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Motivation

Let A be a basic connected artin algebra.

modA: category of finitely generated left A-modules.
indA: subcategory of indecomposable A-modules.
rad(modA): Jacobson radical of modA.
radm(modA) : m-th power of rad(modA).

Theorem (Auslander)

A representation-finite ⇐⇒ radm(modA) = 0 for some
m ≥ 1.

Observation

The algebra A is simple ⇐⇒ rad(modA) = 0.

Problem

Can we classify the representation-finite artin algebras in terms
of the nilpotency of rad(modA).
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Preliminary results

Let A = kQ/I be finite dimensional algebra, where

k is a field

Q is a finite connected quiver.

Proposition

1 (Lo) rad(modA) is of nilpotency 2 ⇐⇒ Q is of type A2.

2 (Damavandi) If A is a Nakayama algebra, then

rad(modA) is of nilpotency 3 ⇐⇒ A = k~A3

or A is non hereditary with rad2(A) = 0.
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Objective of this talk

Objective

Give a complete list of artin algebras A with rad4(modA) = 0.



Hereditary artin algebras

Definition

The Ext-quiver QA of A is a valued quiver in which

the vertices are the non isomorphic simple A-modules.

∃ S → T with valuation (d , d ′) in case

1 Ext1(S ,T ) 6= 0

2 d = dim End(T )Ext
1(S ,T )

3 d ′ = dimExt1(S ,T )End(S).

Definition

Let ∆ be a finite valued quiver or valued diagram.

A hereditary algebra A is of type ∆ if QA
∼= ∆ or QA

∼= ∆.
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Hereditary case

Lemma

If A is a connected hereditary artin algebra, then

1 rad(modA) of nilpotency 3⇐⇒ A of type A3 or B2.

2 rad(modA) of nilpotency n ∈ {1, 2, 4} ⇐⇒ A of type An.
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Non-hereditary Nakayama case

Lemma

If A is a non-hereditary Nakayama artin algebra, then

rad4(modA) = 0⇐⇒ rad3(modA) = 0.



Non-hereditary Nakayama case

Lemma

If A is a non-hereditary Nakayama artin algebra, then

rad4(modA) = 0⇐⇒ rad3(modA) = 0.



String artin algebras

Definition

Call A a string algebra provided that

Given projective P ∈ indA, radP is uniserial or a direct

sum of two uniserial modules.

Given injective I ∈ indA, I/socI is uniserial or a direct

sum of two uniserial modules.

Remark

For algebras defined by a quiver with relations, this definition
coincides with the one given by Butler-Ringel.

Problem

Is it possible to establish Butler and Ringel’s theorem for a
string artin algebra ?
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Given M ∈ modA, we denote

by PM the projective cover of M

by IM the injective envelope of M

by `(M) the composition length of M .

Definition

1 A projective P ∈ indA is wedged if radP = S1 ⊕ S2,

S1, S2 are simple ;

soc(IS1/S1), soc(IS2/S2) are simple.

2 An injective I ∈ indA is co-wedged if I/socI = S1 ⊕ S2,

S1, S2 are simple ;

top(radPS1), top(radPS2) are simple.

Remark

P ∈ indA is wedged projective ⇐⇒ DP is co-wedged injective.
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Example

Let A = kQ/I be finite dimensional with some vertex a in Q.

1 The indecomposable projective module Pa is wedged ⇐⇒
its support is of wedge shape

aα
yy

β

%%
b c

α is the only arrow ending in b

β is the only arrow ending in c .

2 The indecomposable injective module Ia is co-wedged ⇐⇒
its support is of shape

b α
%%

cβ

yy
a

α is the only arrow starting in b

β is the only arrow starting in c .
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Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

1 rad3(A) = 0 ;

2 Any indec. projective module is uniserial or wedged ;

3 Any indec. injective module is uniserial or co-wedged ;

4 If S is simple, then `(PS) + `(IS) ≤ 5.

5 If P is wedged projective with radP = S1 ⊕ S2,

then `(PSi ) + `(ISi ) ≤ 4, for i = 1, 2.

6 If I is co-wedged injective with I/socI = S1 ⊕ S2,

then `(PSi ) + `(ISi ) ≤ 4, for i = 1, 2.

7 A wedged projective module and a co-wedged injective
module have no common composition factor.

Local Nakayama algebras of Loewy length 3 satisfy all but (4).
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Tri-string case

Proposition

If A is a tri-string artin algebra, then rad4(modA) = 0.



Main Result

Theorem

If A connected artin algebra, then rad4(modA) = 0⇐⇒ A is

hereditary of type B2 or An with 1 ≤ n ≤ 4,

non-hereditary Nakayama of Loewy length ≤ 3, or

a non-hereditary non-Nakayama tri-string algebra.
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Example

1 Let A be given by the bound quiver

◦ // ◦ //

��

◦ // ◦ // ◦ // ◦ // ◦ // ◦ // ◦

◦ ◦ // ◦

OO

2 A is non-hereditary non-Nakayama tri-string algebra.

3 rad(modA) is of nilpotency 4.
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2 Then radPa = Sb ⊕ Sc with `(PSb) + `(ISb) = 5.

3 Thus, A is not tri-string algebra.

4 rad4(modA) 6= 0.
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