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Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Setting

k : algebraically closed field.

A : Hom-finite Krull-Schmidt k-category.

For describing morphisms in A, we apply
Auslander-Reiten theory,

1 irreducible morphisms,

2 almost split sequences,
3 AR-quiver.
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Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Pseudo-exact sequences

Definition

A sequence X f // Y
g // Z in A is pseudo-exact if

1 f is pseudo-kernel of g , and

2 g is a pseudo-cokernel of f .

Example

Any sequence X // 0 // Z is pseudo-exact.
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Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence X f // Y
g // Z in A is

almost split provided

1 Y 6= 0,

2 f is source morphism, and
3 g is sink morphism.

Remark. This unifies notions of almost split
sequences in abelian categories and almost split
triangles in triangulated categories.
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Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Auslander-Reiten quiver

Definition
AR-quiver ΓA of A is translation quiver as follows:

The vertices are the non-iso objects in indA.

For vertices X ,Y , draw dX ,Y arrows X → Y ,
where

dX ,Y = dimk rad(X ,Y )/rad2(X ,Y ).

If X // Y // Z is almost split, then τZ = X .
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AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Standard components

Let Γ be a component of ΓA.

k(Γ ) : the mesh category of Γ over k .

A(Γ ) : full subcategory of A generated by the
objects in Γ .

Definition (Ringel)

Γ is standard if A(Γ ) ∼= k(Γ ).
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AR-components with sections
Standardness Criterions
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Cluster structure of infinite Dynkin type

The module category case

A : finite dimensional k-algebra.

modA : category of fin dim left A-modules.

Theorem
A component Γ of ΓmodA is standard provided

1) (R, BG) A is rep-finite with chark 6= 2.

2) (Ringel) Γ is preprojective or preinjective.
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

The module category case

A : finite dimensional k-algebra.

modA : category of fin dim left A-modules.

Theorem
A component Γ of ΓmodA is standard provided

1) (R, BG) A is rep-finite with chark 6= 2.
2) (Ringel) Γ is preprojective or preinjective.
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AR-components with sections
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Cluster structure of infinite Dynkin type

A general description

Theorem (Skowronski)

Let Γ be standard component of ΓmodA.

1) All but finitely many τ -orbits in Γ are periodic.

2) If Γ is regular, then Γ is stable tube or Γ ∼= Z∆,
where ∆ finite acyclic quiver.
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Cluster structure of infinite Dynkin type

Objective

Question

Let A be Hom-finite Krull-Schmidt k-category.

1 How to decide a component of ΓA is standard?

2 Are there new types of standard components?

3 We consider these questions for AR-components
with a section.
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Cluster structure of infinite Dynkin type

Sections of a translation quiver

Definition

Let (Γ , τ) be translation quiver.

A full subquiver ∆ of Γ is section if

1 ∆ is connected, acyclic, and convex in Γ .

2 ∆ meets each τ -orbit in Γ exactly once.
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Cluster structure of infinite Dynkin type

Example

Example

Consider a wing as follows:
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The two exterior paths are sections.
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Cluster structure of infinite Dynkin type

Construction of translation quivers with sections

Let ∆ be acyclic quiver.

Consider the translation quiver Z∆.

For each i ∈ Z, (∆, i) is section of Z∆.

Notation

N∆ =< (x , i) | x ∈ ∆0, i ∈ N >⊆ Z∆.

N−∆ =< (x ,−i) | x ∈ ∆0, i ∈ N >⊆ Z∆.
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Cluster structure of infinite Dynkin type

Example

The translation quiver ZA∞ is as follows:
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Example

If A+
∞ denotes a right infinite path

◦ // ◦ // · · · // ◦ // · · · ,

then NA+
∞ is follows:
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Cluster structure of infinite Dynkin type

Stable components

Theorem
Let Γ be τ -stable component of ΓA.

If Γ is not τ -periodic, then Γ ∼= Z∆, where ∆ is
locally finite acyclic quiver.
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Cluster structure of infinite Dynkin type

Trisection of a component by a section

Let Γ be component of ΓA with section ∆.

Objects in Γ uni. written as τ nX , n ∈ Z, X ∈ ∆.

This yields embedding Γ → Z∆ : τ nX 7→ (−n,X ).

Notation

1 ∆+ =< τ−nX | n > 0,X ∈ ∆ > .

2 ∆− =< τ nX | n > 0,X ∈ ∆ > .
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AR-components with sections
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Cluster structure of infinite Dynkin type

General standardness criterion

Theorem
Let Γ be component of ΓA with a section ∆.

If ∆+ no left-∞ path and ∆− no right-∞ path,
then Γ is standard ⇔

1 A(∆) ∼= k∆,

2 HomA(∆+,∆ ∪∆−) = 0,
3 HomA(∆,∆−) = 0.
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Cluster structure of infinite Dynkin type

Special standardness criterion

Theorem

Let A abelian or triangulated, Γ component of ΓA.

Let ∆ be section of Γ without infinite paths.

If each object in ∆ admits sink morphism and
source morphism in A, then

Γ is standard ⇔ HomA(∆+,∆−) = 0.
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Cluster structure of infinite Dynkin type

Standardness criterion for quasi-serial components

1 An object X is brick if EndA(X ) ∼= k .

2 Two objects X ,Y are orthogonal if
HomA(X ,Y ) = 0 and HomA(Y ,X ) = 0.

Theorem

Let Γ be component of ΓA, which is a wing or
ZA∞, NA+

∞, N−A−∞.

Γ is standard ⇔ the quasi-simple objects are
orthogonal bricks.
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Module category

Theorem
A be finite dimensional k-algebra.

Let Γ be a component of ΓmodA with section ∆.

The following are equivalent.

1 Γ is standard.
2 HomA(∆, τ∆) = 0.
3 Γ is a connecting component of ΓmodB ,

where B is a tilted factor algebra of A.
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Cluster structure of infinite Dynkin type

Representation categories of quivers

Q : connected, strongly locally finite quiver, that is,

locally finite, and

for any x , y ∈ Q0, number of paths x  y is finite.

Proposition

rep+(Q), cat. of finitely presented representations,
is Hom-finite, hereditary, abelian.
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Cluster structure of infinite Dynkin type

Types of AR-components of Γ rep+(Q)

Definition

A component Γ of Γ rep+(Q) is called

1 preprojective if Γ has some indecomposable
projective representation Px , x ∈ Q0.

2 preinjective if Γ has some indecomposable
injective representation Ix , x ∈ Q0.

3 regular if Γ has no Px , Ix , x ∈ Q0.
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Cluster structure of infinite Dynkin type

Preprojective and preinjective components

Theorem

1 The unique preprojective component, and the
preinjective components of Γ rep+(Q) are all
standard.

2 If Q has no infinite path, then Γ rep+(Q) has
unique preprojective component of shape NQop,
unique preinjective component of shape N−Qop.
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Cluster structure of infinite Dynkin type

Regular components

Theorem

Suppose that Q is infinite.

1 The regular components of Γ rep+(Q) are wings or
ZA∞,NA+

∞,N−A−∞.

2 The regular components are all standard ⇔ Q
of infinite Dynkin types A∞,A∞∞,D∞.
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Cluster structure of infinite Dynkin type

The bounded derived category Db(rep+(Q))

1 Db(rep+(Q)) is Hom-finite, Krull-Schmidt.

2 ΓDb(rep+(Q)) has a connecting component CQ ,

obtained by gluing the preprojective component
and the shift by -1 of all preinjective
components of Γ rep+(Q).
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obtained by gluing the preprojective component
and the shift by -1 of all preinjective
components of Γ rep+(Q).
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Cluster structure of infinite Dynkin type

Standard components in Db(rep+(Q))

Theorem
1 CQ is standard and embeds in ZQop.

2 CQ ∼= ZQop ⇔ Q has no infinite path.

3 The components of ΓDb(rep+(Q)) are all standard

⇔ Q is infinite Dynkin quiver.
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Standard components in Db(rep+(Q))

Theorem
1 CQ is standard and embeds in ZQop.

2 CQ ∼= ZQop ⇔ Q has no infinite path.

3 The components of ΓDb(rep+(Q)) are all standard

⇔ Q is infinite Dynkin quiver.
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Cluster category of infinite Dynkin type

Q : infinite Dynkin quiver, no infinite path.

The cluster category

C (Q) = Db(rep+(Q))/τ [−1]

is Hom-finite, triangulated, 2-CY.
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

AR-components of C (Q)

Theorem
Let Q be infinite Dynkin quiver, no infinite path.

The AR-quiver of C (Q) consists of the connecting
component of shape ZQop, and r regular
components of shape ZA∞, where

1 r = 0 if Q of type A∞.

2 r = 1 if Q of type D∞.
3 r = 2 if Q of type A∞∞. In this case, the regular

components are orthogonal.
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Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Notation

A: triangulated k-category.

T : additive subcategory of A, assumed to be full
and closed under taking summands.

TM : additive subcategory of T obtained by
deleting M , where M ∈ indT .
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Cluster structure of infinite Dynkin type

Cluster structure

Definition

A collection C of additive subcategories of A is called cluster
structure if, for any T ∈ C and M ∈ indT ,

1 The quiver QT of T has no loop, no 2-cycle.

2 ∃!M∗ ∈ indA such that T 6= add(TM ∪M∗) ∈ C .
3 The quiver of add(TM ∪M∗) is obtained from QT by

mutation at M .
4 A has exact triangles

M
f→ N

g→ M∗ → M[1]; M∗
s→ L

t→ M → M∗[1],

where f , s are minimal left TM-approximations,
g , t are minimal right TM-approximations.
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Cluster structure of infinite Dynkin type

Cluster tilting subcategories

Definition
An additive subcategory T of A is cluster tilting if

1 T is functorially finite in A,

2 For M ∈ A, Ext1
A(T ,M) = 0⇔ M ∈ T .

3 For N ∈ A, Ext1
A(N , T ) = 0⇔ N ∈ T .
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Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)Standard Auslander-Reiten components and cluster structure of infinite Dynkin type



Auslander-Reiten theory in additive categories
Objective

AR-components with sections
Standardness Criterions

Applications
The bounded derived category of representations

Cluster structure of infinite Dynkin type

Cluster tilting subcategories

Definition
An additive subcategory T of A is cluster tilting if

1 T is functorially finite in A,

2 For M ∈ A, Ext1
A(T ,M) = 0⇔ M ∈ T .

3 For N ∈ A, Ext1
A(N , T ) = 0⇔ N ∈ T .
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Cluster structure of infinite Dynkin type

Main Results

Theorem (BMRRT, HJ)

If Q is finite or of type A∞, then C (Q) admits a
cluster structure formed by the cluster tilting
subcategories.

Theorem

Let Q infinite Dynkin quiver with no infinite path.

Then C (Q) admits a cluster structure formed by
the cluster tilting subcategories.
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