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Introduction

Tilted algebras, that is endomorphism algebras of tilting modules over
a hereditary algebra, have been one of the main objects of study in repre-
sentation theory of algebras since their introduction by Happel and Ringel
[9]. As a generalization, Happel, Reiten and Smalg studied endomorphism
algebras of tilting objects of a hereditary abelian category which they call
quasi-tilted algebras [8]. We are concerned with the problem of character-
izing these algebras in terms of bound quivers. In our previous paper [12],
we have found some simple combinatorial criteria to determine if a string
algebra is quasi-tilted or tilted or neither. In this paper, we shall consider
the same problem for special biserial algebras which are not string algebras.
Note that such an algebra is tilted if and only if it is quasi-tilted since there
are some indecomposable projective-injective modules [3]. Our strategy is
to study the combinatorial interpretation of some behavious of the homo-
logical dimensions of the indecomposable modules. This enables us to find
first a combinatorial characterization of the special biserial algebras of global
dimension at most two, and then some simple necessary and sufficient con-
ditions for a special biserial algebra to be tilted. As one of the applications,
this allows one to construct a large class of new examples of tilted algebras.

1. Preliminaries

Throughout this paper, denote by A a basic finite dimension algebra over
an algebraically closed field k. It is then well-known that A = kQ/I with
(@, I) a finite bound quiver [6]. In this paper we shall identify the category
mod A of the finite-dimensional (over k) right A-modules with the category
of the finite-dimensional representations of (@, 1) over k. We shall consider



only the special biserial algebras. This class of algebras have attracted much
of attention of current research [1, 2, 4,13, 17, 18|.

1.1. Definition [2, 7]. An algebra A is called special biserial if A =
kQ/I with (Q,I) a bound quiver satisfying the following:

(1) Each vertex of Q is start-point or end-point of at most two arrows.

(2) For an arrow «, there is at most one arrow 3 such that a8 & I and
at most one arrow vy such that ya & 1.

Moreover A is called a string algebra if, in addition, I is generated by a

set of paths of Q).

Let (@, I) be a bound quiver. A path p of @ is called a zero pathif p € I.
A zero path is called a zero-relation of (@, I) if none of its proper subpaths
is a zero path. Moreover a pair (p, q) of non-zero paths p, ¢ from a vertex a
to a vertex b is called a binomial relation of (Q,I) if Ap + ug € I for some
non-zero coefficients A, u. We call a the start-point, b the end-point and p, q
the mazimal subpaths of (p, q).

In our later use, by saying that A = kQ /I is a special biserial algebra we
mean that the bound quiver (@, I) satisfies the conditions as stated in the
above definition. In this case, any minimal set of generators of I consists
of zero-relations and binomial relations. However in our terminology, some
zero-relations may not belong to any minimal set of generators of I.

We now fix more notation and terminology which will be used throughout
this paper. Let @ be a finite quiver. For an arrow « of @), denote by s(«) its
start-point, by e(a) its end-point and by o~ its formal inverse with start-
point s(a™!) = e(a) and end-point e(a™!) = s(a), and write (a™1)™! = a.
A walk of positive length n is a sequence w = c¢;---¢, with ¢; an arrow
or the inverse of an arrow such that s(c;y1) = e(¢) for 1 < i < n. We
call ¢; the initial edge of w and ¢, the terminal edge. Moreover, we define
s(w) = s(c;) and e(w) = e(c,). Finally we define w™ = c;1---c;'. A trivial
walk at a vertex a is the trivial path e, with e(e,) = s(e,), its inverse is
itself. A walk w is called reduced if either w is trivial or w = ¢; - - - ¢, such
that c;41 # ¢; ! for all 1 < i < n. For convenience, we shall allow ourself to
add some appropriate trivial paths in the expression of a walk. For example
if «:a — bis an arrow, we may write a = g, = asb_l. However aa~! and
g, are two distinct walks.



A non-trivial reduced walk w = ¢; - - - ¢, is called a reduced cycle if s(w) =
e(w) and ¢, # c;', and a simple cycle if in addition s(c;),...,s(c,) are
pairwise distinct. Another reduced cycle w; is said to be equivalent to w if
W1 =Cj**"CpCy+ - Cij_1 O wflci---cncl---ci,l for some 1 < i <n.

Let w = ¢; - - - ¢, be a non-trivial reduced walk in (). We say that a non-
trivial path p of ) is contained in w if there are some 1 < i < j < n such that
p=ci---cjorp !t =¢ - c¢;. Note that a path of Q may appear many times
in a reduced walk. Let ¢ be another path contained in w such that ¢ or ¢~! is
equal to ¢, --- ¢ for some 1 < r < s < n. We say that p,q point to the same
direction in w if p =¢;---¢;j, ¢ = ¢+ -c5 OF pl = it Gy, gl =c e
otherwise p, g point to opposite directions in w.

1.2. Definition. Let A = kQ/I be a special biserial algebra. A reduced
walk w in Q s called a string if each path contained in w is neither a zero-
relation nor a mazimal subpath of a binomial relation of (Q,1).

Example. Consider the special biserial algebra given by the quiver

NN
Noh A

bound by the relations Ba— 67, du and py. Then pup=t¢~1pd =13 is a string
while S~16u1p~! and Bay~p are not strings.

Let A = kQ/I be a special biserial algebra. Let w be a string in (@, I).
Throughout this paper we shall denote by M (w) the string module deter-
mined by w. Recall that if w is the trivial path at a vertex a, then M (w)
is the simple module at a. Otherwise w = ¢y¢9 - - ¢,, where n > 1 and ¢; or
ci_1 is an arrow. For 1 <7 <n+1, let U; = k; and for 1 < ¢ < n, denote
by U,, the identity map sending z € U; to © € U4, if ¢; is an arrow and
otherwise the identity map sending x € U;,1 to x € U;. For a vertex a, if a
appears in w, then M (w), is the direct sum of the spaces U; with i such that
s(¢i) =aori=n+1and e(c,) = a; otherwise M (w), = 0. For an arrow «,
if o appears in w, then M(w), is the direct sum of the maps U,, such that
ci = a or ¢; ' = a; otherwise M(w), is the zero map.

One says that a string w in (@, ) starts or ends in a deep if there is no
arrow ~y such that v~lw or wv is a string, respectively; and it starts or ends
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on a peak if there is no arrow ¢ such that dw or wd~! is a string, respectively.
For a vertex a of (), we denote throughout this paper by S(a), P(a) and
I(a) the simple module, the indecomposable projective module and the in-
decomposable injective module at a, respectively. Then S(a) = M(e,) with
€, the trivial path at a. If a is not the start-point of a binomial relation,
then P(a) = M(u~'v), where u,v are paths of non-negative length starting
with a such that u='v is a string starting and ending in a deep. Dually, if
a is not the end-point of a binomial relation, then I(a) = M(pg™!), where
p, q are paths of non-negative length ending with a such that pg~! is a string
starting and ending on a peak. Finally if a is the start-point of a binomial
relation whose end-point is b, then P(a) is isomorphic to I(b), and hence it
is projective-injective.

1.3. Definition. Let A = kQ/I be a special biserial algebra. A non-
trivial reduced cycle of Q) is called a band if each of its powers is a string and
it 1s not a power of a string of less length.

Let A = kQ/I be a special biserial algebra. Let w = ¢1¢q - - - ¢, be a band
in (Q,I), where n > 1 and ¢; or ¢; ' is an arrow such that s(c;) = e(c,). Let
¢ be an indecomposable automorphism of a k-vector space V. One defines a
band module N = N(w, ¢) determined by w and ¢ as follows:

For 1 <i<mn, define V; =V. For 1 <i < mn, let f., be the identity map
from V; to V;y, if ¢; is an arrow; and otherwise the identity map from V.,
to V;, and let f. be the map sending x € V,, to ¢(z) € V; if ¢, is an arrow;
and otherwise the map sending x € V; to ¢! (x) € V,,. For each vertex a of
Q, if a appears in w, then N, is the direct sum of the spaces V; such that
s(¢;) = a, and otherwise N, is the zero-space. For each arrow a, if o appears
in w, then N, is the direct sum of the maps f,, such that ¢; = a or ¢; = a™;

and otherwise N, is the zero-map.

The indecomposable modules and the almost split sequences over a special
biserial algebra are completely described by Wald and Waschbiisch [18]. We
quote what is needed for our purpose as follows.

1.4. Theorem [18]. Let A = kQ/I be a special biserial algebra. Then

(1) An indecomposable module in mod A is a string module, a band module
or a projective-injective module corresponding to a binomaial relation.



(2) Each band module over A is invariant under the Auslander-Reiten
translation.

It follows from a result of Skowroniski [16] that a special biserial algebra
is of directed representation type if and only if there is no special family of
local modules. However his combinatorial interpretation of the existence of
a special family of local modules does not seem completely correct. We shall
give a combinatorial reformulation of this result. In order to do so, we need
the following concept.

1.5. Definition. Let A = kQ/I be a special biserial algebra. Let w =
c1 -+ cn be a reduced cycle of Q, where ¢; or ¢;* is an arrow oy for 1 < i < n.
Let py,...,ps (s > 0) the paths contained in w which are either zero-relations
or mazimal subpaths of binomial relations of (Q,1). We say that w ( and
any reduced walk equivalent to w) is clockwise in (Q,I) if ay,a,, p1,- .., Ps
all point to the same direction in w.

1.6. Theorem. Let A = kQ/I be a special biserial algebra. Then A is
of directed representation type if and only if (Q,I) admits no clockwise cycle.

Proof. Let I be the ideal of kQ generated by the zero-relations and the
maximal subpaths of the binomial relations of (Q,I). Then A = kQ/I is a
string algebra. It is easy to see that a reduced walk of () is a string or a band
in (Q, I) if and only if it is a string or a band in (Q, I), respectively. Therefore
an indecomposable module M in mod A is a string or a band module over
A if and only if it is a string or a band module over A, respectively. This
implies that A finite representation type if and only if so is A. It now follows
from a result of de la Pefia [14] that A is of directed representation type if
and only if there is no clockwise cycle in (Q,I). Clearly a reduced cyle of
Q is clockwise in (Q,I) if and only if it is clockwise in (@, I). Therefore it
suffices to show that A is of directed representation type if and only if so is
A. First that A is not of directed representation type implies trivially that
A is not either. Assume now that A is not of directed representation type.
If A is of infinite representation type, then so is A. Thus A is not of directed
representation type [15]. Suppose that A is of finite representation type.
Then there is no band module in mod A and there is a cycle

(*) MOLM1_>"'_> rflLMr:MO

in mod A, where the M, are indecomposable modules and the f; are irre-
ducible maps. Then r > 1 and M;_; 2 M; for all 1 <7 < r. Note that each
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M; with 0 <7 < r is either a string module or a projective-injective module
corresponding to a binomial relation of (@, ). Let s with 0 < s < r be such
that M, is not a string module. We may assume that 0 < s < r. Thus M,_;
is the radical of My and M, is the socle-factor of M. By computing the
dimensions, we conclude that there are irreducibles maps gs_1 : Ms_1 — N
and g, : Ny — M, with N, indecomposable and N; 2 M,. Note then that
N, is not projective-injective, and hence N; is a string module. Replacing
fi by g; for s — 1 < 7 < s, we obtain a cycle in mod A containing fewer
number of non-string modules. Therefore we may assume that (x) contains
only string modules. This implies that (x) is a cycle in mod A. The proof is
completed.

2. Projective and injective dimensions

In this section, we shall study the combinatorial interpretation of some
behavior of the projective and injective dimensions of the indecomposable
modules over a special biserial algebra. To begin with, we state some ele-
mentary properties of special biserial algebras, which will be used extensively
in our later proofs.

2.1. Lemma. Let A =kQ/I be a special biserial algebra. Then

(1) Any proper subpath of a non-zero path of (Q,I) is a string.

(2) Let u,v and p be non-trivial paths with e(u) = e(v) = s(p). If vp is a
non-zero path, then up contains a zero-relation which is not contained in u.

(3) If p is a non-zero path such that s(p) is the start-point of a binomial
relation of (Q,I), then p is contained in this binomial relation.

(4) Let (p,q) be a binomial relation of (Q,I). If u is a non-trivial path
with e(u) = s(p), then up and uq are both zero paths. If v is a non-trivial
path with s(v) = e(p), then pv and qu are both zero paths.

We skip the proof of the above lemma since it is simply a routine verifi-
cation of the definition of a special biserial algebra.

We shall now find some sufficient conditions for a string module to be of
projective dimension greater than one. Note that each reduced walk w in a
quiver can be uniquely written as w = py'qi---p;'q,, where n > 1, the p;
and the g; are paths which are non-trivial for 1 <¢<n, 1 <j <n.
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2.2. Lemma. Let A =kQ/I be a special biserial algebra. Let

w=pta g

be a string in (Q,I), where n > 1, the p; and the g; are paths which are
non-trivial for 1 <i <n, 1 <j <mn. Assume that some s(p,) (1 <r <mn) is
the start-point of a binomial relation (pyu,, g-v,), where u,, v, are non-trivial
paths and w, is of length greater than one if r =1 and v, is of length greater
than one if r = n. Then the projective dimension of the string module M (w)
15 greater than one.

Proof. Let a; = s(p;),b; = e(p;) for 1 < i < n and let b,y = e(qn).
Clearly the projective cover of M(w) is @} ,P(a;). Let K be the kernel of
the canonical epimorphism from @7, P(a;) to M (w). It suffices to show that
K is not projective.

Let s < r <t be such that a; is the start-point of a binomial relation for
all s <1 <t and such that t — s is maximal with respect to this property.
For each s < i <t, let u; and v; be paths such that (p;u;, ¢;v;) is a binomial
relation. Note that the u; and the v; are non-trivial since w is a string. If
s > 1, then let v,_; be the path such that ¢s_jvs 1 is a string ending in a
deep and otherwise let vy be the trivial path at b;. Similarly if ¢ < n, let w11
be the path such that p;1iu;41 is a string ending in a deep and otherwise let
Up41 be the trivial path at b, .

Suppose first that » = 1. Then wu; is of length greater than one by
hypothesis. Let u; = au with a an arrow and u a non-trivial path. If
n = 1, then vy is also of length greater than one by hypothesis, and hence
v; = v with 3 an arrow v a non-trivial path. Now uv~! is a string such that
K = M(uv™'), which is not projective since u,v are non-trivial. If n > 1,
then

wp = uvf1u2 cee utvflutﬂ

is a string such that M (w,) is a direct summand of K. Note that M (w;) is
not projective since u, v, are non-trivial. Hence K is not either. A symmetric
argument shows that K is not projective if r = n.

Suppose now that 1 < r < n. Then it is easy to see that

1 -1

-1 - -1
Wo = Uy UV, == UpV, ~ *+ - UV Uyl

is a string such that M (w,) is a direct summand of K. Note that M (ws) is
not projective since u,, v, are non-trivial, and hence K is not either. This
completes the proof.



2.3. Lemma. Let A =kQ/I be a special biserial algebra. Let

w=pta -, g

be a string in (Q,I), where n > 1, the p; and the g; are paths which are non-
trivial for 1 <i <mn, 1 < j < n. Assume that there is a path q with initial
arrow « such that wa 1s a string and q.q admits exactly one zero-relation,
and the zero-relation contains q. Then the projective dimension of M(w) is
greater than one.

Proof. First note that ¢ is of length greater than one. Write ¢ = auf with
(£ an arrow and v a path. Then g,au and u/3 are non-zero by hypothesis. Let
a; = s(g;) for 1 < i < n. Then &} ,P(a;) is the projective cover of M (w).
Let K be the kernel of the canonical epimorphism from &7, P(a;) to M (w).
If a,, is not the start-point of a binomial relation, then it is easy to see that
the string module M (u) is a direct summand of K, which is not projective
since u(3 is non-zero. Thus the projective dimension of M (w) is greater than
one.

Assume now that a,, is the start-point of a binomial relation. It is neces-
sarily of the form (p,u,, ¢,auv,), where w, is a non-trivial path and v, is a
path such that uw, is non-trivial, since g,au is non-zero and ¢, is a string
by hypothesis. If n > 1 or n = 1 with u; of length greater than one, then
M (w) is of projective dimension greater than one by Lemma 2.2. Suppose
that n = 1 and w; is an arrow. Then K = M (uvy). If w is trivial, then
K = M (v), which is not projective since v; '3 is a string. If u is non-trivial,
then vy is trivial since u/3, uv; are non-zero. Thus K = M (u), which is not
projective since uf is non-zero. Therefore the projective dimension of M (w)
is greater than one. The proof is completed.

2.4. Lemma. Let A =kQ/I be a special biserial algebra. Let

w=pta - g

be a string in (Q,I), where n > 1, the p; and the q; are paths which are
non-trivial for 1 <i <n, 1 < j <n. If there is a non-zero path p such that
for some 1 < r < n, both q,_1p and p,p are zero paths, then the projective
dimension of M(w) is greater than one.

Proof. For each 1 < i < n, let a; = s(p;). Then @& ,P(a;) is the
projective cover of M (w). Let K be the kernel of the canonical epimorphism
from @ ,P(a;) to M(w). Let p be a non-zero path such that ¢,_ip and p,p

8



are zero paths for some 1 < r < n. We may assume that p is of minimal
length with respect to this property. Write p = ua, where « is an arrow and
u is a path. Then either ¢,_ju or p,u is non-zero by the minimality of p.

Suppose that a,_ is the start-point of a binomial relation. It is necessarily
of the form (p,_1u,_1,¢—1v,—1) With w,_1,v,_1 some non-trivial paths. If
r > 2 orr = 2 with u,_; of length greater than one, then M (w) is of
projective dimension greater than one by Lemma 2.2. Assume now that
r = 2 and u; is an arrow. Since p is a non-zero path and ¢;p is a zero path,
it is easy to see that vy 'p is a reduced walk. Moreover ay is not the start-
point of a binomial relation since pov; and pop are both zero-paths. If pou
is a zero path, then g;u is non-zero with u non-trivial, which is impossible.
Therefore psu is non-zero, and hence pou is a string ending in a deep. It is
now easy to see that M (v; 'u) is a direct summand of K. Note that M (v; ')
is not projective since ua = p is non-zero. Therefore M (w) is of projective
dimension greater than one. Using a symmetric argument, one can show that
M (w) is of projective dimension greater than one if a4 is the start-point of a
binomial relation.

Suppose now that neither a,_; nor ay is the start-point of a binomial
relation. We may assume that p,u is non-zero. Let v be the path such that
¢s_1v is a string ending in a deep. Then M (v~'u) is a direct summand of K.
Note that M (v~'u) is not projective since ua is non-zero. Therefore M (w)
is of projective dimension greater than one. The proof is completed.

We shall now find some necessary conditions for a string module to be of
projective dimension greater than one.

2.5. Lemma. Let A =kQ/I be a special biserial algebra. Let
w=pq Py

be a string in (Q,I), where n > 1, the p; and the g; are paths which are
non-trivial for 1 <1 < n and 1 < j < n. If the projective dimension of
M (w) is greater than one, then one of the following cases occurs:

(PD1) There is a path p with initial arrow o such that a='w is a reduced
walk without zero-relations and pip admits a zero-relation containing p.

(PD2) There is a path q with initial arrow § such that wf is a reduced
walk without zero-relations and q,q admits a zero-relation containing q.

(PD3) There is a non-zero path u such that for some 1 < s < n, both
Gs—1u and psu are zero paths.



(PD4) Some s(p,) with 1 < r < n is the start-point of a binomial relation.

Proof. Assume that none of the stated cases occurs. We shall show that
the projective dimension of M (w) is less than two. Let a; = s(p;), b; = e(p;)
for 1 < i < n, and let b,,1 = e(g,). Then the projective cover of M(w) is

", P(a;). Let K be the kernel of the canonical epimorphism from &, P(a;)
to M(w). It suffices to show that K is projective.

We fix some more notations. Since (PD4) does not occur, a; is not the
start-point of a binomial relation for all 1 < ¢ < n. Denote by u;,v; the
paths such that u; 'p; 'g;v; is a string starting and ending in a deep. Then
P(a;) = M(u; 'p;tqv;) for all 1 < i < r. For each 1 < i <7, b; is not the
start-point of a binomial relation since (PD3) does not occur. Thus v; Y u;
is a string, which starts and ends in a deep since (PD3) does not occur.
Therefore M (v;u;) = P(b;) for all 1 < i < n.

Define K7 = 0 if u; is trivial. Otherwise write u; = ajug with a; an arrow
and g a path, and define K; = M(up). Note that pja; is non-zero. Since
(PD1) does not occur, s(ug) is not the start-point of a binomial relation and
ug is a string starting and ending in a deep. Thus K; = P(s(ug)) is projective.
Similarly define K, 11 = 0 if v, is trivial. Otherwise write v,, = @, 11V,41 With
apy1 an arrow and v, a path. Define K, 1 = M (v,41), which is in fact
P(s(vy41)) since (PD2) does not occur. Now by computing the dimension of
modules, we see that

0 — K1 @iy M(viZyu) & Kna — &2 Plag) — M(w) — 0

is a short exact sequence in mod A. Thus K = K| ®_, M (v; ' u;) ® K,;1 is
projective. The proof is completed.

For the convenience of the reader, we state explicitly the dual result
concerning the injective dimension of string modules.

2.6. Lemma. Let A =kQ/I be a special biserial algebra. Let

w=q;'pi' - qup,

be a string, where n > 1, the g; and the p; are paths which are non-trivial
forl1 <i<mnand1 < j<mn. If the injective dimension of M(w) is greater
than one, then one of the following cases occurs:

(ID1) There is a path q with terminal arrow « such that cw is a reduced
walk without zero-relations and qq, admits a zero-relation containing q.
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(ID2) There is a path p with terminal arrow 3 such that w3~ is a reduced
walk without zero-relations and pp, admits a zero-relation containing p.

(ID3) There is a non-zero path u such that for some 1 < s < n, both
ups—1 and uqs are zero paths.

(ID4) Some e(q,) with 1 <r < n is the end-point of a binomial relation.

We conclude this section by considering the projective dimension of the
band modules.

2.7. Lemma. Let A =kQ/I be a special biserial algebra. Let

w=pig;" gyt

be a band, where n > 1, the p; and the q; are non-trivial paths such that
s(p1) = s(qn). Let N be a band module of support w. If N has projective
dimension greater than one, then one of the following cases occurs:

(1) Some s(p,) with 1 < r < n is the start-point of a binomial relation.

(2) There is a non-zero path u such that both g.u and p,u are zero paths
for some 1 <r <n.

Proof. Assume that the projective dimension of N is greater than one.
Then Hom(D(4A), N) # 0 since N is invariant under the Auslander-Reiten
translation [15, (2.4)]. Let a be a vertex such that there is a non-zero map g
from I(a) to N. Suppose first that a is the end-point of a binomial relation
(p,q). Then I(a) = P(b) is projective, where b = s(p). Thus b appears in
w, say in some ¢, with 1 < r < n. If b = s(g,) , then the first case occurs.
Otherwise ¢, = u,v,, where u, is a non-trivial path and v, is a path such
that e(u,) = s(v,) = b. Then we may assume that v, is a proper subpath of
p. Write p = v,v with v a non-trivial path such that s(v) = e(v,) = e(p,).
Then p,v is a zero path since p,, v are both non-trivial. Moreover ¢,v = u,p
is a zero path since u, is non-trivial, that is the second case occurs.

Suppose now that a is not the end-point of a binomial relation, then
I(a) = M(pq~1'), where p, q are paths such that pg~! is a string starting and
ending on a peak. Note that g factors through the socle-factor of I(a). Using
the same argument in the proof of [12, (2.4)], one can show that there is a
proper subpath v of p (or ¢) which is also a proper subpath of some p; (or
¢s) with 1 < s < n so that p = vu; and p; = uyv, where uy, us are some
non-trivial paths. Then p,u; = usp is a zero path since uy is non-trivial.
Moreover gsuq is also a zero path. In fact if v is non-trivial, then g,u; is a
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zero path since vu; = p is non-zero; and otherwise g,u; = ¢sp is a zero path
since p is a string starting on a peak. This completes the proof.

3. Global dimension

In this section, we shall apply the results of the previous section to study
the combinatorial interpretation of some behavior of the global dimension of
a special biserial algebra.

We shall first find the necessary conditions for a special biserial algebra
to be of global dimension at most two.

3.1. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Let (apB, vqd) be a binomial relation of (Q,I),
where a, 3,7, are some arrows and p,q are some paths. If u is a non-zero
path with e(u) = s(p), then either uap or uyq is non-zero. Dually if v is a
non-zero path with s(v) = e(p), then either pfv or qév is non-zero.

Proof. Note that p3d~—1'q~! is a string such that M(pB5~tq™!) is the
radical of the indecomposable projective module at s(«). If there is a non-
zero path v such that pfv and gdv are both zero paths. Then by Lemma
2.4, the projective dimension of M (pB3d—'q~ ') is greater than one. Hence the
projective dimension of the simple module at s(p) is greater than two, which
is a contradiction. Dually one can show that there is no non-zero path u such
that uap and uvyq are both zero paths. The proof is completed.

3.2. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Then the start-point of a binomial relation of (Q,I)
does not lie in another different binomial relation.

Proof. Assume on the contrary that there are two distinct binomial re-
lations (p1,q1) and (pa, g2) such that ay = s(ps) € ¢1. Let a; = s(p1). Then
as # ay. Write p1 = aquy, q1 = PBivvy, where aq, 5 are arrows and uq, v, vy
are paths with e(v) = s(v;) = a. Then radP(a;) = M (uyv;'v™1). We shall
show that M (ujv;'v™") is of projective dimension greater than one, which
will lead to a desired contradiction.

We claim that v; is a proper subpath of ps or ¢o. In fact, suppose that
vy is non-trivial. The we may assume that the initial arrow as of py is
contained in v;. Now wv; and p, are two non-zero paths having the same
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initial arrow as. Thus one of vy, py is contained in the other. Note that
vy is a string while p, is not. Thus vy is a proper subpath of p,. Write
po = viu with u a non-trivial path. Then uyu is a zero path. If v is non-
trivial, then (vv;)u = vp, is a zero path. It follows now from Lemma 2.4 that
the projective dimension of M (uyv; 'v™!) is greater than one. If v is trivial,
then M (uyv; 'v™') = M(uvr'). By Lemma 2.2, the projective dimension of
M (uyvyt) is greater than one. This completes the proof.

3.3. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Then there is no path in Q) of the form pipaps,
where pi, pa, p3 are non-trivial paths such that py is a string and pips, Paps
are the only zero-relations contained in the path.

Proof. Assume that the lemma was false. Then there is a path ayas - - - ay,
where «; : a;_1 — a; is an arrow, containing exactly two zero-relations
Q1 Qg Q- With 1 < r < s <n and a string «, - - - .

Suppose first that ag is the start-point of a binomial relation (p,q). Let
q1 be the path such that oy ---ay = ayquas. Then p = yu, ¢ = ayq1v, where
7 is an arrow and w,v are some paths. Now M (uv~'¢; ') = radP(ay). We
shall show that the projective dimension M (uv~'q;') is greater than one,
which will lead to a desired contradiction. In fact, if v is non-trivial, then
¢1 is trivial since gia, and ¢qv are both non-zero. Hence s = r = 2, and
M(uv=tq;) = M(uv™!). Note that ay-- -, is a zero-relation and uv'ay
is a string. By Lemma 2.3, the projective dimension of M (uv~1) is greater
than one. If v is trivial, then ¢; is non-trivial and M (uvv~'¢; ') = M (ug; ).
Note that uay is a zero path since ¢, is non-zero. Therefore uay - - - c,, and
q1Qs - -y = Qi - - -y, are both zero paths. By Lemma 2.4, the projective
dimension of M (uq™!) is greater than one.

Suppose now that ag is not the start-point of a binomial relation. Let g
be the path such that o - - - @, = gaav,—1. Then @9 is a string, and P(ag) is
the projective cover of M(qy). Let g3 be the path such that «, - - - s = gzas.
Then M(qgs) is a direct summand of the first syzygy of M (gs). Now ay - - - a, 18
a path such that ¢sa, - -+ a,, = . - - - @, 18 & zero-relation and gz, = ;- - -
is a string by hypothesis. By Lemma 2.3, the projective dimension of M(gs3)
is greater than one, and hence that of M(qy) is greater than two, which is
again a contradiction. This completes the proof.

We are now able to get a combinatorial characterization of the special
biserial algebras of global dimension at most two.
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3.4. Theorem. Let A = kQ/I be a special biserial algebra. Then
the global dimension of A is at most two if and only if (Q,I) satisfies the
following properties:

(GD1) The start-point of a binomial relation does not lie in another dif-
ferent binomaual relation.

(GD2) There is no path of the form pipsps, where py,pa, p3 are non-
trivial paths such that py is a string and pips, pops are the only zero-relations
contained in the path.

(GD3) Let (apB,vqd) be a binomial relation, where o, 3,7,0 are some
arrows and p,q are some paths. If u is a non-zero path with e(u) = s(a),
then either uap or uyq is non-zero. Dually if v is a non-zero path with
s(v) = e(fB), then either pBuv or qdv is non-zero.

Proof. We need only to prove the sufficiency. Assume that (Q, ) satisfies
(GD1), (GD2) and (GD3). Let a be a vertex of @, and let K =radP(a).
We shall show that the projective dimension of K is at most one. This will
complete the proof.

Assume first that a is the start-point of a binomial relation (aq, 8¢2),
where «, 3 are some arrows and ¢i,q. are some non-trivial paths. Then
K = M(qiq;"). We shall verify that the string q;qy ' satisfies none of (PD1),
(PD2), (PD3) and (PD4) as stated in Lemma 2.5. In fact it follows easily
from (GD2) that (PD1) or (PD2) does not occur. Moreover (PD3) does not
occur by (GD3). Finally (PD4) does not occur by (GD1). Therefore the
projective dimension of K is at most one in this case.

Assume now that a is not the start-point of a binomial relation. Suppose
that K is of projective dimension greater than one. Then there is a non-
trivial path u; = aq - - - @, = ause, where «; : a;_1 — a; is an arrow and us is
a path, such that a = ag and M (us) is a direct summand of K. Hence M (uz)
is of projective dimension greater than one. By Lemma 2.5, one of the cases
(PD1), (PD2) and (PD4) occurs. Now (PD1) does not occur by (GD2). If
(PD4) occurs, that is a; is the start-point of a binomial relation (5;vy, usvs),
where 31 is an arrow and vy, vo are non-trivial paths since us is a string. Note
that «y3; is a zero-relation, and a - - - a,.f2 with (5 the initial arrow of vy is
a zero path. By (GD3), vq is an arrow. This implies that M (vy) is the first
syzygy of M (us), and hence not projective. So there is an arrow p such that
either p~1v; is a reduced walk or v;p is a non-zero path. In the first case, 5 p
is a zero-relation, which is contrary to (GD2) shown by the path oy 51p. In
the second case v9p is a zero-relation. Note that ujvs is also a zero-relation.
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This leads also to a contradiction to (GD2) since v is an arrow.

Otherwise a; is not the start-point of a binomial relation, and there is
a path «,;iu3, where a,.41 is an arrow and wug is a non-trivial path, such
that usa,.4 1 is non-zero and usa-qus contains a zero-relation ay - - - ayyqus
with 1 < s < r 4 1. Note that oy ---as_1a,--- a1 is also a zero-relation.
By (GD2), the non-zero path ay-- -, 1 is not string. Thus oy - --a,4q 18
a maximal subpath of a binomial relation. Hence s > 2 since a; is not the
start-point of a binomial relation. Therefore ag---a -+ 1 = us,qq is a
zero path, which is a contradiction. The proof is completed.

4. Main result

In this final section, we shall obtain our promised combinatorial criteria
for deciding if a special biserial algebra which is not a string algebra is tilted
or not. Note that such a special biserial algebra admits a indecomposable
projective-injective module. Hence it is tilted if and only if it is quasi-tilted
[3]. Recall that an algebra A is quasi-tilted if its global dimension is at most
two and each indecomposable module is either of projective dimension at
most one or of injective dimension at most one [8].

In order to formulate our main result, we need the following concept.

4.1. Definition. Let A = kQ/I be a special biserial algebra. A reduced
walk w in Q s called a sequential pair of zero-relations if

(1) w = p1paps, where the p; are non-trivial paths such that p1py and psps
are the only zero-relations contained in w; or

(2) w = pwiq, where wy is a string and p,q are paths which are the only
zero-relations contained in w.

Example. Consider the special biserial algebra given by the quiver

SN,
WA N

bound by the relations Ba— v, dp and py. Then dup~1¢p~1py is a sequential
pair of zero-relations, while pya™1371du is not.
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Remark. Let A = kQ/I be a special biserial algebra. It is easy to verify
that each path with more than one zero-relations contains a sequential pair
of zero-relation, and so does a reduced walk of the form pwq, where w is a
string and p, ¢ are some zero paths.

4.2. Lemma. Let A = kQ/I be a special biserial algebra of global dimen-
sion two. If there is a string module of projective and injective dimensions
both equal to two, then (Q,I) admits a sequential pair of zero-relations.

Proof. Note first that (@, I) satisfies (GD1), (GD2) and (GD3) as stated
in Theorem 3.4. Let now w be a string such that M (w) has projective and
injective dimensions both equal to two. We shall find a sequential pair of
zero-relations in (Q, [).

We first consider the case where w = ¢ is a trivial path at a vertex a.
Then w = e 'e = ee™!. By Lemma 2.5, either (PD1) or (PD4) occurs, and
by Lemma 2.6, either (ID1) or (ID4) occurs. Assume that (PD1) occurs,
that is there is a zero-relation p with initial arrow such that s(a) = a. If
(ID1) occurs, then there is a zero-relation ¢ with e(¢) = a. Thus ¢p is a
sequential pair of zero-relations. If (ID4) occurs, then there is a binomial
relation (uf3,v7y), where u,v are some paths and /3, are some arrows such
that e(a) = a. Then either Sa or ya is a zero-relation, which is a contradic-
tion to (GD2). Dually (PD4) and (ID1) can not both occur. Finally (PD4)
and (ID4) can not both occur by (GD1).

Suppose now that w is non-trivial. Write w = p;'q: - - - ¢,_1p;, *qn, Where
n > 1, the p; and the g; are paths which are non-trivial for 1 < ¢ < n and
1 < 7 < n. We shall consider only the case where p; is non-trivial and ¢, is
trivial, since the other cases can be treated similarly. In this situation, we
have w = qopiq1 - - Gn_1p, " With gy the trivial path at e(p;). By Lemma
2.5, one of the cases (PDi) with 1 < i < 4 occurs, and by Lemma 2.6, one
of the cases (IDi) with 1 < i < 4 occurs. We shall complete the proof by
considering separately the following cases.

(1) Case (PD1) occurs, that is there is a path py with initial arrow «; such
that p1pp is a zero path while pia is non-zero. If (ID1) occurs, then there is
a zero-relation with terminal arrow [ such that e(f5y) = e(p1) = s(ay). Now
[Bocv1 is a zero-relation since p; is non-trivial and p;aq is non-zero. Thus Fyp
gives rise to a contradiction to (GD2). If e(p,) is the end-point of a binomial
relation, then it is of the form (ug, vop;) with wg, vy some non-trivial paths.
Note that vopiay is a zero path. Thus vopipy contains two distinct zero-
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relation since p;a; is non-zero, and hence a sequential pair of zero-relations.
In all other cases, observing that p; is non-trivial for all 1 < ¢ < n, it is easy to
verify that there is a path u, such that u,p, is a zero path for some 1 < r < n.
Thus (u,p,)q 2 - - g1 ' (p1po) contains a sequential pair of zero-relations.

(2) Case (PD2) occurs, that is there is a zero-relation ¢,41 with initial
arrow a,, 11 such that pta,.; is a reduced walk. If (ID2) occurs or e(p,) is
the end-point of a binomial relations, then there is an arrow (,,; such that
Bni1pn is a non-zero path. Thus 5, 1a,,41 is a zero-relation. Then 5,41¢,41
gives rise to a contradiction to (GD2). In all other cases, observing that the g;
with 0 < ¢ < n are non-trivial, it is easy to verify that there is a path vs such
that vsq, is a zero path and vsqsps_jl is a reduced walk for some 0 < s < n.
Thus (vsqs)psis - Py (qny1) contains a sequential pair of zero-relations.

(3) Case (PD3) occurs, that is for some 1 < s < n, there is a non-zero
path wug such that psus and ¢s_jus are both zero paths. Note that e(p;) is
not the end-point of a binomial relation by (GD3), moreover, the ¢; with
0 < 7 < s and the p; with s < i < n are non-trivial. It is easy to verify
that each of (IDi) with 1 < < 4 implies that either for some 0 < r < s,
there is a path v, such that v,q, is a zero path and v,.q,p,. +11 is a reduced
walk; or for some s <t < n, there is a path v; such that v;p, is a zero path.
In the first case (v,q.)p, 11 - Ps1(qs—1us) contains a sequential pair of zero-
relations. In the second case, (v;p;)g;_ 5 - - - g7 (psus) contains a sequential
pair of zero-relations.

(4) The vertex s(py) is the start-point of a binomial relation (pjuq, ¢1v1),
where wuy, v are some non-trivial paths. If (ID1) occurs, then there is a zero
path vy with terminal arrow (3, such that Byp;* is a reduced walk. Then By
is a zero-relation, where 7, is the initial arrow of u;. Now ypy; gives rise to
a contradiction (GD2). If (ID2) occurs, then there is path y, with terminal
arrow (3, such that y,p, is a zero path while (3,p,, is non-zero. If n = 1, then
G1p1uq is a zero path. Therefore y;piu; contains two distinct zero-relations
since (31p; is a non-zero path, and hence a sequential pair of zero-relations.
If n > 1, then pov; is a zero-path. Thus (ynpn)g, ;- -- g3 (p2v1) contains
a sequential pair of zero-relations. Note now that e(p;) and e(q;) are not
end-points of binomial relations by (GD1) and there is no non-zero path y
such that e(y) = s(p1) and yp; and yq; are both zero paths. If (ID3) or
(ID4) occurs, then it is easy to see that n > 1 and for some 2 < r < n, there
is a path v, such that v,p, is a zero path. Therefore (v,p,)g"; -+ g3 (pav1)
contains a sequential pair of zero-relations.
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(5) Assume that n > 1 and s(p,,) is the start-point of a binomial relation
(Pntn, vy,), Where u,,v, are some non-trivial paths. If (ID2) occurs, then
there is a non-trivial path y, with terminal arrow [, such that y,p, is a
zero path while §,p, is non-zero. Note that §,p,u, is a zero path. Thus
YnPn Uy, contains two distinct zero-relations since (3,,p,, is non-zero, and hence
a sequential paire of zero-relations. Note that e(p,) is not the end-point of
a binomial relation. Thus in all other cases, for some 0 < s < n, there is a
non-zero path y, such that y,q, is a zero-path and ysqsp;:l is reduced walk.
Note that g, ju, is a zero path. Thus (ysqs)psii - Pri1(Gn_1uy) contains a
sequential pair of zero-relations.

(6) Assume that n > 1 and some s(ps) with 1 < s < n is the start-point of
a binomial relation (psus, ¢svs), where ug, vs are some non-trivial paths. Note
that e(gs_1) and e(gs) are not end-points of binomial relations by (GD1). It
is then easy to check that each of the (IDi) with 1 <4 < 4 implies that either
for some 0 < r < s there is a non-trivial path ¥, such that y,q, is a zero path
and y,¢,p,. 4}1 is a reduced walk; or for some s < t < n, there is a non-trivial
path y; such that y;p; is a zero path. Note that gs_jus, ps11vs are both zero
paths. Thus in the first case, (y,¢,)pyi1 - Ps_1(gs_1us) contains a sequential
pair of zero-relation. Similarly in the second case, (yp:)gi i -+ - gsi1(Pss1vs)
contains a sequential pair of zero-relation. The proof is now completed.

4.3. Lemma. Let A = kQ/I be a special biserial algebra of global di-
mension two. If there is a band module of projective and injective dimensions
both equal to two, then (Q,I) admits a sequential pair of zero-relations.

Proof. First (Q, 1) satisfies (GD1), (GD2) and (GD3) as stated in The-
orem 3.4. Let w = p1g;' -+ pnq; ! be a band, where n > 1, the p; and the
¢; are non-trivial paths such that s(p;) = s(¢,,). Let N be a band module of
support w such that N is of projective and injective dimensions both equal
to two. Define py = pp,pns1 = 1 and q9 = ¢, ¢ne1 = 1. By Lemma 2.7,
either some s(p,) with 1 < r < n is the start-point of a binomial relation
(g¢r—1q, pyp) or there is a path ug such that psus and gsus are both zero paths
for some 1 < s < n. By the dual of Lemma 2.7, either some e(q,,) with
1 < m < n is the end-point of a binomial relation (up,,,vq,,) or there is a
path v; such that v;p; and v;q;_1 are both zero paths for some 1 <t < n.

Suppose first that the binomial relation (g,_1q,p,p) with 1 < r < n ex-
ists. Then p,_14q, ¢.p are both zero paths. If the binomial relation (up,, vg,,)
with 1 < m < n exists, then m # r — 1 and m # r by (GD1). Note
that vp,,41 and ug,, ; are both zero paths. Thus (vp,+1)gnhs - ¢ (Pr19)
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contains a sequential pair of zero-relations provided that m < r — 1 and
(UGm—1)Pp1 -+ * Pri1 (g-p) contains a sequential pair of zero-relations provided

that m > r. If the path v; exists such that v;p; and v;q;_1 are both zero paths

for some 1 < ¢ < n, then t # r by (GD3). Thus (vip:)gii - - - ¢4 (pr—1q) con-

tains a sequential pair of zero-relations provided that ¢ < 7 and (v;q:—1)p;_; - - - Pri1(q-p)
contains a sequential pair of zero-relations provided that ¢ > r.

Suppose now that the path ug exists such that psus and qsus are both
zero paths for some 1 < s < n. If the binomial relation (up,,,vq,,) with
1 < m < n exists, then m # s by (GD3). Note that vp,,+1 and ug,,_; are
both zero paths. Thus (vpm.1)qh1 - - 51 (pstis) contains a sequential pair
of zero-relations provided that m < s and (ug,,_1)p;,L1 - - - Psi1(qsus) contains
a sequential pair of zero-relations provided that m > s. If the path v; exists
such that v;p; and v;q;_1 are both zero paths for some 1 < t < n, then
(vepe) L. qs__ll (psus) contains a sequential pair of zero-relations if ¢ < s;
and otherwise (viq;_1)p;s -+ Psi1(qsus) contains a sequential pair of zero-
relations. This completes the proof.

We are now able to obtain our main result as follows.

4.4. Theorem. Let A = kQ/I be a special biserial algebra which is not
a string algebra. Then A is tilted if and only if (Q,I) satisfies the following:

(1) There is no sequential pair of zero-relations.

(2) The start-point of a binomial relation does not lie in another different
binomaial relation.

(3) Let (apB,vqd) be a binomial relation, where o, 3,7, d are some arrows
and p,q are some paths. If u is a non-zero path with e(u) = s(«), then either
uap or uyq is non-zero. Dually if v is a non-zero path with s(v) = e([3), then
either pBv or qév is non-zero.

Proof. Since A is not a string algebra, there is at least one indecomposable
projective-injective module. Thus it follows from a result of Coelho and
Skowronski [3] that A is tilted if and only if A is quasi-tilted. We shall show
that A is quasi-tilted if and only if (@, I) satisfies the conditions as stated in
the theorem.

Assume first that (@, ) satisfies (1), (2) and (3). By theorem 3.4, the
global dimension of A is at most two. Let M be an indecomposable module
in mod A which is not projective-injective. Then M is either a string module
or a band module by Theorem 1.4. It follows now from Lemmas 4.2 and 4.3
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that M is either of projective dimension at most one or of injective dimension
at most one. Therefore A is quasi-tilted.

Conversely assume that A is quasi-tilted. In particular the global di-
mension of A is at most two. By Theorem 3.4, (Q, I) satisfies (2) and (3).
Assume on the contrary that (@), I) admits a sequential pair of zero-relation
w. If W = pipaps, where pq, pa, p3 are non-trivial paths and pip, and pops
are the only zero-relations contained w. By Theorem 3.4, py is not a string.
Then there is a binomial relation (ojuas, p2), where oy, o are arrows and wu;
is a path. Let g be the terminal arrow of p; and 5 the initial arrow of ps.
Then (iaq, as33 are zero-relations. Therefore [1a3uas33 is a seugential pair
of zero-relations with u; a string.

Thus we may assume that w is of the form w = pwq, where w is a string
and p, g are paths which are the only zero-relations contained in w. We may
further assume that @ is such that w is of minimal length. Let « be the
terminal arrow of p and [ the initial arrows of q. We claim that aw and
wf are strings. In fact, we write w = p;'qi - - - p,'¢,, where the p; and the
q; are paths which are non-trivial for 1 <7 <n and 1 < j < n. Note that
wfB = pitqr -, q.0 is areduced walk without zero-relations. Suppose that
w( is not a string. Then ¢, is a maximal subpath of a binomial relation,
which is necessarily of the form (p,yu,,g,3), where v is an arrow and w,, is
a path. If n = 1, then avy is a zero-relation. The path p;y gives rise to a
contradiction to Lemma 3.3. Thus n > 1, hence p,, and ¢,_; are non-trivial.
Write ¢,—1 = v,_10, where v,_; is a path and ¢ is an arrow. Then 07 is a
zero-relation. Let wy = pylqr -+ pytyvn_1. Then w, is a proper substring of
w such that p;wd7 is a sequential pair of zero-relation. This contradicts the
minimality of the length of w. Thus w( is a string, and so is aw by duality.
It follows now from Lemma 2.3 and its dual that the string module M (w)
is of projective and injective dimensions both greater than one, which is a
desired contradiction. The proof is completed.

Combining our main result in [12] with the above theorem, we obtain a
complete characterization of tilted special biserial algebras in terms of bound
quivers.

Example. Consider the algebra defined by the bound quiver
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where the relations are pi, a¢, pn, vGu and all possible paths o as well as
all possible differences p¢ — an. This is a special biserial algebra satisfying
the conditions (1), (2) and (3) as stated in the above theorem. Thus it is a
tilted algebra.

We conclude the paper with some remarks. The module category of a
tilted special biserial algebra is well-understood. In fact one easily read off
its Auslander-Reiten quiver from its bound quiver. To be more precise, let
A = kQ/I be a special biserial algebra which is not hereditary of type A, and
let I'y the Auslander-Reiten quiver of A. Then a component of I is either
of shape N4, or (—N)/Nln, or a standard tube or the connecting component.
Assume that (Q, I) admits r(> 0) full bound subquivers of type A,, (of which
71 is not of type Ay) having an arrow entering them; and s(> 0) full bound
subquivers of type A, (of which s; is not of type flg) having an arrow leaving
them. Then [y contains exactly r 4+ s standard orthogonal tubular families,
r components of shape NA,, s components of shape (—N)A, and 2(r; + s;)
non-homogeneous tubes.
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