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© rad(mod A): Jacobson radical of mod A.

Theorem (Auslander)

A representation-finite < (rad(mod A))™ = 0 for some m > 1.

Objective

Understand the representation theory of representation-finite
artin algebras in terms of the nilpotency of rad(mod A).
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Motivation

This objective can be accomplished by two approaches.

0 Given a class of representation-finite algebras A,

calculate the nilpotency of rad(mod A).

@ Given m > 0, find all A with rad(modA) of nilpotency m
and study their representation theory.

In this talk, we calculate the nilpotency of rad(modA)
in case A is hereditary.
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Coxeter Transformation

O Let A be hereditary artin algebra.

@ Let Sq,...,S, the non-iso simple modules in modA with
e projective covers Py, ..., P,;
e injective envelopes Iy, ... I,.

© Write dimM = (dy, ..., d,) € Z", for M € modA,

with d; multiplicity of S; as composition factor of M.

O The abelian group 7" has bases
o {dimP;,...,dimP,}
o {dimh,...,dim/,}.

@ d! isomorphism &, : Z" — 7" : dimP; — —dim/;
called the Coxeter transformation of Ky(A).
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Extension quiver

The Ext-quiver Q4 of artin algebra A is a valued quiver:

© the vertices are the non isomorphic simple A-modules.

@ 35S — T with valuation (d,d") in case
o Exti(S, T)#0
o d = dim puqr)Ext)(S, T)
o d' = dim Ext(S, T)gnd(s)-
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Dynkin diagram

A, 1—2—..—n (n>1)
B, : 132, ., (n>2)
c,: 1% 3 ..., (n>3)
1
D, 2—3—4—-..—n (n>4)
1
E,:; 2—3 45 6——n (n=6,7,8)
(1,2)

Fy: 1—2—3—4

G, 19
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Proposition (ARS Book)
Let A be hereditary of finite representation type.
Q@ Q. is a Dynkin diagram.

Q@ ®, is of finite order c,, called the Coxeter order for A.
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If A is hereditary artin algebra of finite representation type,

then rad(modA) is of nilpotency ¢, — 1.
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Depth of Map

Let A be of finite representation type.
Let f : X — Y be non-zero map in modA.

o Then ferad’(X, Y)\rad*™'(X, Y) for some s > 0.
o Put dp(f) = s, called the depth of f.

Observation

If dp(f) = s > 0 with X and Y indecomposable,
then AR-quiver 4 contains a path X~ Y of length s.
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Depth of Module Category

O Let A be of finite representation type.
@ Define the depth of modA by
dp(modA) = max{dp(f) | f non-zero maps in modA}.
© Then, dp(modA) + 1 is the nilpotency of rad(modA).
@ For each simple module S € modA, we fix
e a projective cover 7, : P, — S;

e an injective envelope ¢, : S — .

Theorem (Chaio, Liu, 2012)

dp(modA) = max{dp(s;om,) | S € modA is simple}.
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Translation quiver

Let A be a quiver without oriented cycles.

Construct translation quiver ZA by knitting Z copies of A.

Proposition

Assume that A is a tree. Given any vertices a, b in ZA,

all a ~~ b in ZA have the same length, written as d(a, b).
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Translation quiver

O Let [ be translation quiver with translation 7.

@ A connected subquiver A of [ is called

(1) mesh-complete if it contain any mesh

»1
7'x;7 >x, where 7x,x € A.
Ys
(2) a section provided that
e it contains no oriented cycle;
o it meets exactly once each of the 7-orbits of I;

e it is convexin [, that is, it contains any path
Xo —> X| — - — Xs_1 — Xs With xp, xs € A.

@ If [ contains a section A, then it embeds in ZA
as a convex translation subquiver.
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Theorem (Liu, Yin, 2022)

O A is hereditary representation-finite < [, has a non-trivial
connected mesh-complete translation subquiver [ in which
o the projective modules form a section A;
o the injective modules also form a section.
@ In this case,
o A= QY

o [4 =T, a convex subquiver of ZQ}".




Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

O A is hereditary representation-finite < [, has a non-trivial
connected mesh-complete translation subquiver [ in which
o the projective modules form a section A;
o the injective modules also form a section.
@ In this case,
o A QY
o [4 =T, a convex subquiver of ZQ}".
o Given M, N € 4, all M ~~ N have the same length. |
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Let A be hereditary of finite representation type.
@ If S is simple, then dp(s,0m,) = d(P,, I,).
Q@ dp(modA) = max{d(P,, )| S € modA is simple}.

Proof.
o (.om :P.— I, sum of composites of d(P,, I) irred maps,
= dp(t;om,) > d(P,, I,).

e [ contains no P, ~ I, of length > d(P,, I,),
= dp(s,om,) < d(P,, 1,).
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o Let A be hereditary of Dynkin type.

o Given stalk complex M[n] € D?(A) with M € modA,
Define dimM|[n] = (—1)"dimM.
This extends additively to all complexes in D?(modA).

Proposition

O X: € D’(modA) is indec = ¢, (dimX*) = dim(771X").
Q@ S € modA is simple = P,[2] = 74P,

$




Proof of Main Result

Let A be hereditary of Dynkin type A.



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.

@ Given simple module S,



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.
@ Given simple module S,

o P[] =771, = d(P,P][1]) =d(P, 1) +2.

s$7°S



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.
@ Given simple module S,

o P[] =771, = d(P,P[1]) =

s$7°S

d(P,, 1) +2.
o 2] = 74P, = d(P,, P[2]) = 2c,.



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.

@ Given simple module S,

o P1) =774, = d(P,, A1) = d(P,. ) +
o P[2] = 7P, = d(P,, Py[2]) = 2,
o d(P,, B[2]) = 2d(P.. P[1]) = 2(d(P,. ) +2).



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.

@ Given simple module S,

o P1) =774, = d(P,, A1) = d(P,. ) +
o P[2] = 7P, = d(P,, Py[2]) = 2,
o d(P,, B[2]) = 2d(P.. P[1]) = 2(d(P,. ) +2).

o d(P, 1) =c, —2.

57°S



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.

@ Given simple module S,

o P1) =774, = d(P,, A1) = d(P,. ) +
o P[2] = 7P, = d(P,, Py[2]) = 2,
o d(P,, B[2]) = 2d(P.. P[1]) = 2(d(P,. ) +2).

o d(P, 1) =c, —2.

57°S

© dp(modA) = max{d(P.

S

)| S simple} =¢, —2.



Proof of Main Result

Let A be hereditary of Dynkin type A.
O AR-quiver ps(meaay = ZA.

@ Given simple module S,

o P1) =774, = d(P,, A1) = d(P,. ) +
o P[2] = 7P, = d(P,, Py[2]) = 2,
o d(P,, B[2]) = 2d(P.. P[1]) = 2(d(P,. ) +2).

o d(P,L)=c, —2.

Q@ dp(modA) = max{d(P,, L) | S simple} = ¢, — 2.
Q rad(modA) is of nilpotency ¢, — 1.



