Homology theory of double complexes with application to Koszul duality

Ales Bouhada, Min Huang and Shiping Liu Université de Sherbrooke

Algebra Seminar Hunan Normal University

Introduction

- Introduction
- 2 Total complex of a double complex

- Introduction
- 2 Total complex of a double complex
- A generalization of the Acyclic Assemby Lemma

- Introduction
- 2 Total complex of a double complex
- A generalization of the Acyclic Assemby Lemma
- Extension of functors

Plan,

- Introduction
- 2 Total complex of a double complex
- A generalization of the Acyclic Assemby Lemma
- Extension of functors
- Application to Koszul duality

• In the study of derived categories, one technique is to compare the derived categories D(A) and D(B) of two abelian categories A, B.

- In the study of derived categories, one technique is to compare the derived categories D(A) and D(B) of two abelian categories A, B.
- ② For this purpose, we need to construct a triangle-exact functor $D(A) \to D(B)$.

- In the study of derived categories, one technique is to compare the derived categories D(A) and D(B) of two abelian categories A, B.
- ② For this purpose, we need to construct a triangle-exact functor $D(A) \rightarrow D(B)$.
- **1** It is well known that an exact functor $F: \mathcal{A} \to \mathcal{B}$ induces a commutative diagram

- In the study of derived categories, one technique is to compare the derived categories D(A) and D(B) of two abelian categories A, B.
- ② For this purpose, we need to construct a triangle-exact functor $D(A) \to D(B)$.
- **1** It is well known that an exact functor $F:\mathcal{A}\to\mathcal{B}$ induces a commutative diagram

$$C(\mathcal{A}) \longrightarrow K(\mathcal{A}) \longrightarrow D(\mathcal{A})$$

$$\downarrow_{F^{C}} \qquad \downarrow_{F^{K}} \qquad \downarrow_{F^{D}}$$

$$C(\mathcal{B}) \longrightarrow K(\mathcal{B}) \longrightarrow D(\mathcal{B}),$$

where F^{C} is the component-wise application of F.

Objective

• Most often, however, we only have functor $\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B})$.

Objective

- **1** Most often, however, we only have functor $\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B})$.
- ② To extend \mathfrak{F} to $\mathfrak{F}^C: C(\mathcal{A}) \to C(\mathcal{B})$, we need to consider total complexes of double complexes.

Objective

- **①** Most often, however, we only have functor $\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B})$.
- ② To extend \mathfrak{F} to $\mathfrak{F}^C: C(\mathcal{A}) \to C(\mathcal{B})$, we need to consider total complexes of double complexes.
- **3** To pass \mathfrak{F}^C to the derived categories, we need to introduce a homology theory of double complexes.

• An abelian category is called *concrete* if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.

- An abelian category is called *concrete* if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
- 2 Let A, B be concrete abelian categories with countable direct sums.

- An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
- 2 Let A, B be concrete abelian categories with countable direct sums.
- **3** C(A): complex category of A.

- An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
- 2 Let A, B be concrete abelian categories with countable direct sums.
- **3** C(A): complex category of A.
- **①** Given morphism $f \in C(A)$, its cone is denoted by C_f .

- An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
- 2 Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
- **3** C(A): complex category of A.
- **①** Given morphism $f \in C(A)$, its cone is denoted by C_f .
- **5** K(A): homotopy category of A.

- An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
- 2 Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
- **3** C(A): complex category of A.
- **①** Given morphism $f \in C(A)$, its cone is denoted by C_f .
- **5** K(A): homotopy category of A.
- **o** D(A): derived category of A.

$$v^{i,j+1} v^{i,j} = 0$$
; $h^{i+1,j} h^{i,j} = 0$; $h^{i,j+1} \circ v^{i,j} + v^{i+1,j} \circ h^{i,j} = 0$.

1 A double complex $(M^{\bullet}, v^{\bullet}, h^{\bullet})$ over \mathcal{A} is as follows:

$$v^{i,j+1} v^{i,j} = 0$$
; $h^{i+1,j} h^{i,j} = 0$; $h^{i,j+1} \circ v^{i,j} + v^{i+1,j} \circ h^{i,j} = 0$.

2 The complex $(M^{i,*}, v^{i,*})$ is called *i-th column* of $M^{*,*}$.

$$v^{i,j+1} v^{i,j} = 0$$
; $h^{i+1,j} h^{i,j} = 0$; $h^{i,j+1} \circ v^{i,j} + v^{i+1,j} \circ h^{i,j} = 0$.

- ② The complex $(M^{i,\cdot}, v^{i,\cdot})$ is called *i-th column* of $M^{\cdot,\cdot}$.
- **3** The complex $(M^{\bullet,j}, h^{\bullet,j})$ is called j-th row of $M^{\bullet,\bullet}$.

1 A double complex $(M^{"}, v^{"}, h^{"})$ over \mathcal{A} is as follows:

$$v^{i,j+1} v^{i,j} = 0$$
; $h^{i+1,j} h^{i,j} = 0$; $h^{i,j+1} \circ v^{i,j} + v^{i+1,j} \circ h^{i,j} = 0$.

- 2 The complex $(M^{i,*}, v^{i,*})$ is called *i-th column* of $M^{*,*}$.
- 3 The complex $(M^{\cdot,j}, h^{\cdot,j})$ is called *j-th row* of $M^{\cdot,i}$.
- Given $n \in \mathbb{Z}$, $\{M^{i,n-i} \mid i \in \mathbb{Z}\}$ is the n-diagonal of M.

• Let $(M^{\bullet \bullet}, v_{M}^{\bullet \bullet}, h_{M}^{\bullet \bullet})$ be a double complex over \mathcal{A} .

- Let $(M^{\bullet \bullet}, v_{\scriptscriptstyle M}^{\bullet \bullet}, h_{\scriptscriptstyle M}^{\bullet \bullet})$ be a double complex over \mathcal{A} .
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where

- Let $(M^{\bullet \bullet}, v_{\scriptscriptstyle M}^{\bullet \bullet}, h_{\scriptscriptstyle M}^{\bullet \bullet})$ be a double complex over \mathcal{A} .
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where
 - $X^{i,j} = M^{i+1,j}$;

- Let $(M^{"}, v_{M}^{"}, h_{M}^{"})$ be a double complex over A.
- ② Define horizontal shift of M to be $(X^{"}, v_{x}^{"}, h_{x}^{"})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $v_X^{i,j} = -v_M^{i+1,j};$

- Let $(M^{"}, v_{M}^{"}, h_{M}^{"})$ be a double complex over A.
- ② Define horizontal shift of $M^{"}$ to be $(X^{"}, v_{x}^{"}, h_{x}^{"})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $v_X^{i,j} = -v_M^{i+1,j};$
 - $\bullet \ h_{X}^{i,j}=-h_{M}^{i+1,j}.$

- Let $(M^{\bullet \bullet}, v_M^{\bullet \bullet}, h_M^{\bullet \bullet})$ be a double complex over \mathcal{A} .
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $V_{x}^{i,j} = -V_{M}^{i+1,j}$;
 - $h_X^{i,j} = -h_M^{i+1,j}$.
- In other words,
 - Objects shifted horizontally to the left by one step;

- Let $(M^{"}, v_{M}^{"}, h_{M}^{"})$ be a double complex over A.
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $V_x^{i,j} = -V_M^{i+1,j}$;
 - $\bullet \ h_{X}^{i,j}=-h_{M}^{i+1,j}.$
- In other words,
 - Objects shifted horizontally to the left by one step;
 - Signs of differentials are changed.

- Let $(M^{"}, v_{M}^{"}, h_{M}^{"})$ be a double complex over A.
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $V_{x}^{i,j} = -V_{M}^{i+1,j}$;
 - $\bullet h_{X}^{i,j}=-h_{M}^{i+1,j}.$
- In other words,
 - Objects shifted horizontally to the left by one step;
 - Signs of differentials are changed.
- Write M[™][1] for the horizontal shift of M[™].

- Let $(M^{"}, v_{M}^{"}, h_{M}^{"})$ be a double complex over A.
- ② Define *horizontal shift* of M^{••} to be $(X^{\bullet}, v_X^{\bullet}, h_X^{\bullet})$, where
 - $X^{i,j} = M^{i+1,j}$;
 - $V_{x}^{i,j} = -V_{M}^{i+1,j}$;
 - $h_X^{i,j} = -h_M^{i+1,j}$.
- In other words,
 - Objects shifted horizontally to the left by one step;
 - Signs of differentials are changed.
- Write M^{*}[1] for the horizontal shift of M^{*}.
- The vertical shift of M" can be defined similarly.

Double complex morphisms

• Let M and N be double complexes over A.

Double complex morphisms

- **1** Let M and N be double complexes over A.
- ② A morphism $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ consists of morphisms

- **1** Let M and N be double complexes over A.
- ② A morphism $f^{\cdot \cdot}: M^{\cdot \cdot} \to N^{\cdot \cdot}$ consists of morphisms $f^{i,j}: M^{i,j} \to N^{i,j}$ in $\mathcal A$ such that

- **1** Let M and N be double complexes over A.
- ② A morphism $f^{\cdot \cdot}: M^{\cdot \cdot} \to N^{\cdot \cdot}$ consists of morphisms $f^{i,j}: M^{i,j} \to N^{i,j}$ in $\mathcal A$ such that

commutes, for all $i, j \in \mathbb{Z}$.

- Let M and N be double complexes over A.
- ② A morphism $f^{\cdot \cdot}: M^{\cdot \cdot} \to N^{\cdot \cdot}$ consists of morphisms $f^{i,j}: M^{i,j} \to N^{i,j}$ in $\mathcal A$ such that

commutes, for all $i, j \in \mathbb{Z}$.

3 Given j, we have complex morphism $f^{\bullet,j}: M^{\bullet,j} \to N^{\bullet,j}$.

- **1** Let M and N be double complexes over A.
- \bullet A morphism $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ consists of morphisms $f^{i,j}: M^{i,j} \to N^{i,j}$ in A such that

commutes, for all $i, j \in \mathbb{Z}$.

- **3** Given j, we have complex morphism $f^{\bullet,j}: M^{\bullet,j} \to N^{\bullet,j}$.

1 A morphism $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ is *horizontally null-homotopic*

1 A morphism $f^{\cdot \cdot}: M^{\cdot \cdot \cdot} \to N^{\cdot \cdot \cdot}$ is *horizontally null-homotopic* if there exist $u^{i,j}: M^{i,j} \to N^{i-1,j}$, with $i,j \in \mathbb{Z}$, such that

1 A morphism f : M ··· $\rightarrow N$ ··· is horizontally null-homotopic if there exist $u^{i,j}: M^{i,j} \rightarrow N^{i-1,j}$, with $i,j \in \mathbb{Z}$, such that • $u^{i+1,j} \circ h_{\scriptscriptstyle M}^{i,j} + h_{\scriptscriptstyle N}^{i-1,j} \circ u^{i,j} = f^{i,j}$;

1 A morphism $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ is *horizontally null-homotopic*

if there exist $u^{i,j}:M^{i,j}\to N^{i-1,j}$, with $i,j\in\mathbb{Z}$, such that

- $u^{i+1,j} \circ h_{_{M}}^{i,j} + h_{_{N}}^{i-1,j} \circ u^{i,j} = f^{i,j};$
- $v_N^{i-1,j} \circ u^{i,j} + u^{i,j+1} \circ v_M^{i,j} = 0.$

1 A morphism $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ is *horizontally null-homotopic* if there exist $u^{i,j}: M^{i,j} \to N^{i-1,j}$, with $i, j \in \mathbb{Z}$, such that

- $u^{i+1,j} \circ h_M^{i,j} + h_N^{i-1,j} \circ u^{i,j} = f^{i,j};$
- $v_N^{i-1,j} \circ u^{i,j} + u^{i,j+1} \circ v_M^{i,j} = 0.$

1 Let $f^{\bullet}: M^{\bullet} \to N^{\bullet}$ be a morphism in DC(A).

- **1** Let f : M \rightarrow N be a morphism in DC(A).
- **2** The *horizontal cone* H_{f} is double complex $(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet})$,

- **1** Let f : M \rightarrow N be a morphism in DC(A).
- **②** The *horizontal cone* H_{f} is double complex $(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet})$,
 - $\bullet \ H^{i,j}=M^{i+1,j}\oplus N^{i,j};$

- **1** Let f : M \rightarrow N be a morphism in DC(A).
- **2** The *horizontal cone* H_{f} is double complex $(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet})$,
 - $\bullet \ H^{i,j}=M^{i+1,j}\oplus N^{i,j};$

•
$$h^{i,j} = \begin{pmatrix} -h_M^{i+1,j} & 0 \\ f^{i+1,j} & h_N^{i,j} \end{pmatrix}$$
; $v^{i,j} = \begin{pmatrix} -v_M^{i+1,j} & 0 \\ 0 & v_N^{i,j} \end{pmatrix}$.

- **1** Let f : M \rightarrow N be a morphism in DC(A).
- **②** The *horizontal cone* H_{f} is double complex $(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet})$,
 - $\bullet \ H^{i,j}=M^{i+1,j}\oplus N^{i,j};$

•
$$h^{i,j} = \begin{pmatrix} -h_M^{i+1,j} & 0 \\ f^{i+1,j} & h_N^{i,j} \end{pmatrix}$$
; $\mathbf{v}^{i,j} = \begin{pmatrix} -\mathbf{v}_M^{i+1,j} & 0 \\ 0 & \mathbf{v}_N^{i,j} \end{pmatrix}$.

- In other words
 - The *j*-th row of H_{f} .. is the cone of $f^{\bullet,j}:M^{\bullet,j}\to N^{\bullet,j}$;

- **1** Let f : M \rightarrow N be a morphism in DC(A).
- **2** The *horizontal cone* H_{f} is double complex $(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet})$,
 - $\bullet \ H^{i,j}=M^{i+1,j}\oplus N^{i,j};$

•
$$h^{i,j} = \begin{pmatrix} -h_N^{i+1,j} & 0 \\ f^{i+1,j} & h_N^{i,j} \end{pmatrix}$$
; $v^{i,j} = \begin{pmatrix} -v_M^{i+1,j} & 0 \\ 0 & v_N^{i,j} \end{pmatrix}$.

- In other words
 - ullet The j-th row of $H_{f^{ullet}}$ is the cone of $f^{ullet j}:M^{ullet j} o N^{ullet j};$
 - The vertical differentials of H_f are direct sums of vertical differentials.

• DC(A): the abelian category of double complexes over A.

- **1** DC(A): the abelian category of double complexes over A.
- ② A short exact sequence in DC(A) is a sequence

- **1** DC(A): the abelian category of double complexes over A.
- ② A short exact sequence in DC(A) is a sequence

$$0 \longrightarrow L^{\bullet \bullet} \xrightarrow{f^{\bullet \bullet}} M^{\bullet \bullet} \xrightarrow{g^{\bullet \bullet}} N^{\bullet \bullet} \longrightarrow 0$$

- **1** DC(A): the abelian category of double complexes over A.
- **2** A short exact sequence in DC(A) is a sequence

$$0 \longrightarrow L^{\bullet} \xrightarrow{f^{\bullet}} M^{\bullet} \xrightarrow{g^{\bullet}} N^{\bullet} \longrightarrow 0$$

in DC(A) such, for all $i, j \in \mathbb{Z}$, that

- **1** DC(A): the abelian category of double complexes over A.
- **2** A short exact sequence in DC(A) is a sequence

$$0 \longrightarrow L^{\bullet} \xrightarrow{f^{\bullet}} M^{\bullet} \xrightarrow{g^{\bullet}} N^{\bullet} \longrightarrow 0$$

in DC(A) such, for all $i, j \in \mathbb{Z}$, that

$$0 \longrightarrow L^{i,j} \xrightarrow{f^{i,j}} M^{i,j} \xrightarrow{g^{i,j}} N^{i,j} \longrightarrow 0$$

is exact in A.

• For $M^{"} \in DC(A)$, define total complex $\mathbb{T}(M^{"}) \in C(A)$ by

- For $M^{"} \in DC(A)$, define *total complex* $\mathbb{T}(M^{"}) \in C(A)$ by
 - $\mathbb{T}(M^{\cdot \cdot})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i}$;

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\bullet \bullet})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d^n_{\mathbb{T}(M^{\bullet \bullet})}: \oplus_{i\in\mathbb{Z}} M^{i,n-i} \to \oplus_{j\in\mathbb{Z}} M^{j,n+1-j}$ written as

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\bullet \bullet})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d_{\mathbb{T}(M^{\bullet \bullet})}^n: \bigoplus_{i \in \mathbb{Z}} M^{i,n-i} \to \bigoplus_{j \in \mathbb{Z}} M^{j,n+1-j}$ written as an infinite matrix $(d_{\mathbb{T}(M^{\bullet \bullet})}^n(j,i))_{(j,i) \in \mathbb{Z} \times \mathbb{Z}}$, where

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\bullet \bullet})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d^n_{\mathbb{T}(M^{\bullet \bullet})}: \oplus_{i\in\mathbb{Z}} M^{i,n-i} \to \oplus_{j\in\mathbb{Z}} M^{j,n+1-j}$ written as an infinite matrix $(d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i))_{(j,i)\in\mathbb{Z}\times\mathbb{Z}}$, where $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i): M^{i,n-i} \to M^{j,n+1-j}$ is given by

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\cdot \cdot})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d^n_{\mathbb{T}(M^{\bullet \bullet})}: \oplus_{i \in \mathbb{Z}} M^{i,n-i} \to \oplus_{j \in \mathbb{Z}} M^{j,n+1-j}$ written as an infinite matrix $(d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i))_{(j,i)\in \mathbb{Z}\times \mathbb{Z}},$ where $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i): M^{i,n-i} \to M^{j,n+1-j}$ is given by $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i) = \begin{cases} v^{i,n-i}_M, & j=i, \\ h^{i,n-i}_M, & j=i+1; \\ 0, & i\neq i, i+1 \end{cases}$

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\bullet \bullet})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d^n_{\mathbb{T}(M^{\bullet \bullet})}: \oplus_{i\in\mathbb{Z}} M^{i,n-i} \to \oplus_{j\in\mathbb{Z}} M^{j,n+1-j}$ written as an infinite matrix $(d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i))_{(j,i)\in\mathbb{Z}\times\mathbb{Z}},$ where $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i): M^{i,n-i} \to M^{j,n+1-j}$ is given by $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i) = \begin{cases} v^{i,n-i}_M, & j=i, \\ h^{i,n-i}_M, & j=i+1; \\ 0, & j\neq i, i+1. \end{cases}$
- ② Given f ": M" $\to N$ ", define $\mathbb{T}(f$ ") : $\mathbb{T}(M$ ") $\to \mathbb{T}(N$ ") by

- For $M" \in DC(A)$, define *total complex* $\mathbb{T}(M") \in C(A)$ by
 - $\mathbb{T}(M^{\bullet \bullet})^n = \bigoplus_{i \in \mathbb{Z}} M^{i,n-i};$
 - $d^n_{\mathbb{T}(M^{\bullet \bullet})}: \oplus_{i \in \mathbb{Z}} M^{i,n-i} \to \oplus_{j \in \mathbb{Z}} M^{j,n+1-j}$ written as an infinite matrix $(d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i))_{(j,i)\in \mathbb{Z}\times \mathbb{Z}}$, where $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i): M^{i,n-i} \to M^{j,n+1-j}$ is given by $d^n_{\mathbb{T}(M^{\bullet \bullet})}(j,i) = \begin{cases} v^{i,n-i}_M, & j=i, \\ h^{i,n-i}_M, & j=i+1; \\ 0, & i \neq i, i+1. \end{cases}$
- ② Given f ": M" $\to N$ ", define $\mathbb{T}(f$ "): $\mathbb{T}(M$ ") $\to \mathbb{T}(N$ ") by $\mathbb{T}(f$ ") $^n = \bigoplus_{i \in \mathbb{Z}} f^{i,n-i} : \bigoplus_{i \in \mathbb{Z}} M^{i,n-i} \to \bigoplus_{i \in \mathbb{Z}} N^{i,n-i}.$

Proposition

$$\mathbb{T}: DC(A) \to C(A): M^{\bullet \bullet} \mapsto \mathbb{T}(M^{\bullet \bullet}); f^{\bullet \bullet} \mapsto \mathbb{T}(f^{\bullet \bullet}).$$

Proposition

Taking total complexes yields an exact functor

$$\mathbb{T}: DC(A) \to C(A): M" \mapsto \mathbb{T}(M"); f" \mapsto \mathbb{T}(f").$$

• If M := DC(A), then $\mathbb{T}(M$ $:= \mathbb{T}(M)$ [1].

Proposition

$$\mathbb{T}: DC(\mathcal{A}) \to C(\mathcal{A}): M^{\bullet \bullet} \mapsto \mathbb{T}(M^{\bullet \bullet}); f^{\bullet \bullet} \mapsto \mathbb{T}(f^{\bullet \bullet}).$$

- If M := DC(A), then $\mathbb{T}(M$ $:= \mathbb{T}(M$ $:= \mathbb{T}(M)$.
- ② If $f^{\bullet}: M^{\bullet \bullet} \to N^{\bullet \bullet}$ is morphism in DC(A), then

Proposition

$$\mathbb{T}: DC(A) \to C(A): M" \mapsto \mathbb{T}(M"); f" \mapsto \mathbb{T}(f").$$

- If M := DC(A), then $\mathbb{T}(M$ $:= \mathbb{T}(M)$ [1].
- ② If f : M \rightarrow N \rightarrow N is morphism in DC(A), then

•
$$\mathbb{T}(H_{f \cdot \cdot \cdot}) = C_{\mathbb{T}(f \cdot \cdot \cdot)}$$
.

Proposition

$$\mathbb{T}: DC(A) \to C(A): M" \mapsto \mathbb{T}(M"); f" \mapsto \mathbb{T}(f").$$

- If M := DC(A), then $\mathbb{T}(M$ $:= \mathbb{T}(M)$ [1].
- ② If f : M \rightarrow N \rightarrow N is morphism in DC(A), then
 - $\mathbb{T}(H_{f \cdot \cdot \cdot}) = C_{\mathbb{T}(f \cdot \cdot \cdot)}$.
 - $\mathbb{T}(f^n)$ is null-homotopic in case f^n is horizontally null-homotopic.

Generalization of Acyclic Assembly Lemma

• Let M be a double complex over A.

Generalization of Acyclic Assembly Lemma

- Let M be a double complex over A.
- ② We say that M^{**} is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;

Generalization of Acyclic Assembly Lemma

- **1** Let M be a double complex over A.
- ② We say that M is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;

- **1** Let M be a double complex over A.
- ② We say that M is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;
 - diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;

- Let M be a double complex over A.
- ② We say that M is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;
 - diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
 - diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

- Let M be a double complex over A.
- We say that M" is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;
 - diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
 - diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

 $\mathbb{T}(M")$ is acyclic provided that M" is

- **1** Let M be a double complex over A.
- ② We say that M is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;
 - diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
 - diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

 $\mathbb{T}(M")$ is acyclic provided that M" is

• diagonally bounded-below with acyclic rows, or

- Let M be a double complex over A.
- ② We say that M is
 - *n-diagonally bounded-below* if $M^{i,n-i} = 0$ for i << 0;
 - *n-diagonally bounded-above* if $M^{i,n-i} = 0$ for i >> 0;
 - diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
 - diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

 $\mathbb{T}(M^{"})$ is acyclic provided that $M^{"}$ is

- diagonally bounded-below with acyclic rows, or
- diagonally bounded-above with acyclic columns.

Consider an exact functor

$$\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B}):M\to\mathfrak{F}(M)$$
; $f\mapsto\mathfrak{F}(f)$.

Consider an exact functor

$$\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B}):M\to\mathfrak{F}(M)$$
; $f\mapsto\mathfrak{F}(f)$.

3 Given $M^{\centerdot} \in C(A)$, applying \mathfrak{F} to each component M^{i} ,

Consider an exact functor

$$\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B}): M \to \mathfrak{F}(M)$$
; $f \mapsto \mathfrak{F}(f)$.

② Given $M^{\bullet} \in C(A)$, applying \mathfrak{F} to each component M^{i} , we obtain double complex $\mathfrak{F}(M^{\bullet})^{\bullet}$ over \mathcal{B} as follows:

Consider an exact functor

$$\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B}):M\to\mathfrak{F}(M)$$
; $f\mapsto\mathfrak{F}(f)$.

② Given $M^{\bullet} \in C(A)$, applying \mathfrak{F} to each component M^{i} , we obtain double complex $\mathfrak{F}(M^{\bullet})^{\bullet}$ over \mathcal{B} as follows:

1 Let $f : M \to N$ be a morphism in C(A).

- Let $f^{\bullet}: M^{\bullet} \to N^{\bullet}$ be a morphism in C(A).
- ② For all $i, j \in \mathbb{Z}$, we have commutative diagram

- Let $f^{\bullet}: M^{\bullet} \to N^{\bullet}$ be a morphism in C(A).
- ② For all $i, j \in \mathbb{Z}$, we have commutative diagram

3 The morphisms $\mathfrak{F}(f^i)^j$ with $i, j \in \mathbb{Z}$ form a morphism

- Let $f^{\bullet}: M^{\bullet} \to N^{\bullet}$ be a morphism in C(A).
- ② For all $i, j \in \mathbb{Z}$, we have commutative diagram

3 The morphisms $\mathfrak{F}(f^i)^j$ with $i,j\in\mathbb{Z}$ form a morphism $\mathfrak{F}(f^i)^i:\mathfrak{F}(M^i)^i\to\mathfrak{F}(N^i)^i$ in $DC(\mathcal{B})$.

$$\mathfrak{F}^{DC}: C(\mathcal{A}) \to DC(\mathcal{B}): M^{\bullet} \mapsto \mathfrak{F}(M^{\bullet})^{\bullet}; f^{\bullet} \mapsto \mathfrak{F}(f^{\bullet})^{\bullet}.$$

$$\mathfrak{F}^{DC}:C(\mathcal{A})\to DC(\mathcal{B}):M^{\centerdot}\mapsto \mathfrak{F}(M^{\centerdot})^{\centerdot};\,f^{\centerdot}\mapsto \mathfrak{F}(f^{\centerdot})^{\centerdot}.$$

(1) If
$$M^{\centerdot} \in C(\mathcal{A})$$
, then $\mathfrak{F}^{DC}(M^{\centerdot}[1]) = \mathfrak{F}^{DC}(M^{\centerdot})[1]$.

$$\mathfrak{F}^{DC}:C(\mathcal{A})\to DC(\mathcal{B}):M^{\scriptscriptstyle\bullet}\mapsto \mathfrak{F}(M^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet};\,f^{\scriptscriptstyle\bullet}\mapsto \mathfrak{F}(f^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet}.$$

- (1) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{DC}(M^{\centerdot}[1]) = \mathfrak{F}^{DC}(M^{\centerdot})[1]$.
- (2) If f^* is a morphism in C(A), then

$$\mathfrak{F}^{DC}:C(\mathcal{A})\to DC(\mathcal{B}):M^{\scriptscriptstyle\bullet}\mapsto \mathfrak{F}(M^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet};\,f^{\scriptscriptstyle\bullet}\mapsto \mathfrak{F}(f^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet}.$$

- (1) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{DC}(M^{\centerdot}[1]) = \mathfrak{F}^{DC}(M^{\centerdot})[1]$.
- (2) If f^* is a morphism in C(A), then

•
$$\mathfrak{F}^{DC}(C_{f\bullet}) = H_{\mathfrak{F}^{DC}(f\bullet)};$$

$$\mathfrak{F}^{DC}: C(\mathcal{A}) \to DC(\mathcal{B}): M^{\scriptscriptstyle\bullet} \mapsto \mathfrak{F}(M^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet}; f^{\scriptscriptstyle\bullet} \mapsto \mathfrak{F}(f^{\scriptscriptstyle\bullet})^{\scriptscriptstyle\bullet}.$$

- (1) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{DC}(M^{\centerdot}[1]) = \mathfrak{F}^{DC}(M^{\centerdot})[1]$.
- (2) If f^* is a morphism in C(A), then
 - $\mathfrak{F}^{DC}(C_{f \cdot}) = H_{\mathfrak{F}^{DC}(f \cdot)}$;
 - $\mathfrak{F}^{DC}(f^*)$ is horizontally null-homotopic in case f^* is null-homotopic.

 $\bullet \ \, \mathsf{Let} \,\, \mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B}) \,\, \mathsf{be} \,\, \mathsf{an} \,\, \mathsf{exact} \,\, \mathsf{functor}.$

- **1** Let $\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B})$ be an exact functor.
- 2 Let $\mathfrak{F}^{\mathcal{C}}$ be the composite of the following functors

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

- **①** Let $\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B})$ be an exact functor.

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M) = \mathfrak{F}(M)$.

- **①** Let $\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B})$ be an exact functor.

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

Proposition

- (1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M) = \mathfrak{F}(M)$.
- (2) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}(M^{\centerdot}[1]) = \mathfrak{F}^{C}(M^{\centerdot})[1]$.

- **1** Let $\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B})$ be an exact functor.

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

Proposition

- (1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M) = \mathfrak{F}(M)$.
- (2) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}(M^{\centerdot}[1]) = \mathfrak{F}^{C}(M^{\centerdot})[1]$.
- (3) If f is morphism in C(A), then $\mathfrak{F}^{C}(C_{f}) = C_{\mathfrak{F}^{C}(f)}$.

- **1** Let $\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B})$ be an exact functor.

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

Proposition

- (1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M) = \mathfrak{F}(M)$.
- (2) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}(M^{\centerdot}[1]) = \mathfrak{F}^{C}(M^{\centerdot})[1]$.
- (3) If f is morphism in C(A), then $\mathfrak{F}^{C}(C_{f}) = C_{\mathfrak{F}^{C}(f)}$.
- (4) If f is null-homotopic morphism in C(A), then $\mathfrak{F}^C(f)$ is null-homotopic.

- **①** Let $\mathfrak{F}: \mathcal{A} \to \mathcal{C}(\mathcal{B})$ be an exact functor.

$$C(A) \xrightarrow{\mathfrak{F}^{DC}} DC(B) \xrightarrow{\mathbb{T}} C(B)$$

Proposition

- (1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M) = \mathfrak{F}(M)$.
- (2) If $M^{\centerdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}(M^{\centerdot}[1]) = \mathfrak{F}^{C}(M^{\centerdot})[1]$.
- (3) If f^{\bullet} is morphism in C(A), then $\mathfrak{F}^{C}(C_{f^{\bullet}}) = C_{\mathfrak{F}^{C}(f^{\bullet})}$.
- (4) If f is null-homotopic morphism in C(A), then $\mathfrak{F}^C(f)$ is null-homotopic.

Example

Consider $\sigma: \mathcal{A} \to \mathcal{C}(\mathcal{A}): M \to M[0]$. Then $\sigma^{\mathcal{C}} = 1_{\mathcal{C}(\mathcal{A})}$.

Corollary

Any exact functor $\mathfrak{F}:\mathcal{A}\to\mathcal{B}$ induces a commutative diagram

$$C(\mathcal{A}) \longrightarrow K(\mathcal{B})$$

$$\mathfrak{F}^{c} \downarrow \qquad \qquad \downarrow_{\mathfrak{F}^{K}}$$

$$C(\mathcal{B}) \longrightarrow K(\mathcal{B}),$$

where \mathfrak{F}^K is triangle-exact.

Corollary

Any exact functor $\mathfrak{F}:\mathcal{A}\to\mathcal{B}$ induces a commutative diagram

$$C(\mathcal{A}) \longrightarrow K(\mathcal{B})$$

$$\mathfrak{F}^{\mathcal{C}} \downarrow \qquad \qquad \downarrow \mathfrak{F}^{\mathcal{K}}$$

$$C(\mathcal{B}) \longrightarrow K(\mathcal{B}),$$

where \mathfrak{F}^K is triangle-exact.

Proposition

If $\mathfrak{F}:\mathcal{A}\to\mathcal{C}(\mathcal{B})$ and $\mathfrak{G}:\mathcal{B}\to\mathcal{C}(\mathcal{C})$ are exact functors, then $(\mathfrak{G}^{\mathcal{C}}\circ\mathfrak{F})^{\mathcal{C}}=\mathfrak{G}^{\mathcal{C}}\circ\mathfrak{F}^{\mathcal{C}}.$

• To pass \mathfrak{F}^C to the derived categories, we need that F^C sends quasi-isomorphisms to quasi-isomorphisms.

- To pass \mathfrak{F}^C to the derived categories, we need that F^C sends quasi-isomorphisms to quasi-isomorphisms.
- ② Since $\mathfrak{F}^{\mathcal{C}}$ is compatible with taking cones, it suffices that $\mathfrak{F}^{\mathcal{C}}$ sends acyclic complexes to acyclic ones.

- To pass \mathfrak{F}^C to the derived categories, we need that F^C sends quasi-isomorphisms to quasi-isomorphisms.
- ② Since $\mathfrak{F}^{\mathcal{C}}$ is compatible with taking cones, it suffices that $\mathfrak{F}^{\mathcal{C}}$ sends acyclic complexes to acyclic ones.
- **1** In general, $\mathfrak{F}^{\mathcal{C}}$ does not send all acyclic complexes to acyclic ones.

- To pass \mathfrak{F}^C to the derived categories, we need that F^C sends quasi-isomorphisms to quasi-isomorphisms.
- 2 Since $\mathfrak{F}^{\mathcal{C}}$ is compatible with taking cones, it suffices that $\mathfrak{F}^{\mathcal{C}}$ sends acyclic complexes to acyclic ones.
- **1** In general, $\mathfrak{F}^{\mathcal{C}}$ does not send all acyclic complexes to acyclic ones.
- We are obliged to consider special subcategories of complex category.

• Let $C^{\dagger}(A)$ be an additive subcategory of C(A) such that

• Let $C^{\dagger}(A)$ be an additive subcategory of C(A) such that $\mathfrak{F}^{DC}(M^{\bullet})$ is diagonally bounded-below for all $M^{\bullet} \in C^{\dagger}(A)$.

- Let $C^{\dagger}(A)$ be an additive subcategory of C(A) such that $\mathfrak{F}^{DC}(M^{\bullet})$ is diagonally bounded-below for all $M^{\bullet} \in C^{\dagger}(A)$.

- Let $C^{\dagger}(A)$ be an additive subcategory of C(A) such that $\mathfrak{F}^{DC}(M^{\bullet})$ is diagonally bounded-below for all $M^{\bullet} \in C^{\dagger}(A)$.
- $\mathcal{C}^{\ddagger}(\mathcal{B}) = \mathfrak{F}^{\mathcal{C}}(\mathcal{C}^{\dagger}(\mathcal{A}))$ is an additive subcategory of $\mathcal{C}(\mathcal{B})$.

Theorem

(1) There exists a commutative diagram

$$C^{\dagger}(\mathcal{A}) \longrightarrow K^{\dagger}(\mathcal{A}) \longrightarrow D^{\dagger}(\mathcal{A})$$

$$\downarrow_{\mathfrak{F}^{C}} \qquad \downarrow_{\mathfrak{F}^{D}}$$

$$C^{\ddagger}(\mathcal{B}) \longrightarrow K^{\ddagger}(\mathcal{B}) \longrightarrow D^{\ddagger}(\mathcal{A}),$$

where \mathfrak{F}^K , \mathfrak{F}^D are triangle-exact.

- Let $C^{\dagger}(A)$ be an additive subcategory of C(A) such that $\mathfrak{F}^{DC}(M^{\bullet})$ is diagonally bounded-below for all $M^{\bullet} \in C^{\dagger}(A)$.
- $\mathcal{C}^{\ddagger}(\mathcal{B}) = \mathfrak{F}^{\mathcal{C}}(\mathcal{C}^{\dagger}(\mathcal{A}))$ is an additive subcategory of $\mathcal{C}(\mathcal{B})$.

Theorem

(1) There exists a commutative diagram

$$C^{\dagger}(\mathcal{A}) \longrightarrow K^{\dagger}(\mathcal{A}) \longrightarrow D^{\dagger}(\mathcal{A})$$

$$\downarrow_{\mathfrak{F}^{C}} \qquad \downarrow_{\mathfrak{F}^{D}}$$

$$C^{\ddagger}(\mathcal{B}) \longrightarrow K^{\ddagger}(\mathcal{B}) \longrightarrow D^{\ddagger}(\mathcal{A}),$$

where \mathfrak{F}^K , \mathfrak{F}^D are triangle-exact.

(2) If $\mathfrak{F}, \mathfrak{G} : \mathcal{A} \to C(\mathcal{B})$ are quasi-isomorphic, then $\mathfrak{F}^D, \mathfrak{G}^D : D(\mathcal{A}) \to D(\mathcal{B})$ are isomorphic.

Consider a Koszul algebra

$$\Lambda = kQ/R$$

Consider a Koszul algebra

$$\Lambda = kQ/R$$
,

Consider a Koszul algebra

$$\Lambda = kQ/R$$
,

$$Q_1 = \{x \to y \mid (x,y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$$

Consider a Koszul algebra

$$\Lambda = kQ/R,$$

$$Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$$

- ② Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - P_x , indecomposable projective module at x;

Consider a Koszul algebra

$$\Lambda = kQ/R$$

$$Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$$

- ② Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - P_x , indecomposable projective module at x;
 - I_x , indecomposable injective module at x.

Consider a Koszul algebra

$$\Lambda = kQ/R$$

$$Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$$

- ② Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - P_x , indecomposable projective module at x;
 - I_x , indecomposable injective module at x.
- The Koszul dual is

$$\Lambda^! = kQ^{\rm op}/R^!,$$

Consider a Koszul algebra

$$\Lambda = kQ/R$$

where Q is locally finite with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$, that is,

$$Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$$

- ② Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - P_x , indecomposable projective module at x;
 - I_x , indecomposable injective module at x.
- The Koszul dual is

$$\Lambda^! = kQ^{\rm op}/R^!,$$

where Q^{op} has grading $(Q_0^{\mathrm{op}})^n=Q^{-n},\,n\in\mathbb{Z}.$

We define Koszul functor

 $F: \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda): M \mapsto F(M)^*$

• We define Koszul functor

$$F:\operatorname{Mod}\Lambda^! \to C(\operatorname{Mod}\Lambda):M\mapsto F(M)^*$$

such, for $n \in \mathbb{Z}$, that

$$F(M)^n = \bigoplus_{x \in (Q^{\mathrm{op}})^n} P_x \otimes e_x M.$$

We define Koszul functor

$$F: \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda): M \mapsto F(M)^*$$

such, for $n \in \mathbb{Z}$, that

$$F(M)^n = \bigoplus_{x \in (Q^{\mathrm{op}})^n} P_x \otimes e_x M.$$

We define Koszul inverse

$$G: \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!): N \mapsto G(N)^*$$

We define Koszul functor

$$F: \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda): M \mapsto F(M)^*$$

such, for $n \in \mathbb{Z}$, that

$$F(M)^n = \bigoplus_{x \in (Q^{\mathrm{op}})^n} P_x \otimes e_x M.$$

We define Koszul inverse

$$G: \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!): N \mapsto G(N)^*$$

such, for $n \in \mathbb{Z}$, that

$$G(N)^n = \bigoplus_{x \in Q^n} I_x^! \otimes e_x N,$$

We define Koszul functor

$$F: \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda): M \mapsto F(M)^*$$

such, for $n \in \mathbb{Z}$, that

$$F(M)^n = \bigoplus_{x \in (Q^{\mathrm{op}})^n} P_x \otimes e_x M.$$

We define Koszul inverse

$$G: \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!): N \mapsto G(N)^*$$

such, for $n \in \mathbb{Z}$, that

$$G(N)^n = \bigoplus_{x \in Q^n} I_x^! \otimes e_x N,$$

where $I_x^!$ is indecomposable injective $\Lambda^!$ -module.

• Every module $M \in \Lambda$ admits a Q-graduation

$$M=\oplus_{j\in\mathbb{Z}}M_j, \text{ wher } M_j=\oplus_{x\in Q^j}\,e_xM_j.$$

- Every module $M \in \Lambda$ admits a Q-graduation $M = \oplus_{j \in \mathbb{Z}} M_j, \text{ wher } M_j = \oplus_{x \in Q^j} e_x M_j.$
- ② Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M^{\bullet} with

- Every module $M \in \Lambda$ admits a Q-graduation $M = \oplus_{j \in \mathbb{Z}} M_j, \text{ wher } M_j = \oplus_{x \in Q^j} e_x M_j.$
- ② Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M^{\bullet} with

$$M_j^i = 0$$
 in case $i + pj >> 0$ or $i - qj << 0$,

• Every module $M \in \Lambda$ admits a Q-graduation

$$M=\oplus_{j\in\mathbb{Z}}M_j, \ ext{wher} \ M_j=\oplus_{x\in Q^j}\,e_xM_j.$$

- ② Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M with

$$M_j^i = 0$$
 in case $i + pj >> 0$ or $i - qj << 0$,

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}$, $\frac{1}{a}$.

• Every module $M \in \Lambda$ admits a Q-graduation

$$M=\oplus_{j\in\mathbb{Z}}M_j, \text{ wher } M_j=\oplus_{x\in Q^j}e_xM_j.$$

- ② Given $p,q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M with

$$M_j^i = 0$$
 in case $i + pj >> 0$ or $i - qj << 0$,

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}$, $\frac{1}{q}$.

• $C_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda)$ category of complexes M

• Every module $M \in \Lambda$ admits a Q-graduation

$$M=\oplus_{j\in\mathbb{Z}}M_j, \ ext{wher} \ M_j=\oplus_{x\in Q^j}\,e_xM_j.$$

- ② Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M with

$$M_j^i = 0$$
 in case $i + pj >> 0$ or $i - qj << 0$,

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}$, $\frac{1}{q}$.

• $C_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda)$ category of complexes M

$$M_i^i = 0$$
 in case $i + pj << 0$ or $i - qj >> 0$,

• Every module $M \in \Lambda$ admits a Q-graduation

$$M=\oplus_{j\in\mathbb{Z}}M_j, \ ext{wher} \ M_j=\oplus_{x\in \mathcal{Q}^j} e_xM_j.$$

- ② Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define
 - $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ category of complexes M with

$$M_j^i = 0$$
 in case $i + pj >> 0$ or $i - qj << 0$,

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}$, $\frac{1}{a}$.

• $C_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda)$ category of complexes M

$$M_j^i = 0$$
 in case $i + pj << 0$ or $i - qj >> 0$,

that is, M concentrates in upper triangle formed by 2 line of slopes $-\frac{1}{n}$, $\frac{1}{n}$.

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

$$\bullet F^{\mathcal{C}}: C^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^{!}) \to C^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda).$$

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

- $\bullet F^{\mathcal{C}}: C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \to C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda).$

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

- $\bullet F^{\mathcal{C}}: C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \to C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda).$
- **3** $F^{\mathcal{C}} \circ G$ quasi-iso to $\sigma : \operatorname{Mod}\Lambda \to C_{q+1,p-1}^{\uparrow}(\operatorname{Mod}\Lambda)$.

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

- $\bullet F^{\mathcal{C}}: C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \to C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda).$
- **3** $F^{\mathcal{C}} \circ G$ quasi-iso to $\sigma : \operatorname{Mod}\Lambda \to C_{q+1,p-1}^{\uparrow}(\operatorname{Mod}\Lambda)$.
- $F^C \circ G^C = (F^C \circ G)^C$ quasi-iso to $\sigma^C = 1_{C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda)}$.

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

- $\bullet F^{\mathcal{C}}: C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \to C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda).$
- **3** $F^{\mathcal{C}} \circ G$ quasi-iso to $\sigma : \operatorname{Mod}\Lambda \to C_{q+1,p-1}^{\uparrow}(\operatorname{Mod}\Lambda)$.
- $F^{C} \circ G^{C} = (F^{C} \circ G)^{C}$ quasi-iso to $\sigma^{C} = \mathbb{1}_{C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda)}$.

Theorem

If $\Lambda = kQ/R$ is Koszul, then F induces triangle equivalence

$$F^D: D^{\downarrow}_{p,q}(\mathrm{Mod}\Lambda^!) \to D^{\uparrow}_{q+1,p-1}(\mathrm{Mod}\Lambda)$$

- $\bullet F^{\mathcal{C}}: C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda^!) \to C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda).$
- **3** $F^{\mathcal{C}} \circ G$ quasi-iso to $\sigma : \operatorname{Mod}\Lambda \to C_{q+1,p-1}^{\uparrow}(\operatorname{Mod}\Lambda)$.
- $F^{\mathcal{C}} \circ G^{\mathcal{C}} = (F^{\mathcal{C}} \circ G)^{\mathcal{C}}$ quasi-iso to $\sigma^{\mathcal{C}} = 1_{C_{q+1,p-1}^{\uparrow}(\mathrm{Mod}\Lambda)}$.
- $footnote{f G}$ Similarly, $F^D\circ G^D\cong {1}\!\!{
 m l}_{D_{q+1,p-1}^\downarrow({
 m Mod}{f \Lambda})}.$

Consequences

Theorem

If both Λ and $\Lambda^!$ are locally bounded, then

$$D^b(\operatorname{Mod}^b\Lambda^!)\cong D^b(\operatorname{Mod}^b\Lambda).$$

Consequences

Theorem

If both Λ and $\Lambda^!$ are locally bounded, then

$$D^b(\operatorname{Mod}^b\Lambda^!)\cong D^b(\operatorname{Mod}^b\Lambda).$$

A path in Q is *left infinite* or *right infinite* if it has no starting point or no ending-point, respectively.

Consequences

Theorem

If both Λ and $\Lambda^!$ are locally bounded, then

$$D^b(\operatorname{Mod}^b\Lambda^!)\cong D^b(\operatorname{Mod}^b\Lambda).$$

A path in Q is *left infinite* or *right infinite* if it has no starting point or no ending-point, respectively.

Corollary

If Q has no right infinite path or no left infinite path, then

$$D^b(\mathrm{Mod}^b\Lambda^!)\cong D^b(\mathrm{Mod}^b\Lambda).$$