 such that a ≠ s(wi)

for all 1 ≤ i ≤ m. Then εa ⋅ 1 = 0, a contradiction. Therefore, kQ does not have an

identity.

Example 1.1.2. Let Q be the following quiver.

3

1 2

α1

α2

β

Then kQ is generated by {ε1, ε2, ε3, α1, α2, β, α1β,α2β} and is 8-dimensional.

For the sake of completeness, we also introduce the notion of a path of infinite length,

which is a sequence either of the form α1α2⋯, ⋯α−2α−1, or ⋯α−2α−1α0⋯ of arrows of Q

such that s(αi+1) = t(αi) for all i. The first kind of paths do not have a target, the second

ones do not have a source, and the last ones neither have a source nor a target.

Definition 1.1.5. Let p be a path in Q, possibly of infinite length. In case p has a source,

a path q is called an initial subpath of p if p = qp′ for some path p′. In case p has a

target, a path q is called a terminal subpath of p if p = p′q for some path p′.
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Note that in the above definition, q, p′ are allowed to be trivial.

Example 1.1.3. Continuing with Example 1.1.1, ε1 is an initial subpath of α2β while

αβ is a terminal subpath of it.

For a quiver Q, given a vertex a ∈ Q0 and an integer n ≥ 0, we shall denote by Qn(a,−)

the set of paths of length n starting at a, and by Qn(−, a) the set of paths of length n

ending at a in Q.

1.2 Bound quivers and elementary algebras

In this section, we expand the class of algebras that can be obtained from quivers by

defining a certain class of ideals of path algebras called ‘admissible ideals’. We will see

how this construction essentially characterizes all finite-dimensional algebras over k.

Let RQ be the ideal of kQ generated by the arrows of Q1.

Definition 1.2.1. [13, § 8.3] Let Q = (Q0,Q1) be a quiver. An ideal I of kQ is called

admissible if

1. I ⊆ R2
Q,

2. For each a ∈ Q0, there exists la ∈ N such that I contains all paths of length ≥ la
starting or ending at a.

In this case, the pair (Q, I) is called a bound quiver, and the algebra A = kQ/I is called

a bound quiver algebra.

The reasons for choosing the above definition of admissible ideals are the following. The

second condition makes sure that we do not have arbitrarily long paths in the quotient,

8



i.e., that A is finite-dimensional for finite quivers. And the condition I ⊆ R2
Q makes sure

that we do not have any redundant arrows in our quiver. Let us look at some examples.

Examples 1.2.1. 1. For any m ≥ 2, Rm
Q is an admissible ideal.

2. Let Q be a finite quiver. Then the zero ideal is admissible in kQ if and only if Q

is acyclic. Indeed, the zero ideal is admissible if and only if there exists m ≥ 2 such

that Rm
Q = 0, that is, any product of m arrows in kQ is zero. This is the case if and

only if Q is acyclic.

3. Let Q be the following quiver.

2

1 4

3

βα

γ

λ

δ

The ideal I1 = ⟨αβ − γδ⟩ of the k-algebra kQ is admissible, but I2 = ⟨αβ − λ⟩ is not

as αβ − λ ∉ R2
Q.

It is convenient to define an admissible ideal in terms of its generators. These are called

relations.

Definition 1.2.2. A relation ρ on a quiver Q with coefficients in k is a non-zero k-

linear combination of paths in Q of length at least two having the same source and target.

Thus ρ = ∑mi=1 λiwi such that λi ∈ k∗, l(wi) ≥ 2, s(wi) = s(wj), and t(wi) = t(wj) for all

1 ≤ i, j ≤m.

If m = 1, the relation is called a zero relation or a monomial relation. If it is of the form

w1 −w2 (where w1, w2 are two paths), it is called a commutativity relation.
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Example 1.2.1. For Q as in Example 1.1.1, α2 − α3, ν1µ, δν1 − δν2 are some relations

on Q.

For an algebra Λ = kQ/⟨ρ⟩, we define the opposite algebra of Λ, Λ○, as kQ○/⟨ρ○⟩, where

Q○ is the opposite quiver of Q and ρ○ = {p○ ∣ p ∈ ρ}.

Definition 1.2.3. Let A be a k-algebra. The Jacobson radical, radA, of A is defined to

be the two-sided ideal which is the intersection of all maximal right ideals of A.

A finite-dimensional k-algebra A is called elementary if A/radA is a product of copies of

k.

The following theorem states that the previous construction characterizes all elementary

algebras.

Theorem 1.2.1. (Gabriel)[4, Theorem I.2.13] Let A be a finite-dimensional elementary

k-algebra. Then there exists a finite quiver QA and an admissible ideal I ⊆ kQA such that

A ≅ kQA/I.

Moreover, since k is algebraically closed, every finite-dimensional k-algebra is Morita

equivalent to an elementary algebra [2, Theorem 3.2].

1.3 Representations of a quiver with relations

Let (Q, I) be a bound quiver such that I is generated by a set of relations ρ on Q.

We will also denote this pair as (Q,ρ). Then we can talk about the representations of

this bound quiver. These representations will be closely related to the modules over the

algebra kQ/ ⟨ρ⟩.

10



Definition 1.3.1. A k-representation of the bound quiver (Q,ρ) is a collection of k-

vector spaces (Vi)i∈Q0 and a family of linear maps Tα ∶ Vs(α) → Vt(α), indexed by α ∈ Q1,

such that for each element ∑mi=1 λiαi,1⋯αi,li of ρ, ∑mi=1 λiTαi,li
⋯Tαi,1

= 0.

Example 1.3.1. Let (Q, I1) be the bound quiver from Example 1.2.1.3. Then the follow-

ing diagram gives a k-representation of (Q, I1).

k

k2 k2

k2

⎡⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎦[1 −1]

⎡⎢⎢⎢⎢⎢⎣

1 −1

1 −1

⎤⎥⎥⎥⎥⎥⎦

id

id

Definition 1.3.2. Let M = ((Vi)i∈Q0 , (Tα)α∈Q1) and N = ((Wi)i∈Q0 , (Sα)α∈Q1) be two k-

representations of a bound quiver (Q,ρ). A morphism of representations u ∶ M → N is

a family of linear maps (ui ∶ Vi →Wi)i∈Q0 such that for all α ∈ Q1, the following diagram

commutes:

Vs(α) Vt(α)

Ws(α) Wt(α)

Tα

us(α) ut(α)

Sα

Given k-representations L,M,N of (Q,ρ), and maps u ∶ L → M and v ∶ M → N , we

define the composition (v ⋅ u)i ∶= vi ⋅ ui for all i ∈ Q0. Moreover, for any k-representation

M = ((Vi)i∈Q0 , (Tα)α∈Q1), we have an identity morphism id ∶M →M given by (id)i = idMi

for all i ∈ Q0. Thus, we get a category Repk(Q,ρ) whose objects are the representations

of (Q,ρ) and the morphisms are the morphisms of representations. Let A = kQ/ ⟨ρ⟩.

Definition 1.3.3. We say that a right A-module M is unitary if M = ∑x∈Q0
Mε̄x as

k-vector spaces.

11



We will denote the category of unitary right A-modules by ModA. We will also identify

ModΛ○ with the category of unitary left Λ-modules.

Theorem 1.3.1. [3, Theorem II.2.10] We have an equivalence of categories

ModA ≅ Repk(Q,ρ)

given by M ↦ ((Mε̄i)i∈Q0 , (mᾱ)α∈Q1), where mᾱ ∶ Mε̄s(α) → Mε̄t(α) denotes the map

x↦ xᾱ, i.e., the multiplication by ᾱ.

Remark 1.3.1. Although we assumed (Q, I) to be a bound quiver at the beginning of the

section, the results mentioned here also work for all ideals I of kQ generated by relations.

Definition 1.3.4. Let M ∈ ModA. We say that M is locally finite-dimensional if

dimk(Mε̄x) < ∞ for all x ∈ Q0.

We will denote the full subcategory of locally finite-dimensional modules of ModA by

modA.

1.4 Locally finite-dimensional algebras

In this section, we introduce another class of algebras obtained from quivers and relations

called ‘locally’ finite-dimensional algebras. These will be our main object of study in this

thesis.

Let ρ be a set of relations on a quiver Q and Λ = kQ/⟨ρ⟩. Set ex ∶= ε̄x for all x ∈ Q0, i.e.,

the equivalence class of εx in Λ.

Definition 1.4.1. The algebra Λ = kQ/ ⟨ρ⟩ is said to be locally finite-dimensional if

dim(exΛey) < ∞ for all x, y ∈ Q0.

12



We also define the following one-sided analogues of the above notion.

Definition 1.4.2. 1. An algebra Λ = kQ/ ⟨ρ⟩ is said to be left locally bounded if Λea

is finite dimensional for all a in Q0.

2. An algebra Λ = kQ/ ⟨ρ⟩ is said to be right locally bounded if eaΛ is finite dimen-

sional for all a in Q0.

Note that a left or right locally bounded algebra is always locally finite-dimensional.

We also have the following slightly stronger definition, which ensures that the projective

at each vertex is indecomposable.

Definition 1.4.3. The algebra Λ = kQ/ ⟨ρ⟩ is called locally semi-perfect if it is locally

finite-dimensional, and for all x ∈ Q0, exΛex is local.

The above definitions were first introduced by Bongartz and Gabriel in [9, § 2.1], where

locally semi-perfect algebras were called locally finite-dimensional categories, while locally

bounded categories were defined to be left and right locally bounded locally semi-perfect

algebras.

Define Pa ∶= eaΛ for a ∈ Q0.

Lemma 1.4.1. For any Λ-module M and a ∈ Q0, HomΛ(Pa,M) ≅Mea.

Proof. Define f ∶ HomΛ(Pa,M) → Mea as g ↦ g(ea). Since g is a Λ-module homomor-

phism, g(ea) = g(eaea) = g(ea)ea, which implies that g(ea) ∈Mea. f is injective because

if there exists some g ∈ HomΛ(Pa,M) such that g(ea) = 0, then g(ea ⋅ λ) = g(ea)λ = 0 for

all λ ∈ Λ, and hence g = 0. It is surjective because if mea ∈Mea, then g ∶ Pa →M defined

by ea ⋅ λ↦mea ⋅ λ is a Λ-module homomorphism such that g(ea) =mea.

Proposition 1.4.1. Pa is a projective module for all a ∈ Q0.

13



Proof. We want to show that Hom(Pa,−) is an exact functor. Since it is always left exact,

it is enough to show that it preserves epimorphisms. Let f ∶ M → N be a surjective Λ-

module homomorphism. Then, using Lemma 1.4.1, Hom(Pa,M)
Hom(Pa,f)ÐÐÐÐÐ→ Hom(Pa,N)

is isomorphic to Mea
f ∣MeaÐÐÐ→ Nea. Let nea ∈ Nea. Since f is surjective, there exists m ∈M

such that f(m) = n. Thus f(mea) = nea and f ∣Mea is surjective.

For the rest of this section, we will assume Λ to be a locally finite-dimensional algebra.

Then Pa is a locally finite-dimensional unitary Λ-module for all a ∈ Q0. Moreover,

as stated in the following lemma, if Λ is locally semi-perfect, then these Pa are also

indecomposable.

Lemma 1.4.2. Let Λ be a locally semi-perfect algebra. Then for all a ∈ Q0, Pa is

indecomposable.

Proof. Using Lemma 1.4.1, End(Pa) = Hom(Pa, Pa) ≅ Paea = eaΛea, and hence local.

Since Pa has a local endomorphism algebra, it is indecomposable.

Define projΛ to be the full subcategory of modΛ whose objects are finite direct sums of

Pa, a ∈ Q0. Since a finite direct sum of projective modules is projective, every module in

projΛ is projective.

Proposition 1.4.2. Let Λ be a locally semi-perfect algebra. Then projΛ is closed under

direct summands.

Proof. Let X ∈ projΛ and Y a non-trivial summand of X, i.e., X ≅ Y ⊕ Y ′ for non-

zero Y,Y ′ ∈ modΛ. Set A ∶= End(X). Let iY ∶ Y → X and πY ∶ X → Y denote the

canonical injection and projection respectively. Then f = iY πY is a non-zero idempo-

tent in A. Since X ∈ projΛ, it is isomorphic to ⊕ni=1Pai for some ai ∈ Q0. Therefore,

A ≅ ⊕ni=1 ⊕nj=1 End(Pai , Paj) ≅ ⊕ni=1 ⊕nj=1 eajΛeai , and hence it is finite dimensional. In
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particular, it is semi-perfect. We claim that f can be written as a finite sum of primitive

orthogonal idempotents in A. Suppose this is not the case. Then, in particular, f is not

a primitive idempotent, which implies that f = f1 + f2, where f1, f2 are non-zero orthog-

onal idempotents in A. If both f1, f2 are primitive, then the claim is true, and we get a

contradiction. Therefore, without loss of generality, suppose f1 is not primitive. Then

f1 = f11 + f12, where f11, f12 are non-zero orthogonal idempotents in A. Moreover, since

f1f2 = f11f2 + f12f2 = 0, we get that f11f1f2 = f11f2 = 0 = f12f1f2 = f12f2. Thus, f11, f12

are also orthogonal to f2. Thus, repeating this process, we get that, for all m > 0, f can

be written as a sum of m non-zero orthogonal idempotents which is a contradiction to

the finite-dimensionality of A. Thus, there exists a complete set f1, . . . , fn of primitive

orthogonal idempotents in A such that f = f1 + . . . + fr, with 0 < r ≤ n. Let gj ∶ X → X

denote the idempotent ⊕ni=1Pai
πjÐ→ Paj

ιjÐ→ ⊕ni=1Pai in A. Then g1, . . . , gn is another com-

plete set of primitive orthogonal idempotents in A. Using [1, Theorem 27.10], we get

that m = n and there exists a permutation σ such that Agi ≅ Afσ(i), for i = 1, . . . , n.

Thus gi = (gibifσ(i))(fσ(i)aigi) and fσ(i) = (fσ(i)aigi)(gibifσ(i)), with ai, bi ∈ A. Setting

a = ∑ni=1(fσ(i)aigi), we see that a−1 = ∑ni=1(gibifσ(i)) and gi = a−1fσ(i)a. Set

L = Paσ(1) ⊕ . . .⊕ Paσ(r) ,

p = (πσ(1), . . . , πσ(r))Ta−1 ∶X → L,

q = a(ισ(1), . . . , ισ(r)) ∶ L→X.

Then f = qp and pq = 1L. This yields an isomorphism piY ∶M → Paσ(1) ⊕ . . .⊕ Paσ(r) with

inverse πY q.

For Λ a locally finite-dimensional algebra, we shall now define an exact contravariant

functor D ∶ ModΛ○ → ModΛ as follows. Given a module M ∈ ModΛ○, set DM ∶=

⊕x∈Q0Homk(exM,k). Given f ∈ Homk(exM,k) and u ∈ ezΛey with x, y, z ∈ Q0, we define

f ⋅u ∈ Homk(eyM,k) by setting (f ⋅u)(m) = f(ex ⋅u⋅m) form ∈ eyM . In particular, f ⋅ex = f
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and f ⋅ u = 0 in case z ≠ x. This makes DM into a unitary module in ModΛ. Given a

morphism ψ ∶M → N in ModΛ○, by restriction, we obtain k-linear maps ψx ∶ exM → exN

for x ∈ Q0. This gives rise to a morphism Dψ = ⊕x∈Q0 Homk(ψx, k) ∶ DN → DM in

ModΛ. Similarly, we have an exact contravariant functor D ∶ ModΛ → ModΛ○. Note

that both of these functors preserve locally finite-dimensional modules. Thus we get

restricted functors D ∶modΛ○ →modΛ and D ∶modΛ→modΛ○.

Proposition 1.4.3. The functors D ∶ modΛ○ → modΛ and D ∶ modΛ → modΛ○ are

mutually quasi-inverse dualities.

Proof. We will show that D2 ∶ modΛ → modΛ is isomorphic to the identity functor on

modΛ. The proof for D2 ∶modΛ○ →modΛ○ will be similar.

We first define a map ϕM ∶ M → D2(M) for all M ∈ modΛ. Let m ∈ M . Since M is

unitary, m = ∑x∈Q0
mx with mx ∈ Mex. By definition, D2(M) = ⊕y∈Q0Homk(eyDM,k).

We define ϕ(m) as follows. Let fy ∶ eyDM → k be the map ey ⋅ (gx)x∈Q0 ↦ gy(my), where

gx ∈ Homk(Mex, k). Set ϕM(m) ∶= (fy)y∈Q0 . Since mx = 0 for all but finitely many x ∈ Q0,

this map is well-defined. In order to show that it is a Λ-module homomorphism, it is

enough to show that ϕM(m ⋅ u) = ϕM(m) ⋅ u for u ∈ eyΛez with y, z ∈ Q0. This is true

because ϕM(m ⋅ u) = (fx)x∈Q0 , where fx ∶ exDM → k is the zero map for x ≠ z, and

fz ∶ ezDM → k is the map ez ⋅ (ga)a∈Q0 ↦ gz(my ⋅ u). Moreover, if ϕM(m) = (lx)x∈Q0 , then

ϕM(m) ⋅ u = (hx)x∈Q0 , where hx ∶ exDM → k is the zero map for x ≠ z and hz ∶ ezDM → k

is the map ez ⋅ (ga)a∈Q0 ↦ ly(u ⋅ (ga)a∈Q0) = (u ⋅ (ga)a∈Q0)y(my) = gz(my ⋅ u).

Now we show that ϕM is injective. Let 0 ≠ m ∈M . Then there exists some x ∈ Q0 such

that mx ≠ 0. Let ϕM(m) = (fy)y∈Q0 . Then fx((mx)∗) = 1, where (mx)∗ ∶Mex → k denotes

the linear map that takes the value 1 on mx, and 0 on other basis elements. This gives

that ϕM(m) ≠ 0.

Let x ∈ Q0. The restriction of ϕM to Mex gives an injective map Mex → Homk(exDM,k).
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Since M is locally finite-dimensional, both of the above modules are finite-dimensional,

and hence, Mex ≅ Homk(exDM,k). This gives that ϕM is an isomorphism for all M ∈

modΛ.

For a ∈ Q0, let P ○a denote the left Λ-module Λea. This module is projective by an analog

of Lemma 1.4.1 for left modules. Set Ia ∶=D(P ○a ).

Proposition 1.4.4. Ia is an injective module for all a ∈ Q0.

Proof. Suppose we have two morphisms i and g with i injective.

M I

N

g

i

Since D is an exact functor, we get that the map D(i) ∶ D(I) → D(M) is surjective.

Moreover, since D is a duality, D(Ia) ≅ P ○a . Thus it is projective, and there exists

h ∶D(Ia) →D(N) such that the following diagram commutes.

D(M) D(I)

D(N)

D(i)

h
D(g)

Then the map ϕ−1I ○ D(h) ○ ϕN ∶ N → I makes the first diagram commute, where

ϕ ∶ idmodΛ →D2 is the natural isomorphism obtained in the previous proposition.

Define injΛ to be the full subcategory of modΛ whose objects are finite direct sums of Ia,

a ∈ Q0. Since a finite direct sum of injective modules is injective, every module in injΛ is

injective.

Definition 1.4.4. Let M be an object of ModΛ. We say that M is
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1. finitely generated if there exists an epimorphism f ∶ P0 →M , for some P0 ∈ projΛ;

2. finitely presented if there exists an exact sequence

P1 → P0 →M → 0

for some P1, P0 ∈ projΛ.

We also have the following dual notions.

Definition 1.4.5. Let M be an object of ModΛ. We say that M is

1. finitely cogenerated if there exists a monomorphism f ∶M → I0, for some I0 ∈ injΛ;

2. finitely copresented if there exists an exact sequence

0→M → I0 → I1

for some I1, I0 ∈ injΛ.

We will denote the full subcategory of finitely presented modules in modΛ by mod+Λ

and the full subcategory of finitely co-presented modules by mod−Λ. We claim that both

of these categories are Krull-Schmidt categories for locally finite-dimensional algebras.

Definition 1.4.6. Let A be an additive category. Then A is said to be Krull-Schmidt

if every non-zero object in A decomposes into a finite direct sum of objects with local

endomorphism rings.

Theorem 1.4.1. [19, Theorem 6.1] Let A be a Hom-finite additive category. Then A is

Krull Schmidt if and only if A has split idempotents.

Theorem 1.4.2. Let Λ = kQ/I be a locally finite-dimensional algebra. Then, mod+Λ is

a Krull Schmidt category.
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Proof. We first prove that mod+Λ is Hom-finite. LetM,N ∈mod+Λ and P1 → P0 →M → 0

be a projective presentation of M with P1, P0 ∈ projΛ. Applying the left exact functor

HomΛ(−,N) to the above sequence, we get the following exact sequence

0→ HomΛ(M,N) → HomΛ(P0,N) → HomΛ(P1,N).

Since P0 ∈ projΛ, P0 ≅ ⊕ni=1Pai for ai ∈ Q0. Thus Hom(P0,N) ≅ ⊕ni=1Hom(Pai ,N) ≅ ⊕ni=1Neai ,

where the last isomorphism follows from Lemma 1.4.1. SinceN is locally finite-dimensional,

Neai is finite-dimensional for all i, and hence HomΛ(P0,N) is finite-dimensional. Thus

HomΛ(M,N) is finite-dimensional.

We now want to show that the idempotents in mod+Λ split. Let M ∈ mod+Λ and

e ∶M →M an idempotent. Then M ≅ e(M) ⊕ (1M − e)(M). Let P1
gÐ→ P0

fÐ→M → 0 be

a projective presentation of M with P1, P0 ∈ projΛ. Set N ∶= e(M) and N ′ ∶= (1 − e)(M)

and let πN ∶ M → N , πN ′ ∶ M → N ′, and ιN ∶ N → M , ιN ′ ∶ N ′ → M be the canonical

projections and injections respectively. Since P0 is projective, the following diagram

P0

P0 M 0

ιN ′πN ′f
h

f

implies that there exists h ∶ P0 → P0 making the above triangle commute. We claim that

the sequence P1 ⊕ P0

(−g,h)
ÐÐÐ→ P0

πNfÐÐ→ N → 0 is exact. Clearly, πNf is surjective being a

composition of two surjective maps. Moreover,

(πNf)(−g, h) = (−πNfg, πNfh) = (0, πN ιN ′πN ′f) = (0,0).

Now suppose p ∈ Ker(πNf). Then f(p) ∈ N ′ and fh(p) = ιN ′πN ′f(p) = f(p). Thus

h(p) − p ∈ Ker(f) = Im(g). Thus there exists some q ∈ P1 such that g(q) = h(p) − p and

(−g, h)(q, p) = p. This shows that N ∈mod+Λ and e splits.
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CHAPTER 2

Auslander-Reiten theory

In this chapter, we will give a brief introduction to the Auslander-Reiten theory for

finite-dimensional algebras over k, although everything stated here also holds for any

Artin algebra over k. As we saw in the previous chapters, quiver-theoretical techniques

provide a convenient way to visualise finite-dimensional algebras and certain modules over

them. However, to actually compute all the finite-dimensional indecomposable modules

and the homomorphisms between them, we need other tools. The notions of irreducible

morphisms and almost split sequences are particularly useful for that. These were first

formally introduced by Auslander [6], and Auslander and Reiten [8].

Throughout this chapter, Λ will denote a finite-dimensional algebra over k, unless stated

otherwise. Moreover, all Λ-modules will be finite-dimensional.

2.1 Radical of a category

In this section, we will define the notion of the radical of a k-linear category A, which

generalizes the notion of the radical of an algebra when A = modΛ. We recall that a
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morphism is called a retraction (resp. section) if it has a right inverse (resp. left inverse)

in A.

Definition 2.1.1. Let A be a k-linear category. An ideal I of A is given by the following

data: for each pair (X,Y ) of objects of A, a k-subspace I(X,Y ) of A(X,Y ) such that

1. f ∈ I(X,Y ) and g ∈ C(Y,Z) implies g ○ f ∈ I(X,Z).

2. f ∈ I(X,Y ) and h ∈ C(W,X) implies f ○ h ∈ I(W,Y ).

Definition 2.1.2. Let I be an ideal of a k-linear category A. We define the quotient

A/I of A by I as follows.

ob(A/I) ∶= ob(A)

A/I(A,B) ∶= A(A,B)/I(A,B)

for A,B ∈ A0. Let f ∶ X → Y , g ∶ Y → Z be two morphisms in A. We define their

composition in A/I as

(g + I(Y,Z)) ○ (f + I(X,Y )) = g ○ f + I(X,Z).

Examples 2.1.1. The following two examples will be important for us in the next chapter.

1. Let Λ be a k-algebra. Let P be the ideal of modΛ formed by morphisms that factor

through a module in projΛ. The quotient category modΛ = modΛ/P is called the

projectively stable category.

2. Let I be the ideal of modΛ formed by morphisms that factor through a module

in injΛ. The quotient category modΛ = modΛ/I is called the injectively stable

category.

As in the case of algebras, we can also define the powers of an ideal of a category.

21



Definition 2.1.3. Let I an ideal of A. Set I1 ∶= I. For m > 1, we define Im inductively

as follows. For two objects X,Y ∈ A0,

Im(X,Y ) ∶= {g ○ f ∣ g ∈ Im−1(Z,Y ), h ∈ I(X,Z)}.

We also define I∞ as

I∞(X,Y ) ∶= ⋂
m≥1
Im(X,Y ).

Definition 2.1.4. [3, Lemma I.5.2] The radical of a k-category A is an ideal radA,

such that for each pair (X,Y ) of objects of A, radA(X,Y ) is the collection of morphisms

f ∈ A(X,Y ) such that 1Y − f ○ g is a retraction for all g ∶ Y → X. The morphisms lying

in some radA(X,Y ) are called radical morphisms.

The following theorem gives several equivalent characterizations of the radical.

Theorem 2.1.1. [4, Theorem II.1.17] Let A be a k-category. A morphism f ∶X → Y of

A is a radical morphism if and only if one of the following equivalent conditions holds.

1. 1Y − f ○ g is a retraction for all g ∶ Y →X;

2. 1X − g ○ f is a section for all g ∶ Y →X;

3. f ○ g ∈ rad(EndAY ) for all g ∶ Y →X;

4. g ○ f ∈ rad(EndAX) for all g ∶ Y →X;

5. f ∈ F (X) for all maximal sub-functors F of A(−, Y );

6. f ∈ F (Y ) for all maximal sub-functors F of A(X,−).

Now, we specify A = modΛ. If X,Y in modΛ, we will simply write radmodΛ(X,Y ) as

radΛ(X,Y ). In case X or Y is indecomposable, the description of radΛ(X,Y ) becomes

simpler.
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Proposition 2.1.1. [4, Corollary II.1.10] Let f ∶M → N be a morphism of Λ-modules.

1. If M is indecomposable, then f is radical if and only if f is not a section.

2. If N is indecomposable, then f is radical if and only if f is not a retraction.

2.2 Irreducible morphisms

The last proposition indicates that the essential information about modΛ is contained in

its radical, hence we want to have a method to construct all the radical morphisms of

modΛ. In this section, we introduce the notion of irreducible morphisms which are an

analogue of indecomposable modules for radical morphisms, i.e., the smallest building

blocks for such morphisms.

Definition 2.2.1. A homomorphism f ∶ X → Y in modΛ is said to be irreducible pro-

vided:

1. f is neither a section nor a retraction,

2. if f = f1 ○ f2, either f1 is a retraction or f2 is a section.

The next lemma gives us a relation between irreducible morphisms and the radical of

modΛ. It shows that when X,Y are indecomposable, the quotient space radΛ(X,Y )
rad2Λ(X,Y )

mea-

sures the irreducible morphisms from X to Y .

Lemma 2.2.1. [5, Lemma IV.1.6] Let X,Y be indecomposable modules in modΛ. A

morphism f ∶X → Y is irreducible if and only if f ∈ radΛ(X,Y ) ∖ rad2
Λ(X,Y ).

Irreducible morphisms can also help us find some indecomposable modules over Λ.
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Lemma 2.2.2. [4, Corollary II.2.9]

1. The cokernel of an irreducible monomorphism is indecomposable.

2. The kernel of an irreducible epimorphism is indecomposable.

The following results make it precise how irreducible morphisms ‘generate’ all the radical

morphisms. Although the proofs use machinery from the next section, we state them

here for the sake of completion.

Proposition 2.2.1. [4, Proposition II.4.4] Let M,N be indecomposable modules and

f ∈ radnΛ(M,N) for some n ≥ 2. Then

1. There exist s indecomposable modules X1, . . . ,Xs and morphisms M
hiÐ→Xi

giÐ→ N

with hi ∈ radΛ(M,Xi) and gi a sum of compositions of n − 1 radical morphisms

between indecomposable modules such that f = ∑si=1 gi ○ hi. If, in addition, f is not

in radn+1Λ (M,N), then at least one of the hi is irreducible and f can be written as

f = u + v, where u is a sum of compositions of n irreducible morphisms between

indecomposable modules and v ∈ radn+1Λ (M,N).

2. There exist s indecomposable modules X1, . . . ,Xs and morphisms M
hiÐ→Xi

giÐ→ N

with gi ∈ radΛ(Xi,N) and hi a sum of compositions of n − 1 radical morphisms

between indecomposable modules such that f = ∑si=1 gi ○ hi. If, in addition, f is not

in radn+1Λ (M,N), then at least one of the gi is irreducible and f can be written

as f = u + v, where u is a sum of compositions of irreducible morphisms between

indecomposable modules and v ∈ radn+1Λ (M,N).

Corollary 2.2.1. [4, Corollary II.4.5] Let M,N be indecomposable modules. Then, every

radical morphism f ∈ radΛ(M,N) can be written as f = u+v, where u is a sum of compo-

sitions of irreducible morphisms, and v ∈ rad∞Λ (M,N). In particular, if rad∞Λ (M,N) = 0,

then f is a sum of compositions of radical morphisms.
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2.3 Almost split morphisms and minimal morphisms

As stated before, the consideration of irreducible morphisms came from the need to

identify building blocks for radical morphisms, so that other radical morphisms could be

obtained from the irreducible ones by successive compositions and linear combinations.

Therefore, the next step is to study the factorisation behaviour of radical morphisms.

Definition 2.3.1. Let L,M,N be Λ-modules.

1. A morphism f ∶ L → M is called left almost split if it is not a section and for

every morphism u ∶ L → U that is not a section there exists u′ ∶ M → U such that

u′ ○ f = u.

2. A morphism g ∶M → N is called right almost split if it is not a retraction and for

every morphism v ∶ V → N that is not a retraction, there exists v′ ∶ V → M such

that g ○ v′ = v.

We will state some families of examples of left and right almost split morphisms below.

The proofs for these can be found in [5].

Examples 2.3.1. 1. Let P be a projective indecomposable Λ-module. Then the inclu-

sion j ∶ radP → P is right almost split.

2. Dually, if I is an injective indecomposable, then the projection I → I/socI is left

almost split.

3. Suppose f ∶ L → M is left almost split and f ′ ∶ L → M ′ is radical. Then the

morphism

[f
f ′
] ∶ L→M ⊕M ′

is also left almost split.
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4. Dually, if g ∶M → N is right almost split and g′ ∶M ′ → N is radical, then

[g g′] ∶M ⊕M ′ → N

is also right almost split.

The last example suggests that the ‘good’ almost split morphisms should satisfy some

‘minimality’ condition, namely that the target of a left almost split morphism or the

source of a right almost split morphism should be as small as possible.

Definition 2.3.2. 1. A morphism f ∶ L → M is called left minimal if for every

h ∈ EndM such that h ○ f = f , h is an automorphism.

2. A morphism g ∶ M → N is called right minimal if for every h ∈ EndM such that

g ○ h = g, h is an automorphism.

The following proposition shows that this is indeed the correct notion of minimality we

wanted for almost split morphisms.

Proposition 2.3.1. [4, Proposition II.2.19]

1. Let f ∶ L→M be a left almost split morphism. Then, f is left minimal if and only

if its target M has the least length among the targets of left almost split morphisms

with source L. In addition, this condition uniquely determines f up to isomorphism.

2. Let g ∶ M → N be a right almost split morphism. Then, g is right minimal if and

only if its source M has the least length among the sources of right almost split

morphisms with target N . In addition, this condition uniquely determines g up to

isomorphism.

Definition 2.3.3. 1. A morphism is called minimal left almost split if it is left min-

imal and left almost split.
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2. A morphism is called minimal right almost split if it is right minimal and right

almost split.

Example 2.3.1. [5] For every indecomposable projective module P , the inclusion mor-

phism rad(P ) → P is minimal right almost split. Dually, for every indecomposable injec-

tive module I, the projection I → I/soc(I) is minimal left almost split.

The following set of results gives a connection between irreducible morphisms and almost

split morphisms.

Lemma 2.3.1. Every irreducible morphism is both left and right minimal.

Proof. We just give a proof for left minimality. The proof for right minimality is similar.

Let f ∶ L → M be irreducible and h ∈ EndM be such that h ○ f = f . Since f is not a

section, h must be a retraction, and in particular an epimorphism. But then h is an

automorphism because M is finite-dimensional.

Lemma 2.3.2. Every nonzero minimal left or right almost split morphism is irreducible.

Proof. We only prove the statement for minimal left almost split morphisms, the other

case being dual. Let f ∶ L → M be a minimal left almost split morphism. Then by

definition, f is not a section. It is not a retraction either, because otherwise the inde-

composability of L would imply that it is an isomorphism, and hence a section, which is

a contradiction.

Now assume that f = f1 ○ f2 with f2 ∶ L → X and f1 ∶ X → M . Suppose that f2 is not

a section. Since f is left almost split, there exists f ′2 ∶ M → X such that f2 = f ′2 ○ f .

But then f = f1 ○ f2 = f1 ○ f ′2 ○ f and the left minimality of f yields that f1 ○ f ′2 is an

automorphism. Hence, f1 is a retraction.

27



The next theorem is often called the structure theorem for irreducible morphisms. It says

that irreducible morphisms with a given indecomposable source (or target) are exactly

those morphisms that can be completed to a minimal almost split morphism having the

same source (or target respectively).

Theorem 2.3.1. [4, Theorem II.2.24]

1. Let f ∶ L → M be minimal left almost split. Then, f ′ ∶ L → M ′ is irreducible with

M ′ ≠ 0 if and only if there exists a decomposition M = M ′ ⊕M ′′ and a morphism

f ′′ ∶ L→M ′′ such that [f
′

f ′′
] ∶ L→M is minimal left almost split.

2. Let g ∶M → N be minimal right almost split. Then, g′ ∶M ′ → N is irreducible with

M ′ ≠ 0 if and only if there exists a decomposition M = M ′ ⊕M ′′ and a morphism

g′′ ∶M ′′ → N such that [g′ g′′] ∶M → N is minimal right almost split.

2.4 Almost split sequences

In this section, we will present the notion of almost split sequences which are particularly

important in the representation theory of algebras. We will also show that there exist

sufficiently many minimal almost split morphisms inside the module category, in the

sense that every indecomposable module is a source or target of a minimal almost split

morphism.

Definition 2.4.1. A short exact sequence 0→ L
fÐ→M

gÐ→ N → 0 is called an almost split

sequence (or an Auslander–Reiten sequence) if f and g are irreducible morphisms.

Remarks 2.4.1. 1. Because irreducible morphisms never split, an almost split se-

quence never splits.
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2. Because of Lemma 2.2.2, f irreducible implies N indecomposable, and g irreducible

implies L indecomposable: an almost split sequence always has indecomposable end

terms.

3. Lemma 2.3.1 implies that both f and g are left and right minimal.

Example 2.4.1. [3, Example III.2.22] Let Λ be the algebra given by Q = 3 aÐ→ 2
bÐ→ 1 and

ρ = {ab}. Then one can check that the sequence

0→ S2 → P3 → S3 → 0

is almost split as both of the morphisms are irreducible.

The following theorem gives several equivalent characterizations of almost split sequences.

Theorem 2.4.1. [3, Theorem III.2.25] Let 0 → L
fÐ→ M

gÐ→ N → 0 be a short exact

sequence in modΛ. The following are equivalent:

1. The given sequence is almost split.

2. L is indecomposable, and g is right almost split.

3. N is indecomposable, and f is left almost split.

4. The homomorphism f is minimal left almost split.

5. The homomorphism g is minimal right almost split.

Corollary 2.4.1. An almost split sequence 0→ L
fÐ→M

gÐ→ N → 0 is uniquely determined

by L (or by N) up to isomorphism.

Proof. Let 0 → L
f ′Ð→ M ′ g′Ð→ N ′ → 0 be another almost split sequence. Since f and

f ′ are minimal left almost split, it follows from Proposition 2.3.1 that there exists an
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isomorphism h ∶M →M ′ such that h○f = f ′. Passing to cokernels, we get an isomorphism

h′ ∶ N → N ′ such that h′ ○ g = g′ ○ h Thus, the sequences are isomorphic. The proof is

similar when we fix N .

We finally arrive at the theorem of the existence of almost split sequences.

Theorem 2.4.2. [4, Theorem II.3.12] Let N be a non-projective indecomposable Λ-

module, or L a non-injective indecomposable Λ-module. Then there exists an almost

split sequence

0→ L
fÐ→M

gÐ→ N → 0.

Moreover, this sequence is uniquely determined by N , or by L, up to isomorphism.

For a non-projective indecomposable module N , the module L obtained from the above

theorem is the Auslander-Reiten translate, denoted τ(N), of N . Dually, for a non-

injective indecomposable module L, the module N obtained from the above theorem is

denoted by τ−(N). We will give the precise definition of τ in the next chapter.

As an easy consequence of the last theorem, we get that the module category contains

enough minimal almost split morphisms.

Corollary 2.4.2. 1. If N is an indecomposable Λ-module, then there exists a minimal

right almost split morphism g ∶M → N .

2. If L is an indecomposable Λ-module, then there exists a minimal left almost split

morphism f ∶ L→M .

Proof. We only prove (2); the proof of (1) is dual. If L is injective, then the projection

π ∶ L → L/soc(L) is minimal left almost split. Otherwise, there exists an almost split

sequence 0→ L
fÐ→M

gÐ→ N → 0 in which the morphism f is minimal left almost split.
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CHAPTER 3

Auslander-Reiten theory for locally

semi-perfect algebras

In this chapter, our goal will be to prove the Auslander-Reiten formula for locally semi-

perfect algebras defined by quivers with relations, which, in turn, would imply the exis-

tence of almost split exact sequences in the module category of such algebras. We will

define appropriate generalizations of the Nakayama functor and the Auslander-Reiten

translate from the finite-dimensional case.

Throughout this chapter, Λ = kQ/⟨ρ⟩ will denote a locally finite-dimensional algebra,

unless stated otherwise.

3.1 The transpose functor

Let M ∈ ModΛ. Then M is a right Λ-module. We want to define a left Λ-module

structure on ⊕x∈Q0HomΛ(M,exΛ). We will denote this module by M t. Let x ∈ Q0. Since
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Λ = ⊕y,z∈Q0eyΛez, it is enough to define the action of eyΛez on HomΛ(M,exΛ) and then

extend bilinearly. Let f ∈ HomΛ(M,exΛ) and a ∈ eyΛez. We define a ⋅ f ∈ HomΛ(M,eyΛ)

such that (a ⋅ f)(m) ∶= af(m) for all m ∈M . Note that if z ≠ x, then a ⋅ f = 0.

We need to check that this does make M t into a left Λ-module, i.e., we need to check

that if a ∈ eyΛez and b ∈ ey′Λez′ , then (ab) ⋅ f = a ⋅ (b ⋅ f). Let m ∈M . Then

((ab) ⋅ f)(m) = (ab)f(m) = a(b(f(m))) = (a ⋅ (b ⋅ f))(m),

where we have used the associativity of Λ for the second equality. This shows that M t

is indeed a left Λ-module. It is also a unitary module because ex ⋅M t = HomΛ(M,exΛ).

Moreover, given a morphism φ ∶ M → N in ModΛ, we define φt = ⊕x∈Q0HomΛ(φ, exΛ).

This yields a contravariant functor (−)t ∶ ModΛ → ModΛ○. Similarly, we have a con-

travariant functor (−)t ∶ModΛ○ →ModΛ.

Lemma 3.1.1. (−)t is a left-exact functor.

Proof. Suppose we have the following short exact sequence in ModΛ:

0→ L
fÐ→M

gÐ→ N → 0.

Applying (−)t to this, we get the chain complex

0→ ⊕x∈Q0HomΛ(N,exΛ)
g′Ð→ ⊕x∈Q0HomΛ(M,exΛ)

f ′Ð→ ⊕x∈Q0HomΛ(L, exΛ),

where g′ = ⊕x∈Q0HomΛ(g, exΛ) and f ′ = ⊕x∈Q0HomΛ(f, exΛ). We first show that g′ is

injective. Let (nx)x∈Q0 ∈ ⊕x∈Q0HomΛ(N,exΛ) such that g′((nx)x∈Q0) = (nx ○ g)x∈Q0 = 0.

This implies that nx ○ g = 0 for all x ∈ Q0. Since g is an epimorphism, this implies that

nx = 0 for all x ∈ Q0.

Now let (mx)x∈Q0 ∈ ⊕x∈Q0HomΛ(M,exΛ) be such that f ′((mx)x∈Q0) = (mx ○ f)x∈Q0 = 0.

Let J = {x ∈ Q0 ∣ mx ≠ 0}. By definition, J is a finite set. Since mx ○ f = 0, mx factors
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through the cokernel of f , i.e., there exists some nx ∶ N → exΛ such that nx ○ g = mx.

Note that for x ∉ J , we can choose nx = 0. Then (nx)x∈Q0 ∈ ⊕x∈Q0HomΛ(N,exΛ) and

g′((nx)x∈Q0) = (mx)x∈Q0 .

Proposition 3.1.1. Let Λ = kQ/I be a locally finite-dimensional algebra. Then the

functor (−)t induces a duality (−)t ∶ projΛ→ projΛ○.

Proof. Let a ∈ Q0. We claim that (eaΛ)t ≅ Λea and (Λea)t ≅ eaΛ. We will only prove the

first isomorphism. The proof of the second will be dual.

We first define a map ϕa ∶ (eaΛ)t → Λea. Let (fx)x∈Q0 ∈ (eaΛ)t = ⊕x∈Q0HomΛ(eaΛ, exΛ).

Since fx is a Λ-module homomorphism, fx(ea) = fx(ea ⋅ea) = fx(ea)⋅ea, which implies that

fx(ea) ∈ exΛea for all x ∈ Q0. We set ϕ((fx)x∈Q0) ∶= ∑x∈Q0
fx(ea). Since fx = 0 for all but

finitely many x ∈ Q0, this map is well-defined. Clearly, ϕ is k-linear. In order to show that

it is a Λ-module homomorphism, it is enough to show that u ⋅ϕ((fx)x∈Q0) = ϕ(u ⋅(fx)x∈Q0)

for u ∈ eyΛez with y, z ∈ Q0. This is true because

ϕ(u ⋅ (fx)x∈Q0) = ∑
x∈Q0

(u ⋅ (fx))(ea) = ∑
x∈Q0

u ⋅ fx(ea) = u ⋅ ϕ((fx)x∈Q0).

Since {ex ∣ x ∈ Q0} is a complete set of idempotents in Λ, Λea ≅ ⊕x∈Q0exΛea as vector

spaces. Hence, if ϕ((fx)x∈Q0) = ∑x∈Q0
fx(ea) = 0, then fx = 0 for all x ∈ Q0. This shows

that ϕ is injective. Moreover, for u ∈ Λea, u can be uniquely written as u = ∑x∈Q0
ux with

ux ∈ exΛea. Defining fx ∶ eaΛ→ exΛ as ea ⋅µ↦ ux ⋅µ for µ ∈ Λ, we get that ϕ((fx)x∈Q0) = u.

Hence ϕ is surjective.

Dually we get an isomorphism ψa ∶ (Λea)t → eaΛ. Thus, for all a ∈ Q0, we get iso-

morphisms (ϕa)t(ψa)−1 ∶ eaΛ → (eaΛ)tt and (ψa)t(ϕa)−1 ∶ Λea → (Λea)tt. Moreover,

these isomorphisms are natural in the sense that for all morphisms p ∶ eaΛ → ebΛ and

q ∶ Λea → Λeb with a, b ∈ Q0, the following diagrams commute:
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eaΛ ebΛ Λea Λeb

(eaΛ)tt (ebΛ)tt (Λea)tt (Λeb)tt

p

(ϕa)t(ψa)−1 (ϕb)t(ψb)−1

q

(ψa)t(ϕa)−1 (ψb)t(ϕb)−1

ptt qtt

Since (−)t is an additive functor and projΛ and projΛ○ are additively generated by eaΛ

and Λea respectively, we get that (−)t ∶ projΛ→ projΛ○ is a duality.

3.2 Nakayama functor

We now consider the composite endo-functors ν = D ○ (−)t ∶ ModΛ → ModΛ and

ν− = (−)t ○D ∶ModΛ→ModΛ, and call ν the Nakayama functor.

Lemma 3.2.1. Let Λ = kQ/⟨ρ⟩ be a locally finite-dimensional algebra. Then the Nakayama

functor ν restricts to a duality ν ∶ projΛ→ injΛ with a quasi-inverse ν− ∶ injΛ→ projΛ.

Proof. Let a ∈ Q0. We have a k-linear isomorphism

(Pa)t = ⊕x∈Q0HomΛ(eaΛ, exΛ) ≅ ⊕x∈Q0exΛea = Λea.

It is easy to verify that this is indeed a Λ-linear isomorphism. Thus, ν(Pa) ≅ Ia. Moreover,

we have:

ν−(Ia) = ⊕x∈Q0HomΛ○(D2(Λea),Λex) ≅ ⊕x∈Q0HomΛ○(Λea,Λex) ≅ ⊕x∈Q0eaΛex ≅ eaΛ.

This shows that ν and ν− are quasi-inverse of each other.

3.3 Auslander-Reiten translation

We now define the notion of transposition for a finitely-presented module. We first start

by proving some preliminary results we need to do this.
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Lemma 3.3.1. Let Λ be a locally semi-perfect algebra. Then, projΛ is a Krull-Schmidt

category and contains all finitely generated projective modules in modΛ. Moreover,

mod+Λ is also a Krull-Schmidt category.

Proof. Since projΛ is a full subcategory of mod+Λ, it is Hom-finite by the proof of

Theorem 1.4.2. Moreover, by Proposition 1.4.2, it is closed under direct summands,

i.e., the idempotents split. Therefore, using Theorem 1.4.1, it is a Krull-Schmidt cate-

gory. This implies that every non-zero object in mod+Λ decomposes into a finite direct

sum of objects with local endomorphism rings. Note that if Endmod+Λ(M) is local for

M ∈ mod+Λ, then End(M) ∶= Endmod+Λ(M) is either 0 or local. This is because by defi-

nition End(M) = End(M)/P(M,M). If P(M,M) ≠ End(M), then it is contained in the

unique maximal ideal rad(End(M)) of End(M). Thus, rad(End(M))
P(M,M) will be the unique

maximal ideal of End(M)
P(M,M) . Thus, mod+Λ is also a Krull-Schmidt category.

Throughout the rest of this chapter, we will assume Λ to be a locally semi-perfect algebra.

Given a module P ∈ projΛ, we denote by addP the full additive subcategory of projΛ

generated by the indecomposable direct summands of P .

Lemma 3.3.2. Let Σ = EndΛ(P ), where P is a non-zero module in projΛ. The exact

functor HomΛ(P,−) ∶ModΛ →ModΣ restricts to an equivalence EP ∶ addP → projΣ. In

particular, a morphism f in addP is a section (respectively, retraction, isomorphism) if

and only if so is EP (f).

Proof. Let M ∈ModΛ, f ∈ HomΛ(P,M), and σ ∈ Σ. Then

f ⋅ σ ∶= f ○ σ

defines a right Σ-module structure on HomΛ(P,M). Since P ∈ projΛ, we can write

P = P1 ⊕ ⋯ ⊕ Pn, where the Pi are indecomposable. Let pi ∶ P → Pi be the canonical
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projections and qi ∶ Pi → P the canonical injections. Set ei = qipi, for i = 1, . . . , n. Clearly

{e1, . . . , en} is a complete set of orthogonal idempotents of Σ. We claim that each ei is

primitive. This is because if ei = a + b, where a, b are orthogonal idempotents in Σ, then

Pi ≅ a(P ) ⊕ b(P ), and the indecomposability of Pi implies that either a = 0 or b = 0.

Thus {e1, . . . , en} is a complete set of primitive orthogonal idempotents of Σ. Since Σ

is a finite-dimensional algebra, therefore, e1Σ, . . . , enΣ are precisely the indecomposable

objects in projΣ ([2, Theorem VIII.1.9]).

Note that the restriction of EP (pi) to eiΣ, that is EP (pi) ∶ eiΣ → HomΛ(P,Pi), is a

Σ-isomorphism with the inverse given by EP (qi) ∶ HomΛ(P,Pi) → eiΣ. Since projΣ is

additively generated by eiΣ and EP is an additive functor, we get that EP is dense.

Given any 1 ≤ i, j ≤ n, we claim that EP induces a Σ-isomorphism

EP ∶ HomΛ(Pi, Pj) → HomΣ(HomΛ(P,Pi),HomΛ(P,Pj)).

Define H ∶ HomΣ(HomΛ(P,Pi),HomΛ(P,Pj)) → HomΛ(Pi, Pj) as f ↦ f(pi)qi. Then, for

g ∈ HomΛ(Pi, Pj), f ∈ HomΣ(HomΛ(P,Pi),HomΛ(P,Pj)), and h ∈ HomΛ(P,Pi), we get

that (HEP )(g) = Ep(g)(pi)qi = gpiqi = g and

(EPH)(f)(h) =H(f)h = f(pi)qih = f(piqih) = f(h),

where the second last equality holds because f is a Σ-homomorphism. Thus H is the

inverse of EP . Again, since EP is an additive functor and addP is additively generated

by Pi, we get that EP is a fully faithful functor. Thus the restriction of EP is an

equivalence.

Definition 3.3.1. A morphism f ∶M → N in modΛ is called right minimal if any map

g ∶M →M , such that fg = f , is an automorphism.

Lemma 3.3.3. Let f ∶M → N be a right minimal morphism in modΛ. If M =M1 ⊕M2

is a proper decomposition, then the restriction f ∣Mi
is non-zero, for i = 1,2.
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Proof. Let M = M1 ⊕M2 be a proper decomposition with pi ∶ M → Mi the canonical

projection and qi ∶ Mi → M the canonical injection, for i = 1,2. Then 1M = q1p1 + q2p2.

Assume that f ∣M1= 0, that is fq1 = 0. Then f = f(q1p1 + q2p2) = fq2p2. Since f is right

minimal, q2p2 is an isomorphism. In particular, p2 is a section, and hence an isomorphism.

This gives that M1 = 0, a contradiction.

Definition 3.3.2. Let M,N ∈ modΛ. An epimorphism f ∶ M → N is called essential

if whenever fg is an epimorphism for g ∶ M ′ → M with M ′ ∈ modΛ, then g is also an

epimorphism.

Definition 3.3.3. Let M ∈modΛ. A projective cover of M is an essential epimorphism

p ∶ P →M with P ∈ projΛ.

We also have the dual notions of essential monomorphisms and injective envelopes.

Definition 3.3.4. Let M,N ∈ modΛ. A monomorphism f ∶ M → N is called essential

if whenever gf is a monomorphism for g ∶ N → N ′ with N ′ ∈ modΛ, then g is also a

monomorphism.

Definition 3.3.5. Let M ∈modΛ. An injective envelope of M is an essential monomor-

phism p ∶M → I with I ∈ injΛ.

Lemma 3.3.4. Let P ∈ projΛ and M ∈ modΛ. Then an epimorphism p ∶ P → M is a

projective cover of M if and only if p is right minimal.

Proof. Suppose p is a projective cover of M and f ∶ P → P such that pf = p. Since p is

an essential epimorphism and pf is an epimorphism, f is an epimorphism. Thus there

exists f ′ ∶ P → P such that ff ′ = 1P since P is projective. Therefore pff ′ = pf ′ = p and

f ′ is also an epi. But f ′ is a monomorphism, so it is an isomorphism, and so is f .

Conversely, assume that p is right minimal. Let f ∶ N → P be a morphism such that

pf is an epimorphism. Then p factors through pf via a morphism g ∶ P → N since P is
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projective. Since p is right minimal, the composite fg is an isomorphism, and therefore

f is an epimorphism. Thus p is essential.

Lemma 3.3.5. Let p ∶ P →M be an epimorphism in modΛ with P ∈ projΛ. Then there

exists a decomposition P = P1 ⊕ P2 such that p ∣P1 is right minimal and p ∣P2= 0.

Proof. We may assume that P is non-zero. Since projΛ is Krull-Schmidt, P is a finite

direct sum of indecomposable objects with local endomorphism rings. Hence Σ ∶= End(P )

is semi-perfect ([18, Proposition 1.1]). Since P is projective,

p∗ = Hom(P, p) ∶ HomΛ(P,P ) → HomΛ(P,M)

is a Σ-epimorphism. Thus, there exists a Σ-projective cover q ∶ L → HomΛ(P,M) ([1,

Theorem 27.6]). Since Σ is Σ-projective, there exist Σ-morphisms π ∶ Σ→ L and µ ∶ L→ Σ

such that q = p∗µ, p∗ = qπ and πµ = 1L.

Using Lemma 3.3.2, we know that Hom(P,−) ∶ addP → projΣ is an equivalence. Thus

there exist morphisms µ′ ∶ P ′ → P and π′ ∶ P → P ′ in addP such that L = HomΛ(P,P ′),

π = Hom(P,π′) and µ = Hom(P,µ′). Since πµ = 1L, we get π′µ′ = 1P ′ , and hence, µ′π′ is

an idempotent in Σ. Since projΛ is Krull-Schmidt, there exist morphisms π′′ ∶ P → P ′′

and µ′′ ∶ P ′′ → P such that µ′′π′′ = 1P −µ′π′. This yields a decomposition P ≅ P ′⊕P ′′. Set

p′ = pµ′ ∶ P ′ →M and p′′ = pµ′′ ∶ P ′′ →M . Since q = p∗µ = Hom(P, pµ′) is right minimal,

by Lemma 3.3.1, p′ is right minimal. Moreover, HomΛ(P,µ′′π′′) = HomΛ(P,1P − µ′π′) =

1Σ − µπ, and hence,

HomΛ(P, pµ′′ϵ′′) = p∗ ○HomΛ(P,µ′′ϵ′′) = p∗(1Σ − µπ) = p∗ − qπ = 0.

By Lemma 3.3.1, pµ′′π′′ = 0. Since π′′ is an epimorphism, pµ′′ = 0. That is p′′ = p ∣P2= 0.

Proposition 3.3.1. Every finitely generated module in modΛ admits a projective cover

in projΛ, which is unique up to an isomorphism.
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Proof. Let M be a finitely generated module in modΛ. Then there exists an epimorphism

p ∶ P → M with P ∈ projΛ. Using Lemma 3.3.5, we get that p = (p1 p2) ∶ P1 ⊕ P2 → M

such that p1 is right minimal and p2 = 0. Consequently, p1 ∶ P1 →M is an epimorphism.

By Lemma 3.3.4, p1 is a projective cover of M .

Now suppose p ∶ P → M and p′ ∶ P ′ → M are two projective covers of M . Then there

exist epimorphisms u ∶ P → P ′ and v ∶ P ′ → P such that p′u = p and pv = p′. Thus pvu = p

and p′uv = p′. Since p, p′ are right minimal (Lemma 3.3.4), we get that vu and uv are

isomorphisms, and hence u, v are isomorphisms.

Definition 3.3.6. Let M ∈ mod+Λ. A projective presentation P1
fÐ→ P0

gÐ→ M → 0 is

called minimal if g is a projective cover of M and f corestricts to a projective cover

f ′ ∶ P1 → Im(f).

Definition 3.3.7. Let M ∈ mod−Λ. An injective presentation 0 → M
fÐ→ I0

gÐ→ I1 is

called minimal if f is an injective envelope of M and g restricts to an injective envelope

g′ ∶ Ker(g) → I1.

Lemma 3.3.6. Every module M ∈ mod+Λ admits a minimal projective presentation,

which is unique up to an isomorphism.

Proof. Since M ∈ mod+Λ, there exists an exact sequence P1
fÐ→ P0

gÐ→ M → 0 with

P1, P0 ∈ projΛ. In particular, M is finitely generated, and Proposition 3.3.1 implies that

M admits a projective cover p′0 ∶ P ′0 → M . Since P0 is projective and p′0 is essential,

there exists an epimorphism q ∶ P0 → P ′0 such that p′0q = g. We claim that the image of

qf ∶ P1 → P ′0 is Ker(p′0). Since p′0qf = gf = 0, Im(qf) ⊆ Ker(p′0). Let a ∈ Ker(p′0). Since

q is an epi, there exists b ∈ P0 such that q(b) = a. Now g(b) = p′0(q(b)) = p′0(a) = 0, which

implies that b ∈ Ker(g), and hence there exists some c ∈ P1 such that f(c) = b. Thus

(qf)(c) = a and Im(qf) = Ker(p′0). This gives that Ker(p′0) is finitely generated and

hence, using Proposition 3.3.1, it admits a projective cover p1 ∶ P ′1 → Ker(p′0). Setting
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p′1 = jp1 ∶ P ′1 → P ′0, where j ∶ Ker(p′0) → P ′0 is the inclusion map, we get that P ′1
p′1Ð→ P ′0

p′0Ð→

M → 0 is a minimal projective presentation of M .

Now suppose P1
p1Ð→ P0

p0Ð→ M → 0 and P ′1
p′1Ð→ P ′0

p′0Ð→ M → 0 are two minimal projective

presentations of M . Using Proposition 3.3.1, we get that there exists an isomorphism

u ∶ P0 → P ′0 such that p′0u = p0. Thus u ∶ Ker(p0) → Ker(p′0) is an isomorphism and

up1 ∶ P1 → Ker(p1) is a projective cover of Ker(p1). Using Proposition 3.3.1 again, this

implies that there exists some isomorphism v ∶ P1 → P ′1 such that p′1v = up1. Finally,

the uniqueness of minimal projective presentation follows easily from the uniqueness of

projective cover stated in Lemma 3.3.1.

Let M be a module in mod+Λ. By Lemma 3.3.6, M admits a unique minimal projective

presentation P1
pÐ→ P0

qÐ→M → 0 with P1, P0 ∈ projΛ. Applying the left exact contravariant

functor (−)t to the above sequence, we get the following exact sequence:

0→M t qtÐ→ P t
0

ptÐ→ P t
1

rÐ→ Coker(pt) → 0.

Thus, Coker(pt) ∈mod+Λ○. We set Tr(M) ∶= Coker(pt) and call it the transpose of M .

Lemma 3.3.7. Let M ∈ mod+Λ with P1
pÐ→ P0

qÐ→M → 0 a minimal projective presenta-

tion, where P1, P0 ∈ projΛ. If M has no non-zero projective summands, then the sequence

P t
0

ptÐ→ P t
1

rÐ→ Tr(M) → 0 is a minimal projective presentation of Tr(M).

Proof. Applying the left exact functor (−)t to the sequence stated in the lemma, by

Proposition 3.1.1, we get the following commutative diagram with exact rows

P tt
1 P tt

0 M 0

P1 P0 M 0.

ptt

≅

q′

≅ 1M

p q
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On the other hand, since Tr(M) is finitely presented, Lemma 3.3.6 implies that Tr(M)

admits a minimal projective presentation, say L0
u0Ð→ L1

u1Ð→ Tr(M) → 0. Using Lemma

3.3.5, we can decompose P t
1 as V2⊕V1 such that r ∣V2 is right minimal and r ∣V1= 0. Since

projΛ○ is closed under direct summands, V1, V2 ∈ projΛ○, and hence, using Lemma 3.3.4,

r ∣V2 is a projective cover of Tr(M). Since Proposition 3.3.1 says that projective covers

are unique up to isomorphisms, we get that the map r ∣V2 ∶ V2 → Tr(M) is isomorphic to

L1
u1Ð→ Tr(M). Thus the map P t

1

rÐ→ Tr(M) → 0 is isomorphic to

L1 ⊕ V1
(u1 0)
ÐÐÐÐ→ Tr(M) → 0.

Thus Ker(r) ≅ Ker(u1) ⊕ V1. Since u0 ∶ L0 → Ker(u1) is the projective cover of Ker(u1),

we get that the map (u0 0
0 1V1

) ∶ L0 ⊕ V1 → Ker(u1) ⊕ V1 ≅ Ker(r) is a projective cover of

Ker(r). Since P t
0 ∈ projΛ○, using Lemma 3.3.5, we get that there exists a decomposition

P t
0 ≅ N ′ ⊕N such that pt ∣N ′ is right minimal and pt ∣N= 0. Thus, using Lemma 3.3.4,

we get that pt ∣N ′ ∶ N ′ → Ker(r) is a projective cover of Ker(r). Since Proposition

3.3.1 says that projective covers are unique up to isomorphisms, we get that the map

pt ∣N ′ ∶ N ′ → Ker(r) is isomorphic to the map (u0 0
0 1V1

) ∶ L0⊕V1 → Ker(u1)⊕V1 ≅ Ker(r).

Thus pt ∶ P t
0 → Ker(r) is isomorphic to L0 ⊕N ⊕ V0

⎛
⎜
⎝

u0 0 0
0 0 v

⎞
⎟
⎠

ÐÐÐÐÐÐÐ→ Ker(u1) ⊕ V1 for some

isomorphism v ∶ V0 → V1. Thus, the sequence P t
0

ptÐ→ P t
1

rÐ→ Tr(M) → 0 is isomorphic to

the exact sequence

L0 ⊕N ⊕ V0

⎛
⎜
⎝

u0 0 0
0 0 v

⎞
⎟
⎠

ÐÐÐÐÐÐÐ→ L1 ⊕ V1
(u1 0)
ÐÐÐÐ→ Tr(M) → 0.

Applying the functor (−)t to this sequence, we see that the minimal projective presenta-

tion P1
pÐ→ P0

qÐ→M → 0 is isomorphic to the exact sequence

Lt1 ⊕ V t
1

⎛
⎜⎜⎜⎜
⎝

ut 0
0 0
0 vt

⎞
⎟⎟⎟⎟
⎠

ÐÐÐÐÐ→ Lt0 ⊕N t ⊕ V t
0

(f1 f2 f3)
ÐÐÐÐÐÐ→M → 0.
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In particular, (f1, f2, f3) is right minimal and (f1ut, f3vt) = (0,0). Since v is an isomor-

phism, so is vt, and hence, f3 = 0. Since (f1, f2, f3) is right minimal, V t
0 = 0. This implies

that V0 = 0, and hence, V1 = 0. In other words, the minimal projective presentation

P0
pÐ→ P0

qÐ→M → 0 is isomorphic to the exact sequence

Lt1

⎛
⎜
⎝

ut 0
0 0

⎞
⎟
⎠

ÐÐÐÐÐ→ Lt0 ⊕N t
(f1 f2)
ÐÐÐÐ→M → 0.

Thus M ≅ Coker(p) ≅ Coker(ut) ⊕ N t, where N t ∈ projΛ. Suppose that M does not

have a non-zero projective summand. Then N t = 0, and hence N = 0. Therefore,

P t
0

ptÐ→ P t
1

rÐ→ Tr(M) → 0 is the minimal projective presentation of Tr(M).

Lemma 3.3.8. Let M be a module in mod+Λ. Then Tr(M) = 0 if and only if M is

projective.

Proof. Suppose M is projective. Then the minimal projective presentation of M is given

by 0→M →M → 0. Applying (−)t to this sequence, we get that

Tr(M) = Coker(M t → 0) = 0.

Conversely suppose Tr(M) = 0. Let P1
p1Ð→ P0

p0Ð→ M → 0 be the minimal projective

presentation of M . Then pt1 is an epi, and hence a retraction since P t
1 is projective. By

Proposition 3.1.1, p1 is a section. Thus, P0 = P ′ ⊕ P ′′, where P ′ = Im(p1) = Ker(p0).

In particular, p0 ∣P ′= 0. Since p0 is right minimal, by Lemma 3.3.3, P ′ = 0, that is,

Ker(p0) = 0. Thus, p0 is a monomorphism, and hence, an isomorphism. So, M is

projective.

Lemma 3.3.9. Let M be an indecomposable non-projective module in mod+Λ. Then

Tr(M) is indecomposable and non-projective.

Proof. Let P1
p1Ð→ P0

p0Ð→ M → 0 be a minimal projective presentation of M . Since M is

not projective, Lemma 3.3.8 implies that Tr(M) ≠ 0.
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Being indecomposable and non-projective, M has no non-zero projective summands.

Thus, by Lemma 3.3.7, P t
0

pt1Ð→ P t
1 → Tr(M) → 0 is a minimal projective presentation of

Tr(M). Then, by Proposition 3.1.1, TrTr(M) ≅ Coker(ptt1 ) ≅ Coker(p1) ≅M .

We now show that Tr(M) has no non-zero projective summand. Suppose Tr(M) ≅ E⊕P

with P ∈ projΛ○. Being finitely presented, E admits a minimal projective presentation

L1
fÐ→ L0

uÐ→ E → 0. Thus the minimal projective presentation P t
0

pt1Ð→ P t
1 → Tr(M) → 0 is

isomorphic to

L1

⎡⎢⎢⎢⎢⎢⎣

f
0

⎤⎥⎥⎥⎥⎥⎦ÐÐ→ L0 ⊕ P

⎡⎢⎢⎢⎢⎢⎣

u 0
0 1P

⎤⎥⎥⎥⎥⎥⎦ÐÐÐÐÐ→ E ⊕ P → 0.

Thus, we may assume that p1 is the map Lt0⊕P t
[f t 0]
ÐÐÐ→ P0. In particular, p1 ∣P t= 0. Since

p1 corestricts to a right minimal map p′1 ∶ P1 → Im(p1), it is right minimal. Hence, P t = 0,

and hence, P = 0.

Now suppose Tr(M) ≅ M1 ⊕M2. Then M ≅ TrTr(M) ≅ Tr(M1) ⊕ Tr(M2). Thus,

Tr(M1) = 0 or Tr(M2) = 0. By Lemma 3.3.8, M1 or M2 is projective, and consequently,

M1 or M2 is zero. Thus, Tr(M) is indecomposable.

Given an indecomposable non-projective moduleM in mod+Λ, we write τ(M) ∶=DTr(M)

and call it the Auslander-Reiten translation of M . Lemma 3.3.9 and the fact that D is

a duality imply that τ(M) is a non-injective indecomposable module in mod−Λ. Dually,

given an indecomposable non-injective module N in mod−Λ, D(N) is a non-projective

indecomposable module in mod+Λ, which implies that TrD(N) is a non-projective inde-

composable module as well. We denote this by τ−(N) ∶= TrD(N).

Lemma 3.3.10. Let M be an indecomposable non-projective module in mod+Λ with a

minimal projective presentation P1
pÐ→ P0 →M → 0. Then τM ≅ Ker(νp).

Proof. By definition τM =DTr(M). In order to calculate Tr(M), we apply the left exact
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functor (−)t to the given presentation, which gives us the sequence

0→M t → P t
0

ptÐ→ P t
1 → Tr(M) → 0.

Applying the exact functor D to the above sequence, we get

0→DTr(M) →DP t
1

DptÐÐ→DP t
0 →DM t → 0.

By definition, Dpt = νp and DTrM = τM , and we get the required isomorphism.

3.4 Auslander-Reiten formula

Throughout this section, we assume that Λ = kQ/I is a locally semi-perfect algebra. We

need the following technical lemma to prove our main theorem.

Lemma 3.4.1. [3, Lemma III.3.12] Suppose we have the following commutative diagram

of Λ-modules

L M N 0

L′ M ′ N ′

u

f

v

g

w

f ′ g′

such that u, v are isomorphisms, the upper row is exact, and the lower row is a complex.

Then the cohomology of the lower row at M ′ is isomorphic to the kernel of w.

Now, we need the usual exact contravariant functor D = Homk(−, k) ∶ Modk → Modk.

Note that if M is a finite dimensional Λ-module, then DM ≅D(M) as k-vector spaces.

Lemma 3.4.2. Let M ∈modΛ and N ∈ModΛ.

1. There exists a bi-natural k-linear map ϕM,N ∶ N⊗ΛM t → HomΛ(M,N) with cokernel

HomΛ(M,N).
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2. Suppose Λ is left locally bounded and M ∈ mod+Λ. Then there exists a bi-natural

k-linear map ψM,N ∶ DHomΛ(M,N) → HomΛ(N,νM) which is an isomorphism in

case M ∈ projΛ.

Proof. (1) It is easy to see that we have a k-linear map

ϕM,N ∶ N ⊗ΛM
t → HomΛ(M,N) ∶ u⊗ (fa)a∈Q0 ↦ (v ↦ ∑a∈Q0

ufa(v)),

where fa ∈ HomΛ(M,eaΛ) such that fa = 0 for almost all a ∈ Q0. We claim that

Im(ϕM,N) = P(M,N). First, suppose that f ∈ Im(ϕM,N). Then, f = ∑ni=1 ϕM,N(ui ⊗ fi),

where u1, . . . , un ∈ N and f1, . . . , fn ∈M t. Write fi = (fi,a)a∈Q0 , where fi,a ∈ HomΛ(M,eaΛ)

is such that fi,a = 0 for almost all a ∈ Q0. Thus, there exist a1, . . . , am ∈ Q0 such that

fi,a = 0 for all 1 ≤ i ≤ n and a /∈ {a1, . . . , am}. Therefore, f(v) = ∑ni=1∑mj=1 ui ⋅ fi,aj(v), for

v ∈M . On the other hand, consider the morphisms

f ′i =
⎛
⎜
⎝

fi,a1
⋮

fi,am

⎞
⎟
⎠
∶M → ea1Λ⊕⋯⊕ eamΛ

and gi = (ui⋅,⋯, ui⋅) ∶ ea1Λ⊕⋯⊕ eamΛ→ N, the left multiplications by ui, for i = 1, . . . , n.

Setting P = ea1Λ⊕⋯⊕ eamΛ, we see that f is the composite of the following morphisms

M

⎛
⎜⎜⎜⎜
⎝

f ′1
⋮
f ′n

⎞
⎟⎟⎟⎟
⎠
// P ⊕⋯⊕ P (g1,⋯,gn) // N.

Thus f ∈ P(M,N).

Conversely, suppose that f ∈ P(M,N). Then, there exists a projective module P ∈ projΛ

such that f = gh for some h ∶M → P and g ∶ P → N . Since P ∈ projΛ, P ≅ ea1Λ⊕⋯⊕eanΛ

for some ai ∈ Q0. Write g = (ga1 , . . . , gan), where gai ∶ eaiΛ→ N and

h =
⎛
⎜
⎝

ha1
⋮
han

⎞
⎟
⎠
∶M → ea1Λ⊕⋯⊕ eanΛ,
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where hai ∈ HomΛ(M,eaiΛ), for i = 1, . . . , n. Consider hi = (hi,a)a∈Q0 ∈M t, where hi,a = hai
in case a = ai and hi,a = 0 otherwise, for i = 1, . . . , n. Write ui = g(eai) ∈ N , for i = 1, . . . , n.

Given v ∈M , by definition, we obtain

ϕM,N(∑ni=1 ui ⊗ hi)(v) = ∑ni=1∑a∈Q0
uihi,a(v) = ∑ni=1 uihai(v).

On the other hand, since hai(v) ∈ eaiΛ, we see that

f(v) = ∑ni=1 gai(hai(v)) = ∑
n
i=1 gai(eai ⋅ hai(v)) = ∑

n
i=1 uihai(v).

That is, f = ϕM,N(∑ni=1 ui ⊗ hi). This establishes our claim, and Statement (1) follows.

(2) Suppose Λ is left locally bounded. Then Λea is finite-dimensional for every a ∈ Q0.

Hence, every module in projΛ○ is finite-dimensional. Since M ∈ mod+Λ, it admits an

epimorphism f ∶ P0 →M with P0 ∈ projΛ. Since (−)t is left exact, we get that f t ∶M t → P t
0

is a monomorphism, where P t
0 ∈ projΛ○. Since M t is a submodule of a finite-dimensional

module, it is also finite-dimensional. Thus νM ≅D(M t) ≅D(M t), as k-vector spaces.

We can compose the morphism DϕM,N ∶DHomΛ(M,N) →D(N⊗ΛM t) with the adjunc-

tion isomorphism ηM,N ∶ D(N ⊗Λ M t) → HomΛ(N,D(M t)). Hence, we get the required

morphism ψM,N = ηM,ND(ϕM,N) ∶ DHomΛ(M,N) → HomΛ(N,νM). Using Lemma 3.2

from [10], we get that this map is an isomorphism if M ∈ projΛ.

We are now ready to prove our main theorem which states that the Auslander-Reiten

formula holds for certain locally finite-dimensional algebras.

Theorem 3.4.1. Let Λ = kQ/I be a locally semi-perfect algebra.

1. Suppose Λ is left locally bounded. If N ∈ModΛ and M ∈ mod+Λ, then there exists

a binatural isomorphism

Ext1Λ(N, τM) ≅DHom(M,N).
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2. Suppose Λ is right locally bounded. If M ∈mod−Λ and N ∈modΛ, then there exists

a binatural isomorphism

Ext1Λ(τ−M,N) ≅DHom(N,M).

Proof. We will first prove Statement (1). Let M ∈mod+Λ with a projective presentation

P1
p1Ð→ P0

p0Ð→M → 0

with P1, P0 ∈ projΛ. Using Lemma 3.3.10, we get the following exact sequence:

0→ τM → νP1
νp1ÐÐ→ νP0

νp0ÐÐ→ νM → 0.

Applying HomΛ(N,−) to the above sequence gives the following complex

0→ Hom(N, τM) → Hom(N,νP1)
Hom(N,νp1)ÐÐÐÐÐÐ→ Hom(N,νP0)

Hom(N,νp0)ÐÐÐÐÐÐ→ Hom(N,νM)

It is well known that Ext1Λ(N, τM) ≅
KerHomΛ(N,νp0)
ImHomΛ(N,νp1) .

On the other hand, applying the right exact functorDHomΛ(−,N) to the above projective

presentation of M , we get the following exact sequence

DHomΛ(P1,N)
DHomΛ(p1,N)ÐÐÐÐÐÐÐ→DHomΛ(P0,N)

DHomΛ(p0,M)ÐÐÐÐÐÐÐ→DHomΛ(M,N) → 0.

The natural transformation ψ from Lemma 3.4.2(2) gives the following commutative

diagram where the upper row is exact and the lower row is a complex.

DHomΛ(P1,N) DHomΛ(P0,N) DHomΛ(M,N) 0

HomΛ(N,νP1) HomΛ(N,νP0) HomΛ(N,νM)

ψP1,N

DHomΛ(p1,N)

ψP0,N

DHomΛ(p0,N)

ψM,N

HomΛ(N,νp1) HomΛ(N,νp0)

Using Lemma 3.4.2(2), ψP1,N and ψP0,N are isomorphisms. Therefore, using Lemma 3.4.1

and the fact that ψM,N = ηM,ND(ϕM,N), we get that
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Ext1Λ(N,M) ≅
KerHomΛ(N,νp0)
ImHomΛ(N,νp1)

≅ Ker(ψM,N) = Ker(DϕM,N)

≅D(CokerϕM,N) ≅DHomΛ(M,N).

We now prove Statement (2). Let M ∈ mod−Λ with Λ right locally bounded. Then

D(M) ∈mod+Λ○ and Λ○ is left locally bounded. Using part (1), we get that

Ext1Λ○(D(N), τD(M)) ≅D(HomΛ○(D(M),D(N))).

Now D(HomΛ○(D(M),D(N))) ≅D(HomΛ(N,M)) and

Ext1Λ○(D(N), τD(M)) = Ext1Λ○(D(N),DTrD(M))

= Ext1Λ○(D(N),Dτ−(M))

≅ Ext1Λ(τ−(M),N),

and we get the required isomorphism.

Let M ∈modΛ. We say that M is strongly indecomposable if EndΛ(M) is a local ring.

Theorem 3.4.2. Let Λ = kQ/I be a locally semi-perfect algebra.

1. Suppose Λ is left locally bounded. If M ∈ mod+Λ is indecomposable and non-

projective, then there exists an almost split sequence

0 // τM // L //M // 0

in ModΛ, where τM is finite dimensional.

2. Suppose Λ is right locally bounded. If M ∈ mod−Λ is indecomposable and non-

injective, then there exists an almost split sequence

0 //M // L // τ−M // 0

in modΛ, where τ−M is finite dimensional.
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Proof. We first prove Statement (1). Since M ∈ mod+Λ is indecomposable and mod+Λ

is a Krull-Schmidt category, it is strongly indecomposable. Moreover, by the paragraph

following Lemma 3.3.9, τ(M) is an indecomposable module in mod−Λ, which is a Krull-

Schmidt category, and hence it is strongly indecomposable. Let

ϕ ∶ Ext1(−, τ(M)) →DHom(M,−)

be the functorial isomorphism obtained from Theorem 3.4.1. Since ϕ is a natural tran-

formation, ϕM ∶ Ext1(M,τ(M)) → DEnd(M) is an End(M)-linear isomorphism. Since

the End(M)-top of End(M) is non-zero, we get that the End(M)-socle of DEnd(M)

is non-zero. As a consequence, the End(M)-socle of Ext1(M,τ(M)) is non-zero. Let

δ ∶ 0 → τ(M) → X → M → 0 be a non-zero extension lying in the End(M)-socle

of Ext1(M,τ(M)). Hence, θ = ϕM(δ) is a non-zero element of the End(M)-socle of

DEnd(M). In particular, θ is annihilated by rad(End(M)). Since M is not projec-

tive and End(M) is local, if f ∈ rad(End(M)), then f ∈ rad(End(M)), and hence,

θ(f) = (fθ)(1M) = 0.

Let p ∶ L → M be a morphism in ModΛ which is not a retraction. Since EndΛ(M) is

local, for any morphism q ∶ M → L in ModΛ, we have pq ∈ rad(End(M)), and hence,

pq ∈ rad(End(X)). Thus θ(pq) = 0, that is, (DHom(M,p) ○ ϕM)(δ) = 0. In view of the

commutative diagram

Ext1(M,τ(M)) Ext1(L, τ(M))

DHom(M,M) DHom(M,L)

Ext1(p,τ(M))

ϕM ϕL

DHom(M,p)

we see that (ϕL ○Ext1(p, τ(M)))(δ) = 0. Since ϕL is injective, pδ = Ext1(p, τ(M))(δ) = 0.

That is p factors through the epimorphism X →M in δ. Thus, the morphism X →M is

right almost split. Since τ(M) is strongly indecomposable, δ is an almost split sequence.
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Finally, since Λ is left locally bounded, all the modules in projΛ○ are finite-dimensional,

and hence Tr(M) is finite-dimensional, being the cokernel of a map in projΛ○. Thus,

τ(M) =DTr(M) is finite-dimensional.

We now prove Statement (2). Since Λ is right locally bounded, Λ○ is left locally bounded,

and D(M) ∈mod+Λ○ is non-projective indecomposable. Applying Statement (1), we get

that there exists an almost split sequence 0→ τD(M) → L→D(M) → 0 in ModΛ○ with

τD(M) finite-dimensional. Since both τD(M) and D(M) are locally finite-dimensional,

we get that L is also locally finite-dimensional. Thus 0→ τD(M) → L→D(M) → 0 is an

almost split sequence in modΛ○. Applying D, we get that 0 →M →D(L) → τ−(M) → 0

is an almost split sequence in modΛ and τ−(M) is finite-dimensional.

The above result about the existence of almost split sequences was mentioned by Aus-

lander in [7]. However, he does not provide a complete proof there.
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CHAPTER 4

String algebras

In the last chapter, we proved the Auslander-Reiten formula for the class of locally semi-

perfect algebras. Now we restrict our attention to a special class of algebras, called string

algebras. We will start with the definition of string algebras and see how we can associate

some combinatorial structures, called strings and bands, with them. Further, we will see

how one can associate a Λ-module to a string or a band. We will then try to extract

some properties of a given string module from the structure of the corresponding string.

4.1 String algebras

In this section, we will introduce a special class of algebras obtained from quivers called

string algebras. We will also introduce the relevant combinatorial language associated

with these algebras, including the notions of walks, strings, etc.

Definition 4.1.1. Let Q = (Q0,Q1) be a locally finite quiver and ρ a set of zero relations

on Q. The algebra Λ = kQ/ ⟨ρ⟩ is said to be a string algebra if the following conditions

are satisfied:
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1. For each a ∈ Q0, there exist at most two arrows α,β ∈ Q1 such that s(α) = s(β) = a.

2. For each a ∈ Q0, there exist at most two arrows α,β ∈ Q1 such that t(α) = t(β) = a.

3. For each α ∈ Q1, there exists at most one arrow β ∈ Q1 such that αβ ∉ ρ

4. For each α ∈ Q1, there exists at most one arrow γ ∈ Q1 such that γα ∉ ρ.

In this definition, we drop the classical ‘boundedness’ conditions [11, § 3]:

5. For each β ∈ Q1, there exists some bound n(β) such that any path β1⋯βn(β) with

β1 = β contains a subpath lying in ρ.

6. For each β ∈ Q1, there exists some bound n′(β) such that any path β1⋯βn′(β) with

βn′(β) = β contains a subpath lying in ρ.

In the sequel, we shall call the string algebras satisfying the above two conditions as

locally bounded string algebras. The finite-dimensional indecomposable representations

of locally bounded string algebras were completely classified in [11] along with the maps

between these.

Henceforth, unless stated otherwise, we will use the letter Λ to denote a string algebra

with Q the corresponding quiver and ρ the corresponding set of relations.

Examples 4.1.1. 1. Let Q be the following quiver.

1 2 3 4
a

b

c
d

e

In order to make this a string algebra, we need some relations at vertices 2 and 3.

Setting ρ = {bc, cd} makes kQ/⟨ρ⟩ a string algebra, called Λ2.

2. Let Q be the following quiver with ρ = {αβ,βα,αn, βm}.
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1

β

α

Then kQ/⟨ρ⟩ is a string algebra, called GPn,m, for all n,m ≥ 2.

3. The infinite linear quiver A∞∞

⋯ Ð→ a−1 Ð→ a0 Ð→ a1 Ð→ ⋯

is a string algebra that is not locally bounded.

4.2 Strings and bands

In this section, we introduce the notion of strings and bands in a string algebra Λ. We

will eventually look at a way of assigning Λ-modules to these combinatorial objects.

We start by introducing for each arrow α ∈ Q1, a ‘formal inverse’, denoted by α−1, and

setting s(α−1) ∶= t(α) and t(α−1) ∶= s(α). Let Q−11 ∶= {α−1 ∣ α ∈ Q1}. We will refer to the

elements of the set Q1⊔Q−11 as letters. A letter u contained in Q1 will be referred to as a

direct letter and a letter u contained in Q−1 will be referred to as an inverse letter. Also

if u = α−1, where α is a direct letter, then u−1 ∶= α.

Let Λ = kQ/ ⟨ρ⟩ be an arbitrary string algebra, not necessarily locally bounded.

Definition 4.2.1. A trivial walk in Q is a trivial path εx with x ∈ Q0. A non-trivial

walk w in Q is a formal product ∏i∈S ci, where S is a non-empty interval in Z, such that

ci is either an arrow or the inverse of an arrow, and s(ci+1) = t(ci) for all i such that

i, i + 1 ∈ S. A reduced walk w in Q is either a trivial walk or a non-trivial walk ∏i∈S ci

such that ci+1 ≠ c−1i for any i such that i, i + 1 ∈ S.
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Throughout this work, the order on {ci ∣ i ∈ S} in a non-trivial walk ∏i∈S ci will coincide

with the increasing order of S, that is,

∏
i∈S
ci = ⋯cici+1⋯.

Each ci will be called an edge of w. When S is bounded below by an integer l, we shall call

cl the initial edge of w and s(cl) the starting point of w, denoted s(w). When S is bounded

above by an integer m, we shall call cm the terminal edge of w and e(cm) the ending

point of w, denoted e(w). We shall call a walk ∏i∈S ci a right infinite (respectively left

infinite, doubly infinite) walk if S is bounded below and unbounded above (respectively

bounded above and unbounded below, unbounded below and above). Moreover, we say

two non-trivial walks w = ∏i∈S ci, w′ = ∏j∈S′ c
′
j are equivalent if there exists some m ∈ Z

such that S′ = {s+m ∣ s ∈ S} and c′i = ci−m. Thus, up to equivalence, we can assume S to

be one of [1, n] for some n > 0, N,N−, or Z.

We also extend the definition of inverses to the set of all reduced walks as follows. If

w = ∏i∈S ci with S = [1, n], w−1 ∶= ∏i∈S c
−1
n−i+1. For w = ∏i∈S ci, a right infinite walk

(resp. left infinite walk), w−1 is defined to be the left infinite walk (resp. right infinite

walk) w = ∏i∈N− c
−1
i (resp. w = ∏i∈N c

−1
i ). Finally for a doubly infinite walk, w = ∏i∈Z ci,

w−1 ∶= ∏i∈Z c
−1
−i , and for w = εa, w−1 ∶= w for all a ∈ Q0. A reduced walk w = c1⋯cn in Q

for n ≥ 1 is called a reduced cycle if s(c1) = e(cn).

Let w = ∏i∈S ci be a reduced walk. Let ai = s(ci) and ai+1 = e(ci) for all i ∈ S. Set S̄ = S

if S has no maximal element, and otherwise, S̄ = S ∪ {n + 1}, where n is the maximal

element of S. Observe that for any i ∈ S, i + 1 ∈ S̄ but i − 1 is not necessarily in S. We

shall call V (w) = {ai ∣ i ∈ S̄} the vertex set of w and each a ∈ V (w) a vertex of w. We

emphasize that we think of ai and aj as different vertices for i ≠ j even if they correspond

to the same vertex in Q. Note that, under this viewpoint, V (w) is technically a multiset,

even though, for the sake of convenience, we call it a ‘set’. The vertex set of a trivial
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walk εa is defined to be the singleton set {a}. A subwalk of w is defined to be a reduced

walk of the form ∏i∈T ci for T a sub-interval of S or of the form εa for some a ∈ V (w). A

trivial walk εa has a unique subwalk εa. A subwalk w′ of w is called an initial subwalk of

w if w = w′w′′ for a reduced walk w′′. If w′ is not an initial subwalk of w, then w = uw′w′′

for a non-trivial walk u and we say that u is the left complement of w′ in w. Dually, a

subwalk w′ of w is called a terminal subwalk of w if w = w′′w′ for some reduced walk w′′.

If w′ is not a terminal subwalk of w, then w = w′′w′u for a non-trivial walk u and we say

that u is the right complement of w′ in w. Note that in the above two definitions, w′′

may be a trivial walk.

Definition 4.2.2. Let w = ∏i∈S ci be a reduced walk in (Q,ρ). We say that a path p is

contained in w if there exists an interval T ⊆ S such that p = (∏i∈T ci)±1.

A reduced walk w is called a string if either it is trivial or it contains no path lying in ρ.

Example 4.2.1. For Λ2, aced−1, ab−1ab−1⋯ are some examples of strings, while ed−1c−1,

cc−1 are certain non-examples.

We say that a string w is composable with another string w′ if e(w) = s(w′) and the

(reduced) concatenation ww′ is a string, in which case the composition is defined to be

ww′. By reduced concatenation, we mean that we remove any copy of trivial strings from

the concatenation.

Definition 4.2.3. A reduced cycle w is called a band if wm is a string for all m ≥ 1, and

w is not a power of a reduced walk of smaller length.

Example 4.2.2. In Λ2, ab−1, cd−1, ba−1, and dc−1 are the only bands while there are

infinitely many bands in GPn,m.

Let w = ∏i∈S ci be a non-trivial string. Fix i, j ∈ S̄. We shall say that j is a successor of i

in w, or equivalently i is a predecessor of j in w, provided that j = i, or ci⋯cj−1 is a path
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in case i < j, or cj⋯ci−1 is the inverse of a path in case j < i. Moreover, we shall call i a

peak for w provided that ci is an arrow in case i ∈ S and ci−1 is the inverse of an arrow in

case i − 1 ∈ S; and a deep for w provided that ci is the inverse of an arrow in case i ∈ S

and ci−1 is an arrow in case i − 1 ∈ S.

We say that a string w starts on a peak if it has a starting point and there is no arrow

β such that βw is a string. Similarly, we say that it starts in a deep if it has a starting

point and there is no arrow γ such that γ−1w is a string. Dually, a string w is said to end

on a peak if it has an ending point and there is no arrow β such that wβ−1 is a string,

and it is said to end in a deep if it has an ending point and there is no arrow γ such that

wγ is a string.

A string v is called a substring of a string w if it is either of the form ∏i∈T ci for a sub-

interval T of S or εa for some a ∈ V (w). A trivial string εa is defined to have a unique

substring εa. We call w zigzag finite if it has finitely many peaks and deeps. We define

the notions of initial substrings and terminal substrings similarly to the notions of initial

and terminal subpaths respectively.

4.3 Definitions of string and band modules

Given a string w in (Q,ρ), we can associate to it a string module M(w) over Λ as follows.

If w = εa for a vertex a ∈ Q0, then M(w) ∶= S(a), the simple Λ-module associated with a.

Otherwise w = ∏i∈S ci, where S ∈ {[1, n],N,N−,Z} and each ci ∶ ai → ai+1, with i ∈ S and

ai, ai+1 ∈ Q0, is an edge from ai to ai+1. Now, the string module M(w) has as a k-space

a basis {vi ∣ i ∈ S̄}. Its multiplication is defined as follows. Fix i ∈ S̄. Given a ∈ Q0, one

defines vi ⋅ ea = vi in case a = ai, and otherwise, vi ⋅ ea = 0. Given an arrow α ∶ a→ b in Q,

one defines vi ⋅ ᾱ = vi+1 in case i + 1 ∈ S̄ and ci = α; and vi ⋅ ᾱ = vi−1 in case i − 1 ∈ S and
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ci−1 = α−1; and in all other cases, vi ⋅ ᾱ = 0. Since w is a reduced walk and vi ⋅ eai = vi,

this definition has no ambiguity and makes M(w) into a unitary right Λ-module. More

explicitly, if p is a non-zero path of positive length r in Q, then vi ⋅ p̄ = vi+r in case i+r ∈ S̄

and p = ci⋯ci+r−1; and vi ⋅ p̄ = vi−r in case i − r ∈ S and p−1 = ci−r⋯ci−1; and in all other

cases, vi ⋅ p̄ = 0. In particular, vi ⋅ p̄ = 0 in case s(p) ≠ ai. Henceforth, we shall call such a

k-basis {vi ∣ i ∈ S̄} for M(w) a w-string basis. For any string w there is an isomorphism

iw ∶M(w) →M(w−1) given by reversing the basis.

Example 4.3.1. Let Q be the following quiver with ρ = {ab, b2, a2}.

1

b

a

Let u = b−1aba−1b. Then M(u) is 6-dimensional and we depict it as follows.

k

k k k

k k

b a

b
a

b

In general, we can represent any string w by a diagram of the above form by using

arrows pointing towards the bottom left for inverse letters and towards the bottom right

for direct letters.

Now, let w = c1⋯cn be a band, where ci ∶ ai → ai+1 are edges in Q between vertices ai

and ai+1 such that an+1 = a1. Let φ be an indecomposable automorphism of a finite-

dimensional k-space V . Note that this is equivalent to giving a finite-dimensional in-

decomposable k[T,T −1] module by setting the action of T to be φ. We associate a
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band module B(w,φ) to the pair (w,φ) as follows. First, we have an underlying k-

space B(w,φ) = U ⊗k V , where U is a k-space with a basis {u1, . . . , un}. Set un+1 = u1
and u0 = un. Given α ∈ Q1 and ui ⊗ v ∈ B(w,φ) with 1 ≤ i ≤ n and v ∈ V , we de-

fine (ui ⊗ v)ᾱ = ui+1 ⊗ φδin(v) if α = ci; and (ui ⊗ v)ᾱ = ui−1 ⊗ φ−δi−1,n(v) if α−1 = ci−1;

and (ui ⊗ v)ᾱ = 0 in all other cases, where δjn is the Kronecker symbol. This makes

B(w,φ) into a unitary right Λ-module. Moreover, B(w,φ) ≅ B(w′, φ) if and only if w′

is a permutation of w or the inverse of w, i.e., w′ = ci+1⋯cnc1⋯ci for 1 ≤ i ≤ n − 1, or

w′ = c−1i ⋯c−11 c−1n ⋯c−1i+1 for 1 ≤ i ≤ n − 1. We will often denote B(w,φ) as B(w,V ), where

V is viewed as a k[T,T −1] module through φ.

Example 4.3.2. Let w = ba−1 be a band in Λ2 and Z an indecomposable k[T,T −1] module.

Then B(w,Z) is the following representation of (Q,ρ).

Z Z 0 0

mT−1

id

0
0

0

For locally finite-dimensional string algebras, we have the following theorem about the

classification of their finite-dimensional representations.

Theorem 4.3.1. [11, § 3][14] Let Λ be a locally bounded string algebra. The modules

M(u), with u a finite string in Λ, and B(w′, Z), with w′ a band in Λ, and Z a finite-

dimensional, indecomposable k[T,T −1] module, give a complete list of finite-dimensional

indecomposable Λ-modules. Moreover, M(u) ≅ M(u′) if and only if u = u′ or u−1 = u′,

and M(w,Z) ≅ M(w′, Z ′) if and only if w is a cyclic permutation of w′ or (w′)−1 and

Z ≅ Z ′. Finally, no string module is isomorphic to a band module.

Now, let Λ be an arbitrary string algebra. Suppose M is a locally finite-dimensional

Λ-module. Then M is finitely controlled in the sense of [12], i.e., for every vertex a, Mea

is contained in a finitely generated submodule of M . In particular, the following theorem

gives us a complete description of such modules.
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Theorem 4.3.2. [12, Theorem 1.2] Every finitely controlled Λ-module is isomorphic to

a direct sum of copies of string modules and finite-dimensional band modules.

4.4 Some special string modules

Let Λ = kQ/⟨ρ⟩ be a string algebra. Since Λ = ⊕a∈Q0eaΛ = ⊕a∈Q0Λea, Λ has sufficiently

many idempotents and Proposition 1.4.1 gives that Pa = eaΛ is a projective module.

Theorem 4.4.1 shows how these modules can be obtained as string modules associated

to some special strings.

Theorem 4.4.1. Let a ∈ Q0. Then Pa ≅M(p−1q), where p, q are paths starting at a such

that p−1q is a string starting and ending in a deep.

Proof. We know that Pa = eaΛ has as basis the set of classes of non-zero paths starting

at a. Let p be a maximal path (possibly trivial) in Q starting at a. If there exists at

most one arrow starting at a, then let q be trivial; otherwise, let q be the maximal path

starting at a and having no common initial arrow with p. Since Λ is a string algebra,

any path starting at a is an initial subpath of p or q. Consider the case where p, q are

non-trivial. Let p = ∏i∈S αi and q = ∏i∈T βi. Set v0 ∶= ea, vj ∶= ∏1≤i≤j β̄i for j ∈ T , and

v−j ∶= ∏1≤i≤j ᾱi for j ∈ S. Then we claim that the set V = {v0} ∪ {vj ∣ j ∈ T} ∪ {v−j ∣ j ∈ S}

is a p−1q string basis for Pa.

Let u be a non-zero path of length r ≥ 1 in Q. Then v0 ⋅ ū ≠ 0 only if u starts at a, i.e., u

is an initial subpath of p or q. In this case, v0 ⋅ ū = vr if r ∈ T and u = ∏1≤i≤r βi; v0 ⋅ ū = v−r
if r ∈ S and u = ∏1≤i≤r αi. Let j ∈ T . By the properties of string algebras, vj ⋅ ū is non-zero

only if j + r ∈ T and u = ∏j+1≤i≤r βi, in which case it is equal to vj+r. Finally, for j ∈ S,

v−j ⋅ ū = v−j−r if −j − r ∈ S and u = ∏j+1≤i≤r αi; and in all other cases v−j ⋅ ū = 0. Now

suppose u = εb for some b ∈ Q0. Then for all v ∈ V , v ⋅ ū is non-zero only if b = t(v), in
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which case it equals v.

In case one of p or q is trivial, the u in the above paragraph would be an initial subpath

of q or p respectively, and the proof would remain the same. In case p, q are both trivial,

a is a sink and Pa ≅ Sa ≅M(εa).

Example 4.4.1. Let Q be the following quiver with ρ = {ba′, b′a}.

2 4

1

3 5

b

c

b′

c′

a a′

Then P1 =M(a−1a′), P2 =M(c−1ba), P3 =M(e3), P4 =M(c′−1b′a′), and P5 =M(e5).

Let Λ be a locally finite-dimensional string algebra. The following theorem states that

the injective modules Ia, a ∈ Q0 can also be obtained as string modules.

Theorem 4.4.2. Let Λ = kQ/⟨ρ⟩ be a locally finite-dimensional string algebra with a ∈ Q0.

Then Ia ≅M(pq−1) where p, q are the paths ending at a such that pq−1 is a string starting

and ending in a deep.

Proof. Given a, x ∈ Q0, the set {p̄1,⋯, p̄s} of classes of non-zero paths from x to a is a

k-basis for P o
a (x) = exΛea, and its dual basis {p̄∗1,⋯, p̄∗s} is a k-basis of Ia(x). Consider

the case where p, q are non-trivial. Write p = ∏i∈S αi and q = ∏j∈T βj, where S,T are

intervals of N− containing −1. Observe that any path ending at a in Q is a terminal

subpath of either p or q.

Set v0 = e∗a, v−i = (αi⋯α−2α−1)∗ for i ∈ S, and vj = (βj⋯β−2β−1)∗, for j ∈ T . Then we claim

that the set V = {v0} ∪ {vj ∣ j ∈ T} ∪ {v−j ∣ j ∈ S} is a (pq−1)-string basis for Ia.
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In order to prove the above claim, we first make the following observation. Suppose p′ is

a non-zero path, possibly trivial, in Q from vertex x to y and α ∶ b→ c is an arrow. Then

p̄′
∗ ⋅ ᾱ = q̄′∗ if and only if p′ = αq′. Let us first suppose p′ = αq′. Let r be a path in Q

starting at c. Then (p̄′∗ ⋅ ᾱ)(r̄) = p̄′∗(ᾱr̄), which is equal to 1 if ᾱr̄ = p̄′ and 0 otherwise.

Therefore, (p̄′∗ ⋅ ᾱ)(r̄) = 1 if r = q′ and 0 otherwise. This proves that p̄′∗ ⋅ ᾱ = q̄′∗.

Conversely, suppose p̄′∗ ⋅ ᾱ = q̄′∗. Then (p̄′∗ ⋅ ᾱ)(q̄′) = 1, which gives that p̄′∗(ᾱq̄′) = 1, and

hence p′ = αq′.

Moreover, we also note that for a ∈ Q0, p̄′
∗ ⋅ ea = q̄′∗ if and only if p′ = q′ and a = s(p′).

As a corollary, we conclude the following: Suppose p is a non-zero path of length r ≥ 0

in Q. Then v0.p̄ = e∗a.p̄ is non-zero if and only if p = ϵa, in which case v0.p̄ = v0, and

v−i.p̄ = (αi⋯α2α1)∗.p̄ is non-zero if and only if p = et(αi) or p = αi⋯αi−r+1 for r ≤ i, in

which case v−i = v−i+r. Similarly vj.p̄ = (βj⋯β2β1)∗.p̄ is non-zero if and only if p = et(βj)
or p = βj⋯βi−r+1 for r ≤ i, in which case vj = vj−r.

Example 4.4.2. Let Q be the quiver ∞A∞ with the following orientation and without

any relations

⋯ −2 −1 0 1 2 ⋯b2 b1 a1 a2

Then I0 =M(⋯b2b1a−11 a−12 ⋯), Ik =M(a−1k+1⋯), and I−k =M(⋯bk+1), for k > 0.

In the following chapters, we will classify the finitely generated and finitely cogenerated

string modules over Λ.
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CHAPTER 5

Finitely-generated string modules

In this chapter, our goal would be to classify the finitely-generated string modules over a

string algebra Λ. Furthermore, we will calculate their projective covers and syzygies and

show that any finitely-generated string module is finitely presented as well.

Throughout this chapter, Λ will denote a locally finite-dimensional string algebra. We

start by giving a combinatorial description of the top and socle of a string module.

5.1 Socle and top of string modules

Definition 5.1.1. Let M be a Λ-module. Then the socle of M , denoted soc(M), is

defined to be the sum of simple submodules of M .

Lemma 5.1.1. Let w = ∏i∈S ci be a string with i, j, l ∈ S̄.

1. If i is a successor of j in w, and j is a successor of l in w, then i is a successor of

l in w.
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2. If i is a successor of j in w, and j is a successor of i in w, then i = j.

3. If i is a successor (predecessor) of j in w and i is a peak (deep) for w, then i = j.

Proof. The first statement is trivial if i = j or j = l. Hence, we can suppose that i is a

successor of j with i ≠ j, and j is a successor of l in w with j ≠ l. We first consider the

case j < i. Then cj⋯ci−1 is a path. In particular, cj is an arrow. If j < l, then cj⋯cl−1
is the inverse of a path. In particular, cj is the inverse of an arrow, a contradiction.

Thus, l < j and cl⋯cj−1 is a path. Therefore, l < i and cl⋯ci−1 = cl⋯cj−1cj⋯ci−1 is a path.

Therefore, i is a successor of l in w.

We now consider the case i < j. Then ci⋯cj−1 is the inverse of a path. In particular, cj−1

is the inverse of an arrow. If l < j, then cl⋯cj−1 is a path, and hence, cj−1 is an arrow,

a contradiction. Thus, j < l and cj⋯cl−1 is the inverse of a path. Therefore, i < l and

ci⋯cl−1 = ci⋯cj−1cj⋯cl−1 is the inverse of a path. Therefore, by definition, i is a successor

of l in w. This proves Statement (1).

Suppose i is a successor of j and j is a successor of i in w. If j < i, then cj⋯ci−1 is a path

and cj⋯ci−1 is the inverse of a path, a contradiction. If i < j, then ci⋯cj−1 is the inverse

of a path and ci⋯cj−1 is a path, a contradiction again. Therefore, i = j.

Finally, if i is a successor of j and i is a peak, then we have the following two cases: if

j < i then, by definition, cj⋯ci−1 is a path. In particular, i − 1 ∈ S with ci−1 being an

arrow. If i < j then, by definition, ci⋯cj−1 is the inverse of a path, and hence, i ∈ S with

ci being the inverse of an arrow. In either case, i is not a peak, a contradiction. On the

other hand, if i is a predecessor of j and i is a deep, then we again have two cases: if

i > j then, by definition, cj⋯ci−1 is the inverse of a path. In particular, i− 1 ∈ S with ci−1

being the inverse of an arrow. If j > i then, by definition, ci⋯cj−1 is a path, and hence,

i ∈ S with ci being an arrow. In either case, i is not a deep, a contradiction.
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Recall that for a Λ-module M , and x ∈ M , xΛ denotes the submodule of M generated

by x, i.e.,

xΛ = {x ⋅ λ ∣ λ ∈ Λ}.

Lemma 5.1.2. Consider the string module M(w) associated to a string w = ∏i∈S ci,

where S is an interval of Z and ci ∶ ai → ai+1 are edges in Q. Let {vi ∣ i ∈ S̄} be a w-string

basis for M(w).

1. soc(M(w)) = ⊕i∈∇viΛ, where ∇ is the set of deeps for w.

2. top(M(w)) ≅ ⊕i∈∆ Sai, where ∆ is the set of peaks for w.

Proof. Let i ∈ ∇. Then ci is the inverse of an arrow in case i ∈ S and ci−1 is an arrow in

case i − 1 ∈ S. Given an arrow α ∶ a → b in Q, if viα = vi+1, then α = ci, a contradiction;

and if viα = vi−1, then α−1 = ci−1, a contradiction as well. Thus, viα = 0, for any α ∈ Q1.

As a consequence, viΛ = kvi, which is simple. Therefore, ⊕i∈∇ viΛ ⊆ soc(M(w)).

Consider now v = ∑i∈Ω λivi ∈ soc(M(w)), where Ω ⊆ S̄ and λi ∈ k∗. Assume that there

exists some i ∈ Ω/∇. Then, ci = αi or ci−1 = β−1i , where αi, βi ∈ Q1. In the first case,

viαi = vi+1. This yields

0 = vαi = λivi+1 +∑j∈Ω∖{i}λjvjαi.

Since λi ≠ 0, we see that vi+1 = vjαi for some j ∈ Ω/{i}. If αi = cj, then vjαi = vj+1 = vi+1,

which is absurd since j ≠ i. If α−1i = cj−1, then vjαi = vj−1 = vi+1. Thus, i + 1 = j − 1 and

ci+1 = cj−1 = α−1i , contradiction to w being a reduced walk. In other cases, vjαi = 0, and

hence, vi+1 = 0, a contradiction as well. In the second case, viβi = vi−1. This yields

0 = vβi = λivi−1 +∑j∈Ω∖{i}λjvjβi.

Since λi ≠ 0, we see that vi−1 = vjβi for some j ∈ Ω/{i}. If β−1i = cj−1, then vjβi = vj−1 = vi−1,

which is absurd because j ≠ i. If βi = cj, then vjβi = vj+1 = vi−1. Thus, j + 1 = i − 1, and
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hence, cj+1 = ci−1 = β−1i , contradiction to w being a reduced walk. In other cases, vjβi = 0,

and hence, vi−1 = 0, a contradiction as well. Thus, soc(M(w)) ⊆ ⊕i∈∇ viΛ. This shows

Statement (1).

We will now prove Statement (2). By definition, topM(w) =M(w)/M(w)J , where J is

the ideal of Λ generated by the residue classes of the arrows modulo I. Given i ∈ ∆, let

{ui} be a k-basis of the simple module Sai . Clearly, we have a Λ-linear map

f ∶ ⊕i∈∆ Sai →M(w)/M(w)J ∶ (λiui)i∈∆ ↦∑i∈∆λiv̂i,

where λi ∈ k and v̂i = vi +M(w)J, for all i ∈∆.

Fix s ∈ S̄/∆. As seen in the proof of Lemma 5.2.1, s is a successor in w of some

mt ∈ ∆. Clearly, s ≠ mt. Thus, either s < mt with cs⋯cmt−1 being the inverse of a path

or s > mt with cmt⋯cs−1 being a path. This implies that either vmtc
−1
mt−1⋯c−1s = vs or

vmtcmt⋯cs−1 = vs. In any case, vs ∈ M(w)J . Now, for any v = ∑i∈S̄λivi ∈ M(w), we see

that v̂ = ∑i∈∆λiv̂i. Hence, f((λiui)i∈∆) = v̂. That is, f is surjective.

Finally, suppose that f((λiui)i∈∆) = ∑i∈∆λiv̂i = 0. Then, ∑i∈∆λivi ∈ M(w)J . Therefore,

∑i∈∆λivi = ∑t∈Ω µtvtp̄t, where Ω is a finite subset of S̄, µt ∈ k and pt is paths of length

lt ≥ 1. Suppose that λi ≠ 0 for some i ∈∆. By definition, ci is an arrow if i ∈ S and ci−1 is

the inverse of an arrow if i−1 ∈ S. Since λi ≠ 0, we obtain vi = vs p̄s = vs±ls for some s ∈ Ω.

That is, i = s ± ls ≠ s. If i > s, then ps = cs⋯ci−1, and in particular, ci−1 is an arrow, a

contradiction. If s > i, then p−1s = ci⋯cs−1, and in particular, ci is an inverse of an arrow,

a contradiction as well. Therefore, λi = 0 for all i ∈∆. That is, f is injective.

5.2 Finitely generated string modules

We start by stating a few combinatorial lemmas that we will need.
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Lemma 5.2.1. Let w = ∏i∈S ci be a string, where ci ∶ ai → ai+1 are edges in Q. Then

w admits at most finitely many peaks and every i ∈ S̄ is a successor of some peak in w

if and only if w = p−11 q1⋯p−1r qr, where pi, qi are paths in Q such that pi is non-trivial for

1 < i ≤ r and qi is non-trivial for 1 ≤ i < r.

Proof. Suppose w admits finitely many peaks i1 ≤ . . . ≤ ir in S̄ such that every i ∈ S̄ is a

successor of some peak in w. We shall show that w is of the form as stated in the lemma.

We start by defining p1. If i1 − 1 /∈ S, then p1 ∶= εai1 . Suppose that i1 − 1 ∈ S. Given

any i ∈ S with i ≤ i1 − 1, i is a successor of some im with 1 ≤ m ≤ r. Since i < i1 ≤ im,

by definition, ci⋯cim−1 is the inverse of a path, and in particular, ci is the inverse of an

arrow. Setting S1 to be the set of i ∈ S with i < i1, we see that ∏i∈S1
ci is the inverse of a

non-trivial path. We define p1 to be this path.

We can similarly define the path qr. If ir /∈ S, then qr ∶= εair . Suppose that ir ∈ S.

Consider i ∈ S̄ with ir < i. Then i is a successor in w of some in with 1 ≤ n ≤ r. Since

in ≤ ir < i, by definition, cin⋯ci−1 is a path. In particular, ci−1 is an arrow. Letting Tr be

the set of i ∈ S̄ with ir < i, we see that ∏i∈Tr ci−1 is a non-trivial path, which we define to

be qr. If r = 1, then w = ∏i∈S1∪T1 = p−11 q1.

Now suppose that r > 1. Fix some 1 ≤ l < r. Since il, il+1 are peaks, cil is an arrow and

cil+1−1 is the inverse of an arrow. Therefore, we obtain a maximal jl with il < jl < il+1 such

that cil⋯cjl−1 is a non-trivial path, say ql. Then, cjl is the inverse of an arrow. Consider

i with jl < i < il+1, which is a successor of it for some 1 ≤ t ≤ r. If t ≤ l, then it < i and we

obtain a path cit⋯ci−1 = cit⋯cjl⋯ci−1, contrary to cjl being the inverse of an arrow. Thus,

l + 1 ≤ t and i < it which gives that ci⋯cit−1 is the inverse of a path, and in particular,

ci is the inverse of an arrow. As a consequence, cjl⋯cil+1−1 is the inverse of a non-trivial

path, say pl+1. It is now easy to see that w = p−11 q1⋯p−1r qr.

Conversely, assume that w can be written as w = p−11 q1⋯p−1r qr, where pi, qi are paths in Q
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such that pi is non-trivial for 1 < i ≤ r and qi is non-trivial for 1 ≤ i < r. For each 1 ≤ i ≤ r,

let Si, Ti ⊆ S be such that ∏j∈Si
cj = p−1i and ∏j∈Ti cj = qi, where S1 = ∅ in case p1 is

trivial; and Tr = ∅ in case qr is trivial. Let si be the minimal element of Ti, for 1 ≤ i < r.

Moreover, let sr be the minimal element of Tr in case Tr ≠ ∅, and otherwise, let sr be the

unique element of S̄ ∖ S. By definition, Si and Ti are convex subsets of S such that

S = (S1 ∪ T1) ∪ (S2 ∪ T2)⋯ ∪ (Sr ∪ Tr)

when viewed as orders. Moreover, si − 1 is the maximal element of Si if it exists, for all

1 ≤ i ≤ r.

We claim that {s1, s2, . . . , sr} is the set of tops for w. Let us start with s1. By definition,

cs1 is the initial arrow of q1. If s1 − 1 ∈ S, then s1 − 1 ∈ S1 with cs1−1 being the inverse of

the initial arrow of p1. So s1 is a peak by definition. Consider now si with 1 < i < r. Since

si is the minimal element of Ti, the edge csi is the initial arrow of qi; and since si − 1 is

the maximal element of Si, the edge csi−1 is the inverse of the initial arrow of pi. So si is

a peak by definition. Let us finally consider sr. Since sr −1 is the maximal element of Sr,

the edge csr−1 is the inverse of the initial arrow of pr−1. If sr ∈ S, then sr is the minimal

element of Tr, and hence, csr is the initial arrow of qr. So sr is a peak by definition.

Given 1 ≤ l ≤ r, we claim that each i ∈ Sl ∪ Tl is a successor of sl in w. Indeed, if i < sl,

since sl is minimal in Tl, we see that i ∈ Sl with i ≤ sl − 1. In this case, ci⋯csl−1 is the

inverse of an initial subpath of pl. So i is a successor of sl in w by definition. If i > sl,

since sl − 1 is the maximal element of Sl, we see that i ∈ Tl. In this case, csl⋯ci−1 is an

initial path of ql. So i is a successor of sl in w.

In particular, every i ∈ S is a successor in w of some sl with 1 ≤ l ≤ r. Consider now

i ∈ S̄ ∖ S. Then i ≥ sr. If i = sr, then it is a successor of sr. If i > sr then, by definition,

i−1 ∈ Tr. In this case, csr⋯ci−1 = qr. So i is a successor of ir. By Lemma 5.1.1, {s1, . . . , sr}

is the set of all peaks for w.
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Lemma 5.2.2. If i, j ∈ S̄, then j is a successor of i in w if and only if vj ∈ viΛ.

Proof. Suppose j is a successor of i. If j = i, then vj = vieai . If j < i, then cj⋯ci−1 is the

inverse of a path, say p. Since p is a path of length i−j > 0, by definition, vip̄ = vi−(i−j) = vj.

If i < j, then ci⋯cj−1 is a path p. Since p is now a path of length j − i > 0, by definition,

vip̄ = vi+(j−i) = vj.

Conversely, assume that vj ∈ viΛ with j ≠ i. Write vj = ∑nl=1 λlvip̄l, where λl ∈ k and pl

is a path of length ml such that λlvip̄l ≠ 0, for l = 1, . . . , n. By definition, vip̄l = vi±ml
.

Then, vj = ∑nl=1 λlvi±ml
, and hence, j = i ±ml0 , for some l0 with ml0 > 0. If j = i +ml0 ,

then pl0 = ci⋯ci+ml0
−1 = ci⋯cj−1. If j = i −ml0 , then p−1l0 = ci−ml0

⋯ci−1 = cj⋯ci−1. In either

case, j is again a successor of i.

Having the above combinatorial results in our hands, we are now ready to prove the main

theorem.

Theorem 5.2.1. Let w = ∏i∈S ci be a string, where ci ∶ ai → ai+1 are edges in Q. The

string module M(w) is finitely generated if and only if w admits finitely many peaks and

every i ∈ S̄ is a successor of some peak in w.

Proof. Suppose that M(w) is finitely generated. By definition, M(w) has a k-basis

{vi ∣ i ∈ S̄}. Then there exists a minimal subset {i1, i2, . . . , ir} of S̄, with i1 < i2⋯ < ir,

such that M(w) = ∑rj=1 vijΛ.

We claim that each i ∈ S̄ is a successor of at least one of i1, i2, . . . , ir. Since vi ∈ ∑rj=1 vijΛ,

we may write vi = ∑tl=1 λlvjl p̄l, where λlvjl p̄l ≠ 0 with λl ∈ k, jl ∈ {i1, . . . , ir}, and pl a path

of length ml. Then, vi = ∑tl=1 λlvjl±ml
, where vjl±ml

= vjl p̄l ∈ vjlΛ. Therefore, vi = vjl0±ml0
,

and hence i = jl0 ±ml0 , for some 1 ≤ l0 ≤ t. This gives that vi ∈ vjl0Λ. Then the previous

lemma says that i is a successor of jl0 .
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It is now enough to show that the set {i1, i2, . . . , ir} is the set of peaks for w. Suppose

i ∈ S̄ is a peak in w. Then we know that i is a successor of some ij with 1 ≤ j ≤ r. Using

Lemma 5.1.1, i = ij. Next, suppose that il is not a peak for some 1 ≤ l ≤ r. Then either

cil is the inverse of an arrow or cil−1 is an arrow. In the first (resp. second) case, il is a

successor of il + 1 (resp. il − 1). Since il + 1 (resp. il − 1) is a successor of some im with

1 ≤ m ≤ r, Lemma 5.1.1 gives that il is a successor of im and l ≠ m. Thus, the previous

lemma gives that vil ∈ vimΛ, a contradiction to the minimality of {i1, . . . , ir}.

Therefore, w has finitely many peaks, and every i ∈ S̄ is a successor of some peak.

Conversely, suppose w admits finitely many peaks {i1, . . . , ir} and that every i ∈ S̄ is a

successor of some peak. Using the previous lemma, vi ∈ vipΛ for some 1 ≤ p ≤ r. Since

{vi ∣ i ∈ S̄} is a generating set of M(w), we get that M(w) is generated by {vi1 , . . . , vir}.

Therefore M(w) is finitely generated.

The above theorem can be informally stated as saying that a string module M(w) is

finitely generated if and only if the diagram representing w is of the following form. Note

that the string has only finitely many peaks.

k k

k ⋱ ⋰ ⋯ ⋱ ⋰ k

⋰ k k ⋱
Example 5.2.1. Let Q be the following quiver with ρ = {bc, cd, df, fb}.

v1 v2 v3 v4

a

b

c

e

d

f

Let w = ⋯acefacefab−1. Then the following picture demonstrates that not every i ∈ S̄ is

a successor of some peak, and hence M(w) is not finitely generated.
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k

k k

k

f

a b

5.3 Projective covers and syzygies

In this section, we will give an explicit description of the projective covers of finitely

generated string modules. By Theorem 4.4.1, these will themselves be string modules.

We will then use this projective cover to explicitly describe the ‘syzygy’ of such modules.

We will use the following equivalent definition of the projective cover for our purposes.

Definition 5.3.1. Let M be a finitely generated Λ module. The projective cover of M

is a module P ∈ projΛ with f ∶ P →M an epimorphism such that Ker(f) ⊂ radP .

Lemma 5.3.1. Let w = ∏i∈S ci be a string, where the ci ∶ ai → ai+1 are edges in Q.

Assume that M(w) is finitely generated with a w-string basis {vi ∣ i ∈ S̄}. If ∆ is the set

of peaks for w, then M(w) has a projective cover as follows ∶

fw ∶ ⊕i∈∆eaiΛ→M(w) ∶ (xi)i∈∆ ↦∑i∈∆vixi.

Proof. First, we claim that fw is surjective. Let j ∈ S̄. Then j is a successor of some

i ∈∆. If j < i, then cj⋯ci−1 = p−1, where p is a path of length i− j starting with ai. Thus,

p̄ ∈ eaiΛ such that fw(p̄) = vip̄ = vi−(i−j) = vj. If j > i, then ci⋯cj−1 = q, where q is a path

of length j − i starting with ai. Thus, q̄ ∈ eaiΛ such that f(q̄) = viq̄ = vi+(j−i) = vj. If j = i,

then f(eai) = vieai = vi = vj. This proves our claim.
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Let x = (xi)i∈∆ ∈ Ker(fw). For each i ∈ ∆, we may write xi = λieai + ∑j λij p̄ij, where

λi, λij ∈ k and pij ∈ Qlij(ai,−) with lij > 0. Then

fw(x) = ∑i∈∆λivi +∑i∈∆∑j
λijvi±lij = 0.

This yields λi = 0 for all i ∈∆. That is, x ∈ rad(⊕i∈∆eaiΛ).

Definition 5.3.2. Let M be a finitely generated Λ-module with f ∶ P →M its projective

cover. Then the syzygy of M , denoted Ω(M), is defined to be the module Ker(f).

In essence, the syzygy of a module ‘measures’ its deviation from being a projective

module.

Theorem 5.3.1. Let M(w) be a finitely-generated string module defined by a string

w = p−11 q1⋯p−1r qr, where pi, qj are paths in Q such that pi, qj are non-trivial for 1 < i ≤ r

and 1 ≤ j < r respectively. In case p1 is finite and p−11 q1 does not start in a deep, define

x1 to be the maximal path such that x−11 p−11 q1 is a string. In case qr is finite and p−1r qr

does not end in a deep, define yr to be the maximal path such that p−1r qryr is a string.

For each 1 < i ≤ r, let xi and yi−1 be the maximal paths such that pixi and qi−1yi−1 are

strings. Then

Ω(M(w)) =K1 ⊕K2 ⊕⋯⊕Kr ⊕Kr+1,

where

1. K1 = 0 if x1 is not defined ; and otherwise, K1 = M(x) with x the path such that

x1 = αx for an arrow α;

2. Ki =M(x−1i yi−1) for 2 ≤ i ≤ r;

3. Kr+1 = 0 if yr is not defined ; and otherwise, Kr+1 =M(y) with y the path such that

yr = βy for an arrow β.
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Proof. We denote by li and di the length of pi and qi respectively, for i = 1, . . . , r. Write

w = ∏i∈S ci, where S is an interval of Z and ci ∶ ai → ai+1 are edges in Q. Let m1, . . . ,mr

be the peaks for w such that ami
= s(pi). Since s(qi−1) = s(pi−1) and e(qi−1) = e(pi), we

see that mi−1 + di−1 = mi − li, which is a deep for w, for 2 ≤ i ≤ r. Let {vi ∣ i ∈ S̄} be a

w-string basis for M(w). By Lemma 5.3.1, M(w) admits a projective cover

fw ∶ Pw = ⊕ri=1eami
Λ→M(w) ∶ (ρ1, . . . , ρr) ↦ ∑ri=1vmi

ρi.

We shall first show that Ki ≅ Li, a submodule of Pw, for i = 1, . . . , r + 1. For the sake

of simplicity, we shall omit the zero components of an element (ρ1, . . . , ρr) in Pw. For

instance, (eam1
,0, . . . ,0) will be simply written as (eam1

).

In case x1 is not defined, K1 ≅ L1 with L1 = 0. Assume that x1 = αx, where α ∶ a → b is

an arrow and x is a path. Put L1 = (p̄1ᾱ)Λ ≠ 0. By the maximality of x1, we see that

p̄1ᾱx̄γ̄ = 0 for all γ ∈ Q1. If x = εb, then K1 =M(x) ≅ Sb, and L1 = k(p̄1ᾱ) ≅ Sb. Otherwise,

x = α1α2⋯, where αi ∈ Q1. Then, (p̄1ᾱ)Λ has k-basis {(p̄1ᾱ), (p̄1ᾱᾱ1), (p̄1ᾱᾱ1ᾱ2), . . . ,},

which is clearly a x-string basis. Thus, M(x) ≅ L1. Similarly, Kr+1 ≅ Lr+1, where Lr+1 = 0

in case yr is not defined, and Lr+1 = (q̄rβ̄)Λ in case yr = βy with β some arrow and y

some path.

Consider Ki = M(wi), where wi = x−1i yi−1, for 2 ≤ i ≤ r. By the maximality of xi and

yi−1, we see that p̄ix̄iγ̄ = 0 and q̄i−1ȳi−1γ̄ = 0 for all γ ∈ Q1. If xi and yi−1 are trivial, then

Ki ≅ Se(pi). Put Li = (q̄i−1,−p̄i)Λ. Since p̄iγ̄ = 0 and q̄i−1γ̄ = 0 for all γ ∈ Q1, we see that

Li = k(q̄i−1,−p̄i) ≅ Se(pi), and hence, Ki ≅ Li.

Assume that xi is trivial and yi−1 = βi−1,1βi−1,2⋯. Then wi = βi−1,1βi−1,2⋯. We set

Li = (q̄i−1,−p̄i)Λ + (q̄i−1β̄i−1,1)Λ. Since p̄iγ̄ = 0 for γ ∈ Q1, we see that Li has a k-basis

{(q̄i−1,−p̄i), (q̄i−1β̄i−1,1), (q̄i−1β̄i−1,1β̄i−1,2), . . .},. This is a wi-string basis for Li because

(q̄i−1,−p̄i)β̄i−1,1 = (q̄i−1β̄i−1,1). Thus, Ki ≅ Li in this case. Similarly, if yi−1 is trivial and

xi = αi1αi2⋯, then Ki ≅ Li, where Li = (q̄i−1,−p̄i)Λ + (p̄iᾱi1)Λ.
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Finally, assume that xi = αi1αi2⋯ and yi−1 = βi−1,1βi−1,2⋯, where αis, βi−1,t are arrows.

Put Li = (−p̄iᾱi1)Λ + (q̄i−1,−p̄i)Λ + (q̄i−1β̄i−1,1)Λ. Since q̄i−1ᾱi1 = 0 and p̄iβ̄i−1,1 = 0, we see

that Li has a k-basis

{. . . , (−p̄iᾱi1ᾱi2), (−p̄iᾱi1), (q̄i−1,−p̄i), (q̄i−1β̄i−1,1), (q̄i−1β̄i−1,1β̄i−1,2), . . .}.

Observe that wi = ⋯α−1i2 α−1i1 βi−1,1βi−1,2⋯. Since

(q̄i−1,−p̄i)ᾱi1 = (−p̄iᾱi1),

(q̄i−1,−p̄i)β̄i−1,1 = (q̄i−1β̄i−1,1),

we see that the above basis is a wi-string basis for Li. Thus, Ki ≅ Li in this case.

Now, set L = ∑r+1i=1 Li. It is not difficult to see that this is a direct sum. We first show

that L ⊆ Ker(fw), or equivalently, Li ⊆ Ker(fw), for i = 1, . . . , r + 1.

Suppose that L1 ≠ 0. Then, l1 is finite and L1 = (p̄1ᾱ)Λ. Observe that m1 − l1 is a deep

for w and vm1 p̄1 = vm1−l1 . Thus, vm1−l1ᾱ = 0, and consequently, fw((p̄1ᾱ)) = vm1 p̄1ᾱ = 0.

Thus, L1 ⊆ Ker(fw). Similarly, Lr+1 ⊆ Ker(fw).

Consider Li with 2 ≤ i ≤ r. Since mi−1 + di−1 =mi − li, we see that

fw((q̄i−1,−p̄i)) = vmi−1 q̄i−1 − vmi
p̄i = vmi−1+di−1 − vmi−li = 0.

This shows that (q̄i−1,−p̄i)Λ ⊆ Ker(fw). Let yi−1 = βi−1,1βi−1,2⋯. Since mi−1 + di−1 is

a deep for w, we see that fw((q̄i−1β̄i−1,1)) = vmi−1 q̄i−1β̄i−1,1 = vmi−1+di−1 β̄i−1,1 = 0. Thus,

(q̄i−1β̄i−1,1)Λ ⊆ Ker(fw). Similarly, if xi = αi1αi2⋯, then (p̄iᾱi1)Λ ⊆ Ker(fw). This implies

that Li ⊆ Ker(fw) in any case.

Assume conversely that ρ = (ρ1, . . . , ρr) ∈ Ker(fw), where ρi ∈ eami
Λ. For each 1 ≤ i ≤ r,

we may write

ρi = ∑s≥0λisp̄is +∑t≥1µitq̄it,
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where λis, µit ∈ k, and pis is a path of length s such that pis is an initial subpath of pi for

0 ≤ s ≤ li and pi is a proper initial subpath of pis for s > li, while qit is a path of length t

such that qit is an initial subpath of qi for 1 ≤ t ≤ di and qi is a proper initial subpath of

pit for t > di. Then

0 = fw(ρ) = ∑ri=1 vmi
ρi

= ∑ri=1(∑s≥0 λisvmi
p̄is +∑t≥1 µitvmi

q̄it)
= ∑ri=1(∑0≤s≤li λisvmi

p̄is +∑1≤t≤di µitvmi
q̄it)

= ∑0≤s≤l1 λ1svm1−s +∑ri=2∑0≤s<li λisvmi−s

+∑r−1i=1 ∑1≤t<di µitvmi+t +∑1≤t≤dr µrtvmr+t

+∑ri=2(λi,li + µi−1,di−1)vmi−li

A a consequence, λ1s = 0 for 0 ≤ s ≤ l1, and λis = 0 for 2 ≤ i ≤ r and 0 ≤ s < li, and µit = 0

for 1 ≤ i ≤ r − 1 and 1 ≤ t < di, and µrt = 0 for 1 ≤ t ≤ dr, and λi,li +µi−1,di−1 = 0 for 2 ≤ i ≤ r.

That is, ρ1 = ∑s>l1λ1sp̄1s + µ1,d1 q̄1 +∑t>d1µ1tq̄1t,

ρi = −µi−1,di−1 p̄i + µi,di q̄i +∑s>liλisp̄is +∑t>diµitq̄it, for i = 2, . . . , r − 1,

and ρr = −µr−1,dr−1 p̄r +∑s>lrλrsp̄rs +∑t>drµrtq̄rt. This yields

ρ = ∑s>l1λ1s(p̄1s) +∑t>drµrt(q̄rt)
+∑ri=2 (∑t>di−1µi−1,t(q̄i−1,t) + µi−1,di−1(q̄i−1,−p̄i) +∑s>liλis(p̄is)) .

Thus, ρ ∈ L1 +L2 +⋯ +Lr +Lr+1. Thus, Ker(fw) = L = ⊕r+1i=1Li ≅ ⊕r+1i=1Ki.

Example 5.3.1. Let Λ be the string algebra from Example 5.2.1. Let w = ced−1ef . Then

by definition, the peaks for w are 1 and 4. Therefore, the projective cover for M(w) is

given by Pv2 ⊕ Pv3, where

Pv2 =M(cefacefa⋯),

Pv3 =M(d−1efacefac⋯).

Moreover, using the previous theorem, we get that K1 = 0, K2 = M(faceface⋯), and

K3 =M(cefacefa⋯), hence

Ω(M(w)) =M(faceface⋯)⊕M(cefacefa⋯).
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We immediately get the following theorem as a corollary of the previous theorem.

Theorem 5.3.2. Let Λ be a string algebra. Then a string module over Λ is finitely

generated if and only if it is finitely presented.

Proof. Clearly, if a module is finitely presented, then it is finitely generated. Conversely,

suppose M(w) is a finitely generated module for a string w in Λ. Theorem 5.2.1 along

with Lemma 5.2.1 implies that w is of the form w = p−11 q1⋯p−1r qr, where pi, qi are paths

in Q such that pi is non-trivial for 1 < i ≤ r and qi is non-trivial for 1 ≤ i < r. Using

Theorem 5.3.1, we get that Ω(M(w)) is a finite direct sum of string modules that are

themselves finitely generated. Hence Ω(M(w)) is finitely generated, which implies that

M(w) is finitely presented.
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CHAPTER 6

Finitely co-generated string modules

In this chapter, our goal would be to prove the dual results from the last chapter. We will

classify the finitely co-generated string modules over Λ. Furthermore, we will calculate

the injective envelopes and cosyzygies of such string modules and show that any finitely

cogenerated string module is finitely copresented as well, which is again known to be

the case for locally bounded string algebras. We will assume Λ = kQ/⟨ρ⟩ to be a locally

finite-dimensional string algebra for the entirety of this chapter.

6.1 Finitely cogenerated string modules

As before, we start by stating a few combinatorial lemmas.

Lemma 6.1.1. Let I = ⊕ri=1Iai for some ai ∈ Q0 and x ∈ I such that x ≠ 0. Then there

exists a path p in Q such that 0 ≠ x ⋅ p̄ ∈ soc(I).

Proof. Suppose x = (x1,⋯, xr) with xi ∈ Iai . Let S = {j ∣ 1 ≤ j ≤ r, xj ≠ 0}. Since

x ≠ 0, S ≠ ∅. Using Theorem 4.4.2, for all i ∈ S, we can write xi = ∑rij=1 λi,jv
(i)
ki,j

,
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where {. . . v(i)−1 , v
(i)
0 , v

(i)
1 , . . .} is a string basis of Iai as described in Theorem 4.4.2 and

λi,j ≠ 0 for all 1 ≤ j ≤ ri. Let mi = maxrij=1 ∣ ki,j ∣ such that the maximum occurs at

some j′i. Let pi be the path ending at ai corresponding to v(i)ki,j′
i

, i.e., v(i)ki,j′
i

= (p̄i)∗. Then

xi ⋅ p̄i = λi,j′i(eai)
∗ ∈ soc(Iai). Now, let pi′ be the path with the maximum length among

the pi. Then xi ⋅ p̄i′ is either 0 or equal to λi,j′i(eai)
∗. Since xi′ ⋅ p̄i′ ≠ 0, x ⋅ p̄i′ ≠ 0 and

x ⋅ p̄i′ ∈ soc(I).

We can express the idea of the above proof as follows. Since we are starting with a direct

sum of Iai , we have a direct sum of string modules of the form

⋱ ⋰

k k

k k

k

Taking the maximum mi ensures that xi ⋅ p̄i is proportional to the basis vector corre-

sponding to the deep of Iai . Further, by taking the maximum over pi, we make sure that

every other copy either becomes zero or proportional to the basis vector corresponding

to the deep.

Lemma 6.1.2. Let w = ∏i∈S ci be a string, where ci ∶ ai → ai+1 are edges in Q. Then w

admits at most finitely many deeps and every i ∈ S̄ is a predecessor of some deep in w

if and only if w = q1p−11 ⋯qrp−1r , where pi, qi are paths in Q such that pi is non-trivial for

1 ≤ i < r and qi is non-trivial for 1 < i ≤ r.

Proof. Suppose w admits finitely many deeps d1, . . . , dr in S̄ such that every i ∈ S̄ is a

predecessor of some deep. We shall show that w is of the form as stated in the lemma.
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We start with defining q1. If d1 − 1 /∈ S, then q1 = εai1 . Suppose that d1 − 1 ∈ S. Given

any i ∈ S with i ≤ d1 − 1, i is a predecessor of some dm with 1 ≤m ≤ r. Since i < d1 ≤ dm,

by definition, ci⋯cdm−1 is a path, and in particular, ci is an arrow. Letting S1 be the set

of i ∈ S with i < d1, we see that ∏i∈S1
ci is a non-trivial path p1.

Next, we define pr. If dr /∈ S, then pr = εadr . Suppose that dr ∈ S. Consider i ∈ S̄ with

dr < i. Then i is a predecessor of some dn with 1 ≤ n ≤ r. Since dn ≤ dr < i, by definition,

cdn⋯ci−1 is an inverse of a path. In particular, ci−1 is an arrow. Let Sr be the set of i ∈ S̄

with dr < i, we see that ∏i∈Sr
ci−1 is the inverse of a non-trivial path pr. If r = 1, then

w = q1p−11 .

Suppose that r > 1. Fix some 1 ≤ l < r. Since dl, dl+1 are deeps, cdl is the inverse of an

arrow and cdl+1−1 is an arrow. Therefore, we obtain a maximal jl with dl < jl < dl+1 such

that cdl⋯cjl−1 is the inverse of a non-trivial path pl. Then, cjl is an arrow. Consider i

with jl < i < dl+1, which is a predecessor of dt for some 1 ≤ t ≤ r. If t ≤ l, since dt < i,

we obtain the inverse of a path cdt⋯ci−1 = cdt⋯cjl⋯ci−1, contrary to cjl being an arrow.

Thus, l + 1 ≤ t, and since i < dt, we see that ci⋯cdt−1 is a path, and in particular, ci is an

arrow. As a consequence, cjl⋯cdl+1−1 is a non-trivial path ql+1. It is now easy to see that

w = q1p−11 ⋯qrp−1r .

Conversely, assume that w can be written as w = q1p−11 ⋯qrp−1r , where pi, qi are paths in

Q such that pi is non-trivial for 1 ≤ i < r and qi is non-trivial for 1 < i ≤ r. For each

1 ≤ i ≤ r, let Si, Ti ⊆ S be such that ∏j∈Si
cj = p−1i and ∏j∈Ti cj = qi, where T1 = ∅ in case

q1 is trivial; and Sr = ∅ in case pr is trivial. Let di be the minimal element of Si, for

1 ≤ i < r. Moreover, let dr be the minimal element of Sr in case Sr ≠ ∅, and otherwise,

let dr be the unique element of S̄ ∖ S. By definition, Si and Ti are convex subsets of S

such that

S = (T1 ∪ S1) ∪ (T2 ∪ S2)⋯ ∪ (Tr ∪ Sr)
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and that di − 1 is the maximal element of Ti if it exists for all 1 ≤ i ≤ r.

We claim that {d1, d2, . . . , dr} is the set of deeps for w. Let us start with d1. By definition,

cd1 is the inverse of the final arrow of p1. If d1 − 1 ∈ S, then d1 − 1 ∈ T1 with cd1−1 being

the final arrow of q1. So d1 is a deep by definition. Consider now di with 1 < i < r. Since

di is the minimal element of Si, the edge cdi is the inverse of the final arrow of pi; and

since di − 1 is the maximal element of Ti, the edge cdi−1 is the final arrow of qi. So di is

a deep by definition. Consider finally dr. Since dr − 1 is the maximal element of Tr, the

edge cdr−1 is the final arrow of qr. If dr ∈ S, then dr is the minimal element of Sr, and

hence, cdr is the inverse of the final arrow of pr. So dr is a deep by definition.

Given 1 ≤ l ≤ r, we claim that each i ∈ Sl ∪ Tl is a predecessor of dl. Indeed, if i < dl,

since dl is minimal in Sl, we see that i ∈ Sl with i ≤ dl − 1. In this case, ci⋯cdl−1 is a final

subpath of ql. So i is a predecessor of dl by definition. If i > dl, since dl−1 is the maximal

element of Tl, we see that i ∈ Tl. In this case, cdl⋯ci−1 is the inverse of a final subpath of

pl. So i is also a predecessor of dl.

In particular, every i ∈ S is a predecessor of some dl with 1 ≤ l ≤ r. Consider now i ∈ S̄∖S.

Then i ≥ dr. If i = dr, then it is a predecessor of dr. If i > dr then, by definition, i−1 ∈ Sr.

In this case, cdr⋯ci−1 = p−1r . So i is also a predecessor of dr. By Lemma 5.1.1, {d1, . . . , dr}

is the set of all deeps for w.

Theorem 6.1.1. Let w = ∏i∈S ci be a string, where the ci ∶ ai → ai+1 are edges in Q. The

string module M(w) is finitely cogenerated if and only if w admits finitely many deeps

and every i ∈ S̄ is a predecessor of some deep in w.

Proof. Let {vi ∣ i ∈ S̄} be a w-string basis of M(w). We first suppose that M(w) is

finitely cogenerated. Then there exists an injective map f ∶M(w) → I0, where I0 ∈ injΛ.

This means that I0 = ⊕ri=1Iai , where ai ∈ Q0 for 1 ≤ i ≤ r.
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Let Ω be the set of deeps of w. We first show that Ω is finite. Using Lemma 5.1.2,

we know that soc(M(w)) = ⊕i∈∇viΛ, where ∇ is the set of deeps for w. Since f is an

injection, soc(M(w)) ⊂ soc(⊕ri=1Iai) = ⊕ri=1soc(Iai) = ⊕ri=1k(eai)∗. Since ⊕ri=1k(eai)∗ is

finite-dimensional, soc(M(w)) is finite dimensional and ∇ is finite.

Let i ∈ S̄. Then using Lemma 6.1.1, there exists some path p in Q such that

f(vi ⋅ p̄) = f(vi).p̄ =
r

∑
i=1
λi(eai)∗ ≠ 0.

Since vi ⋅ p̄ ≠ 0, there exists some m ∈ S̄ such that vm = vi ⋅ p̄.

We claim that m is a deep. Suppose otherwise. Then either m ∈ S and cm is an arrow,

or m − 1 ∈ S and cm−1 is the inverse of an arrow. In the first case, vm ⋅ cm = vm+1,

which implies that f(vm+1) = f(vm ⋅ cm) = f(vm) ⋅ cm = (∑ri=1 λi(eai)∗) ⋅ cm = 0. Since

f is injective, this is a contradiction. In the second case, vm ⋅ cm = vm−1, which implies

that f(vm−1) = f(vm) ⋅ cm = (∑ri=1 λi(eai)∗) ⋅ cm = 0. Since f is injective, this is again a

contradiction. Hence, Lemma 5.2.2 gives that each i ∈ S̄ is a predecessor of some deep.

Now suppose w admits finitely many deeps {d1,⋯, dr} and every i ∈ S̄ is a predecessor

of some deep. Then soc(M(w)) = ⊕ri=1vdik using Lemma 5.1.2. Thus, we get a canonical

inclusion f ∶ soc(M(w)) → ⊕rm=1Iadm sending vdi to the element having (eadi)
∗ as the ith

coordinate and 0 as others. Let g be the canonical inclusion of soc(M(w)) in M(w).

Since ⊕rm=1Iadm is an injective module, we get a map h ∶ M(w) → ⊕rm=1Iadm such that

h ○ g = f .

We claim that h is a monomorphism. For this, it is enough to show that soc(M(w)) is an

essential submodule of M(w) as that would imply that g is an essential monomorphism,

which would imply that h is a monomorphism (since f is a monomorphism). Let N be a

non-zero submodule of M(w) such that x = ∑i∈T λivi is a non-zero element of N , where

T is a finite subset of S̄, and λi ≠ 0 for all i ∈ T . Since every l ∈ S̄ is a predecessor of

some deep, there exist paths pi in Q such that vi ⋅ p̄i is a deep. Let pn be a path with

80



the maximum length among pi. Then vi ⋅ p̄n is either 0 or a deep. Since vn ⋅ p̄n ≠ 0,

0 ≠ x ⋅ p̄n ∈ N ∩ soc(M(w)). This shows that soc(M(w)) is an essential submodule of

M(w).

Again, the above theorem can be reformulated as saying that a string module M(w) is

finitely cogenerated if and only if the diagram representing w is of the following form.

Note that the string has only finitely many deeps.

⋱ ⋰

k k ⋯ k k

k k

Example 6.1.1. Let w = ⋯ab−1ab−1⋯ in Λ2. Then the diagram representing M(w) is as

follows.

k k k

⋯ k k ⋯
ab b a b a

Since w has infinitely many deeps, M(w) is not finitely cogenerated.

6.2 Injective envelopes and cosyzygies

Lemma 6.2.1. Let w = ∏i∈S ci be a string, where ci ∶ ai → ai+1 are edges in Q, such that

M(w) is finitely cogenerated. If ∇ is the set of deeps for w, then ⊕i∈∇Iai is the injective

envelope of M(w).

Proof. Let i ∈ ∇. Then Iai ≅ M(piq−1i ), where pi, qi are longest paths ending at ai such
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that piq−1i is a string. We write pi = ⋯α(−2,i)α(−1,i) and qi = ⋯β(1,i)β(0,i). Now, we define

a map gw ∶M(w) → ⊕i∈∇Iai as follows.

Let i ∈ S̄. Since M(w) is finitely cogenerated, i is a predecessor of some deep di. We

note that i can be a predecessor of at most two distinct deeps. If i is a predecessor of

a unique deep d, then either ci⋯cd−1 is a subpath of pd or cd⋯ci−1 is the inverse of a

subpath of qd. In either case, we define gw(vi) to be the dual of this subpath. However,

if i is a predecessor of two deeps d1 and d2, then cd1⋯ci−1 is the inverse of a subpath of

qd1 and ci⋯cd2−1 is a subpath of pd2 (Assuming, without loss of generality, that d1 ≤ d2).

In this case, set gw(vi) to be the difference of the dual of these two paths. Clearly, gw

is an injective module homomorphism as the images of vi are linearly independent. We

will show that Im(gw) is an essential submodule of ⊕i∈∇Iai .

Suppose 0 ≠ N ⊕i∈∇ Iai . Let 0 ≠ x ∈ N . Then x = ∑m λm(rm)∗, with λm ≠ 0, where

rm = α(−2,nm)⋯α(−2,i)α(−1,i) or rm = β(1,nm)⋯β(1,i)β(0,i) for some i ∈ ∇. Set n ∶= maxm nm.

Let rm′ be a path with length n. Then x ⋅ rm′ is a non-zero sum of eai . Hence we get that

x ⋅ rm′ ∈ g(M(w)). Therefore, gw is an essential monomorphism.

Definition 6.2.1. Let M be a finitely cogenerated Λ-module with i ∶M → I its injective

envelope. Then the cosyzygy of M , denoted by Ω−(M), is defined to be the module

Coker(i).

In essence, the cosyzygy of a module ‘measures’ its deviation from being an injective

module.

Theorem 6.2.1. Let M(w) be a finitely cogenerated string module defined by a string

w = q1p−11 ⋯qrp−1r , where pi, qj are paths in Q such that pi, qj are non-trivial for 1 ≤ i < r

and 1 < j ≤ r respectively. In case q1 is finite and does not start in a peak, define x1 to be

the maximal path such that x1q1p−11 is a string. In case pr is finite and does not start in

a peak, define yr to be the maximal path such that qrp−1r y−1r is a string. For each 1 < i ≤ r,
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let xi and yi−1 be the maximal paths such that yi−1pi−1 and xiqi are strings. Then

Ω−(M(w)) =K1 ⊕K2 ⊕⋯⊕Kr ⊕Kr+1,

where

1. K1 = 0 if x1 is not defined ; and otherwise, K1 = M(x) with x the path such that

x1 = xα for an arrow α;

2. Ki =M(xiy−1i−1) for 2 ≤ i ≤ r;

3. Kr+1 = 0 if yr is not defined; and otherwise, Kr+1 =M(y) with y the path such that

yr = yβ for an arrow β.

Proof. We denote by li and di the length of pi and qi respectively, for i = 1, . . . , r. Write

w = ∏i∈S ci, where S is an interval of Z and ci ∶ ai → ai+1 are edges in Q. Let m1, . . . ,mr

be the deeps for w such that ami
= e(pi). Since e(qi−1) = e(pi−1) and s(qi) = s(pi−1), we

see that mi−1 + li−1 = mi − di, which is a peak for w, for 2 ≤ i ≤ r. Let {vi ∣ i ∈ S̄} be a

w-string basis for M(w). By Lemma 6.2.1, M(w) admits an injective envelope

gw ∶M(w) → ⊕i∈∇Iai .

We will construct a surjective homomorphism π ∶ ⊕i∈∇Iai → ⊕r+1i=1Ki and show that the

kernel of this map is Im(gw). For 1 ≤ i ≤ r, let si, ti be the longest paths ending at ami

such that sit−1i is a string. Since si and ti have an endpoint, they are either trivial or

we can write them as si = ⋯α2,iα1,i and ti = ⋯β2,iβ1,i, where αj,i, βj′,i are arrows. We

note that if si and ti are both trivial, then w would have to be a trivial string. Now set

v0,i ∶= e∗ami
, v−j,i ∶= (αj,i⋯α2,iα1,i)∗ for j ≤ l(si), and vj,i ∶= (βj,i⋯β2,iβ1,i)∗ for j ≤ l(ti).

Using Lemma 4.4.2, we have that the set {v−j,i ∣ j ≤ l(si)} ∪ {v0,i} ∪ {vj,i ∣ j ≤ l(ti)} is

a k-basis of Iami
. Since qi, pi are paths ending at ai, we can assume, without loss of

generality, that they are terminal subpaths of si and ti respectively.
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Now if q1 is infinite or starts in a peak, q1 = s1 and we define π(v−j,1) ∶= 0 for all 1 ≤ j ≤

l(si). Otherwise, x1 is a non-trivial path such that x1q1 = s1. So we get that x = ⋯αd1+2,1.

We define π(v−j,1) ∶= 0 for 1 ≤ j ≤ d1, π(v−d1−1,1) ∶= e∗e(x), and π(v−j,1) ∶= (αj,1⋯αd1+2,1)∗

for d1 + 2 ≤ j ≤ l(s1). Since the set {(αj,1⋯αd1+2,1)∗ ∣ d1 + 2 ≤ j ≤ l(s1)} ∪ {e∗e(x)} is an

x-string basis of M(x), we get that K1 ⊂ Im(π).

Similarly if pr is infinite or starts in a peak, qr = tr and we define π(vj,r) ∶= 0 for all 0 ≤ j ≤

l(ti). Otherwise, yr is a non-trivial path such that yrpr = tr. So we get that y = ⋯βlr+2,r.

We define π(vj,r) ∶= 0 for 0 ≤ j ≤ lr, π(vlr+1,r) ∶= e∗e(y) and π(vj,r) ∶= (βj,r⋯βlr+2,r)∗ for

lr + 2 ≤ j ≤ l(tr). Since the set {(βj,r⋯αlr+2,r)∗ ∣ lr + 2 ≤ j ≤ l(tr)} ∪ {e∗e(y)} is a y-string

basis of M(y), we get that Kr+1 ⊂ Im(π).

Now suppose 2 ≤ i ≤ r. Then either xi is trivial or xi = ⋯αdi+2,iαdi+1,i. Similarly either

yi−1 is trivial or yi−1 = ⋯βli−1+1,i−1. Now we define π(v−j,i) ∶= 0 for all 1 ≤ j ≤ di − 1,

π(vt,i−1) ∶= 0 for all 0 ≤ t ≤ li−1 − 1, π(v−di,i) = π(vli−1,i−1) ∶= e∗s(qi), π(v−j,i) ∶= (αj,i⋯αdi+1,i)
∗

for all di + 1 ≤ j ≤ l(si), and π(vj,i−1) ∶= (βj,i−1⋯βli−1+1,i−1)∗ for all li−1 + 1 ≤ j ≤ l(ti−1).

Note that this defines π on all of ⊕i∈∇Iai . Since the module M(xiy−1i−1) has as a k-basis

the set {. . . , α∗di+1,i, e
∗
s(qi), β

∗
li−1+1,i−1, . . .}, Ki ⊂ Im(π) for all 2 ≤ i ≤ r. Therefore, we get

that π is a surjective homomorphism.

We now show that Im(gw) ⊂ Ker(π). Let i ∈ S̄. Then by Lemma 6.1.1, i is a predecessor

of some deep mzi for 1 ≤ zi ≤ r. If i = mzi , then π(gw(vi)) = π(e∗amzi
) = π(v0,zi) = 0.

Suppose i < mzi . Then ci⋯cmzi−1 is a terminal subpath of qzi , and hence a terminal

subpath of szi . Now if i − 1 ∉ S, then ci is the starting point of the string and zi = 1. By

the definition of gw, we get that π(gw(vi)) = π((αd1,1⋯α1,1)∗) = 0. If i − 1 ∈ S and ci−1

is an arrow, then i is a predecessor of a unique deep. Therefore, by the definition of gw,

we get that π(gw(vi)) = π((αmzi−i,zi⋯α1,zi)∗) = 0, since 0 < mzi − i < dzi . On the other

hand, if i − 1 ∈ S and ci−1 is the inverse of an arrow, then i is a predecessor of mzi−1 as

well. This gives that cmzi−1⋯ci−1 is the inverse of pzi−1 and αmzi−i,zi⋯α1,zi is the path qzi .
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Therefore, by the definition of gw, we get that

π(gw(vi)) = π((αdzi ,zi⋯α1,zi)∗ − (βlzi−1,zi−1⋯β1,zi−1)
∗)

= π(v−dzi ,zi − vlzi−1,zi−1) = e ∗s(qzi) −e∗s(qzi) = 0.

Now we suppose that i >mzi . Then cmzi
⋯ci−1 is the inverse of a terminal subpath of pzi ,

and hence of a terminal subpath of tzi . Now if i ∉ S, then ci−1 is the endpoint of the

string and zi = r. By the definition of gw, we get that π(gw(vi)) = π((βlr,r⋯β1,r)∗) = 0.

If i ∈ S, and ci is the inverse of an arrow, then i is a predecessor of a unique deep.

Therefore, by the definition of gw, we get that π(gw(vi)) = π((βi−mzi ,zi
⋯β1,zi)∗) = 0, since

0 < i −mzi < lzi . Finally, if ci is an arrow, then i is a predecessor of mzi+1 as well and we

are in the same case as before. Therefore, Im(gw) ⊂ Ker(π). Now suppose z ∈ Ker(π)

such that z = ∑ri=1∑
l(ti)
j=−l(si) λj,ivj,i. Then π(z) = 0 implies that

λ−d1−1,1e
∗
e(x) +∑

l(s1)−d1
b=2 λ−d1−b,1(αd1+b,1⋯αd1+2,1)∗+

∑ri=2∑
l(ti−1)−li−1
b=1 λli−1+b,i−1(βli−1+b,i−1⋯βli−1+1,i−1)∗+
∑ri=2∑

l(si)−di
b=1 λ−di−b,i(αdi+b,i⋯αdi+1,i)∗+
∑ri=2(λ−di,i + λli−1,i−1)e∗s(qi)+

∑l(tr)−lrb=2 λlr+b,r(βlr+b,r⋯βlr+2,r)∗ + λlr+1,re∗e(y) = 0.

This gives that

λ−di−j,i = 0 1 ≤ j ≤ l(si) − di, 1 ≤ i ≤ r
λli+j,i = 0 1 ≤ j ≤ l(ti) − li, 1 ≤ i ≤ r

λ−di,i = −λli−1,i−1 2 ≤ i ≤ r

This gives that z = ∑ri=1∑li−di λj,ivj,i such that λ−di,i = −λli−1,i−1 for 2 ≤ i ≤ r. Therefore we

get that z ∈ Im(gw) and Ker(π) = Im(gw). Thus

Ω−(M(w)) ≅ ⊕i∈∇Iai/Im(gw) = ⊕i∈∇Iai/Ker(π) ≅ ⊕r+1i=1Ki.
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Example 6.2.1. Let Λ be the string algebra from Example 4.4.2. Let w = a1b−11 . Then

w has one deep, 2. Therefore, the injective envelope for M(w) is given by I2, where

I2 =M(⋯a2a1b−11 b−12 ⋯).

By Theorem 6.2.1, K1 =M(⋯a4a3) and K2 =M(⋯b4b3), and hence

Ω−(M(w)) =M(⋯a4a3) ⊕M(⋯b4b3).

We immediately get the following theorem as a corollary of the previous theorem.

Theorem 6.2.2. Let Λ be a locally bounded string algebra. Then a string module over

Λ is finitely cogenerated if and only if it is finitely copresented.

Proof. Clearly, if a module is finitely copresented, then it is finitely cogenerated. Con-

versely, suppose M(w) is a finitely cogenerated module for a string w in Λ. Theorem

6.1.1 along with Lemma 6.1.2 implies that w is of the form w = q1p−11 ⋯qrp−1r , where pi, qi

are paths in Q such that pi is non-trivial for 1 ≤ i < r and qi is non-trivial for 1 < i ≤ r.

Using Theorem 6.2.1, we get that Ω−(M(w)) is a finite direct sum of string modules

that are themselves finitely cogenerated. Hence Ω−(M(w)) is finitely cogenerated, which

implies that M(w) is finitely copresented.
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CONCLUSION

In this dissertation, we worked with locally semi-perfect algebras and proved the existence

of almost split sequences in the category of locally finite-dimensional unital modules over

certain locally semi-perfect algebras.

In the second half, we worked with locally finite-dimensional string algebras. We char-

acterized the strings for which the associated string modules are finitely presented or

finitely copresented and calculated their syzygies and cosyzygies respectively.

In order to give an explicit description of the almost split sequences, the next step would

be to give a combinatorial description of the irreducible maps and almost split sequences

for locally finite-dimensional string algebras. This would involve a generalization of the

functorial factorization method used by Butler and Ringel in [11].
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