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© Over an arbitrary ring, Auslander (1978) established the
existence of almost split sequence ending with fin.
presented module Z, using Ienq(tr(z))-

@ In a compactly generated triangulated category, Krause
(2000) established the existence of almost split triangle
ending with compact object Z, using Itnq(z).

@ In a Hom-finite triangulated category over a field k = k,
Reiten and Van den Bergh (2002) obtained a criterion for
the existence of almost split triangles, using | = k.

O In Ext-finite abelian category over artinian commutative
ring k, Lenzing and Zuazua (2004) obtained a criterion
for the existence of almost split sequences, using /.

@ In extension-closed subcategory of abelian category over
arbitrary commutative ring k, Liu, Ng and Paquette
(2013) obtained a criterion for the existence of an almost
split sequence, using /.



Objective

To unify the previously mentioned existence theorems of an
almost split sequence or an almost split triangle.
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% : an extension-closed subcategory of abelain category .

% : the full subcategory of D(2() of complexes = X € ¥.

Lemma

0 € =€, which is extension-closed in D(2).

@ The following statements are equivalent.

o 0—=X-">Y 270 almost split sequence in €.

o X—“-Y Y7 isan almost split sequence in € .
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Ifv: T — End(X) and 0 : ¥ — End(Z) are surjective, then
the following statements are equivalent.

@ C has almost split sequence X — Y — Z.
@ Exti(Z,—) is a subfunctor of Hom(Hom ¢(—, X), /).
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Remark

| \

In case C is a right triangulated subcategory of T, then the
dual version of the above theorem holds.

\




