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@ mod A: category of finitely generated left A-modules.

© ind A: category of indecomposable A-modules in modA.
Q rad(mod A): Jacobson radical of mod A.

@ rad™(modA) = Ny>1rad™(modA).

@ The central objective of the representation theory is to

o classify the indecomposable modules;
o describe the morphisms the indecomposable modules.
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theory is believed to be determined by rad(modA).

Theorem (Auslander)

A representation-finite <= rad™(modA) =0 for some m>1.
In this case, write Nyaqmoda) for the nilpotency of rad(modA).

V

Observation

Nrad(modA) = 1 <= A is simple.
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In terms of the nilpotency of rad(modA),
o classify representation-finite artin algebras;
o study their representation theory.

This can be accomplished by two approaches.

0 Given a class of representation-finite algebras A,

calculate 1 ad(moda)-

@ Given an integer m > 0,
o find all algebras A with naq(moeasn) = m;

o study their representation theory.
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A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in indA,

then Nrad(modA) < 20— 1.

e This estimate depends on a prior knowledge of all
indecomposable modules.

e In 2013, Chaio-Liu gave another approach, which seems
more efficient and precise.
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Depth of maps

0 Given amap f : X — Y in modA, its depth is defined by
o dp(f) = o0 if f € rad™ (X, Y);
o dp(f) = s if ferad’(X, Y)\rad*t(X, Y).

@ The depth of modA is defined by

dp(modA) = sup{dp(f) | f non-zero maps in modA}.

Observation

0 A is representation-finite <= dp(modA) < oc.
@ In this case, Nyad(moda) = dp(modA) + 1.




Calculate dp(modA)

For each simple module S € modA, we fix



Calculate dp(modA)

For each simple module S € modA, we fix

e a projective cover 7, : P, — S;



Calculate dp(modA)

For each simple module S € modA, we fix
e a projective cover 7, : P, — S;

e an injective envelope ¢, : S — [;



Calculate dp(modA)

For each simple module S € modA, we fix
e a projective cover 7, : P, — S;

e an injective envelope ¢, : S — [;

Theorem (Chaio, Liu, 2013)

0 A representation-finite <=-dp(6,) < co. for all simple S.




Calculate dp(modA)

For each simple module S € modA, we fix
e a projective cover 7, : P, — S;

e an injective envelope ¢, : S — [;

Theorem (Chaio, Liu, 2013)

0 A representation-finite <=-dp(6,) < co. for all simple S.
@ |In this case, dp(modA) = max{dp(c, o7,) | S simple }.
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Representation-finite hereditary artin algebras

The Ext-quiver Qa of A is a valued quiver
@ vertices are the non isomorphic simples in modA,;
@ 35S — T with valuation (d, d") if Ext(S, T) #0
where
o d = multiplicity of T in top(radPs).
o d’" = multiplicity of S in soc(/+/T).

Proposition (ARS Book)

0 If A is hereditary, then it is representation-finite
<= Qg is a Dynkin quiver.

@ Given any finite valued quiver A,
3 hereditary algebra A with Q4 = A.

™ = = -
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O A is representation-finite hereditary <= its AR-quiver [,

contains a non-trivial connected mesh-complete,
translation subquiver [ in which
o the projective modules generate a section A;
o the injective modules generate a section A'.
@ In this case,
o A= QY
o A= Qp;
o [p=1T.
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@ (l(A) : Loewy length of A, that is, nilpotency of radA.

Q It is evident (/(A) < Niad(modA)-

Niad(modA) = UU(A) <= A is a hereditary algebra of type A,




Nad(modA) for special classes of algebras




Nad(modA) for special classes of algebras

If A is a Nakayama algebra, then




Nad(modA) for special classes of algebras

If A is a Nakayama algebra, then

Nrad(moda) = Max{l(Ps)+((ls) —1| S simple in modA}.




Nad(modA) for special classes of algebras

If A is a Nakayama algebra, then

Nrad(moda) = Max{l(Ps)+((ls) —1| S simple in modA}.

‘Theorem’ (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type,




Nad(modA) for special classes of algebras

If A is a Nakayama algebra, then

Nrad(moda) = Max{l(Ps)+((ls) —1| S simple in modA}.

‘Theorem’ (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type,
then nyaqmoana) is the Coexter order of Qa.
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String artin algebras



String artin algebras

Call A a string algebra provided that




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial

or a direct sum of two uniserial modules.




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial

or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with
Butler and Ringel's definition of a string algebra.



String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial

or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with
Butler and Ringel's definition of a string algebra.

Proposition

If rad*(modA) = 0, then the middle term of any AR-sequence




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial

or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with
Butler and Ringel's definition of a string algebra.

Proposition

If rad*(modA) = 0, then the middle term of any AR-sequence
in modA has at most two indecomposable direct summands.

™ = = -




String artin algebras

Call A a string algebra provided that

o given projective P € ind A, radP is uniserial
or a direct sum of two uniserial modules;

o given injective | € ind A, //socl is uniserial
or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with
Butler and Ringel's definition of a string algebra.

Proposition

If rad*(modA) = 0, then the middle term of any AR-sequence
in modA has at most two indecomposable direct summands.
Being representation-finite, A is string algebra (by Auslander).

™ =
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0 A projective P € indA is wedged if radP = 5; ® 5,,
o 51,5, are simple;

o soc(ls,/S1),s0¢(ls,/S,) are simple.

@ An injective | € indA is co-wedged if | /socl = S; & S,
o 51,5, are simple;

o top(radPs, ), top(radPs,) are simple.

P € indA is wedged projective <= DP € indA°? is co-wedged
injective.
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Let A= kQ/I with a € Q.
@ P, is wedged <= supp(P,) has a wedge shape

a3 B
/ \
b c
o « is the only arrow ending in b

o (3 is the only arrow ending in c.
Q I, is co-wedged <> supp(/,) has shape

b g _C
\O‘a/
o « is the only arrow starting in b

o (3 is the only arrow starting in c.
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Definition

A wedged string algebra A is called tri-string algebra if
o rad?(A) =0;
@ ((Ps)+ {(Is) <5, for any simple S;
© ((Ps)+{(ls) <4 in case S is simple direct summand of
o radP, where P € indA is wedged projective;
o I/socl, where | € ind/ is co-wedged injective;

0 A wedged projective module and a co-wedged injective
module have no common composition factor.
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If A is an artin algebra, then rad*(modA) = 0 <=

A is hereditary algebra of type A4 or tri-string algebra.

v

Let A be given by ........

(1] radPa = Sb D SC with E(Psb) —+ E(lsb) =15}
@ A non-hereditary wedged string but not tri-string algebra.
o rad*(mod A) # 0.

A
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©Q The algebras A with n,,q(moaa) =2 are hereditary of type A;.

@ The algebras A with n ,q(moda) = 3 consist of

o hereditary algebras of type Az or Bs.

e non-hereditary Nakayama algebras of Loewy length 2.
© The algebras A with n,,q(moaa) = 4 consist of

e hereditary algebras of type A4.
e non-hereditary Nakayama algebras of Loewy length 3.

e non-hereditary non-Nakayama tri-string algebras.
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@ A is non-hereditary non-Nakayama tri-string algebra.

© rad(mod A) is of nilpotency 4.
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© If M is non-injective with £(M) = 3, then M is wedged projective
with radM = S; & S, and almost split sequence
0—M—>M/S®&M/S; —— topM —— 0.

© Let M be non-injective with £(M) = 2 and an injective envelope Iy.

e If Iy is co-wedged, then 3 almost split sequence

0 M Im I/ M ——=0.
e If Iy is uniserial, then 3 almost split sequence

0——= M—— Iy ®topM —— Ipy/socM —— 0.
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Let A be tri-string algebra with S non-injective simple .
Q Ifls is co-wedged with Is/S = S1 & S,, then 3 almost split sequence
0—=S— M &M, —— s ——=0,
where M; is the kernel of the projection Is — S;.
@ IfS is direct summand of radP with P wedged projective,

then 3 almost split sequence

0 S P P/S 0.

© In other cases, 3 almost split sequence

0 S N N/S —=0,

where N = Is in case {(Is) = 2, and N = radls in case ¢(Is) = 3.




