Almost split sequences and approximations

Shiping Liu*, Puiman Ng, Charles Paquette

Université de Sherbrooke

Auslander Conference, April 25 - 30, 2012

Let R be any commutative ring.

Let A be exact R-category, that is, full subcategory of

Let R be any commutative ring.

Let A be exact R-category, that is, full subcategory of an abelian R-category closed under extensions.

Let R be any commutative ring. Let A be exact R-category, that is, full subcategory of

an abelian R-category closed under extensions.

Problem

• When does A have AR-sequences?

Let R be any commutative ring.

Let A be exact R-category, that is, full subcategory of an abelian R-category closed under extensions.

Problem

- When does A have AR-sequences?
- If A has AR-sequences, when so does an exact subcategory of A?

An object $X \in \mathcal{A}$ is called

• Ext-injective if any s.e.s. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ splits.

An object $X \in \mathcal{A}$ is called

- Ext-injective if any s.e.s. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ splits.
- Ext-projective if any s.e.s. $0 \rightarrow Z \rightarrow Y \rightarrow X \rightarrow 0$ splits.

An object $X \in \mathcal{A}$ is called

- Ext-injective if any s.e.s. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ splits.
- Ext-projective if any s.e.s. $0 \rightarrow Z \rightarrow Y \rightarrow X \rightarrow 0$ splits.
- *strongly indecomposable* if End(X) is local,

An object $X \in \mathcal{A}$ is called

- Ext-injective if any s.e.s. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ splits.
- Ext-projective if any s.e.s. $0 \rightarrow Z \rightarrow Y \rightarrow X \rightarrow 0$ splits.
- *strongly indecomposable* if End(X) is local,
- Krull-Schmidt if $X = \coprod_{i=1}^{n} X_i$, with X_i strongly indec.

An object $X \in \mathcal{A}$ is called

- Ext-injective if any s.e.s. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ splits.
- Ext-projective if any s.e.s. $0 \rightarrow Z \rightarrow Y \rightarrow X \rightarrow 0$ splits.
- *strongly indecomposable* if End(X) is local,
- Krull-Schmidt if $X = \coprod_{i=1}^{n} X_i$, with X_i strongly indec.

 \mathcal{A} is *Krull-Schmidt* if every nonzero object is Krull-Schmidt.

If Λ is artin algebra, then the existence of AR-sequences in $\bmod \Lambda$ follows from AR-duality

$$\operatorname{Ext}^1(Z,L) \cong D\overline{\operatorname{Hom}}(L,\operatorname{DTr} Z) \cong D\underline{\operatorname{Hom}}(\operatorname{TrD} L,Z).$$

If Λ is artin algebra, then the existence of AR-sequences in $\bmod \Lambda$ follows from AR-duality

$$\operatorname{Ext}^1(Z,L) \cong D\overline{\operatorname{Hom}}(L,\operatorname{DTr} Z) \cong D\underline{\operatorname{Hom}}(\operatorname{TrD} L,Z).$$

Theorem (Gabriel-Roiter, Lenzing-Zuazua)

Let R be artinian, A be Hom-finite Ext-finite Krull-Schmidt, and $X, Z \in \operatorname{ind} A$ with X not Ext-injective, Z not Ext-projective.

If Λ is artin algebra, then the existence of AR-sequences in $\bmod \Lambda$ follows from AR-duality

$$\operatorname{Ext}^1(Z,L) \cong D\overline{\operatorname{Hom}}(L,\operatorname{DTr} Z) \cong D\underline{\operatorname{Hom}}(\operatorname{TrD} L,Z).$$

Theorem (Gabriel-Roiter, Lenzing-Zuazua)

Let R be artinian, \mathcal{A} be Hom-finite Ext-finite Krull-Schmidt, and $X, Z \in \operatorname{ind} \mathcal{A}$ with X not Ext-injective, Z not Ext-projective. Then \mathcal{A} has AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0 \Leftrightarrow$

If Λ is artin algebra, then the existence of AR-sequences in $\bmod \Lambda$ follows from AR-duality

$$\operatorname{Ext}^1(Z,L) \cong D\overline{\operatorname{Hom}}(L,\operatorname{DTr} Z) \cong D\underline{\operatorname{Hom}}(\operatorname{TrD} L,Z).$$

Theorem (Gabriel-Roiter, Lenzing-Zuazua)

Let R be artinian, \mathcal{A} be Hom-finite Ext-finite Krull-Schmidt, and $X, Z \in \operatorname{ind} \mathcal{A}$ with X not Ext-injective, Z not Ext-projective.

Then
$$\mathcal{A}$$
 has AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0 \Leftrightarrow$

$$\operatorname{Ext}^1(Z, -) \cong D\overline{\operatorname{Hom}}(-, X)$$

$$\operatorname{Ext}^1(-,X) \cong D\operatorname{\underline{Hom}}(Z,-).$$

1 Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.

- **1** Let $C \subseteq \text{mod } \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.

- **1** Let $C \subseteq \text{mod } \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for C to have AR-sequence is obtained.

- **1** Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for C to have AR-sequence is obtained.
- ${f 0}$ (Jørgensen, 2009) ${\cal T}$ Hom-fin Krull-Schmidt triangulated,

- **1** Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for C
 to have AR-sequence is obtained.
- **②** (Jørgensen, 2009) \mathcal{T} Hom-fin Krull-Schmidt triangulated, with $\mathcal{C} \subseteq \mathcal{T}$ closed under extensions, direct summands.

- **1** Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for $\mathcal C$ to have AR-sequence is obtained.
- ② (Jørgensen, 2009) $\mathcal T$ Hom-fin Krull-Schmidt triangulated, with $\mathcal C\subseteq\mathcal T$ closed under extensions, direct summands. Let $Z\in\mathcal C$ with AR-triangle $X\longrightarrow Y\longrightarrow Z\longrightarrow X[1]$ in $\mathcal T$.

- **1** Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for C to have AR-sequence is obtained.
- ② (Jørgensen, 2009) \mathcal{T} Hom-fin Krull-Schmidt triangulated, with $\mathcal{C} \subseteq \mathcal{T}$ closed under extensions, direct summands. Let $Z \in \mathcal{C}$ with AR-triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$ in \mathcal{T} . Then \mathcal{C} has AR-triangle $M \longrightarrow N \longrightarrow Z \longrightarrow M[1] \Leftrightarrow$

- **1** Let $C \subseteq \operatorname{mod} \Lambda$ closed under extensions, direct summands.
 - (Auslander-Smalø, 1981) If $\mathcal C$ is functorially finite in $\operatorname{mod}\Lambda$, then $\mathcal C$ has AR-sequences.
 - (Ng, 2011) A necessary and sufficient condition for C to have AR-sequence is obtained.
- ② (Jørgensen, 2009) \mathcal{T} Hom-fin Krull-Schmidt triangulated, with $\mathcal{C} \subseteq \mathcal{T}$ closed under extensions, direct summands. Let $Z \in \mathcal{C}$ with AR-triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$ in \mathcal{T} . Then \mathcal{C} has AR-triangle $M \longrightarrow N \longrightarrow Z \longrightarrow M[1] \Leftrightarrow \mathcal{T}$ has nonzero minimal right \mathcal{C} -approximation $f: M \to X$.

AR-sequences appear naturally in the non-Hom-finite setting.

AR-sequences appear naturally in the non-Hom-finite setting.

Let Q be infinite locally-finite interval-finite quiver.

AR-sequences appear naturally in the non-Hom-finite setting.

Let Q be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

AR-sequences appear naturally in the non-Hom-finite setting.

Let Q be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

 $rep^+(Q)$: finitely presented representations.

AR-sequences appear naturally in the non-Hom-finite setting.

Let *Q* be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

 $rep^+(Q)$: finitely presented representations.

 $rep^-(Q)$: finitely co-presented representations.

AR-sequences appear naturally in the non-Hom-finite setting.

Let *Q* be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

 $rep^+(Q)$: finitely presented representations.

 $rep^-(Q)$: finitely co-presented representations.

Note: rep(Q) is neither Hom-finite nor Krull-Schmidt.

AR-sequences appear naturally in the non-Hom-finite setting.

Let Q be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

 $rep^+(Q)$: finitely presented representations.

 $rep^-(Q)$: finitely co-presented representations.

Note: rep(Q) is neither Hom-finite nor Krull-Schmidt.

Theorem (BLP, 2011)

 $\operatorname{rep}(Q)$ has AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$

• for indec fin-pres non-proj Z, and in this case, $X \in \operatorname{rep}^-(Q)$.

AR-sequences appear naturally in the non-Hom-finite setting.

Let Q be infinite locally-finite interval-finite quiver.

rep(Q): locally fin. dim. representations over a field.

 $rep^+(Q)$: finitely presented representations.

 $rep^-(Q)$: finitely co-presented representations.

Note: rep(Q) is neither Hom-finite nor Krull-Schmidt.

Theorem (BLP, 2011)

 $\operatorname{rep}(Q)$ has AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$

- for indec fin-pres non-proj Z, and in this case, $X \in \operatorname{rep}^-(Q)$.
- for indec fin-copres non-inj X, and in this case, $Z \in \operatorname{rep}^+(Q)$.

Setup

Let I be injective co-generator for Mod R, that is minimal in case R is artinian.

Setup

Let I be injective co-generator for Mod R, that is minimal in case R is artinian.

We have an exact endofunctor

$$D = \operatorname{Hom}_R(-, I) : \operatorname{Mod}R \to \operatorname{Mod}R : M \mapsto DM.$$

Setup

Let I be injective co-generator for Mod R, that is minimal in case R is artinian.

We have an exact endofunctor

$$D = \operatorname{Hom}_R(-, I) : \operatorname{Mod}R \to \operatorname{Mod}R : M \mapsto DM.$$

If R is artinian, \exists duality

$$D = \operatorname{Hom}_R(-, I) : \operatorname{mod} R \to \operatorname{mod} R : M \mapsto DM.$$

Injectively trivial morphisms

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Injectively trivial morphisms

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Injectively trivial morphisms

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Let $f: X \to M$. Construct pushout diagram

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Let $f: X \to M$. Construct pushout diagram

$$\delta: \qquad 0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$f \downarrow \qquad \qquad \parallel$$

$$f \delta: \qquad 0 \longrightarrow M \longrightarrow L \longrightarrow Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(Z,f):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(Z,M):\delta\mapsto f\delta.$$

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Let $f: X \to M$. Construct pushout diagram

$$\delta: \qquad 0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$f \downarrow \qquad \qquad \parallel$$

$$f \delta: \qquad 0 \longrightarrow M \longrightarrow L \longrightarrow Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(Z,f):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(Z,M):\delta\mapsto f\delta.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is left $\operatorname{End}(X)$ -module.

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Let $f: X \to M$. Construct pushout diagram

$$\delta: \qquad 0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$f \downarrow \qquad \qquad \parallel$$

$$f \delta: \qquad 0 \longrightarrow M \longrightarrow L \longrightarrow Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(Z,f):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(Z,M):\delta\mapsto f\delta.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is left $\operatorname{End}(X)$ -module.

Call f injectively trivial if $\operatorname{Ext}^1(Z, f) = 0$, $\forall Z \in \mathcal{A}$, that is,

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be s.e.s. in A.

Call *u proper monomorphism* and *v proper epimorphism*.

Let $f: X \to M$. Construct pushout diagram

$$\delta: \qquad 0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$f \downarrow \qquad \qquad \parallel$$

$$f \delta: \qquad 0 \longrightarrow M \longrightarrow L \longrightarrow Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(Z,f):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(Z,M):\delta\mapsto f\delta.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is left $\operatorname{End}(X)$ -module.

Call f injectively trivial if $\operatorname{Ext}^1(Z, f) = 0$, $\forall Z \in \mathcal{A}$, that is,

f factors thru every proper monomorphism $u: X \to Y$.

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Let $g: N \to Z$. Construct pullback diagram

$$\delta g: \qquad 0 \longrightarrow X \longrightarrow E \longrightarrow N \longrightarrow 0$$

$$\downarrow \downarrow \qquad \qquad \downarrow g$$

$$\delta: \qquad 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$$

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Let $g: N \to Z$. Construct pullback diagram

$$\delta g: \qquad 0 \longrightarrow X \longrightarrow E \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$\delta: \qquad 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(g,X):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(N,X):\delta\mapsto\delta g.$$

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Let $g: N \to Z$. Construct pullback diagram

$$\delta g: \qquad 0 \longrightarrow X \longrightarrow E \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$\delta: \qquad 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(g,X):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(N,X):\delta\mapsto\delta g.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is right $\operatorname{End}(Z)$ -module.

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Let $g: N \to Z$. Construct pullback diagram

$$\delta g: \qquad 0 \longrightarrow X \longrightarrow E \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$\delta: \qquad 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(g,X):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(N,X):\delta\mapsto\delta g.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is right $\operatorname{End}(Z)$ -module.

Call g projectively trivial if $\operatorname{Ext}^1(g,X)=0, \, \forall X\in\mathcal{A}$, that is,

Given s.e.s. $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ in A.

Let $g: N \rightarrow Z$. Construct pullback diagram

$$\delta g: 0 \longrightarrow X \longrightarrow E \longrightarrow N \longrightarrow 0
\parallel \qquad \qquad \downarrow^g
\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$$

This yields R-linear map

$$\operatorname{Ext}^1(g,X):\operatorname{Ext}^1(Z,X)\longrightarrow\operatorname{Ext}^1(N,X):\delta\mapsto\delta g.$$

In particular, $\operatorname{Ext}^1(Z,X)$ is right $\operatorname{End}(Z)$ -module.

Call g projectively trivial if $\operatorname{Ext}^1(g,X)=0, \ \forall X\in\mathcal{A}$, that is,

g factors through every proper epimorphism $v: Y \rightarrow Z$.

The injectively trivial morphisms in A form an ideal I_A .

The injectively trivial morphisms in \mathcal{A} form an ideal $I_{\mathcal{A}}$. The projectively trivial morphisms in \mathcal{A} form an ideal $P_{\mathcal{A}}$.

The injectively trivial morphisms in \mathcal{A} form an ideal $I_{\mathcal{A}}$. The projectively trivial morphisms in \mathcal{A} form an ideal $P_{\mathcal{A}}$.

Definition (Gabriel-Roiter)

• The injectively stable category $\bar{\mathcal{A}} = \mathcal{A}/I_{\mathcal{A}}$, with morphisms $\operatorname{Hom}_{\bar{\mathcal{A}}}(X,Y) = \overline{\operatorname{Hom}}_{\mathcal{A}}(X,Y) = \operatorname{Hom}_{\mathcal{A}}(X,Y)/I_{\mathcal{A}}(X,Y)$.

The injectively trivial morphisms in \mathcal{A} form an ideal $I_{\mathcal{A}}$. The projectively trivial morphisms in \mathcal{A} form an ideal $P_{\mathcal{A}}$.

Definition (Gabriel-Roiter)

- The injectively stable category $\bar{\mathcal{A}} = \mathcal{A}/I_{\mathcal{A}}$, with morphisms $\operatorname{Hom}_{\bar{\mathcal{A}}}(X,Y) = \overline{\operatorname{Hom}}_{\mathcal{A}}(X,Y) = \operatorname{Hom}_{\mathcal{A}}(X,Y)/I_{\mathcal{A}}(X,Y)$.
- The projectively stable category $\underline{A} = A/P_A$, with morphisms $\operatorname{Hom}_A(X,Y) = \underline{\operatorname{Hom}}_A(X,Y) = \operatorname{Hom}_A(X,Y)/P_A(X,Y)$.

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be AR-sequence in A.

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Given $f \in \operatorname{rad}(\operatorname{End}(X))$ and $g \in \operatorname{rad}(\operatorname{End}(Z))$, $\exists \ \mathsf{CD}$

$$0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$\downarrow^{g}$$

$$X$$

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Given $f \in \operatorname{rad}(\operatorname{End}(X))$ and $g \in \operatorname{rad}(\operatorname{End}(Z))$, $\exists \ \mathsf{CD}$

$$0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$

$$\downarrow g$$

$$\downarrow g$$

$$Z \longrightarrow Z \longrightarrow 0$$

This yields $f\delta = 0$ and $\delta g = 0$.

Let $\delta: 0 \longrightarrow X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Given $f \in \operatorname{rad}(\operatorname{End}(X))$ and $g \in \operatorname{rad}(\operatorname{End}(Z))$, $\exists \ \mathsf{CD}$

This yields $f\delta = 0$ and $\delta g = 0$.

That is, $\delta \in \operatorname{Soc}_{\operatorname{End}(Z)}\operatorname{Ext}^1(Z,X)$.

Proposition (Gabriel-Roiter)

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in A.

Proposition (Gabriel-Roiter)

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in A.

Let $\varphi : \operatorname{Ext}^1(Z,X) \to I$ be R-linear with $\varphi(\delta) \neq 0$.

Proposition (Gabriel-Roiter)

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in A.

Let $\varphi : \operatorname{Ext}^1(Z,X) \to I$ be R-linear with $\varphi(\delta) \neq 0$.

Then there are non-degenerate R-bilinear forms

$$<,>_{\varphi}: \overline{\mathrm{Hom}}(L,X) \times \mathrm{Ext}^{1}(Z,L) \to I: (\overline{f},\eta) \mapsto \varphi(f\eta),$$

Proposition (Gabriel-Roiter)

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in A. Let $\varphi: \operatorname{Ext}^1(Z,X) \to I$ be R-linear with $\varphi(\delta) \neq 0$.

Then there are non-degenerate R-bilinear forms

$$<,>_{\varphi}\colon \overline{\mathrm{Hom}}(L,X) imes \mathrm{Ext}^1(Z,L) \to I: (\overline{f},\eta) \mapsto \varphi(f\eta),$$

$$\varphi < , > : \operatorname{Ext}^{1}(L,X) \times \operatorname{\underline{Hom}}(Z,L) \to I : (\zeta, \underline{g}) \mapsto \varphi(\zeta g).$$

Proposition (Gabriel-Roiter)

Let $\delta: 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be AR-sequence in A.

Let $\varphi : \operatorname{Ext}^1(Z,X) \to I$ be R-linear with $\varphi(\delta) \neq 0$.

Then there are non-degenerate R-bilinear forms

$$<,>_{\varphi}: \overline{\mathrm{Hom}}(L,X) \times \mathrm{Ext}^{1}(Z,L) \to I: (\overline{f},\eta) \mapsto \varphi(f\eta),$$

$$\varphi < , > : \operatorname{Ext}^{1}(L, X) \times \operatorname{\underline{Hom}}(Z, L) \to I : (\zeta, \underline{g}) \mapsto \varphi(\zeta g).$$

Consequently, there are natural R-monomorphisms

$$\phi_L : \operatorname{Ext}^1(Z, L) \to D\overline{\operatorname{Hom}}(L, X) : \eta \mapsto \langle , \eta \rangle_{\varphi}$$

Proposition (Gabriel-Roiter)

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in A.

Let $\varphi : \operatorname{Ext}^1(Z,X) \to I$ be R-linear with $\varphi(\delta) \neq 0$.

Then there are non-degenerate R-bilinear forms

$$<,>_{\varphi}: \overline{\mathrm{Hom}}(L,X) \times \mathrm{Ext}^{1}(Z,L) \to I: (\overline{f},\eta) \mapsto \varphi(f\eta),$$

$$\varphi < , > : \operatorname{Ext}^{1}(L, X) \times \operatorname{\underline{Hom}}(Z, L) \to I : (\zeta, \underline{g}) \mapsto \varphi(\zeta g).$$

Consequently, there are natural R-monomorphisms

$$\phi_L : \operatorname{Ext}^1(Z, L) \to D\overline{\operatorname{Hom}}(L, X) : \eta \mapsto \langle , \eta \rangle_{\varphi}$$

$$\psi_L : \operatorname{Ext}^1(L, X) \to D\underline{\operatorname{Hom}}(Z, L) : \zeta \mapsto {}_{\varphi} < \zeta, -> .$$

Let $X, Z \in \mathcal{A}$. We have two covariant functors

Let $X, Z \in \mathcal{A}$. We have two covariant functors

$$\operatorname{Ext}^1(Z,-): \mathcal{A} \to \operatorname{Mod} R: L \mapsto \operatorname{Ext}^1(Z,L),$$

Let $X, Z \in \mathcal{A}$. We have two covariant functors

$$\operatorname{Ext}^1(Z,-):\mathcal{A}\to\operatorname{Mod} R:L\mapsto\operatorname{Ext}^1(Z,L),$$

$$D\overline{\operatorname{Hom}}(-, X): \mathcal{A} \to \operatorname{Mod} R: L \mapsto D\overline{\operatorname{Hom}}(L, X),$$

Let $X, Z \in \mathcal{A}$. We have two covariant functors

$$\operatorname{Ext}^1(Z,-): \mathcal{A} \to \operatorname{Mod} R: L \mapsto \operatorname{Ext}^1(Z,L),$$

$$D\overline{\operatorname{Hom}}(-, X) : A \to \operatorname{Mod} R : L \mapsto D\overline{\operatorname{Hom}}(L, X),$$

two contravariant functors

$$\operatorname{Ext}^{1}(-,X): \mathcal{A} \to \operatorname{Mod} R: L \mapsto \operatorname{Ext}^{1}(L,X),$$

Let $X, Z \in \mathcal{A}$. We have two covariant functors

$$\operatorname{Ext}^{1}(Z, -) : \mathcal{A} \to \operatorname{Mod} R : L \mapsto \operatorname{Ext}^{1}(Z, L),$$

$$D\overline{\operatorname{Hom}}(-, X): A \to \operatorname{Mod} R: L \mapsto D\overline{\operatorname{Hom}}(L, X),$$

two contravariant functors

$$\operatorname{Ext}^1(-,X): \mathcal{A} \to \operatorname{Mod} R: L \mapsto \operatorname{Ext}^1(L,X),$$

$$D\overline{\mathrm{Hom}}(Z, -): \mathcal{A} \to \mathrm{Mod}R: L \mapsto D\underline{\mathrm{Hom}}(Z, L).$$

If $M \in \operatorname{Mod} R$, an R-linear form $\theta : M \to I$ is called *almost vanishing* if $\theta \neq 0$ but $\theta(\operatorname{rad} M) = 0$.

If $M \in \operatorname{Mod} R$, an R-linear form $\theta : M \to I$ is called *almost vanishing* if $\theta \neq 0$ but $\theta(\operatorname{rad} M) = 0$.

Theorem

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ short exact sequence in A, where X, Z are strongly indecomposable.

If $M \in \operatorname{Mod} R$, an R-linear form $\theta : M \to I$ is called *almost vanishing* if $\theta \neq 0$ but $\theta(\operatorname{rad} M) = 0$.

Theorem

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ short exact sequence in A, where X, Z are strongly indecomposable.

• δ is AR-sequence.

If $M \in \operatorname{Mod} R$, an R-linear form $\theta : M \to I$ is called almost vanishing if $\theta \neq 0$ but $\theta(\operatorname{rad} M) = 0$.

$\mathsf{Theorem}$

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ short exact sequence in A, where X, Z are strongly indecomposable.

- δ is AR-sequence.
- **a** \exists monomorphism $\phi: \operatorname{Ext}^1(Z, -) \to D\overline{\operatorname{Hom}}(-, X)$ such that $\phi_X(\delta)$ almost vanishing.

If $M \in \operatorname{Mod} R$, an R-linear form $\theta : M \to I$ is called *almost* vanishing if $\theta \neq 0$ but $\theta(\operatorname{rad} M) = 0$.

$\mathsf{Theorem}$

Let $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ short exact sequence in A, where X, Z are strongly indecomposable.

- δ is AR-sequence.
- **a** \exists monomorphism $\phi: \operatorname{Ext}^1(Z, -) \to D\overline{\operatorname{Hom}}(-, X)$ such that $\phi_X(\delta)$ almost vanishing.
- \exists monomorphism $\psi : \operatorname{Ext}^1(-, X) \to D\underline{\operatorname{Hom}}(Z, -)$ such that $\psi_Z(\delta)$ almost vanishing.

Existence Theorem

Theorem

Let $X, Z \in \mathcal{A}$ be strongly indecomposable. TFAE:

• A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.

Existence Theorem

Theorem

Let $X, Z \in \mathcal{A}$ be strongly indecomposable. TFAE:

• A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.

Theorem

Let $X, Z \in A$ be strongly indecomposable. TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.
- $\operatorname{Ext}^1(Z, -) \hookrightarrow D\overline{\operatorname{Hom}}(-, X)$ and $\operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z, X) \neq 0$.

Theorem

Let $X, Z \in A$ be strongly indecomposable. TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.
- $\operatorname{Ext}^1(Z, -) \hookrightarrow D\overline{\operatorname{Hom}}(-, X)$ and $\operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z, X) \neq 0$.
- $\operatorname{Ext}^1(-,X) \hookrightarrow D\underline{\operatorname{Hom}}(Z,-)$ and $\operatorname{Soc} \operatorname{Ext}^1(Z,X)_{\operatorname{End}(Z)} \neq 0$.

Theorem

Let $X, Z \in A$ be strongly indecomposable. TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.
- $\operatorname{Ext}^1(Z, -) \hookrightarrow D\overline{\operatorname{Hom}}(-, X)$ and $\operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z, X) \neq 0$.
- $\operatorname{Ext}^1(-,X) \hookrightarrow D\underline{\operatorname{Hom}}(Z,-)$ and $\operatorname{Soc} \operatorname{Ext}^1(Z,X)_{\operatorname{End}(Z)} \neq 0$.

Remark

• $\operatorname{rad}(\overline{\operatorname{End}}(X))$ nilpotent or ϕ_X iso $\Rightarrow \operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z,X) \neq 0$.

Theorem

Let $X, Z \in A$ be strongly indecomposable. TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.
- $\operatorname{Ext}^1(Z, -) \hookrightarrow D\overline{\operatorname{Hom}}(-, X)$ and $\operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z, X) \neq 0$.
- $\operatorname{Ext}^1(-,X) \hookrightarrow D\underline{\operatorname{Hom}}(Z,-)$ and $\operatorname{Soc} \operatorname{Ext}^1(Z,X)_{\operatorname{End}(Z)} \neq 0$.

Remark

- $\operatorname{rad}(\overline{\operatorname{End}}(X))$ nilpotent or ϕ_X iso $\Rightarrow \operatorname{Soc}_{\operatorname{End}(X)}\operatorname{Ext}^1(Z,X) \neq 0$.
- $\operatorname{rad}(\operatorname{\underline{End}}(Z))$ nilpotent or ψ_X iso $\Rightarrow \operatorname{Soc} \operatorname{Ext}^1(Z,X)_{\operatorname{End}(Z)} \neq 0$.

Theorem

Let R artinian, $X, Z \in \mathcal{A}$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

Theorem

Let R artinian, $X, Z \in A$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

If $\overline{\mathrm{Hom}}(L,X)$, $\underline{\mathrm{Hom}}(Z,L) \in \mathrm{mod}R$ for $L \in \mathcal{A}$, TFAE:

Theorem

Let R artinian, $X, Z \in A$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

If $\overline{\mathrm{Hom}}(L,X)$, $\underline{\mathrm{Hom}}(Z,L)\in\mathrm{mod}R$ for $L\in\mathcal{A}$, TFAE:

• A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.

Theorem

Let R artinian, $X, Z \in A$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

If
$$\overline{\mathrm{Hom}}(L,X)$$
, $\underline{\mathrm{Hom}}(Z,L) \in \mathrm{mod}R$ for $L \in \mathcal{A}$, TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.

Theorem

Let R artinian, $X, Z \in A$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

If $\overline{\mathrm{Hom}}(L,X)$, $\underline{\mathrm{Hom}}(Z,L) \in \mathrm{mod} R$ for $L \in \mathcal{A}$, TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.
- $\bullet \quad \operatorname{Ext}^1(-,\,X) \cong D\underline{\operatorname{Hom}}(Z,\,-).$

Theorem

Let R artinian, $X, Z \in \mathcal{A}$ strongly indecomposable where X not Ext-injective and Z not Ext-projective.

If
$$\overline{\mathrm{Hom}}(L,X)$$
, $\underline{\mathrm{Hom}}(Z,L) \in \mathrm{mod}R$ for $L \in \mathcal{A}$, TFAE:

- A has AR-sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$.

Remark

Let Q strongly locally-finite. If $Z \in \operatorname{rep}^+(Q)$ indec non-proj, then $\operatorname{Hom}(Z,L)$, $\operatorname{Hom}(L,\operatorname{DTr} Z) \in \operatorname{mod} R$, $\forall L \in \operatorname{rep}(Q)$, $\operatorname{Ext}^1(Z,-) \cong D\operatorname{Hom}(-,\operatorname{DTr} Z)$.

Introduction Preliminaries Existence of AR-sequences AR-sequences in subcategories Applications

Let $\mathcal C$ exact subcategory of $\mathcal A$.

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\underline{\mathcal{C}} \subseteq \underline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\mathcal{C} \subseteq \underline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Problem

Let $Z \in \mathcal{C}$ with AR-sequence $\delta : 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A} .

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\underline{\mathcal{C}} \subseteq \underline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Problem

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A} .

• When does C have AR-sequence $\eta: 0 \to M \to E \to Z \to 0$?

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\underline{\mathcal{C}} \subseteq \underline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Problem

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A} .

- When does C have AR-sequence $\eta: 0 \to M \to E \to Z \to 0$?
- When does C have AR-sequence $\zeta: 0 \rightarrow X \rightarrow E \rightarrow N \rightarrow 0$?

Let $\widetilde{\mathcal{C}} \subseteq \overline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Let $\mathcal{C} \subseteq \underline{\mathcal{A}}$ generated by objects in \mathcal{C} .

Problem

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A} .

- When does C have AR-sequence $\eta: 0 \to M \to E \to Z \to 0$?
- When does C have AR-sequence $\zeta: 0 \rightarrow X \rightarrow E \rightarrow N \rightarrow 0$?
- If η or ζ exits, what is the relation between δ and η or ζ ?

Definition

A morphism $f: C \to X$ in A with $C \in C$ is called

• right injectively stable C-approximation of X if \overline{f} is right \widetilde{C} -approximation of X in $\overline{\mathcal{A}}$,

Definition

A morphism $f: C \to X$ in A with $C \in C$ is called

- right injectively stable C-approximation of X if \overline{f} is right \widetilde{C} -approximation of X in \overline{A} ,
- which is *minimal* if, in addition, \overline{f} is right minimal in \overline{A} , and no nonzero summand of C is Ext-injective in A.

Definition

A morphism $f: C \to X$ in A with $C \in C$ is called

- right injectively stable C-approximation of X if \overline{f} is right \widetilde{C} -approximation of X in $\overline{\mathcal{A}}$,
- which is *minimal* if, in addition, \overline{f} is right minimal in \overline{A} , and no nonzero summand of C is Ext-injective in A.

Definition

A morphism $g: X \to C$ in \mathcal{A} with $C \in \mathcal{C}$ is called

• *left projectively stable C-approximation* of X if \underline{g} is left C-approximation of X in \underline{A} ,

Definition

A morphism $f: C \to X$ in A with $C \in C$ is called

- right injectively stable C-approximation of X if \overline{f} is right \widetilde{C} -approximation of X in \overline{A} ,
- which is *minimal* if, in addition, \overline{f} is right minimal in \overline{A} , and no nonzero summand of C is Ext-injective in A.

Definition

A morphism $g:X\to C$ in $\mathcal A$ with $C\in\mathcal C$ is called

- *left projectively stable C-approximation* of X if \underline{g} is left C-approximation of X in \underline{A} ,
- which is *minimal* if, in addition, \underline{g} is left minimal in $\underline{\mathcal{A}}$ and no nonzero summand of C is Ext-projective in \mathcal{A} .

AR-sequences derived from approximations

Proposition

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ in A.

AR-sequences derived from approximations

Proposition

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ in \mathcal{A} . If X has minimal right injectively stable \mathcal{C} -approximation $f: M \to X$ with M being nonzero Krull-Schmidt, then \mathcal{A} has pushout diagram

$$\eta: \qquad 0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$$

$$\downarrow \qquad \qquad \parallel$$

$$\delta: \qquad 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0,$$

AR-sequences derived from approximations

Proposition

Let $Z \in \mathcal{C}$ with AR-sequence $\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ in \mathcal{A} . If X has minimal right injectively stable \mathcal{C} -approximation $f: M \to X$ with M being nonzero Krull-Schmidt, then \mathcal{A} has pushout diagram

$$\eta: 0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0 \\
\downarrow f \downarrow \qquad \qquad \parallel \\
\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0,$$

where η is AR-sequence in C.

Lemma

Let $f: C \to X$ right injectively stable C-approximation of X.

Lemma

Let $f: C \to X$ right injectively stable C-approximation of X. If C is Krull-Scimidt, then

$$f = (g, h) : M \coprod N \to X,$$

Lemma

Let $f: C \to X$ right injectively stable C-approximation of X. If C is Krull-Scimidt, then

$$f = (g, h) : M \coprod N \to X,$$

where $g: M \to X$ is minimal right injectively stable C-approximation of X.

Lemma

Let $f: C \to X$ right injectively stable C-approximation of X. If C is Krull-Scimidt, then

$$f = (g, h) : M \coprod N \to X,$$

where $g: M \to X$ is minimal right injectively stable C-approximation of X.

Corollary

Let $\mathcal A$ have AR-sequences. If $\mathcal C$ is Krull-Schmidt and functorially-finite in $\mathcal A$, then $\mathcal C$ has AR-sequences.

Proposition

Let
$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$
 be AR-sequence in A .

Proposition

Let
$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$
 be AR-sequence in A .
Let $0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$ be AR-sequence in C .

Proposition

Let
$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$
 be AR-sequence in \mathcal{A} .
 Let $0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{C} .
 If R is artinian and $\overline{\operatorname{Hom}}(L,C) \in \operatorname{mod} R$ for $L \in \mathcal{C}$,

Proposition

Let $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Let $0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{C} . If R is artinian and $\overline{\operatorname{Hom}}(L,C) \in \operatorname{mod} R$ for $L \in \mathcal{C}$, then \mathcal{A} has pushout diagram

$$\eta: 0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$$

$$\downarrow^{g} \parallel$$

$$\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0,$$

Proposition

Let $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Let $0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{C} . If R is artinian and $\overline{\operatorname{Hom}}(L,C) \in \operatorname{mod} R$ for $L \in \mathcal{C}$, then \mathcal{A} has pushout diagram

• f minimal right injectively stable C-approximation of X,

Proposition

Let $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{A} . Let $0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0$ be AR-sequence in \mathcal{C} . If R is artinian and $\overline{\operatorname{Hom}}(L,C) \in \operatorname{mod} R$ for $L \in \mathcal{C}$, then \mathcal{A} has pushout diagram

$$\eta: 0 \longrightarrow C \longrightarrow M \longrightarrow Z \longrightarrow 0
\downarrow f \downarrow \qquad \downarrow g \qquad \parallel
\delta: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0,$$

- f minimal right injectively stable C-approximation of X,
- g right injectively stable C-approximation of Y.

Existence of AR-sequences in subcategories

Theorem

Let R be artinian, C be stably Hom-finite and Krull-Schmidt.

- If A has right AR-sequences, then C has right AR-sequences $\Leftrightarrow \forall Z \in \operatorname{ind} C$ not Ext-projective, $\tau_A Z$ has right injectively stable C-approximation.
- If A has left AR-sequences, then C has left AR-sequences $\Leftrightarrow \forall X \in \operatorname{ind} C$ not Ext-projective, $\tau_A^- X$ has left projectively stable C-approximation.

Definition

A pair $(\mathcal{T},\mathcal{F})$ of full subcats of \mathcal{A} is called *torsion theory* if

Definition

A pair $(\mathcal{T}, \mathcal{F})$ of full subcats of \mathcal{A} is called *torsion theory* if

• $\operatorname{Hom}(T,F)=0$, for $T\in\mathcal{T}$ and $F\in\mathcal{F}$.

Definition

A pair $(\mathcal{T},\mathcal{F})$ of full subcats of \mathcal{A} is called *torsion theory* if

- $\operatorname{Hom}(T,F)=0$, for $T\in\mathcal{T}$ and $F\in\mathcal{F}$.
- For any $X \in \mathcal{A}$, \exists short exact sequence

$$0 \longrightarrow t(X) \longrightarrow X \longrightarrow f(X) \longrightarrow 0,$$

where $t(X) \in \mathcal{T}$ and $f(X) \in \mathcal{F}$.

Definition

A pair $(\mathcal{T}, \mathcal{F})$ of full subcats of \mathcal{A} is called *torsion theory* if

- $\operatorname{Hom}(T,F)=0$, for $T\in\mathcal{T}$ and $F\in\mathcal{F}$.
- For any $X \in \mathcal{A}$, \exists short exact sequence

$$0 \longrightarrow t(X) \longrightarrow X \longrightarrow f(X) \longrightarrow 0,$$

where $t(X) \in \mathcal{T}$ and $f(X) \in \mathcal{F}$.

Remark

 $(\mathcal{T},\mathcal{F})$ torsion theory $\Rightarrow \mathcal{T}$ and \mathcal{F} exact subcategories of \mathcal{A} .

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$, and AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$.

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$, and AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$.

• If $Z \in \mathcal{T}$ not Ext-projective, then the induced sequence $0 \longrightarrow t(X) \longrightarrow t(Y) \longrightarrow Z \longrightarrow 0$ is AR-sequence \mathcal{T} .

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$, and AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$.

- If $Z \in \mathcal{T}$ not Ext-projective, then the induced sequence $0 \longrightarrow t(X) \longrightarrow t(Y) \longrightarrow Z \longrightarrow 0$ is AR-sequence \mathcal{T} .
- If $X \in \mathcal{F}$ not Ext-injective, then the induced sequence $0 \longrightarrow X \longrightarrow f(Y) \longrightarrow f(Z) \longrightarrow 0$ is AR-sequence in \mathcal{F} .

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$, and AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$.

- If $Z \in \mathcal{T}$ not Ext-projective, then the induced sequence $0 \longrightarrow t(X) \longrightarrow t(Y) \longrightarrow Z \longrightarrow 0$ is AR-sequence \mathcal{T} .
- If $X \in \mathcal{F}$ not Ext-injective, then the induced sequence $0 \longrightarrow X \longrightarrow f(Y) \longrightarrow f(Z) \longrightarrow 0$ is AR-sequence in \mathcal{F} .

Corollary

Let A have torsion theory $(\mathcal{T}, \mathcal{F})$.

(1) If A has right AR-sequences, then so does T.

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$, and AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$.

- If $Z \in \mathcal{T}$ not Ext-projective, then the induced sequence $0 \longrightarrow t(X) \longrightarrow t(Y) \longrightarrow Z \longrightarrow 0$ is AR-sequence \mathcal{T} .
- If $X \in \mathcal{F}$ not Ext-injective, then the induced sequence $0 \longrightarrow X \longrightarrow f(Y) \longrightarrow f(Z) \longrightarrow 0$ is AR-sequence in \mathcal{F} .

Corollary

Let \mathcal{A} have torsion theory $(\mathcal{T}, \mathcal{F})$.

- (1) If A has right AR-sequences, then so does T.
- (2) If A has left AR-sequences, then so does F.

Representations of infinite quivers

Theorem (BLP, 2011)

Let Q strongly locally finite quiver, and $M \in \operatorname{rep}(Q)$ indec.

Representations of infinite quivers

Theorem (BLP, 2011)

Let Q strongly locally finite quiver, and $M \in \operatorname{rep}(Q)$ indec.

• If $M \in \operatorname{rep}^+(Q)$ not projective, then $\operatorname{rep}^+(Q)$ has AR-sequence $0 \to L \to N \to M \to 0 \Leftrightarrow \operatorname{DTr} M$ fin dim; and in this case, $L \cong \operatorname{DTr} M$.

Representations of infinite quivers

Theorem (BLP, 2011)

Let Q strongly locally finite quiver, and $M \in \operatorname{rep}(Q)$ indec.

- If $M \in \operatorname{rep}^+(Q)$ not projective, then $\operatorname{rep}^+(Q)$ has AR-sequence $0 \longrightarrow L \longrightarrow N \longrightarrow M \longrightarrow 0 \Leftrightarrow \operatorname{DTr} M$ fin dim; and in this case, $L \cong \operatorname{DTr} M$.
- If $M \in \operatorname{rep}^-(Q)$ not injective, then $\operatorname{rep}^-(Q)$ has AR-sequence $0 \to M \to N \to L \to 0 \Leftrightarrow \operatorname{TrD} M$ fin dim; and in this case, $L \cong \operatorname{TrD} M$.