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Brief History

@ Introduced by Beilinson, Ginzburg and Soergel (1996),
Koszul algebras appear in

o representation theory of Lie algebras;
o algebraic geometry;
o representation theory of finite dimensional algebras.

@ They established equivalence of a pair of subcategories of

respective graded derived categories of a Koszul algebra
and its Koszul dual.

© Bautista and Liu (2017) proved
DP(Mod ™ (kQ°P)) = D®(Mod®A),

o @ is locally finite gradable quiver;
o N = kQ/(kQT)?, Koszul with Koszul dual kQ°P.
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Objective

To extend Beilinson-Ginzburg-Soergel Theorems and
Bautista-Liu Theorem for Koszul algebras given by locally
finite gradable quivers.

The application of covering theory requires the study of
modules over algebras without identity
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Beilinson, Ginzburg and Soergel's Definition

O Let A= @2, A; be a positively graded ring.
@ A is called a Koszul algebra provided

o Ag is a semi-simple ring;

o AAp admits a linear projective resolution.

Proposition

If A is a Koszul algebra, then its Koszul dual A" is also Koszul.
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Q Let B = @2, B; be a positively graded algebra.
@ Given a complex M* of graded left B-modules, write
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@ D'(GmodB): derived category of complexes M- such that
M =0 incase i >>0ori+j<<0,

that is, M is supported in the upper triangle formed by a
vertical line and a line of slope —1.
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Beilinson, Ginzburg and Soergel's Theorems

Let A= @52, A; be a Koszul algebra.
Let A' be the Koszul dual of A.

If all A; are finitely generated as left Aop-modules, then

D*(GmodA) = D'(GmodA").

If AA, A4 are finitely generated and A' is left noetherian, then
D®(gmodA) = D*(gmodA").

Their proof involves spectral sequences.
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O Let Q = (Qp, Q) be a locally finite quiver, where
o @ is a set of vertices x;
o @ is asetof arrows a: x — y.

@ Given x,y € @, we define

o £, path of length 0 at x;
o Qn(x,y): paths x ~~ y of length n;
o Q(x,y) : all paths x ~~ y.

© The opposite quiver Q°P is defined by

° (QOp)OZQo;
o (QP)={a®:y > x|a:x—ye @}

Q Let k be a field.
@ Given k-space V, write DV = Hom(V, k).
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Quadratic algebras

O Let kQ be path algebra of Q over k:
o k-basis: Uy yeq, Q(X,¥);
o multiplication: induced from concatenation of paths.
@ N=kQ/R={7=~v+ R |7 € kQ}, a quadratic algebra
with R generated by 2(x,y) C kQ>(x,y); x,y € Qo.
@ J: two-sided ideal in A generated by the @; a € Q.
Q Given x € @, we put
o &, = &x + R, primitive idempotent;
o P, = Ae,, that is projective;
o S, = P./Je,, that is simple;
o Iy = @ycq,D(exNe,), not necessarily injective.

@ projA: finite direct sum of the P,, with x € (.
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© The quadratic ideal R is called

o admissible if, for x € @, there is n, € N such that
any x ~ or ~» x of length > n, lies in R;

o locally admissible if, for x,y € Qp, thereis n,, € N
such that any x ~ y of length > n, , lies in R.

@ The algebra A is called
o locally bounded if R is admissible;

o strongly locally finite dimensional if R is locally
admissible.

If Q is a double infinite path, then kQ is strongly locally finite
dimensional but not locally bounded.
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e J is Jacobson radical of \;
e P, is indecomposable projective;

e I, is indecomposable injective.
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The quadratic dual A = kQOp/R! is defined as follows.

o
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©

Consider Ry(x,y) = RN kQx(x,y), for given x,y € Q.

Let Qx(x,y) ={p1,...,p:}, that is basis of kQx(x,y)

having dual basis {p},...,pf} in D(kQx(x,y)).

For v =Y " A\ipi € kQa(x,y), writing v* = > \;p} yields
k@3 (y,x) — D(kQa(x,y)) :7” = 7",

Now, Ry(x,y)t = {f € D(kQ:(x,y)) | f(Ra(x,y)) = 0}

has a basis {n;,...,nt}, where ny,...,ns € kQx(x,y).

Put 2'(y,x) = {n7,....,n} S kQ3(y. x).

Then R' =< Uy, yeq, 2'(y, x) > in kQ°P.

By definition, A' is quadratic with (A')' = A.
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Definition
A quadratic algebra A is called Koszul if, for all x € Qp,
S, has a linear projective resolution over proj A as follows:

d; dy

Py PO Sy 0,

P

where d; is homogeneous of degree one, for all i > 0.

Theorem

A is Koszul < N' is Koszul: called Koszul dual of A.

A\
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@ Taking R = 0 yields a Koszul algebra A = kQ.

@ Indeed, S, with x € Q) has linear projective resolution

0——>aP, op, @p 5 0,

e «; : X — y; are the arrows starting with x.

o Bjj 1 yi — zj are the arrows starting with y;.

© Given any x,y € Qq,

o (Ra(x,y))" = 0% = D(kQx(x, y)):

o 2'(y,x) = Q" (y,x).
Q@ Thus, R' =< Q"(y,x) | x,y € Q >= (kQT)>.
@ Thatis, A' = kQ°?/(kQ*)2.
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Koszul functor in the gradable setting

O Now, Q is gradable with grading Qy = U,z Q" such that
Q={x—=yl|l(xy)eQ"x Q" ncZ}.
Q@ Q°P is also gradable with a grading (Q,")" = Q™ ", n € Z.
@ Both A and A' are strongly locally finite dimensional.
Q Every M € Mod A admits a Q-graduation
M = @jcz M;, where M; = @y cqn exM.

© Koszul functor F : Mod ' — C(ModA) : M — F(M),
where F(M)" = @y c(qoryr Px ® ecM, for all n € Z.

© Koszul inverse G : Mod A — C(ModA') : N — G(N),
where G(N)" = Dyeqn I, ® N, for all n € Z.
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Special subcategories of complex categories

Given p,g € R with p > 1 and g > 0, we define
o CJ (ModA) subcategory of C(ModA) of M" such that

Aﬂf:Oincasei—|—pj>>00ri—qj<<0,

1
7

T I

the lower triangle formed by 2 lines of slopes —
@ CJ (ModA) subcategory of C(ModA) of M
M =0in case i + pj <<0ori—gqj >>0,

the upper triangle formed by 2 line of slopes —,l), %.

Ci'o(ModA) = CHModA) and C;ly(ModA) = CT(ModA).
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Q@ F:ModA' — C(ModA) induces commutative diagram

! ! !
Cto(ModA") K- (ModA') D}, (ModA')

Fel | £ | e
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Result in the quadratic case

Q@ F:ModA' — C(ModA) induces commutative diagram
! ! !
C}.(ModA') Kt (ModN') D, (ModA)

Ffl i/—'K J{FD
qulp 1(Mod/\)%Kq+1p L(ModA) — Dq+1p (ModA),

@ G :ModA — C(ModA') induces commutative diagram
Cqu(MOdA) Kqu(Mod/\) D,Iq(Mod/\)

GC\L \LGK \LGD
cqﬁlp 1(Mod/\)%Kq¢+1p 1(Mod/\!)~>Dq+1p L(ModAY

© We prove this by generalizing Acyclic Assembly Lemma
on homology of total complexes of double complexes.
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Main Result in the Koszul case

Let A = kQ/R be Koszul, with Q locally finite gradable.

Theorem

For any p > 1 and q > 0, we have triangle-equivalence

FP: D} (ModA') = D], ,_1(ModA).

Theorem
If A, N locally bounded, then D*(Mod®A') =2 D?(Mod®A).

| 5\

v

A path in Q is left infinite or right infinite if it has no starting
point or no ending-point, respectively.

If Q has no right infinite path or no left infinite path, then

DP(Mod®A') =2 DP(Mod®A).




