The derived AR-components of algebras with

radical squared zero

Shiping Liu (Université de Sherbrooke)
joint with
Raymundo Bautista (UNAM in Morelia)

Advance in Representation Theory of Algebras VI

September 4 - 8, 2017
Luminy, France



O A : elementary locally bounded category over a field k.



O A : elementary locally bounded category over a field k.

@ modA: category of fin dim left A-modules.



O A : elementary locally bounded category over a field k.

@ modA: category of fin dim left A-modules.

o DP(modA) is Hom-finite Krull-Schmidt.




O A : elementary locally bounded category over a field k.

@ modA: category of fin dim left A-modules.

o DP(modA) is Hom-finite Krull-Schmidt.

o Thus, one may study AR-theory in D?(modA).




O A : elementary locally bounded category over a field k.

@ modA: category of fin dim left A-modules.

o DP(modA) is Hom-finite Krull-Schmidt.

o Thus, one may study AR-theory in D?(modA).

What are the shapes of the AR-components of D?(modA)?
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O In case A is fin dim hereditary, Happel described all the
AR-components of D?(modA).

@ In case A is fin dim self-injective algebra,

o Wheeler proved that the stable AR-components of
D®(modA) are of shape ZA.

o Happel, Keller, Reiten proved that the non-stable
ones are double infinite paths of simple complexes.

Objective

In case rad®(A) = 0, describe the AR-components of
D®(mod A).
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We shall make use of
O Galois covering;

@ Representation theory of infinite quivers.



Orbit category

O Let A be Hom-finite Krull-Schmidt k-category.



Orbit category

O Let A be Hom-finite Krull-Schmidt k-category.
@ Let G be group acting admissibly on A.



Orbit category

O Let A be Hom-finite Krull-Schmidt k-category.
@ Let G be group acting admissibly on A.
That is, given objects X, Y € A, we have



Orbit category

O Let A be Hom-finite Krull-Schmidt k-category.
@ Let G be group acting admissibly on A.
That is, given objects X, Y € A, we have

o A(X, g-Y) # 0 for at most finitely many g € G;



Orbit category

O Let A be Hom-finite Krull-Schmidt k-category.
@ Let G be group acting admissibly on A.
That is, given objects X, Y € A, we have

o A(X, g-Y) # 0 for at most finitely many g € G;
e Xeinddande#gcG=g- XZX.
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O Let A be Hom-finite Krull-Schmidt k-category.
@ Let G be group acting admissibly on A.
That is, given objects X, Y € A, we have

o A(X, g-Y) # 0 for at most finitely many g € G;
e Xeinddande#gcG=g- XZX.

Proposition

The G-orbit category A/G is Hom-finite Krull-Schmidt
k-category with a canonical embedding

o A= A/G X — X, f—T.
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Definition
A k-linear functor 7 : A — Bis Galois G-covering provided

3 commutative diagram

A

AJG—~ 2B
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AR-quiver under Galois covering

Let 7 : A — B be a Galois G-covering of k-categories.

@ The functor 7 : A — B induces a Galois G-covering of
translation quivers 7 : [4 — [3.

@ The connected components of [z are the images

7T(I_)7

where [ ranges over the connected components of [ 4.
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O We may assume A = kQ/(kQ")?, where
o Q = (Qo, Q1) : a connected locally finite quiver.

o kQT: ideal generated by the arrows.

@ Given a € @y, we have
o S, : simple A-module supported by a;
o P, : minimal projective cover of S[a].
Q projA:=add{P,|a€ Q}.
@ A complex X* € D?(mod A) is called
o simple if X* = S[a][n] with a € Qy and n € Z,;

o perfect if X* =2 bounded complex over proj A.
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Grading period of @

Given walk w = af' -+ a% in Q, a; € @, e; = %1, write

ow)=e1+---+e.

Definition

The grading period of Q is an integer r, defined by
o r, =0if d(w) = 0 for all closed walks w in Q;

o r, = min{|0(w)| > 0 | w closed walks}.
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Repetitive quiver

The repetitive quiver Q% of Q is defined as follows:
o Vertices: (a,i); a€ Qo; i € Z.
o Arrows: («,i): (a,i) — (b, i+ 1);
where o a—b e Qq; | € Z.

2D

o> (a,-2)—(a,-1)—=(a,0) > (a,1) = (a,2) = - - -
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A quiver covering

© Fix a connected component Q of QZ.

@ It has an automorphism
p:Q@—=Q:(a,n) (a,n+r,).

@ Setting G =< p > yields a Galois G-covering of quivers:

7:Q—=Q:(a,n)— a.
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Representations of Q°P

Q@ For x € C:)o, let /.o be indec injective rep of Q°P at x°.
@ Let inj(Q°?) = add{/w | x € Qo}.
© A representation M of QP is finitely co-presented if 3

0 M lo h 0; h,h €inj(Q).

Q rep (Q°P): finitely co-presented representations.

@ rep?(Q°P): finite dimensional representations.

0 rep (Q°) (2 rep?(Q°P)) is Hom-finite hereditary abelian.

@ AR-components of D?(rep~(Q°?)) have been described by
Bautista, Liu and Paquette.
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Group action on D?(rep~(Q°P))

@ The p-action on Q = p-action on Q°P;
= p-action on rep~ (Q°P);
= p-action on D?(rep~(Q°P)).
@ Regarding p € Aut(D?(rep~ (Q°P))), we obtain
= [~r] o p € Aut(D®(rep™(Q"))).

© The group
O =<v>

acts admissibly on D®(rep~(Q°P)).
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Derived Koszul push-down functor

There exists Galois &-covering

Fr : DP(rep (Q°P)) —— DP(modA).
© If ["is component of [y, Gory): then §x () = T
@ A complex X* € DP(modA) is

o simple & X" = §, (o), for some x € Q°P.
o perfect & M- = (M) for some M € rep®(Q°P).
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Translation quiver with a section

Let (I, 7) be a translation quiver.

Definition

A connected full subquiver A of I is called a section if it is
0 acyclic;
@ convex in [; and

© meets every T-orbit exactly once.

Proposition

If [ contains a section A, then it embeds in ZA.
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AR-components with simple complexes

Let 4" be a component of [ ps(y04.4) With simple complexes.

Q The simple complexes in € form a section = Q.
@ As a consequence, ¥ embeds in ZQ.

© The components €[], i € Z/r,Z, are the components of
I pb(mod 4y CONtaining simple complexes.
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It contains a right-most section = A__.
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NSNS
NSNS

It contains a left-most section and a right-most section = A,,.
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AR-components without simple complexes

Let ¢" component of " ps(eq.4) Without simple complexes.

@ If € contains only perfect complexes, then it is of shape
o ZA,, NTAZ or
o ZA/<T">; only if Q is Euclidean with r, = 0.

@ Otherwise, ¢ is a wing or of shape NAY | and whose
non-perfect complexes generate the left-most section.




Finite global dimension case

If gdim(A)<oo, then AR-components of D?(modA) are of
shapes

Z.Q, ZAs, Zho/<T"> .




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;

(2) 2r, components of shape ZA .




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;

(2) 2r, components of shape ZA .

© Q oriented cycle of n arrows = I"ps(moq 4y CONSists of




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;

(2) 2r, components of shape ZA .
© Q oriented cycle of n arrows = I"ps(moq 4y CONSists of

(1) n components being sectional double infinite path;




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;

(2) 2r, components of shape ZA .
© Q oriented cycle of n arrows = I"ps(moq 4y CONSists of

(1) n components being sectional double infinite path;

(2) n components of shape ZA,.




Finiteness of the number of AR-components

O Q Dynkin quiver = I psipoda) = ZQ.

@ Q non-oriented cycle with r, > 0 = I ps(yeq.4) CONsists of

(1) r, components of shape ZAZ;

(2) 2r, components of shape ZA .
© Q oriented cycle of n arrows = I"ps(moq 4y CONSists of

(1) n components being sectional double infinite path;

(2) n components of shape ZA,.

Q In other cases, [ pb(mod a) has infinitely many components.
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O Let A= kQ/(kQ™)?, where Q: a___b.

@ Two simple modules S = S[a] et T = S[b].

© Then r, = 2 and Q° is a double infinite path.

Q [ pb(mod a) has 4 components R[], L[i], i = 0,1; where
(1) R = ZA, of perfect complexes;
(2) L is a sectional double infinite path

s —= §[-2] — T[-1] S[0] T[1] S[2]



