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Hochschild homology
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Further results and conjectures

Motivation

A : fin. dim. algebra over field k .

modA: category of fin. dim. right A-modules.

Definition

gdimA = sup{pdimM | M ∈ modA}

= sup{pdimS | S ∈ modA simple}.

Problem

How to determine gdimA is finite or infinite ?
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Gabriel’s Theorem

Theorem

If k̄ = k, then A
Mor∼ kQ/I , where

1 Q = (Q0,Q1) is finite quiver.
2 kQ is path algebra of Q over k,

I � kQ with (kQ+)r ⊆ I ⊆ (kQ+)2,
r ≥ 2 and kQ+ =< Q1 >.

Question

Can one decide gdim(A) is finite or infinite in terms
of the quiver Q?
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Setting

1 A = kQ/I , with k an arbitrary field.

2 Q has trivial paths εa, a ∈ Q0.

3 A has complete set {ea = ε̄a | a ∈ Q0} of
orthogonal primitive idempotents, where
ū = u + I ∈ A.

4 The indec. proj. A-modules are

Pa = eaA = k<p̄ | p : a >, a ∈ Q0.

5 The simple A-modules are

Sa = Pa/radPa, a ∈ Q0.
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ū = u + I ∈ A.

4 The indec. proj. A-modules are

Pa = eaA = k<p̄ | p : a >, a ∈ Q0.

5 The simple A-modules are

Sa = Pa/radPa, a ∈ Q0.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)Oriented cycles and global dimension of algebras



Introduction
Hochschild homology

Strong No Loop Conjecture
Further results and conjectures

Setting

1 A = kQ/I , with k an arbitrary field.

2 Q has trivial paths εa, a ∈ Q0.

3 A has complete set {ea = ε̄a | a ∈ Q0} of
orthogonal primitive idempotents, where
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The no oriented cycle case

Proposition

If Q has no oriented cycle, then

gdim A < maximal length of the paths in Q.

Remark

For gdimA =∞, the existence of oriented cycles in
Q is necessary but not sufficient.
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Examples

1 Consider the following quiver

Q : a
α ''

b.
β

ff

2 If A = kQ/ < αβ >, then gdimA = 2.

3 If B = kQ/ < αβ, βα >, then gdimB =∞.
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Problem and Conjectures

Problem

What kind of oriented cycles make gdimA =∞ ?

No Loop Conjecture (Zacharia, 1980)

If Q has a loop, then gdimA =∞.

Strong No Loop Conjecture (Zacharia, 1980)

If Q has loop at a vertex a, then pdim Sa =∞.
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Solution of the conjectures

The No Loop Conjecture was established by Igusa
in 1990, using a result of Lenzing in 1969.

The Strong No Loop Conjecture was established by
Igusa, Liu, Paquette in 1990, by localizing
Lenzing’s result.
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Hochschild homology group HH0(A)

Definition

1) For x , y ∈ A, write [x , y ] = xy − yx .

2) [A,A] = {
∑

i [xi , yi ] | xi , yi ∈ A}.
3) HH0(A) = A/[A,A], an abelian group.

4) HH0(A) is radical-trivial if radA ⊆ [A,A].
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Loops are not commutators

Proposition

If σ is a loop in Q, then 0 6= σ̄ 6∈ [A,A].
In particular, HH0(A) is not radical-trivial.

Proof. Let x , y ∈ A. Write

x = Σa∈Q0λaea + Σα∈Q1λαᾱ + ū, u ∈ (kQ+)2,

y = Σb∈Q0µbeb + Σβ∈Q1µβ β̄ + v̄ , v ∈ (kQ+)2.

[x , y ] = Σα∈Q1 λα (µt(α) − µs(α))ᾱ

+ Σβ∈Q1 µβ (λs(β) − λt(β))β̄ + w̄ , w ∈ (kQ+)2.

σ̄ ∈ [A,A]⇒ σ̄ = Σα∈Ω ναᾱ + ū, s(α) 6= t(α), u ∈ (kQ+)2,

⇒ σ − Σα∈Ω ναα− u ∈ I ,

⇒ σ − Σα∈Ω ναα ∈ (kQ+)2, absurd.
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Trace of matrices over A

Definition

For M = (xij)n×n ∈ Mn(A), one defines

tr(M) = (x11 + · · ·+ xnn) + [A,A] ∈ HH0(A).

Proposition

If M ∈ Mm×n(A) and N ∈ Mn×m(A), then

tr(MN) = tr(NM).
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Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

1 Let ϕ ∈ EndA(P) with P ∈ modA projective.

2 If P = 0, define tr(ϕ) = 0 ∈ HH0(A).

3 Otherwise, P = e1A⊕ · · · ⊕ enA,
with e1, . . . , en primitive idempotents.

4 Write ϕ = (xij)n×n, with xij = ϕ(ei ) ∈ ejAei .

5 Define

tr(ϕ) = tr ((xij)n×n) ∈ HH0(A),
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Trace of endomorphisms of modules of fin proj dimension

1 Let M ∈ modA have fin proj resolution

0 // Pn
// Pn−1 // · · · // P0

//M // 0.

2 Given ϕ ∈ EndA(M), construct comm. diagram

0 // Pn
//

ϕn ��

Pn−1 //

ϕn−1
��

· · · // P0
//

ϕ0 ��

M //

ϕ
��

0

0 // Pn
// Pn−1 // · · · // P0

//M // 0.

3 Define

tr(ϕ) =
∑n

i=0(−1)i tr(ϕi ) ∈ HH0(A).
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Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If gdim(A) <∞, then HH0(A) is radical-trivial.

Proof. gdim(A) <∞⇒ tr(ϕ) is defined for any
ϕ : M → M .

Theorem (Igusa, 1990)

If gdim(A) <∞, then Q has no loop.
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Localizing algebra

From now on, fix e = ea1
+ · · ·+ ear , ai ∈ Q0.

Set Ae = A/A(1− e)A.

Remark
If σ is a loop at some of the ai , then it remain a
loop in the quiver of Ae .
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Example

Let A be given by

aσ 99

α
++ b,

β

jj σ2 − αβ = 0.

Then Aea is given by

a,σ 66 σ2 = 0.
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Localizing Hochschild Homology

Consider algebra morphism

pe : A→ Ae : x 7→ x + A(1− e)A.

This induces group morphism

He : HH0(A) → HH0(Ae)
x + [A,A] 7→ pe(x) + [Ae ,Ae].
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e-trace of endomorphisms of projectives

Given ϕ ∈ EndA(P) with P projective.

Define e-trace of ϕ by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Ae).

Lemma

Let ϕ ∈ EndA(P) with P projective. If P, eA have
no common summand, then tre(ϕ) = 0.
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e-bounded modules

Definition
A projective resolution in modA

· · · // Pi
// Pi−1 // · · · // P0

//M // 0

is e-bounded if Pi , eA have no common summand,
for i >> 0.

In this case, M is called e-bounded.
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Another interpretation

Set Se = eA/e radA, semi-simple supported by e.

Proposition

M is e-bounded ⇔ Exti
A(M , Se) = 0, for i >> 0.

Corollary

idim Se <∞⇒ every M ∈ modA is e-bounded.
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e-trace of endomorphisms of e-bounded modules

1 Let M have e-bounded projective resolution

· · · // Pi
// Pi−1 // · · · // P0

//M // 0.

2 Given ϕ ∈ EndA(M), construct comm. diagram

· · · // Pi
//

ϕi ��

Pi−1 //

ϕi−1
��

· · · // P0
//

ϕ0 ��

M //

ϕ
��

0

· · · // Pi
// Pi−1 // · · · // P0

//M // 0.

3 Define tre(ϕ) =
∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Ae).

Remark

idim Se <∞⇒ tre(ϕ) defined for any ϕ : M → M .
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Main result on localized Hochschild homology

Theorem

If idimSe <∞ or pdimSe <∞, then HH0(Ae) is
radical-trivial.

Proof. Let idimSe <∞. Apply tre to the filtration

0 = un+1A ⊆ unA ⊆ · · · ⊆ uA ⊆ A.

If pdimSe <∞, then idimSeo <∞
⇒HH0(Ao

eo) = HH0((Ae)o) radical-trivial.

⇒HH0(Ae) radical-trivial.
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Main Result

Theorem

Let A = kQ/I . If Q has loop at a vertex a, then

pdimSa = idimSa =∞.

Proof. Let σ be loop at a ∈ Q0.

⇒ σ is loop in the quiver of Aea .

⇒ HH0(Aea) not radical-trivial.

⇒ idimSa = pdimSa =∞.
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Combinatorial terminology

Let A = kQ/I .

Definition
1 A minimal relation for A is an element

ρ = λ1p1 + · · ·+ λr pr ∈ I ,

where λi ∈ k∗, pi distinct parallel paths, such that
Σ i∈Ωλi pi 6∈ I for any Ω ⊂ {1, . . . , r}.

2 A path p in Q is nonzero in A if p 6∈ I .
3 A path p in Q is free in A if it is not summand of

any minimal relation for A.
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Example

1 Let A be given by

a

α

��
β

��

γ

��
ξ

''
b

δ

��

c

η

��

d

ζ

��

e,

θ

ww

γζ = 0, αδ = βη.

f

2 αδ − βη is a minimal relation for A.

3 ξθ is free in A.

4 αδ − βη + γζ is relation, not minimal relation.
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Oriented cycles

1 Let σ = α1α2 · · ·αr be oriented cycle, αi ∈ Q1.

2 Consider its cyclic permutations:

σ1 = σ, σ2 = α2 · · ·αrα1, . . . , σr = αrα1 · · ·αr−1.

3 σ is called cyclically non-zero in A if each of
σ1, · · · , σr is non-zero in A.

4 σ is cyclically free in A if each of σ1, . . . , σr is
free in A.

Remark

A loop in Q is cyclically free in A.
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3 σ is called cyclically non-zero in A if each of
σ1, · · · , σr is non-zero in A.

4 σ is cyclically free in A if each of σ1, . . . , σr is
free in A.

Remark

A loop in Q is cyclically free in A.
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Example

1 Let A = kQ/I , where

Q : 1
α
(( 2

γ
((

β
hh 3

δ
hh

µ
(( 4

ν
hh

I =<δγ, νµ, (βα)2 − γδ, (βα)3> .

2 Path γδ nonzero, but not free in A.

3 Cycle µν nonzero, not cyclically nonzero in A.

4 Cycle βα is cyclically free in A.
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Lemma

Let σ be oriented cycle in Q. If σ is cyclically free in
A, then σ̄ 6∈ [A,A].
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Further result

If σ is oriented cycle passing through the vertices
a1, . . . , as , put eσ = ea1

+ · · ·+ eas .

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is
cyclically free in A, then

pdimSeσ = idimSeσ =∞.
Proof. Assume σ cyclically free in A.

⇒ σ cyclically free in Aeσ = A/A(1− eσ)A.

⇒ HH0(Aeσ) not radically-trivial.

⇒ pdimSeσ = idimSeσ =∞.
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1 Let A = kQ/I , where

Q : 1
α
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γ
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β
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δ
hh

µ
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ν
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I =<δγ, νµ, (βα)2 − γδ, (βα)3> .

2 The cycle βα is cyclically free in A.

3 S1 or S2 is of infinite projective dimension.

4 S1 or S2 is of infinite injective dimension.
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Monomial algebras

1 A = kQ/I is monomial if I generated by some
paths of length ≥ 2.

2 In this case, an oriented cycle in Q is cyclically
free in A⇔ it is cyclically nonzero in A.

Corollary

Let A = kQ/I be monomial. If Q has oriented cycle
which is cyclically nonzero in A, then gdimA =∞.
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Example

1 Let A be monomial given by

Q : 1
α **

2,
β

ii αβα = 0.

2 αβ is cyclically nonzero in A.

3 gdimA =∞.
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Further Conjectures

Extension Conjecture

Let A = kQ/I . If Q has a loop at a vertex a, then
Exti (Sa, Sa) 6= 0 for infinitely many integers i .

Remark
The extension conjecture holds true for monomial
algebras and special biserial algebras.

No Loop Conjecture

Let A be artin algebra. If gdim(A) <∞, then
Ext1(S , S) = 0 for all simple S .
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