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joint with

Raymundo Bautista (UNAM in Morelia)

Advance in Representation Theory of Algebras VI

September 4 - 8, 2017

Luminy, France



Motivation

1 A : elementary locally bounded category over a field k .

2 modA: category of fin dim left A-modules.

Remark

Db(modA) is Hom-finite Krull-Schmidt.

Thus, one may study AR-theory in Db(modA).

Question

What are the shapes of the AR-components of Db(modA) ?
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A brief history

1 In case A is fin dim hereditary, Happel described all the
AR-components of Db(modA).

2 In case A is fin dim self-injective algebra,

Wheeler proved that the stable AR-components of
Db(modA) are of shape ZA∞.

Happel, Keller, Reiten proved that the non-stable
ones are double infinite paths of simple complexes.
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Orbit category

1 Let A be Hom-finite Krull-Schmidt k-category.

2 Let G be group acting admissibly on A.

That is, given objects X ,Y ∈ A, we have

A(X , g ·Y ) 6= 0 for at most finitely many g ∈ G ;

X ∈ indA and e 6= g ∈ G ⇒ g · X 6∼= X .

Proposition

The G -orbit category A/G is Hom-finite Krull-Schmidt
k-category with a canonical embedding

σ : A → A/G : X 7→ X ; f 7→ f .
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AR-quiver under Galois covering

Theorem

Let π : A → B be a Galois G -covering of k-categories.

1 The functor π : A → B induces a Galois G -covering of
translation quivers π : ΓA → ΓB.

2 The connected components of ΓB are the images

π(Γ ),

where Γ ranges over the connected components of ΓA.
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Setting

1 We may assume A = kQ/(kQ+)2, where

Q = (Q0,Q1) : a connected locally finite quiver.

kQ+: ideal generated by the arrows.

2 Given a ∈ Q0, we have

Sa : simple A-module supported by a;

Pa : minimal projective cover of S [a].

3 projA := add{Pa | a ∈ Q0}.

4 A complex X. ∈ Db(modA) is called

simple if X. ∼= S [a][n] with a ∈ Q0 and n ∈ Z;

perfect if X. ∼= bounded complex over projA.
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Grading period of Q

Given walk w = αe1
1 · · ·αer

r in Q, αi ∈ Q1, e1 = ±1, write

∂(w) = e1 + · · ·+ er .

Definition

The grading period of Q is an integer r
Q

defined by

r
Q

= 0 if ∂(w) = 0 for all closed walks w in Q;

r
Q

= min{|∂(w)| > 0 | w closed walks}.
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Repetitive quiver

The repetitive quiver QZ of Q is defined as follows:

Vertices: (a, i); a ∈ Q0; i ∈ Z.
Arrows: (α,i) : (a, i)→ (b, i + 1);

where α : a→b ∈ Q1; i ∈ Z.

Example

a ee

· · · // (a,−2) // (a,−1) // (a, 0) // (a, 1) // (a, 2) // · · ·
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A quiver covering

1 Fix a connected component Q̃ of QZ.

2 It has an automorphism

ρ : Q̃ //Q̃ : (a, n) 7→ (a, n + r
Q

).

3 Setting G =< ρ > yields a Galois G -covering of quivers:

π : Q̃ // Q : (a, n) 7→ a.



A quiver covering

1 Fix a connected component Q̃ of QZ.

2 It has an automorphism

ρ : Q̃ //Q̃ : (a, n) 7→ (a, n + r
Q

).

3 Setting G =< ρ > yields a Galois G -covering of quivers:

π : Q̃ // Q : (a, n) 7→ a.



A quiver covering

1 Fix a connected component Q̃ of QZ.

2 It has an automorphism

ρ : Q̃ //Q̃ : (a, n) 7→ (a, n + r
Q

).

3 Setting G =< ρ > yields a Galois G -covering of quivers:

π : Q̃ // Q : (a, n) 7→ a.



Representations of Q̃ op

1 For x ∈ Q̃0, let Ixo be indec injective rep of Q̃ op at xo.

2 Let inj(Q̃ op) = add{Ixo | x ∈ Q̃0}.
3 A representation M of Q̃ op is finitely co-presented if ∃

0 //M // I0 // I1 // 0; I0, I1 ∈ inj(Q̃ op).

4 rep−(Q̃ op): finitely co-presented representations.

5 repb(Q̃ op): finite dimensional representations.

Remark

1 rep−(Q̃ op) (⊇ repb(Q̃ op)) is Hom-finite hereditary abelian.

2 AR-components of Db(rep−(Q̃ op)) have been described by

Bautista, Liu and Paquette.
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Group action on Db(rep−(Q̃ op))

1 The ρ-action on Q̃ ⇒ ρ-action on Q̃ op;

⇒ ρ-action on rep−(Q̃ op);

⇒ ρ-action on Db(rep−(Q̃ op)).

2 Regarding ρ ∈ Aut(Db(rep−(Q̃ op))), we obtain

ϑ = [−r
Q

] ◦ ρ ∈ Aut(Db(rep−(Q̃ op))).

3 The group
G =< ϑ >

acts admissibly on Db(rep−(Q̃ op)).
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Derived Koszul push-down functor

Theorem

There exists Galois G-covering

Fπ : Db(rep−(Q̃op)) // Db(modA).

1 If Γ is component of ΓDb(rep−(Q̃op)), then Fπ(Γ ) ∼= Γ .

2 A complex X. ∈ Db(modA) is

simple ⇔ X. ∼= Fπ(Ixo), for some x ∈ Q̃op.

perfect ⇔ M. ∼= Fπ(M) for some M ∈ repb(Q̃op).
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Translation quiver with a section

Let (Γ , τ) be a translation quiver.

Definition

A connected full subquiver ∆ of Γ is called a section if it is

1 acyclic ;

2 convex in Γ ; and

3 meets every τ -orbit exactly once.

Proposition

If Γ contains a section ∆, then it embeds in Z∆.
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AR-components with simple complexes

Theorem

Let C be a component of ΓDb(modA) with simple complexes.

1 The simple complexes in C form a section ∼= Q̃.

2 As a consequence, C embeds in ZQ̃.

3 The components C [i ], i ∈ Z/r
Q
Z, are the components of

ΓDb(modA) containing simple complexes.
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It contains a right-most section ∼= A−∞.



Translation quivers of shape N+A+
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It contains a left-most section ∼= A+
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It contains a left-most section and a right-most section ∼= An.



AR-components without simple complexes

Theorem

Let C component of ΓDb(modA) without simple complexes.

1 If C contains only perfect complexes, then it is of shape

ZA∞, N−A−∞ or

ZA∞/<τ n>; only if Q is Euclidean with r
Q

= 0.

2 Otherwise, C is a wing or of shape NA+
∞, and whose

non-perfect complexes generate the left-most section.
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Finite global dimension case

Theorem

If gdim(A)<∞, then AR-components of Db(modA) are of
shapes

ZQ̃, ZA∞, ZA∞/<τ n> .



Finiteness of the number of AR-components

Theorem

1 Q Dynkin quiver ⇒ ΓDb(modA)
∼= ZQ.

2 Q non-oriented cycle with r
Q
> 0⇒ ΓDb(modA) consists of

(1) r
Q

components of shape ZA∞∞;

(2) 2r
Q

components of shape ZA∞.

3 Q oriented cycle of n arrows ⇒ ΓDb(modA) consists of

(1) n components being sectional double infinite path;

(2) n components of shape ZA∞.

4 In other cases, ΓDb(modA) has infinitely many components.
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Example

1 Let A = kQ/(kQ+)2, where Q : a
((
b.gg

2 Two simple modules S = S [a] et T = S [b].

3 Then r
Q

= 2 and Q̃ op is a double infinite path.

4 ΓDb(modA) has 4 components R[i ],L[i ], i = 0, 1; where

(1) R ∼= ZA∞, of perfect complexes;

(2) L is a sectional double infinite path

· · · // S [−2] // T [−1] // S [0] // T [1] // S [2] // · · ·
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