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Objective

1 We shall illustrate the interaction of linear algebra with
topology and geometry.

2 More precisely, we shall describe the orbit closures in the
Zariski space of m × n matrices.
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Algebraic sets

1 Throughout, let k be an infinite field.

2 An := {(a1, . . . , an) | ai ∈ k}, called affine n-space over k .

3 k[x1, . . . , xn]: ring of polynomials in variables x1, . . . , xn,

which is called coordinate ring of An.

4 Given f ∈ k[x1, . . . , xn] and p = (a1, · · · , an) ∈ An, put

f (p) = f (a, · · · , an) ∈ k .

5 Given F ⊆ k[x1, · · · , xn], we define

Z(F ) := {p ∈ An | f (p) = 0, for all f ∈ F},
which is called an algebraic set of An.

Example

If p = (a1, . . . , an) ∈ An, then {p} = Z(x1 − a1, . . . , xn − an)

is an algebraic set.
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Example

1 Take k = R.

2 A2 = {(a, b) | a, b ∈ R}: the real plane.

3 The coordinate ring is R[x , y ], real polynomials in x , y .

4 Z(x + y − 1): straight line passing through (1, 0), (0, 1).

5 Z(x2 + y 2 − 1): unit circle centered at (0, 0).

6 Z(x + y − 1, x2 + y 2 − 1) = {(1, 0), (0, 1)}.
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Topology

Definition

1 Let X be a non-empty set.

2 A collection T of subsets of X is called a topology on X if

X , ∅ ∈ T ;

If C1, . . . ,Cn ∈ T , then ∪n
i=1Ci ∈ T .

If Ci ∈ T for all i ∈ I , then ∩i∈I Ci ∈ T ,
where I is arbitrary index set.

3 In this case,

The pair (X ,T ) is called a topological space;

The sets in T are called closed sets;

A subset Y of X is called an open set if Y = X\C
for some C ∈ T .
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Topological spaces

Let (X ,T ), (Y ,S ) be topological spaces.

Proposition

X × Y = {(x , y) | x ∈ X , y ∈ Y } is a topological space

equipped with the topology

T ×S = {C × D | C ∈ T ,D ∈ S }.

Definition

1 A map f : X → Y is called continuous provided, for any
closed set C of Y , that f −1(C ) is closed.

2 Given U ⊆ X , its closure U is the intersection of all closed
sets containing U , which is the smallest closed set in X
containing U .
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Zariski Topology on An

Theorem

The algebraic sets in An form a topology, called Zariski
topology.

Proof.

∅ = Z(x1, x1 − 1);

An = Z(0);

∪si=1Z(Fs) = Z(F ), where F = {f1 · · · fs | fi ∈ Fi};
∩i∈I Z(Fi) = Z(∪i∈I Fi), where I arbitrary index set.

Remark

1 The finite sets in An are closed.

2 Am × An = Am+n.
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Properties of A1

1 A1 = k , where k is an infinite field.

2 The coordinate ring is k[x ].

Proposition

1 The closed sets in A1 are finite sets and A1.

2 If Y is an infinite subset of A1, then Y = A1.

Proof. Let C = Z(F ) for some F ⊆ K [x ].

Since k[x ] is a principal ideal domain, Z(F ) = Z(f ) for
some f ∈ k[x ].

If f 6= 0, since k is a field, C = Z(f ) is finite.

If f = 0, then C = Z(0) = A1.
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Zariski space of matrices

1 Mm×n(k) := {(aij)m×n | aij ∈ k}.

2 We shall identify Mm×n(k) = Amn, the affine mn-space.

3 Mm×n(k) has coordinate ring

k[xij ; i = 1, . . .m; j = 1, . . . , n].

Example

1 Consider M2×2(R) = A4.

2 The coordinate ring is R[x11, x12, x21, x22] with∣∣∣∣ x11 x12
x21 x22

∣∣∣∣ = x11x22 − x12x21 ∈ R[x11, x12, x21, x22].
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General linear groups

GL(n, k) := {A ∈ Mn×n(k) | A invertible}, a group

called general linear group of degree n.

Proposition

GL(n, k) is an open set of Mn×n(k).

1 Proof. The coordinate ring of Mn×n(k) contains

Dn :=

∣∣∣∣∣∣∣
x11 · · · x1n
...

. . .
...

xn1 · · · xnn

∣∣∣∣∣∣∣ =
∑
σ∈Sn

x1,σ(1) · · · xn,σ(n).

2 Given A = (aij)n×n ∈ Mn×n(k), we have

A ∈ GL(n, k)⇔ det(A) 6= 0⇔ A 6∈ Z(Dn).

3 Thus, GL(n, k) = Mn×n(k)\Z(Dn), that is an open set.
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Some closed sets in Mm×n(k)

1 Set Om×n(r) = {A ∈ Mm×n(k) | rank(A) ≤ r}.

Proposition

Om×n(r) is closed in Mm×n(k), for r = 0, 1, . . . ,min{m, n}.

2 Proof. Consider the variable matrix X = (xij)m×n.

3 Let X1, · · · ,Xs the square submatrices of X of order ≤ r .

4 ri = det(Xi) ∈ k[xij ; i = 1, . . . ,m; j = 1, . . . , n].

5 If A ∈ Mm×n(k), then rank(A) ≤ r

⇔ determinant of any square submatrix of order ≤ r is 0.

⇔ ri(A) = 0, i = 1, . . . , s.

⇔ A ∈ Z(r1, . . . , rs).

6 That is, Om×n(r) = Z(r1, . . . , rs) is a closed set.
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Quivers

1 A quiver Q consists of

a finite set Q0 of vertices enumerated as 1, 2, . . . , n;

a finite set Q1 of arrows α : i → j , where i , j ∈ Q0.

2 Given an arrow α : i → j , write i = s(α) and e(α) = j .

Example

1 1 ee

2 A2 : 1 // 2

3 An : 1 // 2 // · · · // n − 1 // n
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Representations of a quiver

1 Let Q = (Q0,Q1) be a quiver with Q0 = {1, . . . , n}.

2 A vector d = (d1, · · · , dn), with di positive integer, is

called a dimension vector for Q.

3 For each α : i → j ∈ Q1, choose a matrix Aα ∈ Mdi×dj (k).

The collection A = (Aα)α∈Q1 is called a representation of

Q of dimension vector d.

4 Rep(Q,d) : the set of all representations of Q of
dimension vector d.

5 We shall identify

Rep(Q,d) = An,

where n =
∑

α∈Q1
ds(α)de(α).
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Example

1 Q : 1 αee and d = (5).

A representation of Q of dimension vector d is a matrix

Aα ∈ M5×5(k). Thus,

Rep(Q,d) = M5×5(k) = A25.

2 A3 : 1 α // 2
β // 3 and d = (2, 3, 4).

A representation of A3 of dimension vector d is a pair of
matrices (Aα,Aβ) ∈ M2×3(k)×M3×4(k). Therefore,

Rep(A3,d) = M2×3(k)×M3×4(k) = A6 × A12 = A18.
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matrices (Aα,Aβ) ∈ M2×3(k)×M3×4(k). Therefore,

Rep(A3,d) = M2×3(k)×M3×4(k) = A6 × A12 = A18.
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Group action

1 Let Q = (Q0,Q1) be a quiver, where Q0 = {1, . . . , n}.
2 Let d = (d1, · · · , dn) be a dimension vector.

3 G (d) = GL(d1, k)× · · · × GL(dn, k) is a group.

Definition

Given

g = (g1, · · · , gn) ∈ G (d) and (Aα)α∈Q1 ∈ Rep(Q,d),

we define

g · (Aα)α∈Q1 = (Bα)α∈Q1 ∈ Rep(Q,d),

where, for each arrow α : i → j ,

Bα = g−1i Aα gj ,
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A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



A2-case

1 A2 : 1 α // 2 and d = (m, n).

2 A representation of A2 of dimension vector d is a matrix
A ∈ Mm×n(k).

3 Rep(A2,d) = Mm×n(k) = Amn.

4 Moreover, G (d) = GL(m, k)× GL(n, k).

5 Given (g1, g2) ∈ GL(m, k)× GL(n, k) and A ∈ Mm×n(k),

(g1, g2) · A = g−11 Ag2.



Example ( 1 0
1 1

)
,

 1 2 0
0 1 0
0 0 1

 · ( 2 3 4
3 1 2

)

=

(
1 0
1 1

)−1(
2 3 4
3 1 2

) 1 2 0
0 1 0
0 0 1


=

(
1 0
−1 1

)(
2 3 4
3 1 2

) 1 2 0
0 1 0
0 0 1


=

(
2 3 4
1 −2 −2

) 1 2 0
0 1 0
0 0 1


=

(
2 7 4
1 0 −2

)
.
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G (d)-orbits

1 Let Q = (Q0,Q1) be a quiver, where Q0 = {1, . . . , n}.
2 Let d = (d1, · · · , dn) be a dimension vector.

3 G (d) = GL(d1, k)× · · · × GL(dn, k).

Definition

Given A = (Aα)α∈Q1 ∈ Rep(Q,d), the set

O(A) = {g · A | g ∈ G (d)}

is called G (d)-orbit of A.
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A2-case

1 A2 : 1 α // 2 and d = (m, n).
2 Rep(A2,d) = Mm×n(k) and G (d) = GL(m, k)×GL(n, k).

Proposition

Given A ∈ Mm×n(k), we obtain

O(A) = {B ∈ Mm×n(k) | rank(B) = rank(A)}.

Proof. Given B ∈ Mm×n(k), by definition, B ∈ O(A)

⇔ B = g−11 Ag2, with g1 ∈ GL(m, k), g2 ∈ GL(n, k);

⇔ B obtained from A by performing some elementary row
operations and some elementary column operations;

⇔ rank(B) = rank(A).

Remark

O(0m×n) = {0m×n}.
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Orbit closure

1 Let Q = (Q0,Q1) be a quiver, where Q0 = {1, . . . , n}.
2 Let d = (d1, · · · , dn) be a dimension vector.

3 G (d) = GL(m, k)× · · · × GL(n, k).

Definition

The orbit closure of a representation A ∈ Rep(Q,d) is O(A),
the closure of the G (d)-orbit of A in Rep(Q,d).

Objective

To describe the orbit closures in Rep(Q,d).
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Orbits closures in Mm×n(k): a special case

Lemma

If A ∈ Mm×n(k) with rank(A) = 1, then

O(A) = {B ∈ Mm×n(k) | rank(B) ≤ 1}.

1 Proof. E = {B ∈ Mm×n(k) | rank(B) ≤ 1} is closed.
2 Since O(A) = {B ∈ Mm×n(k) | rank(B) = 1}, we have

E = O(A) ∪ {0m×n} ⇒ O(A) ⊆ E .

3 ∃ continuous map f : A1 → Mm×n(k) : a 7→ aE11,

where (1, 1)-entry of E11 is 1, and all other entries are 0.

4 a 6= 0⇒ f (a) ∈ O(A) ⊆ O(A)⇒ A1\{0} ⊆ f −1(O(A)).

5 Since A1\{0} is infinite and f −1(O(A)) is closed,

A1 = A1\{0} ⊆ f −1(O(A)).

6 Thus, f (0) = 0m×n ∈ O(A)⇒ E ⊆ O(A)⇒ O(A) = E .
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Orbits closures in Mm×n(k)

Theorem
1 Given any A ∈ Mm×n(k), we obtain

O(A) = {B ∈ Mm×n(k) | rank(B) ≤ rank(A)}.

2 The orbits closures in Mm×n(k) are as follows :

Om×n(r) = {A ∈ Mm×n(k) | rank(A) ≤ r},

where r = 0, 1, . . . ,min{m, n}.
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