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@ We shall illustrate the interaction of linear algebra with
topology and geometry.



@ We shall illustrate the interaction of linear algebra with
topology and geometry.

@ More precisely, we shall describe the orbit closures in the
Zariski space of m x n matrices.
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Algebraic sets

© Throughout, let k be an infinite field.
Q@ A":={(a1,...,a,) | ai € k}, called affine n-space over k.

© k[x1,...,x,]: ring of polynomials in variables xi, ..., x,,
which is called coordinate ring of A".

Q Given f € k[x1,...,x,] and p = (ay,--- ,a,) € A", put
f(p)="f(a---,a,) € k.
Q@ Given F C Kk[xg, -, X,], we define
Z(F):={peA"|f(p)=0, forall f € F},

which is called an algebraic set of A".

If p=(a1,...,a,) € A", then {p} = Z(x1 — a1, ..., %X, — a,)
is an algebraic set.
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O Take k =R.

@ A2={(a,b)|a,beR}: the real plane.

© The coordinate ring is R[x, y], real polynomials in x, y.
Q Z(x+y — 1): straight line passing through (1,0), (0, 1).
@ Z(x*>+ y? —1): unit circle centered at (0, 0).

Q0 Z(x+y—-1,x+y?>—-1)={(1,0),(0,1)}.
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QO Let X be a non-empty set.
@ A collection .7 of subsets of X is called a topology on X if

o X, 0.7,

o If G,...,C, e T, then U, C; € 7.

o If GGe T foralliel, then Nic; C; € T,
where [ is arbitrary index set.

O In this case,

o The pair (X,.7) is called a topological space;
o The sets in .7 are called closed sets;

o A subset Y of X is called an open set if Y = X\C
for some C € .7.
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Topological spaces

Let (X,.7), (Y,.”) be topological spaces.

Proposition

XxY ={(x,y) | x€ X,y € Y} is a topological space
equipped with the topology
I xS ={CxD|CeT,De.S}

Definition

o Amap f: X — Y is called continuous provided, for any
closed set C of Y, that f~(C) is closed.

@ Given U C X, its closure U is the intersection of all closed
sets containing U, which is the smallest closed set in X
containing U.
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The algebraic sets in A" form a topology, called Zariski

topology.
Proof.
o 0 =Z(x1,x1 — 1);
o A" = Z(O),

o U Z(Fs) = Z(F), where F ={f---f,| i € Fi};
o Nies Z(F;) = Z(Ujes Fi), where [ arbitrary index set.

@ The finite sets in A" are closed.

@ A™x A" =AMt
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Properties of Al

@ A' = k, where k is an infinite field.
@ The coordinate ring is k[x].

Proposition

0 The closed sets in A are finite sets and A'.

@ If Y is an infinite subset of A, then Y = Al.

Proof. Let C = Z(F) for some F C K|[x].

Since k[x] is a principal ideal domain, Z(F) = Z(f) for
some f € k[x].

If f #0, since k is a field, C = Z(f) is finite.
If f = 0, then C = Z(0) = AL
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Zariski space of matrices

O Mpxn(k) := {(aj)mxn | aj € k}.
@ We shall identify M,,«,(k) = A™" the affine mn-space.
© M,,«n(k) has coordinate ring

klxj;i=1,...mj=1,...n].

o Consider M,,»(R) = A*.

@ The coordinate ring is R[x11, X12, X21, X22] with

X11  X12
X21 X22

= X11X22 — X12Xp1 € R[Xll,xlb X21,X22]'
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General linear groups

GL(n, k) := {A € M,x,(k) | A invertible}, a group

called general linear group of degree n.

Proposition
GL(n, k) is an open set of M, (k).

@ Proof. The coordinate ring of M, (k) contains

X111 "t Xin

D,:=| + . . leg “ Xp.o(n)-

Xpm1 Xnn 7ES

Q Given A = (aj)nxn € Maxn(k), we have
A€ GL(n, k) < det(A) #0 <= A& Z(D,).
© Thus, GL(n, k) = Mpy,(k)\Z(D,), that is an open set.
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Some closed sets in M, (k)

Q Set Opyn(r) = {A € Mpyn(k) | rank(A) < r}.

Proposition

Omxn(r) is closed in M,y ,(k), for r =0,1,...,min{m, n}.

© ©6 00

Proof. Consider the variable matrix X = (Xj)mxn-

Let Xi,---, X the square submatrices of X of order < r.
rr=det(X;) € k[xj;i=1,...,m;j=1,....n].

If A€ Mpyn(k), then rank(A) < r

&> determinant of any square submatrix of order < r is 0.
< rn(A)=0,i=1,...,s.

S A€ Z(r,...,0).

That is, Omxn(r) = Z(n, ..., rs) is a closed set.
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Quivers

© A quiver Q consists of

o a finite set @y of vertices enumerated as 1,2,...,n;
o a finite set @ of arrows v : i — j, where i,j € Qp.

@ Given an arrow « : i — j, write i = s(«a) and e(«) =J.

olQ

o A : 1——=2

o A,: 1 2 n—1 n
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Representations of a quiver

O Let Q = (Qo, @) be a quiver with Qy = {1,...,n}.

Q@ A vectord = (di,---,d,), with d; positive integer, is
called a dimension vector for Q.

© Foreach a: i — j € Q, choose a matrix A, € My,q;(k).
The collection A = (A, )acq, is called a representation of
Q@ of dimension vector d.

Q Rep(Q,d) : the set of all representations of Q of
dimension vector d.

© We shall identify
Rep(Q,d) = A",

where n =3 o ds(a)de(a)-
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Q0 Q: 13& and d = (5).

A representation of @ of dimension vector d is a matrix
Aa S M5><5(k). ThUS,

Rep(Q,d) = M5><5(k) = A25.

O A 1-2-2-".3 andd =(2,3,4)

A representation of A3z of dimension vector d is a pair of
matrices (An, Ag) € Mayxs(k) x Msya(k). Therefore,

Rep(As, d) = May3(k) x Msya(k) = A% x A2 = A8
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Group action

O Let Q = (Qo, Q) be a quiver, where Qo = {1,...,n}.
Q Letd = (dy, - ,d,) be a dimension vector.
© G(d) = GL(d1, k) x -+ x GL(d,, k) is a group.
Given
g = (&1, ,8n) € G(d) and (Ax)aca € Rep(Q,d),

we define
g (Aa)a‘EQl = (Ba)ate € Rep(Q,d),

where, for each arrow « : i — J,

Ba — giil Aa &,
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@ A representation of A, of dimension vector d is a matrix
A € Mysn(k).

Q@ Rep(Az, d) = Mpyn(k) = A™.
Q Moreover, G(d) = GL(m, k) x GL(n, k).
Q Given (g1,82) € GL(m, k) x GL(n, k) and A € M,,«n(k),

(81,8) A= g 'Ag.
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G(d)-orbits

O Let Q = (Qo, Q) be a quiver, where Qo = {1,...,n}.
Q Letd = (dy,- - ,d,) be a dimension vector.
O G(d) = GL(di, k) x - - x GL(dy, k).

Definition
Given A = (Au)acq, € Rep(Q,d), the set

O(A)={g-AlgeG(d)}
is called G(d)-orbit of A.
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QO A : 1—">2 andd = (m,n).
@ Rep(Ay,d) = M,xn(k) and G(d) = GL(m, k) x GL(n, k).

Proposition
Given A € My, q(k), we obtain

O(A) = {B € Mpxn(k) | rank(B) = rank(A)}.

Proof. Given B € M, n(k), by definition, B € 0/(A)

& B =g 'Ag, with g1 € GL(m, k), g» € GL(n, k);

& B obtained from A by performing some elementary row
operations and some elementary column operations;

< rank(B) = rank(A).

ﬁ(omxn) — {Omxn}-
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Orbit closure

Q Let Q = (Qu, @) be a quiver, where Qo = {1,...,n}.
Q Letd=(dy,---,d,) be a dimension vector.
Q@ G(d) = GL(m, k) x --- x GL(n, k).

Definition

The orbit closure of a representation A € Rep(Q,d) is O(A),
the closure of the G(d)-orbit of A in Rep(Q,d).

Objective

To describe the orbit closures in Rep(Q, d).
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If A€ Mpyn(k) with rank(A) = 1, then
O(A) = {B € Mpxn(k) | rank(B) < 1}.

@ Proof. & = {B € Mpxn(k) | rank(B) < 1} is closed.

@ Since O(A) = {B € Mxn(k) | rank(B) = 1}, we have
& =0(A)U{0nxn} = O(A) C &.

© I continuous map f : A — M,,(k) : a > a1,
where (1, 1)-entry of Eyq is 1, and all other entries are 0.

a# 0= f(a) € O(A) C O(A) = AN\{0} C F1(O(A)).
@ Since A'\{0} is infinite and f~1(&(A)) is closed,
At = AN{0} C F(0(A)).
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Orbits closures in My, ,(k): a special case

If A€ Mpyn(k) with rank(A) = 1, then
O(A) = {B € Mpxn(k) | rank(B) < 1}.

@ Proof. & = {B € Mpxn(k) | rank(B) < 1} is closed.

@ Since O(A) = {B € Mxn(k) | rank(B) = 1}, we have
& =0(A)U{0nxn} = O(A) C &.

© I continuous map f : A — M,,(k) : a > a1,
where (1, 1)-entry of Eyq is 1, and all other entries are 0.

Q a# 0= f(a) € O(A) C O(A) = AN\{0} C 1(O(A)).
@ Since A'\{0} is infinite and f~1(&(A)) is closed,
At = AN{0} C F(0(A)).

O Thus, £(0) = Opyp € O(A) = & C O(A) = O(A) = &.
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Q Given any A € My, ,(k), we obtain
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Orbits closures in My, (k)

Q Given any A € My, ,(k), we obtain

O(A) = {B € Mpxn(k) | rank(B) < rank(A)}.
@ The orbits closures in Mp,,(k) are as follows:

Omxn(r) = {A € Mpyn(k) | rank(A) < r},

where r = 0,1,... , min{m, n}.




