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Theorem (Auslander)

A representation-finite <= rad”(mod A) = 0 for some
m>1.

Observation
The algebra A is simple <= rad(mod A) = 0.

Problem

Can we classify the representation-finite artin algebras in terms
~fF +he nilantency AfF radl(+nad A)
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Preliminary results

Let A = kQ// be finite dimensional algebra, where
o k is a field

o @ is a finite connected quiver.

0 (Lo) rad(mod A) is of nilpotency 2 <= Q is of type A,.

@ (Damavandi) If A is a Nakayama algebra, then
rad(mod A) is of nilpotency 3 <= A = kA3
or A is non hereditary with rad?(A) = 0.
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Objective

Give a complete list of artin algebras A with rad*(mod A) = 0.
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The Ext-quiver Q of A is a valued quiver in which

o the vertices are the non isomorphic simple A-modules.
o 35 — T with valuation (d, d’) in case

o Ext!(S, T)#0

@ d = dim () Ext’(S, T)

(3] d/ = dlm Eth(S, T)End(S)-

Definition

Let A be a finite valued quiver or valued diagram.
A hereditary algebra A is of type A if Qa = A or Q4 = A.
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Hereditary case

If A is a connected hereditary artin algebra, then

O rad(mod A) of nilpotency 3 <= A of type A3 or B,.
@ rad(mod A) of nilpotency n € {1,2,4} <= A of type A,,.
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If A is a non-hereditary Nakayama artin algebra, then

rad*(mod A) = 0 <= rad®*(mod A) = 0.
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Call A a string algebra provided that

o Given projective P € ind A, radP is uniserial or a direct
sum of two uniserial modules.

o Given injective | € ind A, I/socl is uniserial or a direct
sum of two uniserial modules.

For algebras defined by a quiver with relations, this definition
coincides with the one given by Butler-Ringel.

Problem

Is it possible to establish Butler and Ringel's theorem for a
string artin algebra 7
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Given M € mod A, we denote
o by Py the projective cover of M
o by /Iy the injective envelope of M
o by /(M) the composition length of M.

0 A projective P € indA is wedged if radP = 5; ® 5;,

o 51,5, are simple;
o soc(ls,/S1),s0¢(ls,/Sz) are simple.
@ An injective /| € indA is co-wedged if | /socl = S5 & S,

o 51,5, are simple;

o top(radPs,), top(radPs,) are simple.

<

P € indA is wedged projective <= DP is co-wedged injective.
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© The indecomposable projective module P, is wedged <
its support is of wedge shape

a9 p
/ \
b c
e « is the only arrow ending in b

o (3 is the only arrow ending in c.

@ The indecomposable injective module /, is co-wedged <—-
its support is of shape

b\a 5/ C
a
o « is the only arrow starting in b
o (3 is the only arrow starting in c.
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Local Nakayama algebras of Loewy length 3 satisfy all but (4).
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Main Result

If A connected artin algebra, then rad*(mod A) = 0 <= A is

@ hereditary of type B, or A, with1 < n < 4,
e non-hereditary Nakayama of Loewy length < 3, or

e a non-hereditary non-Nakayama tri-string algebra.
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@ Then radP, = S, @ S, with ¢(Ps,) + ((Is,) = 5.
© Thus, A is not tri-string algebra.
Q@ rad*(mod A) # 0.



