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© In the study of derived categories, one technique is to
compare the derived categories D(.A) and D(B) of two
abelian categories A, B.

@ For this purpose, we need to construct a triangle-exact
functor D(A) — D(B).

@ It is well known that an exact functor F : A — B induces
a commutative diagram

C(A) —— K(A) —— D(A)

\LFC FK \LFD

C(B) — K(B) — D(B),

where FC is the component-wise application of F.
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@ Most often, however, we only have functor § : A — C(B).

@ To extend § to F : C(A) — C(B), we need to consider
total complexes of double complexes.

© To pass F€ to the derived categories, we need to
introduce a homology theory of double complexes.
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An abelian category is called concrete if objects are
equipped with abelian group structure and morphisms are
compatible with abelian group structures of objects.

Let A, B be concrete abelian categories with countable
direct sums.

C(A): complex category of A.

Given morphism f- € C(.A), its cone is denoted by Cr..
K(A): homotopy category of A.

D(.A): derived category of A.
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Double Complexes

@ A double complex (M=, v, h~) over A is as follows:

T i j+1 . .
Y Y INES LG V1o WA S,

Vi’jT Tvm,j

Y /1 R V155 W B

! f

VL yid s Rt B = 0 pid Lo yid it o pid = 0.
@ The complex (M’ v'*) is called i-th column of M.

© The complex (M ) is called j-th row of M.

@ Given n€ Z, {M""~"| [ € Z} is the n-diagonal of M~.
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horizontal shift

O Let (M=, v h) be a double complex over A.

M)
@ Define horizontal shift of M* to be (X*,v", h), where
o Xid = MitLi.
o v/ =yt

° hi,j — —hi+1’-i_
X M
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horizontal shift

O Let (M=, v h) be a double complex over A.

» Im)

@ Define horizontal shift of M* to be (X*,v", h), where

o X = M1,
ij o 41,

° VX = VM '

o hid = —hi+1J,
X M

© In other words,
o Objects shifted horizontally to the left by one step;
o Signs of differentials are changed.

Q@ Write M~[1] for the horizontal shift of M~

© The vertical shift of M can be defined similarly.
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@ A morphism f=: M- — N-- consists of morphisms
fiv: MY — N in A such that
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commutes, for all /,j € Z.
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Double complex morphisms

@ Let M- and N*- be double complexes over A.

@ A morphism f=: M- — N-- consists of morphisms
fiv: MY — N in A such that

Nid+1
it
ij+1 i
M v
y 5 b "
I, 1, 1
VMJ - N N J
s /
v '/h;;/,,j i Fit1j
1 v

commutes, for all /,j € Z.
© Given j, we have complex morphism £/ : M~ — N/,

Q Given i € Z, we have complex morphism £/ : Mi» — Ni».



horizontally null-homotopic morphisms

© A morphism f=: M= — N is horizontally null-homotopic



horizontally null-homotopic morphisms

© A morphism f=: M= — N is horizontally null-homotopic

if there exist u'Y : MY — N'=YJ with i,j € Z, such that



horizontally null-homotopic morphisms

© A morphism f=: M= — N is horizontally null-homotopic
if there exist u'Y : MY — N'=YJ with i,j € Z, such that

o U'tlo hJ + h,(fl’f ou = f;
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horizontally null-homotopic morphisms

© A morphism f=: M= — N is horizontally null-homotopic
if there exist u'Y : MY — N'=YJ with i,j € Z, such that
o U o i 4 HL o yid = £,

o vimM o +u Mt ovid = 0.

Ni*].,j‘i’l
w
i—1, ij+1
vi M
A h;VlL . .
N1 i N
& \
uid

inJ
hi

Mi,j Mi+1,j
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O Let f: M~ — N be a morphism in DC(.A).
@ The horizontal cone Hs.. is double complex (H*, v**, h**),

° Hi,j — Mi+1,j D Ni,j;

b _hl(/’+1J 0 i _VA;HJ 0
° T\ FiN R V= 0 yid )

N



Horizontal cone of a double complex morphism

O Let f: M~ — N be a morphism in DC(.A).
@ The horizontal cone Hs.. is double complex (H*, v**, h**),
° Hi,j — Mi+1,j D Ni,j;
_pitl i+l
.hu:< M 9.)-Vu:< Vo' 0)
FrL pid ) 0 i
N
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Horizontal cone of a double complex morphism

O Let f: M~ — N be a morphism in DC(.A).
@ The horizontal cone Hs.. is double complex (H*, v**, h**),

° Hi,j — Mi+1,j D Ni,j;

b _hl(/’+1J 0 i _VA;HJ 0
oMo =1 ritj hid V= 0 vid )

N

@ In other words
o The j-th row of Hs.. is the cone of £ : M~/ — NJ;

o The vertical differentials of Hy.. are direct sums of
vertical differentials.
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Short exact sequence of double complexes

@ DC(.A): the abelian category of double complexes over A.
@ A short exact sequence in DC(.A) is a sequence
0 Lo e N
in DC(.A) such, for all i,j € Z, that

S Fi .o oghd ..
0 L) M N’ 0

is exact in A.
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Total complex of a double complex

© For M~ € DC(A), define total complex T(M=) € C(A) by
° T(M)n — @iEZ Mi,nfi;
o Bty * Bic MY = e, M1 witten as
an infinite matrix (dT”(M..)(j, i))(,iezxz, where

diipey U 1) - Misn=i s MP:m+H1=J s given by

vl\;’”_", Jj=1
s 1) = 3 B j=id 1,

0,  j#i i+l

@ Given f=: M~ — N-, define T(f~) : T(M~) — T(N") by



Total complex of a double complex

© For M~ € DC(A), define total complex T(M=) € C(A) by
° T(M)n — @iEZ Mi,nfi;
° dT”(M__) : iz MO Djez M H1=J written as
an infinite matrix (dy ..U, 1)) (.ezxz, where
diipey U 1) - Misn=i s MP:m+H1=J s given by
vl\;’”_", Jj=1
drmeyUs 1) = § hen™ j=i+ 1
0, JA# i+ 1.
@ Given f=: M~ — N-, define T(f~) : T(M~) — T(N") by

T(f)n — @iEZ fi,n—i : @iEZ Mi,n—i N @iEZ Ni,n—i.
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Properties of total complex

Taking total complexes yields an exact functor

T : DC(A) — C(A) : M= T(M=); £ T(F).

Q I/f M~ € DC(A), then T(M=[1]) = T(M~)[1].
Q Iff~: M~ — N is morphism in DC(.A), then
] T(Hf") — CT(f")'

o T(f*) is null-homotopic in case f* is horizontally
null-homotopic.
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Generalization of Acyclic Assembly Lemma

@ Let M~ be a double complex over A.
@ We say that M= is
o n-diagonally bounded-below if M'""~" = 0 for | << 0;
o n-diagonally bounded-above if M~ = Q for i >> 0;
o diagonally bounded-below if it is n-diagonally
bounded-below for all n € Z;

o diagonally bounded-above if it is n-diagonally
bounded-above for all n € Z.

Proposition

T(M=) is acyclic provided that M- is
o diagonally bounded-below with acyclic rows, or

o diagonally bounded-above with acyclic columns.
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Extension of a functor

@ Consider an exact functor
§: A= C(B): M= FM); f—F(f)

@ Given M- € C(A), applying § to each component M',
we obtain double complex F(M*)" over B as follows:

]

S(di,

“H_S:(Mi)ﬂrl S(Mi+1)j+1*>---
(_l)idé(mi)T N T(_l)iﬂdé(/wfﬂ)
*)g(M:)J S(diy) S(Mi—f—l)j*)_”

T T



Q Let f*: M — N" be a morphism in C(A).



@ Let f-: M- — N- be a morphism in C(A).

@ For all i,j € Z, we have commutative diagram

NV
3'(Mi)j+1 Fl)idé(/vi)
i i S(dyY i+1yj
(_1)Id¥(Mi) S(Fiy % N )J : S(IV +1)J'
S(My iy




@ Let f-: M- — N- be a morphism in C(A).

@ For all i,j € Z, we have commutative diagram

NiY+L
F(Miy+ D'
S(dyY 1N
(e Sy S(NTY N %’(NI—H)J.
S(Mi)j (Y g(Mi—&-l)j s(ry

© The morphisms (') with i,j € Z form a morphism



@ Let f-: M- — N- be a morphism in C(A).

@ For all i,j € Z, we have commutative diagram

Ni Y+
F(Miy+ D'
i i S(dyY i+1yj
e Sy S(N'Y N S(NTLY.
S(Mi)j (dyY g(Mi—&-l)j 3(ri+Y

© The morphisms (') with i,j € Z form a morphism
S(f): §(M*) — F(N*)-in DC(B).
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Proposition

An exact functor § : A — C(B) induces an exact functor
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Proposition
An exact functor § : A — C(B) induces an exact functor

FPC: C(A) = DC(B) : M- — F(M); f* — F(f°).

(1) If M- € C(A), then FPC(M[1]) = FPC(M")[1].
(2) If f= is a morphism in C(A), then
° 3DC(Cf.) = H{S’Dc(f');




Proposition
An exact functor § : A — C(B) induces an exact functor

3P C(A) = DC(B) : M" = F(M); £+ = F(F)"
(1) If M- € C(A), then F°C(M-[1]) = FP(M)[1].
(2) If f= is a morphism in C(A), then

° 3DC(Cf.) = HgDC(f.);
o §PC(f) is horizontally null-homotopic in case f* is

null-homotopic.
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Extension of a functor

O Let §: A — C(B) be an exact functor.
@ Let € be the composite of the following functors

C(A) % DC(B) =~ C(B)

Proposition

(1) IfM € A, then (M) = F(M)-.

(2) If M- € C(A), then F¢(M-[1]) = F(M")[1].

(3) If f+ is morphism in C(A), then F(Cr.) = Czc(ry.
(4)

4) If f+ is null-homotopic morphism in C(A), then F¢(f*) is
null-homotopic.




Extension of a functor

O Let §: A — C(B) be an exact functor.
@ Let € be the composite of the following functors

C(A) % DC(B) =~ C(B)

Proposition

(1) IfM € A, then (M) = F(M)-.

(2) If M- € C(A), then F¢(M-[1]) = F(M")[1].

(3) If f+ is morphism in C(A), then F(Cr.) = Czc(ry.
(

4) If f+ is null-homotopic morphism in C(A), then F¢(f*) is
null-homotopic.

)
)
)
)

Example
Consider o : A — C(A) : M — MI[0]. Then o€ = 1¢(4).

| \

A\




Corollary

Any exact functor § : A — B induces a commutative diagram
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Proposition

If§: A— C(B) and & : B— C(C) are exact functors, then
(@Cog)c — QSCOSC.
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To pass §€ to the derived categories, we need that F¢
sends quasi-isomorphisms to quasi-isomorphisms.

Since F€ is compatible with taking cones, it suffices that
§¢ sends acyclic complexes to acyclic ones.

In general, §¢ does not send all acyclic complexes to
acyclic ones.

We are obliged to consider special subcategories of
complex category.
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Passage to the derived categories

O Let CT(A) be an additive subcategory of C(A) such that
FPC (M) is diagonally bounded-below for all M+ € CT(A).

@ CH(B) =F(CT(A)) is an additive subcategory of C(B).

(1) There exists a commutative diagram

C'(A) — K'(A) — D'(A)

A

CH(B) — KH(B) —= D*(A),

where K, P are triangle-exact.

(2) If§,6 : A — C(B) are quasi-isomorphic, then
P, 8P : D(A) — D(B) are isomorphic.
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Koszul functor in the gradable setting

@ Consider a Koszul algebra
A= kQ/R,

where @ is locally finite with grading Qo = U,z Q@",
that is,

Q={x—=yl(xy) €@ xQ" nelZ}
@ Given x € @, we put
o & = &, + R, primitive idempotent;
o P, indecomposable projective module at x;
o I, indecomposable injective module at x.

© The Koszul dual is
N = kQ*/R,
where Q°P has grading (Q")" = Q™", n € Z.
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Koszul functors

@ We define Koszul functor
F :ModA — C(ModA) : M — F(M)
such, for n € Z, that
F(M)" = @xe(qoryr Px ® exM.
@ We define Koszul inverse
G : ModA — C(ModA') : N — G(N)
such, for n € Z, that
G(N)" = Byeqn |, © &N,

where [! is indecomposable injective A'-module.
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Special subcategories of complex categories

@ Every module M € A admits a Q-graduation
M = @jczM;, wher M; = ©,cqi eM,;.
@ Given p,g € R with p > 1 and g > 0, we define
o C},(ModA) category of complexes M- with

M =0in case i+ pj >> 0 or i — qj << 0,

that is, M concentrates in lower triangle formed by 2
lines of slopes —%, 1.
P’ q

o ] (ModA) category of complexes M-

M =0in case i + pj << 0ori—gqj >>0,

that is, M concentrates in upper triangle formed by 2

line of slopes —%, L.
P’ q
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Main Result

If N = kQ/R is Koszul, then F induces triangle equivalence

D .
FP: D} (ModA') — D[, o 1 (ModA)

q+1,p—1

with a quasi-inverse GP : Dq+1 p-1(ModA) — D} (Mod/\!).

v

@ FC:Ct (ModN') = Cly, 1(ModA).
@ GC:Cl,, 1(ModA) = Cf (ModA").

q+1,p—1
@ FC o G quasi-iso to o : ModA — Cq+1p 1(ModA).
CocC_ (FC c s _
Q@ FCoG® = (F0oG)° quasi-iso to o€ ]Iqulleod/\).
© F70 6" =1ps nioaly

O Similarly, F¥ o G” = ]Iinﬂp 1

(Mod/\)*
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Consequences

If both \ and \' are locally bounded, then

DP(Mod®A') = DP(Mod®A).

A path in Q is left infinite or right infinite if it has no starting
point or no ending-point, respectively.

If Q@ has no right infinite path or no left infinite path, then

DP(Mod®A') = D(Mod®A).




