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Introduction

Motivation

In many areas of algebra, one studies various
abelian or triangulated categories over a field.
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Introduction

Motivation

In many areas of algebra, one studies various
abelian or triangulated categories over a field.

o In representation theory of algebras, one studies module
category and its deived category;

o In algebraic geometry, one studies categories of coherent
sheaves and their derived categories;

o In algebraic topology, one studies derived category of
dg-modules over the singular cochain dg-algebra of a
simply connected topological space.

o More recently, one studies cluster categories, a

categorification of cluster algebras, which are connected
to the representation theory of semi-simple Lie groups.
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Introduction

Setting

k : algebraically closed field.
A : Hom-finite Krull-Schmidt additive k-categories.
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Introduction

Setting

k : algebraically closed field.
A : Hom-finite Krull-Schmidt additive k-categories.

o Morphism sets are finite dimensional k-spaces;
o Indecomposables have local endomorphism algebra.

o Each non-zero object is direct sum of finitely many
indecomposable objects.

Shiping Liu (University of Sherbrooke)
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Introduction

Objective of Study
Classify the indecomposable objects and describe
the morphisms.
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o Auslander-Reiten theory: irreducible morphisms,
almost split sequences, Auslander-Reiten quiver;
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Introduction

Objective of Study
Classify the indecomposable objects and describe
the morphisms.

Tools of Study

o Auslander-Reiten theory: irreducible morphisms,
almost split sequences, Auslander-Reiten quiver;

@ Galois covering theory.
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Auslander-Reiten Theory

Jacobson radical

O Given objects X, Y € A, decomposed as
X=X1®--dX,; Y= Yl@...@ym
where X;, Y; € ind A.
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Auslander-Reiten Theory

Jacobson radical

O Given objects X, Y € A, decomposed as
X=Xi® O Xy, Y=Y1D--- DY,
where X;, Y; € ind A.
@ Each morphism f : X — Y can be written
f = (fij)nxm; where f; : Xj = Y.
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Auslander-Reiten Theory

Jacobson radical

O Given objects X, Y € A, decomposed as
X=Xi® O Xy, Y=Y1D--- DY,
where X;, Y; € ind A.
@ Each morphism f : X — Y can be written
f = (fij)nxm; where f; : Xj = Y.

© We say f is radical if all f;j non-invertible.
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Auslander-Reiten Theory

Jacobson radical

O Given objects X, Y € A, decomposed as
X=Xi® O Xy, Y=Y1D--- DY,
where X;, Y; € ind A.
@ Each morphism f : X — Y can be written
f = (fij)nxm; where f; : Xj = Y.
© We say f is radical if all f;j non-invertible.
rad(X, Y) = {radical morphisms f : X — Y'}.
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Auslander-Reiten Theory

Jacobson radical

O Given objects X, Y € A, decomposed as
X=Xi® O Xy, Y=Y1D--- DY,
where X;, Y; € ind A.
@ Each morphism f : X — Y can be written
f = (fij)nxm; where f; : Xj = Y.

© We say f is radical if all f;j non-invertible.
rad(X, Y) = {radical morphisms f : X — Y'}.
rad* (X, Y) = {f €rad(X,Y) | f = gfi},
where f;, g; are radical morphisms.
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Auslander-Reiten Theory

Irreducible morphisms

Let X, Y € A be indecomposable.
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Auslander-Reiten Theory

Irreducible morphisms

Let X, Y € A be indecomposable.
A morphism f : X — Y is irreducible if

f € rad(X, Y)\rad*(X, Y).
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Auslander-Reiten Theory

Irreducible morphisms

Let X, Y € A be indecomposable.
A morphism f : X — Y is irreducible if

f € rad(X, Y)\rad*(X, Y).

o Irr(X, Y) =rad(X, Y)/rad*(X, Y).
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Auslander-Reiten Theory

Irreducible morphisms

Let X, Y € A be indecomposable.
A morphism f : X — Y is irreducible if

f € rad(X, Y)\rad*(X, Y).

o Irr(X, Y) =rad(X, Y)/rad*(X, Y).
(2] dxy = dimklrr(X, Y)
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Auslander-Reiten Theory

Pseudo-exact sequences

A sequence X Ly £.7 s pseudo-exact if
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Pseudo-exact sequences

A sequence X Ly £.7 s pseudo-exact if
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Auslander-Reiten Theory

Pseudo-exact sequences

A sequence X—1-y-£.-7is pseudo-exact if
°o g f = 0;
o every h: M — Y with gh = 0 factors through f;
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Auslander-Reiten Theory

Pseudo-exact sequences

A sequence X Ly £.7 s pseudo-exact if

°o g f= 0;
o every h: M — Y with gh = 0 factors through f;
o every h: Y — N with hf = 0 factors through g.
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that

o f, g are radical morphisms;
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that

o f, g are radical morphisms;

o every radical u: X — M factors through f;
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that
o f, g are radical morphisms;
o every radical u: X — M factors through f;
o every radical v : N — Z factors through g.
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that

o f, g are radical morphisms;

o every radical u: X — M factors through f;

o every radical v : N — Z factors through g.
Q@ In this case,

o X,Z € indA, written X = 77;
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Auslander-Reiten Theory

Almost split sequences

@ An almost split sequence is a pseudo-exact
sequence X =Y £~ 7 with Y = 0 such that

o f, g are radical morphisms;

o every radical u: X — M factors through f;

o every radical v : N — Z factors through g.
@ In this case,

o X,Z € indA, written X = 77;

o T is called AR-translation.
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Auslander-Reiten Theory

Translation quiver

O Let I = ([, 1) be a quiver. A translation on [
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Auslander-Reiten Theory

Translation quiver

O Let I = ([, 1) be a quiver. A translation on [
is an injection o : 2o — g, with X C [y,
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Auslander-Reiten Theory

Translation quiver

O Let I = ([, 1) be a quiver. A translation on [
is an injection o : 2o — g, with X C [y,
such, for x € 2o, y — [, that
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Auslander-Reiten Theory

Translation quiver

O Let I = ([, 1) be a quiver. A translation on [
is an injection o : 2o — g, with X C [y,
such, for x € 2o, y — [, that

#{ arrows y — x} = #{ arrows ox — y}.
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Auslander-Reiten Theory

Translation quiver

O Let I = ([, 1) be a quiver. A translation on [
is an injection o : 2o — g, with X C [y,
such, for x € 2o, y — [, that

#{ arrows y — x} = #{ arrows ox — y}.

@ This yields a mesh

/ .1 \
oX ; X.
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:

e Vertices: the non-isomorphic indec. objects of .A.
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
e Vertices: the non-isomorphic indec. objects of .A.

e Given two vertices X, Y, put dxy arrows «; : X — Y,
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
e Vertices: the non-isomorphic indec. objects of .A.

e Given two vertices X, Y, put dxy arrows «; : X — Y,
corresponding to k-basis for Irr(X, Y).
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
e Vertices: the non-isomorphic indec. objects of .A.
e Given two vertices X, Y, put dxy arrows «; : X — Y,
corresponding to k-basis for Irr(X, Y).
e The translation is AR-translation 7 so that a mesh
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
e Vertices: the non-isomorphic indec. objects of .A.
e Given two vertices X, Y, put dxy arrows «; : X — Y,
corresponding to k-basis for Irr(X, Y).
e The translation is AR-translation 7 so that a mesh
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Auslander-Reiten Theory

Auslander-Reiten quiver

The AR-quiver I'(A) of A is a translation quiver:
e Vertices: the non-isomorphic indec. objects of .A.
e Given two vertices X, Y, put dxy arrows «; : X — Y,
corresponding to k-basis for Irr(X, Y).
e The translation is AR-translation 7 so that a mesh

/\
\/

corresponds to an almost sp||t sequence

TL——>Y18---BY,—="7Z.
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Auslander-Reiten Theory

Objective of Study

@ Describe almost split sequences in A.
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Auslander-Reiten Theory

Objective of Study
@ Describe almost split sequences in A.

Q@ Describe the shapes of the components of [(.A).
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Galois Covering Theory

Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
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Galois Covering Theory

Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
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Galois Covering Theory

Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
o if X € indA, then g- X 2 X for (e #) g € G.
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Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
o if X € indA, then g- X 2 X for (e #) g € G.

@ Define G-orbit category A/G as follows:
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O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
o if X € indA, then g- X 2 X for (e #) g € G.

@ Define G-orbit category A/G as follows:
o The objects are those of A,
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Galois Covering Theory

Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
o if X € indA, then g- X 2 X for (e #) g € G.

@ Define G-orbit category A/G as follows:
o The objects are those of A,
° HOHIA/G(X, Y) = @gEG HOHIA(X,g- Y)
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Galois Covering Theory

Orbit category with respect to group action

O G: group acting on A such, for X, Y € A, that
o Homy(X, g-Y) =0, for all but finitely many g € G;
o if X € indA, then g- X 2 X for (e #) g € G.

@ Define G-orbit category A/G as follows:
o The objects are those of A,
o Hom_4/6(X, Y) = @zec Homy(X, g - Y).
@ A/G Hom-finite Krull-Schmidt with projection
p: A= A/G: X — X, ff
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Galois Covering Theory

Galois Covering

O Let £E: . A/G—=DB be an equivalence.
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Galois Covering Theory

Galois Covering

O Let £E: . A/G—=DB be an equivalence.

@ Consider the commutative diagram:

A/G—E—-B.
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Galois Covering Theory

Galois Covering

O Let £E: . A/G—=DB be an equivalence.

@ Consider the commutative diagram:

A

\\

A/G—E—-B.

@ Call m: A——= B Galois G-covering functor.
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Galois Covering Theory

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let 7 : A——= B be Galois G-covering functor.
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Galois Covering Theory

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let 7 : A——= B be Galois G-covering functor.
Q@ indB = {n(X) | X € indA} such that
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Galois Covering Theory

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let 7 : A——= B be Galois G-covering functor.
Q@ indB = {n(X) | X € indA} such that
m(X)=n(Y)< Y =g-X, for some g € G.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categorie



Galois Covering Theory

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let 7 : A——= B be Galois G-covering functor.
Q@ indB = {n(X) | X € indA} such that
m(X)=n(Y)< Y =g-X, for some g € G.

@ The components of [(B) are w(I"), where I ranges over
the components of [(A).
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Galois Covering Theory

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let 7 : A——= B be Galois G-covering functor.
Q@ indB = {n(X) | X € indA} such that
m(X)=n(Y)< Y =g-X, for some g € G.

@ The components of [(B) are w(I"), where I ranges over
the components of [(A).

QIfg-X¢gT[l forall X €Tl and (e #) g € G, then
n(F)=r.
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Cluster Categories

New Setting

@ From now on, A is triangulated category.
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Cluster Categories

New Setting

@ From now on, A is triangulated category.

@ All subcategories of A are assumed to be full,
additive, closed under direct summands.
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Cluster Categories

New Setting

@ From now on, A is triangulated category.

@ All subcategories of A are assumed to be full,
additive, closed under direct summands.

@ Let 7 be subcategory of A.
o Q7 : quiver of T (the underlying quiver of [(T)).
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Cluster Categories

New Setting

@ From now on, A is triangulated category.

@ All subcategories of A are assumed to be full,
additive, closed under direct summands.

@ Let 7 be subcategory of A.

o Q7 : quiver of T (the underlying quiver of I'(T)).
o For M € indT, define
Tm :=add{N € indT | N 2 M}.
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
o 7T is functorially finite in A;
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
o 7T is functorially finite in A;
@ Hom4(T,T'[1]) =0, forall T, T' € T;
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
o 7T is functorially finite in A;
@ Hom (T, T'[1]) =0, forall T, T' € T;
o If X €T, then 3T, T' € T such that
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
o 7T is functorially finite in A;
@ Hom4(T,T'[1]) =0, forall T, T' € T;
o If X €T, then 3T, T' € T such that
Hom (X, T[1]) # 0; Hom4( T, X[1]) # 0.
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Cluster Categories

Cluster tilting subcategories

A subcategory T of A is called cluster-tilting if
o 7T is functorially finite in A;
@ Hom4(T,T'[1]) =0, forall T, T' € T;
o If X €T, then 3T, T' € T such that
Hom (X, T[1]) # 0; Hom4( T, X[1]) # 0.

Theorem (Koenig, Zhu)
If 7 is a cluster-tilting subcategory of A, then

mod7T = A/TI1].
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,

@ (@7 has no oriented cycle of length one or two;
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,

@ (@7 has no oriented cycle of length one or two;

@ forany M € ind7, 3! M* € ind A (¥ M) such that
add(Ty, M*) := p,,(T) is cluster-tilting;
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,

@ (@7 has no oriented cycle of length one or two;

@ forany M € ind7, 3! M* € ind A (¥ M) such that
add(Ty, M*) := p,,(T) is cluster-tilting;

@ Qy,, (1) is obtained from Qr by FZ-mutation at M;
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,

@ (@7 has no oriented cycle of length one or two;

@ forany M € ind7, 3! M* € ind A (¥ M) such that
add(Ty, M*) := p,,(T) is cluster-tilting;

@ Qy,, (1) is obtained from Qr by FZ-mutation at M;

Q A has two exact triangles:

ML= N & M — M[1]; M* 2> % M — M*[1],
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Cluster Categories

Cluster categories

A is a cluster-category if it has cluster-tilting subcategories;
and for any cluster-titlting subcategory T,

@ (@7 has no oriented cycle of length one or two;

@ forany M € ind7, 3! M* € ind A (¥ M) such that
add(Ty, M*) := p,,(T) is cluster-tilting;

@ Qy,, (1) is obtained from Qr by FZ-mutation at M;
Q A has two exact triangles:
ML= N & M — M[1]; M* 2> % M — M*[1],
where £, u minimal left 7y-approximations;

g, v minimal right Ty-approximations.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categorie



Cluster Categories

Objective of Study
Construct more cluster categories of infinite rank.
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Specialization to representations of quivers

Plan of the rest of this talk

Q Q= (Qo, @) : connected, locally finite, no infinite path.
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Specialization to representations of quivers

Plan of the rest of this talk

QO Q= (Qo, @) : connected, locally finite, no infinite path.
@ Study rep(Q); D°(rep(Q)).
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Specialization to representations of quivers

Plan of the rest of this talk

QO Q= (Qo, @) : connected, locally finite, no infinite path.

@ Study rep(Q); D°(rep(Q)).

© Show an orbit category of D?(rep(Q)) is cluster category
if Q is of infinite Dynkin type
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Specialization to representations of quivers

Plan of the rest of this talk

QO Q= (Qo, @) : connected, locally finite, no infinite path.
@ Study rep(Q); D°(rep(Q)).

© Show an orbit category of D?(rep(Q)) is cluster category
if Q is of infinite Dynkin type

AOO: 070707--.70707-.-
o0 .
Aw' ---70707---70707---
o
Dy : 0—O0—0— "+ —0—0— -~
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Specialization to representations of quivers

Plan of the rest of this talk

QO Q= (Qo, @) : connected, locally finite, no infinite path.
@ Study rep(Q); D°(rep(Q)).

© Show an orbit category of D?(rep(Q)) is cluster category
if Q is of infinite Dynkin type

AOO: 070707--.70707-.-
o0 .
Am' ---70707---70707---
o
Dy : 0—O0—0— "+ —0—0— -~

© D®(modA), A fdim algebra, rad?(A) = 0, gdim(A) < co.

Shiping Liu (University of Sherbrooke)
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of
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Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of
o k-spaces M(x); x € Qo;
o k-maps M(a) : M(x) = M(y); a: x =y € Qr.
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;

o k-maps M(a) : M(x) = M(y); a: x =y € Qr.
@ Define dimyM = > dim , M(x).

x€Qo
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;

o k-maps M(a) : M(x) = M(y); a: x =y € Qr.
@ Define dimyM =3 o dim, M(x).
© rep(Q) : category of fin. dim. k-representations of Q.
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;

o k-maps M(«) : M(x) = M(y); a:x = y € Q.
@ Define dimyM =3 o dim, M(x).
© rep(Q) : category of fin. dim. k-representations of Q.
Q Given a € Q, one defines
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;

o k-maps M(a) : M(x) = M(y); a: x =y € Qr.
@ Define dimyM =3 o dim, M(x).
© rep(Q) : category of fin. dim. k-representations of Q.

Q Given a € Q, one defines
o indecomposable projective P, € rep(Q) by

Pi(x) =k < a~» x>, for x € Q.
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Specialization to representations of quivers

Representations

@ A k-linear representation M of @ consists of

o k-spaces M(x); x € Qo;

o k-maps M(a) : M(x) = M(y); a: x =y € Qr.
@ Define dimyM =3 o dim, M(x).
© rep(Q) : category of fin. dim. k-representations of Q.

Q Given a € Q, one defines
o indecomposable projective P, € rep(Q) by

Pi(x) =k < a~> x>, for x € Q.
o indecomposable injective I, € rep(Q) by
L(x) =k < x~>a>; for x € Q.
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :

o (ZQ)o={(a,n) | a€ Qo:n€eZ};
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :

o (ZQ)o={(a,n) | a€ Qo:n€eZ};
o Translation 0 : (ZQ)o — (ZQ)o : (a,n) — (a,n —1).
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :
o (ZQ)o={(a,n) | a€ Qo;n e Z};
o Translation 0 : (ZQ)o — (ZQ)o : (a,n) — (a,n —1).

o Every a — b € Q; induces arrows
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :
o (ZQ)o={(a,n) | a€ Qo;n e Z};
o Translation 0 : (ZQ)o — (ZQ)o : (a,n) — (a,n —1).
o Every a — b € Q; induces arrows
-+ (a,—1) (a,0) (a,1)

N -7 ~ 7 ~
(b,-1) (b,0) (b,1)---
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :
o (ZQ)o={(a,n) | a€ Qo;n e Z};
o Translation 0 : (ZQ)o — (ZQ)o : (a,n) — (a,n —1).

o Every a — b € Q; induces arrows

e (av _1) (37 0) (3, 1)
~ 7 N 7 o

@ NQ: subquiver generated by (a,n); a € Qy, n > 0;
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Specialization to representations of quivers

A general construction of translation quivers

@ Construct a translation quiver ZQ :
o (ZQ)o={(a,n) | a€ Qo;n e Z};
o Translation 0 : (ZQ)o — (ZQ)o : (a,n) — (a,n —1).

o Every a — b € Q; induces arrows

"'(37_1) (37 0) (371)
N - ~ 7 N
@ NQ: subquiver generated by (a,n); a € Qy, n > 0;

© N~Q : subquiver generated by (a,n); a € Qy, n < 0.
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Specialization to representations of quivers

Example

o o o o o
N N N TN T
o o o o
N 7N 7N 7
o o o o o
N N N TN S
o o o o
VAN N A N RN
o o o o o
N 7N 7 N 7N S
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)
If Q is infinite, then AR-components of rep(Q) consist of
@ a preprojective component P (2 NQP) 5 P, a € Qp;
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)
If Q is infinite, then AR-components of rep(Q) consist of

@ a preprojective component P (2 NQP) 5 P, a € Qp;
Q a preinjective component Z (2 N-Q°P) > [,,a € Qp;
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of
@ a preprojective component P (2 NQP) 5 P, a € Qp;
Q a preinjective component Z (2 N-Q°P) > [,,a € Qp;
© r regular components (= ZA,), where
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of
@ a preprojective component P (2 NQP) 5 P, a € Qp;
Q a preinjective component Z (2 N-Q°P) > [,,a € Qp;
© r regular components (= ZA,), where

o r=20,1,2,if Q of type A, Do, AT;
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Specialization to representations of quivers

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of
@ a preprojective component P (2 NQP) 5 P, a € Qp;
Q a preinjective component Z (2 N-Q°P) > [,,a € Qp;
© r regular components (= ZA,), where

o r=20,1,2,if Q of type A, Do, AT;

o r = 00, in all the remaining cases.
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Specialization to representations of quivers

The bounded derived category

Q@ D’(rep(Q)) : the derived category of bounded complexes
over rep(Q).
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Specialization to representations of quivers

The bounded derived category

Q@ D’(rep(Q)) : the derived category of bounded complexes
over rep(Q).

@ For M € rep(Q) and n € Z, we have stalk complex

n

Mn] : 0 M 0
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Specialization to representations of quivers

The bounded derived category

Q@ D’(rep(Q)) : the derived category of bounded complexes
over rep(Q).

@ For M € rep(Q) and n € Z, we have stalk complex

n

Mn] : 0 M 0

© The indecomposable objects of D?(rep(Q)) are
{M([n] | n € Z, M € ind(rep(Q))} .
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Specialization to representations of quivers

Almost split sequences in D*(rep(Q))

Theorem (Bautista, Liu, Paquette)

@ Every almost split sequence X — Y — Z in rep(Q)
induces almost split sequences D?(rep(Q)) :

X[n] — Y[n]—Z[n], n € Z.
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Specialization to representations of quivers

Almost split sequences in D*(rep(Q))

Theorem (Bautista, Liu, Paquette)

@ Every almost split sequence X — Y — Z in rep(Q)
induces almost split sequences D?(rep(Q)) :

X[n] — Y[n]—Z[n], n € Z.
@ For a € @, 3 almost split sequences in D?(rep(Q)):
l,[n—1] — (@a;—wla,-[”_l]) & (@a—wj ij[”]) — P.[n],

for n € Z.
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Specialization to representations of quivers

AR-components of D?(rep(Q))

Theorem (Bautista, Liu, Paquette)

The AR-components of D?(rep(Q)) consist of

© regular components R[n](= ZA.,), where R ranges over
the regular components of [(rep(Q)) and n € Z;
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Specialization to representations of quivers

AR-components of D?(rep(Q))

Theorem (Bautista, Liu, Paquette)

The AR-components of D?(rep(Q)) consist of

© regular components R[n](= ZA.,), where R ranges over
the regular components of [(rep(Q)) and n € Z;

@ connecting components C[n](= ZQ°P), obtained by
gluing Z[n — 1] with P[n] and n € Z.
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Specialization to representations of quivers

AR-components of D?(rep(Q))

Theorem (Bautista, Liu, Paquette)

The AR-components of D?(rep(Q)) consist of

© regular components R[n](= ZA.,), where R ranges over
the regular components of [(rep(Q)) and n € Z;

@ connecting components C[n](= ZQ°P), obtained by
gluing Z[n — 1] with P[n] and n € Z.

© AR-translation 7, is automorphism of D®(rep(Q)).
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Specialization to representations of quivers

Canonical orbit category

Consider group G =< F >, where F =71 o [1].
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Specialization to representations of quivers

Canonical orbit category

Consider group G =< F >, where F =71 o [1].

This yields a Galois G-covering functor

p: DP(rep(Q)) — D*(rep(Q))/ G = €(Q).
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Specialization to representations of quivers

Canonical orbit category

Consider group G =< F >, where F =71 o [1].

This yields a Galois G-covering functor

p: DP(rep(Q)) — D*(rep(Q))/ G = €(Q).

Theorem (Keller, Buan-lyama-Reiten-Scott)

% (Q) is triangulated, which is a cluster category in case Q is
is finite.
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Specialization to representations of quivers

Conjecture

Conjecture (Liu, Paquette)
% (Q) is always a cluster category.
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Specialization to representations of quivers

Conjecture

Conjecture (Liu, Paquette)

% (Q) is always a cluster category.

It suffices to show that the quiver of any cluster-tilting
subcategory in €’(Q) has no oriented cycle of length one or
two.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categorie



Specialization to representations of quivers

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then € (Q) is a cluster category;
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Specialization to representations of quivers

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then € (Q) is a cluster category;
and its AR-components consist of

© a connecting component C[0] (& ZQ°P);
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Specialization to representations of quivers

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then € (Q) is a cluster category;
and its AR-components consist of

© a connecting component C[0] (= ZQ°P);

@ r regular components R[0] (= ZA,), where
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Specialization to representations of quivers

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)
If Q is infinite Dynkin quiver, then € (Q) is a cluster category;
and its AR-components consist of
© a connecting component C[0] (= ZQ°P);
@ r regular components R[0] (= ZA.,), where
o r=0,1,2in case Q of type A, Do, A, resp.
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Specialization to representations of quivers

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then € (Q) is a cluster category;
and its AR-components consist of

© a connecting component C[0] (= ZQ°P);
@ r regular components R[0] (= ZA.,), where

o r=0,1,2in case Q of type A, Do, A, resp.

o R ranges over regular components of [(rep(Q));

Shiping Liu (University of Sherbrooke)
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
Consider D?(modA).
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
Consider D?(modA).

Theorem (Bautista, Liu)

There exists a quiver Q with no infinite path and a Galois
B-covering

7 DP(rep(Q)) —= DP(modA),
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
Consider D?(modA).

Theorem (Bautista, Liu)

There exists a quiver Q with no infinite path and a Galois
B-covering

7 DP(rep(Q)) —= DP(modA),
© where & acts freely on AR-components of D?(rep(Q)).
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
Consider D?(modA).

Theorem (Bautista, Liu)

There exists a quiver Q with no infinite path and a Galois
B-covering

7 DP(rep(Q)) —= DP(modA),
© where & acts freely on AR-components of D?(rep(Q)).
@ AR-components of D?(modA) are of shape ZQ or ZA.
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Specialization to representations of quivers

The bounded derived category of an algebra

A: fin dim k-algebra, rad?*(A) = 0, gdim(A) < co.
modA : category of fin dim left A-modules.
Consider D?(modA).

Theorem (Bautista, Liu)

There exists a quiver Q with no infinite path and a Galois
B-covering

7 DP(rep(Q)) —= DP(modA),
© where & acts freely on AR-components of D?(rep(Q)).

@ AR-components of D?(modA) are of shape ZQ or ZA.
© The number of such AR-components is generally finite.
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