
Koszul duality for non-graded derived categories

Ales Bouhada, Min Huang, Shiping Liu∗
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Brief History

1 Introduced by Beilinson, Ginzburg and Soergel (1996),

Koszul algebras appear in

representation theory of Lie algebras;

algebraic geometry;

representation theory of finite dimensional algebras.

2 They established equivalence of a pair of subcategories of
respective graded derived categories of a Koszul algebra
and its Koszul dual.

3 Bautista and Liu (2017) proved

Db(Mod−(kQop)) ∼= Db(ModbΛ),

Q is locally finite gradable quiver;

Λ = kQ/(kQ+)2, Koszul with Koszul dual kQop.
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Bautista-Liu Theorem for Koszul algebras given by locally
finite gradable quivers.

The application of covering theory requires the study of
modules over algebras without identity
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Beilinson, Ginzburg and Soergel’s Definition

1 Let A = ⊕∞i=0 Ai be a positively graded ring.

2 A is called a Koszul algebra provided

A0 is a semi-simple ring;

AA0 admits a linear projective resolution.

Proposition

If A is a Koszul algebra, then its Koszul dual A! is also Koszul.
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Special subcategories of graded derived categories

1 Let B = ⊕∞i=0 Bi be a positively graded algebra.

2 Given a complex M. of graded left B-modules, write

M i = ⊕j∈ZM
i
j ,

an put M i
j in the (i , j)-position in R2.

3 D↓(GmodB): derived category of complexes M. such that

M i
j = 0 in case i << 0 or i + j >> 0,

that is, M. is supported in the lower triangle formed by a
vertical line and a line of slope −1.

4 D↑(GmodB): derived category of complexes M. such that

M i
j = 0 in case i >> 0 or i + j << 0,

that is, M. is supported in the upper triangle formed by a
vertical line and a line of slope −1.
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Let A! be the Koszul dual of A.

Theorem

If all Ai are finitely generated as left A0-modules, then

D↓(GmodA) ∼= D↑(GmodA!).

Theorem

If AA, AA are finitely generated and A! is left noetherian, then
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Setting

1 Let Q = (Q0,Q1) be a locally finite quiver, where

Q0 is a set of vertices x ;

Q1 is a set of arrows α : x → y .

2 Given x , y ∈ Q0, we define

εx : path of length 0 at x ;

Qn(x , y): paths x  y of length n;

Q(x , y) : all paths x  y .

3 The opposite quiver Qop is defined by

(Qop)0 = Q0;

(Qop)1 = {αo : y → x | α : x → y ∈ Q1}.

4 Let k be a field.

5 Given k-space V , write DV = Homk(V , k).
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Quadratic algebras

1 Let kQ be path algebra of Q over k :

k-basis: ∪x ,y∈Q0 Q(x , y);

multiplication: induced from concatenation of paths.

2 Λ = kQ/R = {γ̄ = γ + R | γ ∈ kQ}, a quadratic algebra

with R generated by Ω(x , y) ⊆ kQ2 (x , y); x , y ∈ Q0.

3 J : two-sided ideal in Λ generated by the ᾱ; α ∈ Q1.

4 Given x ∈ Q0, we put

ex = εx + R , primitive idempotent;

Px = Λex , that is projective;

Sx = Px/Jex , that is simple;

Ix = ⊕y∈Q0D(exΛey ), not necessarily injective.

5 projΛ: finite direct sum of the Px , with x ∈ Q0.
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1 The quadratic ideal R is called

admissible if, for x ∈ Q0, there is nx ∈ N such that

any x  or  x of length > nx lies in R ;

locally admissible if, for x , y ∈ Q0, there is nx ,y ∈ N
such that any x  y of length > nx ,y lies in R .

2 The algebra Λ is called

locally bounded if R is admissible;

strongly locally finite dimensional if R is locally
admissible.

Example

If Q is a double infinite path, then kQ is strongly locally finite
dimensional but not locally bounded.
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Modules over strong locally fin dim algebras

Proposition

If Λ is strongly locally finite dimensional, then

J is Jacobson radical of Λ ;

Px is indecomposable projective ;

Ix is indecomposable injective.
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Quadratic dual

The quadratic dual Λ! = kQop/R ! is defined as follows.

1 Consider R2(x , y) = R ∩ kQ2(x , y), for given x , y ∈ Q0.

2 Let Q2(x , y) = {p1, . . . , pt}, that is basis of kQ2(x , y)

having dual basis {p∗1, . . . , p∗t } in D(kQ2(x , y)).

3 For γ =
∑
λipi ∈ kQ2(x , y), writing γ∗ =

∑
λip
∗
i yields

kQo
2 (y , x)

∼−→ D(kQ2(x , y)) : γo 7→ γ∗.

4 Now, R2(x , y)⊥ = {f ∈ D(kQ2(x , y)) | f (R2(x , y)) = 0}

has a basis {η∗1, . . . , η∗s }, where η1, . . . , ηs ∈ kQ2(x , y).

5 Put Ω !(y , x) = {ηo1, . . . , ηos } ⊆ kQo
2 (y , x).

6 Then R ! =< ∪x ,y∈Q0 Ω !(y , x) > in kQop.

7 By definition, Λ! is quadratic with (Λ!)! = Λ.
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Koszul algebras

1 Λ = ⊕∞i=0 Λn, where Λn = {γ̄ | γ ∈
∑

x ,y∈Q0
kQn(x , y)}.

2 A mor. f : ⊕i∈ZMi → ⊕i∈ZNi between graded Λ-modules

homogeneous of degree n if f (Mi) ⊆ Ni+n, for all i ∈ Z.

Definition

A quadratic algebra Λ is called Koszul if, for all x ∈ Q0,

Sx has a linear projective resolution over projΛ as follows:

· · · // Pi
di // · · · // P1

d1 // P0 // Sx
// 0,

where di is homogeneous of degree one, for all i > 0.

Theorem

Λ is Koszul ⇔ Λ! is Koszul ; called Koszul dual of Λ.
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Example

1 Taking R = 0 yields a Koszul algebra Λ = kQ.

2 Indeed, Sx with x ∈ Q0 has linear projective resolution

0 // ⊕Pzij

(β̄ij ) // ⊕Pyi

(ᾱi ) // Px
// Sx

// 0,

αi : x → yi are the arrows starting with x .

βij : yi → zij are the arrows starting with yi .

3 Given any x , y ∈ Q0,

(R2(x , y))⊥ = 0⊥ = D(kQ2(x , y));

Ω !(y , x) = Qop
2 (y , x).

4 Thus, R ! =< Qop
2 (y , x) | x , y ∈ Q0 >= (kQ+)2.

5 That is, Λ! = kQop/(kQ+)2.
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Koszul functor in the gradable setting

1 Now, Q is gradable with grading Q0 = ∪n∈ZQn such that

Q1 = {x → y | (x , y) ∈ Qn × Qn+1, n ∈ Z}.

2 Qop is also gradable with a grading (Qop
0 )n = Q−n, n ∈ Z.

3 Both Λ and Λ! are strongly locally finite dimensional.

4 Every M ∈ ModΛ admits a Q-graduation

M = ⊕j∈ZMj , where Mj = ⊕x∈Qn exM .

Definition

1 Koszul functor F : ModΛ! → C (ModΛ) : M 7→ F (M).,

where F (M)n = ⊕x∈(Qop)n Px ⊗ exM , for all n ∈ Z.

2 Koszul inverse G : ModΛ→ C (ModΛ!) : N 7→ G (N).,

where G (N)n = ⊕x∈Qn I !
x ⊗ exN , for all n ∈ Z.
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Special subcategories of complex categories

Given p, q ∈ R with p ≥ 1 and q ≥ 0, we define

1 C ↓p,q(ModΛ) subcategory of C (ModΛ) of M. such that

M i
j = 0 in case i + pj >> 0 or i − qj << 0,

the lower triangle formed by 2 lines of slopes − 1
p

, 1
q
.

2 C ↑p,q(ModΛ) subcategory of C (ModΛ) of M.

M i
j = 0 in case i + pj << 0 or i − qj >> 0,

the upper triangle formed by 2 line of slopes − 1
p

, 1
q
.

Remark

C ↓1,0(ModΛ) = C ↓(ModΛ) and C ↑1,0(ModΛ) = C ↑(ModΛ).
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Result in the quadratic case

Theorem

1 F : ModΛ! → C (ModΛ) induces commutative diagram

C ↓p,q(ModΛ!)

FC

��

// K ↓p,q(ModΛ!)

FK

��

// D ↓p,q(ModΛ!)

FD

��

C ↑q+1,p−1(ModΛ) // K ↑q+1,p−1(ModΛ) // D ↑q+1,p−1(ModΛ),

2 G : ModΛ→ C (ModΛ!) induces commutative diagram

C ↑p,q(ModΛ) //

GC
��

K ↑p,q(ModΛ) //

GK
��

D ↑p,q(ModΛ)

GD
��

C ↓q+1,p−1(ModΛ!) // K ↓q+1,p−1(ModΛ!) // D ↓q+1,p−1(ModΛ!).

3 We prove this by generalizing Acyclic Assembly Lemma
on homology of total complexes of double complexes.
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Main Result in the Koszul case

Let Λ = kQ/R be Koszul, with Q locally finite gradable.
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