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Introduction

Tilted algebras, that is endomorphism algebras of tilting modules over
a hereditary algebra, have been one of the main objects of study in repre-
sentation theory of algebras since their introduction by Happel and Ringel
[9]. As a generalization, Happel, Reiten and Smalø studied endomorphism
algebras of tilting objects of a hereditary abelian category which they call
quasi-tilted algebras [8]. We are concerned with the problem of character-
izing these algebras in terms of bound quivers. In our previous paper [12],
we have found some simple combinatorial criteria to determine if a string
algebra is quasi-tilted or tilted or neither. In this paper, we shall consider
the same problem for special biserial algebras which are not string algebras.
Note that such an algebra is tilted if and only if it is quasi-tilted since there
are some indecomposable projective-injective modules [3]. Our strategy is
to study the combinatorial interpretation of some behavious of the homo-
logical dimensions of the indecomposable modules. This enables us to find
first a combinatorial characterization of the special biserial algebras of global
dimension at most two, and then some simple necessary and sufficient con-
ditions for a special biserial algebra to be tilted. As one of the applications,
this allows one to construct a large class of new examples of tilted algebras.

1. Preliminaries

Throughout this paper, denote by A a basic finite dimension algebra over
an algebraically closed field k. It is then well-known that A ∼= kQ/I with
(Q, I) a finite bound quiver [6]. In this paper we shall identify the category
mod A of the finite-dimensional (over k) right A-modules with the category
of the finite-dimensional representations of (Q, I) over k. We shall consider
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only the special biserial algebras. This class of algebras have attracted much
of attention of current research [1, 2, 4,13, 17, 18].

1.1. Definition [2, 7]. An algebra A is called special biserial if A ∼=
kQ/I with (Q, I) a bound quiver satisfying the following:

(1) Each vertex of Q is start-point or end-point of at most two arrows.
(2) For an arrow α, there is at most one arrow β such that αβ 6∈ I and

at most one arrow γ such that γα 6∈ I.
Moreover A is called a string algebra if, in addition, I is generated by a

set of paths of Q.

Let (Q, I) be a bound quiver. A path p of Q is called a zero path if p ∈ I.
A zero path is called a zero-relation of (Q, I) if none of its proper subpaths
is a zero path. Moreover a pair (p, q) of non-zero paths p, q from a vertex a
to a vertex b is called a binomial relation of (Q, I) if λp + µq ∈ I for some
non-zero coefficients λ, µ. We call a the start-point, b the end-point and p, q
the maximal subpaths of (p, q).

In our later use, by saying that A ∼= kQ/I is a special biserial algebra we
mean that the bound quiver (Q, I) satisfies the conditions as stated in the
above definition. In this case, any minimal set of generators of I consists
of zero-relations and binomial relations. However in our terminology, some
zero-relations may not belong to any minimal set of generators of I.

We now fix more notation and terminology which will be used throughout
this paper. Let Q be a finite quiver. For an arrow α of Q, denote by s(α) its
start-point, by e(α) its end-point and by α−1 its formal inverse with start-
point s(α−1) = e(α) and end-point e(α−1) = s(α), and write (α−1)−1 = α.
A walk of positive length n is a sequence w = c1 · · · cn with ci an arrow
or the inverse of an arrow such that s(ci+1) = e(ci) for 1 ≤ i < n. We
call c1 the initial edge of w and cn the terminal edge. Moreover, we define
s(w) = s(c1) and e(w) = e(cn). Finally we define w−1 = c−1

n · · · c−1
1 . A trivial

walk at a vertex a is the trivial path εa with e(εa) = s(εa), its inverse is
itself. A walk w is called reduced if either w is trivial or w = c1 · · · cn such
that ci+1 6= c−1

i for all 1 ≤ i < n. For convenience, we shall allow ourself to
add some appropriate trivial paths in the expression of a walk. For example
if α : a → b is an arrow, we may write α = εaα = αε−1

b . However αα−1 and
εa are two distinct walks.
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A non-trivial reduced walk w = c1 · · · cn is called a reduced cycle if s(w) =
e(w) and cn 6= c−1

1 , and a simple cycle if in addition s(c1), . . . , s(cn) are
pairwise distinct. Another reduced cycle w1 is said to be equivalent to w if
w1 = ci · · · cnc1 · · · ci−1 or w−1

1 ci · · · cnc1 · · · ci−1 for some 1 ≤ i ≤ n.

Let w = c1 · · · cn be a non-trivial reduced walk in Q. We say that a non-
trivial path p of Q is contained in w if there are some 1 ≤ i ≤ j ≤ n such that
p = ci · · · cj or p−1 = ci · · · cj. Note that a path of Q may appear many times
in a reduced walk. Let q be another path contained in w such that q or q−1 is
equal to cr · · · cs for some 1 ≤ r ≤ s ≤ n. We say that p, q point to the same
direction in w if p = ci · · · cj, q = cr · · · cs or p−1 = ci · · · cj, q−1 = cr · · · cs;
otherwise p, q point to opposite directions in w.

1.2. Definition. Let A = kQ/I be a special biserial algebra. A reduced
walk w in Q is called a string if each path contained in w is neither a zero-
relation nor a maximal subpath of a binomial relation of (Q, I).

Example. Consider the special biserial algebra given by the quiver
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bound by the relations βα− δγ, δµ and ργ. Then ρµψ−1φ−1ρδ−1β is a string
while β−1δµψ−1 and βαγ−1µ are not strings.

Let A = kQ/I be a special biserial algebra. Let w be a string in (Q, I).
Throughout this paper we shall denote by M(w) the string module deter-
mined by w. Recall that if w is the trivial path at a vertex a, then M(w)
is the simple module at a. Otherwise w = c1c2 · · · cn, where n ≥ 1 and ci or
c−1
i is an arrow. For 1 ≤ i ≤ n + 1, let Ui = k; and for 1 ≤ i ≤ n, denote

by Uci
the identity map sending x ∈ Ui to x ∈ Ui+1 if ci is an arrow and

otherwise the identity map sending x ∈ Ui+1 to x ∈ Ui. For a vertex a, if a
appears in w, then M(w)a is the direct sum of the spaces Ui with i such that
s(ci) = a or i = n + 1 and e(cn) = a; otherwise M(w)a = 0. For an arrow α,
if α appears in w, then M(w)α is the direct sum of the maps Uci

such that
ci = α or c−1

i = α; otherwise M(w)α is the zero map.

One says that a string w in (Q, I) starts or ends in a deep if there is no
arrow γ such that γ−1w or wγ is a string, respectively; and it starts or ends
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on a peak if there is no arrow δ such that δw or wδ−1 is a string, respectively.
For a vertex a of Q, we denote throughout this paper by S(a), P (a) and
I(a) the simple module, the indecomposable projective module and the in-
decomposable injective module at a, respectively. Then S(a) = M(εa) with
εa the trivial path at a. If a is not the start-point of a binomial relation,
then P (a) = M(u−1v), where u, v are paths of non-negative length starting
with a such that u−1v is a string starting and ending in a deep. Dually, if
a is not the end-point of a binomial relation, then I(a) = M(pq−1), where
p, q are paths of non-negative length ending with a such that pq−1 is a string
starting and ending on a peak. Finally if a is the start-point of a binomial
relation whose end-point is b, then P (a) is isomorphic to I(b), and hence it
is projective-injective.

1.3. Definition. Let A = kQ/I be a special biserial algebra. A non-
trivial reduced cycle of Q is called a band if each of its powers is a string and
it is not a power of a string of less length.

Let A = kQ/I be a special biserial algebra. Let w = c1c2 · · · cn be a band
in (Q, I), where n ≥ 1 and ci or c−1

i is an arrow such that s(c1) = e(cn). Let
φ be an indecomposable automorphism of a k-vector space V . One defines a
band module N = N(w, φ) determined by w and φ as follows:

For 1 ≤ i ≤ n, define Vi = V . For 1 ≤ i < n, let fci
be the identity map

from Vi to Vi+1 if ci is an arrow; and otherwise the identity map from Vi+1

to Vi, and let fcn be the map sending x ∈ Vn to φ(x) ∈ V1 if cn is an arrow;
and otherwise the map sending x ∈ V1 to φ−1(x) ∈ Vn. For each vertex a of
Q, if a appears in w, then Na is the direct sum of the spaces Vi such that
s(ci) = a, and otherwise Na is the zero-space. For each arrow α, if α appears
in w, then Nα is the direct sum of the maps fci

such that ci = α or ci = α−1;
and otherwise Nα is the zero-map.

The indecomposable modules and the almost split sequences over a special
biserial algebra are completely described by Wald and Waschbüsch [18]. We
quote what is needed for our purpose as follows.

1.4. Theorem [18]. Let A = kQ/I be a special biserial algebra. Then

(1) An indecomposable module in mod A is a string module, a band module
or a projective-injective module corresponding to a binomial relation.
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(2) Each band module over A is invariant under the Auslander-Reiten
translation.

It follows from a result of Skowroński [16] that a special biserial algebra
is of directed representation type if and only if there is no special family of
local modules. However his combinatorial interpretation of the existence of
a special family of local modules does not seem completely correct. We shall
give a combinatorial reformulation of this result. In order to do so, we need
the following concept.

1.5. Definition. Let A = kQ/I be a special biserial algebra. Let w =
c1 · · · cn be a reduced cycle of Q, where ci or c−1

i is an arrow αi for 1 ≤ i ≤ n.
Let p1, . . . , ps (s ≥ 0) the paths contained in w which are either zero-relations
or maximal subpaths of binomial relations of (Q, I). We say that w ( and
any reduced walk equivalent to w) is clockwise in (Q, I) if α1, αn, p1, . . . , ps

all point to the same direction in w.

1.6. Theorem. Let A = kQ/I be a special biserial algebra. Then A is
of directed representation type if and only if (Q, I) admits no clockwise cycle.

Proof. Let Ī be the ideal of kQ generated by the zero-relations and the
maximal subpaths of the binomial relations of (Q, I). Then Ā = kQ/Ī is a
string algebra. It is easy to see that a reduced walk of Q is a string or a band
in (Q, I) if and only if it is a string or a band in (Q, Ī), respectively. Therefore
an indecomposable module M in mod A is a string or a band module over
A if and only if it is a string or a band module over Ā, respectively. This
implies that A finite representation type if and only if so is Ā. It now follows
from a result of de la Peña [14] that Ā is of directed representation type if
and only if there is no clockwise cycle in (Q, Ī). Clearly a reduced cyle of
Q is clockwise in (Q, Ī) if and only if it is clockwise in (Q, I). Therefore it
suffices to show that A is of directed representation type if and only if so is
Ā. First that Ā is not of directed representation type implies trivially that
A is not either. Assume now that A is not of directed representation type.
If A is of infinite representation type, then so is Ā. Thus Ā is not of directed
representation type [15]. Suppose that A is of finite representation type.
Then there is no band module in mod A and there is a cycle

(∗) M0
f1−→ M1 → · · · → Mr−1

fr−→ Mr = M0

in mod A, where the Mi are indecomposable modules and the fi are irre-
ducible maps. Then r > 1 and Mi−1 6∼= Mi for all 1 ≤ i ≤ r. Note that each
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Mi with 0 ≤ i ≤ r is either a string module or a projective-injective module
corresponding to a binomial relation of (Q, I). Let s with 0 ≤ s ≤ r be such
that Ms is not a string module. We may assume that 0 < s < r. Thus Ms−1

is the radical of Ms and Ms+1 is the socle-factor of Ms. By computing the
dimensions, we conclude that there are irreducibles maps gs−1 : Ms−1 → Ns

and gs : Ns → Ms+1 with Ns indecomposable and Ns 6∼= Ms. Note then that
Ns is not projective-injective, and hence Ns is a string module. Replacing
fi by gi for s − 1 ≤ i ≤ s, we obtain a cycle in mod A containing fewer
number of non-string modules. Therefore we may assume that (∗) contains
only string modules. This implies that (∗) is a cycle in mod Ā. The proof is
completed.

2. Projective and injective dimensions

In this section, we shall study the combinatorial interpretation of some
behavior of the projective and injective dimensions of the indecomposable
modules over a special biserial algebra. To begin with, we state some ele-
mentary properties of special biserial algebras, which will be used extensively
in our later proofs.

2.1. Lemma. Let A = kQ/I be a special biserial algebra. Then

(1) Any proper subpath of a non-zero path of (Q, I) is a string.

(2) Let u, v and p be non-trivial paths with e(u) = e(v) = s(p). If vp is a
non-zero path, then up contains a zero-relation which is not contained in u.

(3) If p is a non-zero path such that s(p) is the start-point of a binomial
relation of (Q, I), then p is contained in this binomial relation.

(4) Let (p, q) be a binomial relation of (Q, I). If u is a non-trivial path
with e(u) = s(p), then up and uq are both zero paths. If v is a non-trivial
path with s(v) = e(p), then pv and qv are both zero paths.

We skip the proof of the above lemma since it is simply a routine verifi-
cation of the definition of a special biserial algebra.

We shall now find some sufficient conditions for a string module to be of
projective dimension greater than one. Note that each reduced walk w in a
quiver can be uniquely written as w = p−1

1 q1 · · · p−1
n qn, where n ≥ 1, the pi

and the qj are paths which are non-trivial for 1 < i ≤ n, 1 ≤ j < n.
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2.2. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = p−1
1 q1 · · · p−1

n qn

be a string in (Q, I), where n ≥ 1, the pi and the qj are paths which are
non-trivial for 1 < i ≤ n, 1 ≤ j < n. Assume that some s(pr) (1 ≤ r ≤ n) is
the start-point of a binomial relation (prur, qrvr), where ur, vr are non-trivial
paths and ur is of length greater than one if r = 1 and vr is of length greater
than one if r = n. Then the projective dimension of the string module M(w)
is greater than one.

Proof. Let ai = s(pi), bi = e(pi) for 1 ≤ i ≤ n and let bn+1 = e(qn).
Clearly the projective cover of M(w) is ⊕n

i=1P (ai). Let K be the kernel of
the canonical epimorphism from ⊕n

i=1P (ai) to M(w). It suffices to show that
K is not projective.

Let s ≤ r ≤ t be such that ai is the start-point of a binomial relation for
all s ≤ i ≤ t and such that t − s is maximal with respect to this property.
For each s ≤ i ≤ t, let ui and vi be paths such that (piui, qivi) is a binomial
relation. Note that the ui and the vi are non-trivial since w is a string. If
s > 1, then let vs−1 be the path such that qs−1vs−1 is a string ending in a
deep and otherwise let v0 be the trivial path at b1. Similarly if t < n, let ut+1

be the path such that pt+1ut+1 is a string ending in a deep and otherwise let
un+1 be the trivial path at bn+1.

Suppose first that r = 1. Then u1 is of length greater than one by
hypothesis. Let u1 = αu with α an arrow and u a non-trivial path. If
n = 1, then v1 is also of length greater than one by hypothesis, and hence
v1 = βv with β an arrow v a non-trivial path. Now uv−1 is a string such that
K = M(uv−1), which is not projective since u, v are non-trivial. If n > 1,
then

w1 = uv−1
1 u2 · · · utv

−1
t ut+1

is a string such that M(w1) is a direct summand of K. Note that M(w1) is
not projective since u, v1 are non-trivial. Hence K is not either. A symmetric
argument shows that K is not projective if r = n.

Suppose now that 1 < r < n. Then it is easy to see that

w2 = v−1
s−1usv

−1
s · · · urv

−1
r · · ·utv

−1
t ut+1

is a string such that M(w2) is a direct summand of K. Note that M(w2) is
not projective since ur, vr are non-trivial, and hence K is not either. This
completes the proof.
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2.3. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = p−1
1 q1 · · · p−1

n qn

be a string in (Q, I), where n ≥ 1, the pi and the qj are paths which are non-
trivial for 1 < i ≤ n, 1 ≤ j < n. Assume that there is a path q with initial
arrow α such that wα is a string and qrq admits exactly one zero-relation,
and the zero-relation contains q. Then the projective dimension of M(w) is
greater than one.

Proof. First note that q is of length greater than one. Write q = αuβ with
β an arrow and u a path. Then qnαu and uβ are non-zero by hypothesis. Let
ai = s(qi) for 1 ≤ i ≤ n. Then ⊕n

i=1P (ai) is the projective cover of M(w).
Let K be the kernel of the canonical epimorphism from ⊕n

i=1P (ai) to M(w).
If an is not the start-point of a binomial relation, then it is easy to see that
the string module M(u) is a direct summand of K, which is not projective
since uβ is non-zero. Thus the projective dimension of M(w) is greater than
one.

Assume now that an is the start-point of a binomial relation. It is neces-
sarily of the form (pnun, qnαuvn), where un is a non-trivial path and vn is a
path such that uvn is non-trivial, since qnαu is non-zero and qnα is a string
by hypothesis. If n > 1 or n = 1 with u1 of length greater than one, then
M(w) is of projective dimension greater than one by Lemma 2.2. Suppose
that n = 1 and u1 is an arrow. Then K = M(uv1). If u is trivial, then
K = M(v1), which is not projective since v−1

1 β is a string. If u is non-trivial,
then v1 is trivial since uβ, uv1 are non-zero. Thus K = M(u), which is not
projective since uβ is non-zero. Therefore the projective dimension of M(w)
is greater than one. The proof is completed.

2.4. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = p−1
1 q1 · · · p−1

n qn

be a string in (Q, I), where n > 1, the pi and the qj are paths which are
non-trivial for 1 < i ≤ n, 1 ≤ j < n. If there is a non-zero path p such that
for some 1 < r ≤ n, both qr−1p and prp are zero paths, then the projective
dimension of M(w) is greater than one.

Proof. For each 1 ≤ i ≤ n, let ai = s(pi). Then ⊕n
i=1P (ai) is the

projective cover of M(w). Let K be the kernel of the canonical epimorphism
from ⊕n

i=1P (ai) to M(w). Let p be a non-zero path such that qr−1p and prp
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are zero paths for some 1 < r ≤ n. We may assume that p is of minimal
length with respect to this property. Write p = uα, where α is an arrow and
u is a path. Then either qr−1u or pru is non-zero by the minimality of p.

Suppose that ar−1 is the start-point of a binomial relation. It is necessarily
of the form (pr−1ur−1, qr−1vr−1) with ur−1, vr−1 some non-trivial paths. If
r > 2 or r = 2 with ur−1 of length greater than one, then M(w) is of
projective dimension greater than one by Lemma 2.2. Assume now that
r = 2 and u1 is an arrow. Since p is a non-zero path and q1p is a zero path,
it is easy to see that v−1

1 p is a reduced walk. Moreover a2 is not the start-
point of a binomial relation since p2v1 and p2p are both zero-paths. If p2u
is a zero path, then q1u is non-zero with u non-trivial, which is impossible.
Therefore p2u is non-zero, and hence p2u is a string ending in a deep. It is
now easy to see that M(v−1

1 u) is a direct summand of K. Note that M(v−1
1 u)

is not projective since uα = p is non-zero. Therefore M(w) is of projective
dimension greater than one. Using a symmetric argument, one can show that
M(w) is of projective dimension greater than one if as is the start-point of a
binomial relation.

Suppose now that neither as−1 nor as is the start-point of a binomial
relation. We may assume that psu is non-zero. Let v be the path such that
qs−1v is a string ending in a deep. Then M(v−1u) is a direct summand of K.
Note that M(v−1u) is not projective since uα is non-zero. Therefore M(w)
is of projective dimension greater than one. The proof is completed.

We shall now find some necessary conditions for a string module to be of
projective dimension greater than one.

2.5. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = p−1
1 q1 · · · p−1

n qn

be a string in (Q, I), where n ≥ 1, the pi and the qj are paths which are
non-trivial for 1 < i ≤ n and 1 ≤ j < n. If the projective dimension of
M(w) is greater than one, then one of the following cases occurs:

(PD1) There is a path p with initial arrow α such that α−1w is a reduced
walk without zero-relations and p1p admits a zero-relation containing p.

(PD2) There is a path q with initial arrow β such that wβ is a reduced
walk without zero-relations and qnq admits a zero-relation containing q.

(PD3) There is a non-zero path u such that for some 1 < s ≤ n, both
qs−1u and psu are zero paths.
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(PD4) Some s(pr) with 1 ≤ r ≤ n is the start-point of a binomial relation.

Proof. Assume that none of the stated cases occurs. We shall show that
the projective dimension of M(w) is less than two. Let ai = s(pi), bi = e(pi)
for 1 ≤ i ≤ n, and let bn+1 = e(qn). Then the projective cover of M(w) is
⊕n

i=1P (ai). Let K be the kernel of the canonical epimorphism from ⊕n
i=1P (ai)

to M(w). It suffices to show that K is projective.

We fix some more notations. Since (PD4) does not occur, ai is not the
start-point of a binomial relation for all 1 ≤ i ≤ n. Denote by ui, vi the
paths such that u−1

i p−1
i qivi is a string starting and ending in a deep. Then

P (ai) = M(u−1
i p−1

i qivi) for all 1 ≤ i ≤ r. For each 1 < i ≤ r, bi is not the
start-point of a binomial relation since (PD3) does not occur. Thus v−1

i−1ui

is a string, which starts and ends in a deep since (PD3) does not occur.
Therefore M(v−1

i−1ui) = P (bi) for all 1 < i ≤ n.

Define K1 = 0 if u1 is trivial. Otherwise write u1 = α1u0 with α1 an arrow
and u0 a path, and define K1 = M(u0). Note that p1α1 is non-zero. Since
(PD1) does not occur, s(u0) is not the start-point of a binomial relation and
u0 is a string starting and ending in a deep. Thus K1 = P (s(u0)) is projective.
Similarly define Kn+1 = 0 if vn is trivial. Otherwise write vn = αn+1vn+1 with
αn+1 an arrow and vn+1 a path. Define Kn+1 = M(vn+1), which is in fact
P (s(vn+1)) since (PD2) does not occur. Now by computing the dimension of
modules, we see that

0 → K1 ⊕n
i=2 M(v−1

i−1ui)⊕Kn+1 → ⊕n
i=1P (ai) → M(w) → 0

is a short exact sequence in mod A. Thus K = K1 ⊕r
i=2 M(v−1

i−1ui)⊕Kr+1 is
projective. The proof is completed.

For the convenience of the reader, we state explicitly the dual result
concerning the injective dimension of string modules.

2.6. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = q−1
1 p−1

1 · · · qnp−1
n

be a string, where n ≥ 1, the qi and the pj are paths which are non-trivial
for 1 < i ≤ n and 1 ≤ j < n. If the injective dimension of M(w) is greater
than one, then one of the following cases occurs:

(ID1) There is a path q with terminal arrow α such that αw is a reduced
walk without zero-relations and qq1 admits a zero-relation containing q.
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(ID2) There is a path p with terminal arrow β such that wβ−1 is a reduced
walk without zero-relations and ppn admits a zero-relation containing p.

(ID3) There is a non-zero path u such that for some 1 < s ≤ n, both
ups−1 and uqs are zero paths.

(ID4) Some e(qr) with 1 ≤ r ≤ n is the end-point of a binomial relation.

We conclude this section by considering the projective dimension of the
band modules.

2.7. Lemma. Let A = kQ/I be a special biserial algebra. Let

w = p1q
−1
1 · · · pnq−1

n

be a band, where n ≥ 1, the pi and the qi are non-trivial paths such that
s(p1) = s(qn). Let N be a band module of support w. If N has projective
dimension greater than one, then one of the following cases occurs:

(1) Some s(pr) with 1 ≤ r ≤ n is the start-point of a binomial relation.

(2) There is a non-zero path u such that both qru and pru are zero paths
for some 1 ≤ r ≤ n.

Proof. Assume that the projective dimension of N is greater than one.
Then Hom(D(AA), N) 6= 0 since N is invariant under the Auslander-Reiten
translation [15, (2.4)]. Let a be a vertex such that there is a non-zero map g
from I(a) to N . Suppose first that a is the end-point of a binomial relation
(p, q). Then I(a) = P (b) is projective, where b = s(p). Thus b appears in
w, say in some qr with 1 ≤ r ≤ n. If b = s(qr) , then the first case occurs.
Otherwise qr = urvr, where ur is a non-trivial path and vr is a path such
that e(ur) = s(vr) = b. Then we may assume that vr is a proper subpath of
p. Write p = vrv with v a non-trivial path such that s(v) = e(vr) = e(pr).
Then prv is a zero path since pr, v are both non-trivial. Moreover qrv = urp
is a zero path since ur is non-trivial, that is the second case occurs.

Suppose now that a is not the end-point of a binomial relation, then
I(a) = M(pq−1), where p, q are paths such that pq−1 is a string starting and
ending on a peak. Note that g factors through the socle-factor of I(a). Using
the same argument in the proof of [12, (2.4)], one can show that there is a
proper subpath v of p (or q) which is also a proper subpath of some ps (or
qs) with 1 ≤ s ≤ n so that p = vu1 and ps = u2v, where u1, u2 are some
non-trivial paths. Then psu1 = u2p is a zero path since u2 is non-trivial.
Moreover qsu1 is also a zero path. In fact if v is non-trivial, then qsu1 is a
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zero path since vu1 = p is non-zero; and otherwise qsu1 = qsp is a zero path
since p is a string starting on a peak. This completes the proof.

3. Global dimension

In this section, we shall apply the results of the previous section to study
the combinatorial interpretation of some behavior of the global dimension of
a special biserial algebra.

We shall first find the necessary conditions for a special biserial algebra
to be of global dimension at most two.

3.1. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Let (αpβ, γqδ) be a binomial relation of (Q, I),
where α, β, γ, δ are some arrows and p, q are some paths. If u is a non-zero
path with e(u) = s(p), then either uαp or uγq is non-zero. Dually if v is a
non-zero path with s(v) = e(p), then either pβv or qδv is non-zero.

Proof. Note that pβδ−1q−1 is a string such that M(pβδ−1q−1) is the
radical of the indecomposable projective module at s(α). If there is a non-
zero path v such that pβv and qδv are both zero paths. Then by Lemma
2.4, the projective dimension of M(pβδ−1q−1) is greater than one. Hence the
projective dimension of the simple module at s(p) is greater than two, which
is a contradiction. Dually one can show that there is no non-zero path u such
that uαp and uγq are both zero paths. The proof is completed.

3.2. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Then the start-point of a binomial relation of (Q, I)
does not lie in another different binomial relation.

Proof. Assume on the contrary that there are two distinct binomial re-
lations (p1, q1) and (p2, q2) such that a2 = s(p2) ∈ q1. Let a1 = s(p1). Then
a2 6= a1. Write p1 = α1u1, q1 = β1vv1, where α1, β1 are arrows and u1, v, v1

are paths with e(v) = s(v1) = a2. Then radP (a1) = M(u1v
−1
1 v−1). We shall

show that M(u1v
−1
1 v−1) is of projective dimension greater than one, which

will lead to a desired contradiction.
We claim that v1 is a proper subpath of p2 or q2. In fact, suppose that

v1 is non-trivial. The we may assume that the initial arrow α2 of p2 is
contained in v1. Now v1 and p2 are two non-zero paths having the same

12



initial arrow α2. Thus one of v1, p2 is contained in the other. Note that
v1 is a string while p2 is not. Thus v1 is a proper subpath of p2. Write
p2 = v1u with u a non-trivial path. Then u1u is a zero path. If v is non-
trivial, then (vv1)u = vp2 is a zero path. It follows now from Lemma 2.4 that
the projective dimension of M(u1v

−1
1 v−1) is greater than one. If v is trivial,

then M(u1v
−1
1 v−1) = M(u1v

−1
1 ). By Lemma 2.2, the projective dimension of

M(u1v
−1
1 ) is greater than one. This completes the proof.

3.3. Lemma. Let A = kQ/I be a special biserial algebra of global
dimension at most two. Then there is no path in Q of the form p1p2p3,
where p1, p2, p3 are non-trivial paths such that p2 is a string and p1p2, p2p3

are the only zero-relations contained in the path.

Proof. Assume that the lemma was false. Then there is a path α1α2 · · ·αn,
where αi : ai−1 → ai is an arrow, containing exactly two zero-relations
α1 · · ·αs, αr · · ·αn with 1 < r ≤ s < n and a string αr · · ·αs.

Suppose first that a0 is the start-point of a binomial relation (p, q). Let
q1 be the path such that α1 · · ·αs = α1q1αs. Then p = γu, q = α1q1v, where
γ is an arrow and u, v are some paths. Now M(uv−1q−1

1 ) = radP (a0). We
shall show that the projective dimension M(uv−1q−1

1 ) is greater than one,
which will lead to a desired contradiction. In fact, if v is non-trivial, then
q1 is trivial since q1αs and q1v are both non-zero. Hence s = r = 2, and
M(uv−1q−1

1 ) = M(uv−1). Note that α2 · · ·αt is a zero-relation and uv−1α2

is a string. By Lemma 2.3, the projective dimension of M(uv−1) is greater
than one. If v is trivial, then q1 is non-trivial and M(uv−1q−1

1 ) = M(uq−1
1 ).

Note that uαs is a zero path since q1αs is non-zero. Therefore uαs · · ·αn and
q1αs · · ·αn = α2 · · ·αn are both zero paths. By Lemma 2.4, the projective
dimension of M(uq−1) is greater than one.

Suppose now that a0 is not the start-point of a binomial relation. Let q2

be the path such that α1 · · ·αr−1 = q2αr−1. Then q2 is a string, and P (a0) is
the projective cover of M(q2). Let q3 be the path such that αr · · ·αs = q3αs.
Then M(q3) is a direct summand of the first syzygy of M(q2). Now αs · · ·αn is
a path such that q3αs · · ·αn = αr · · ·αn is a zero-relation and q3αs = αr · · ·αs

is a string by hypothesis. By Lemma 2.3, the projective dimension of M(q3)
is greater than one, and hence that of M(q2) is greater than two, which is
again a contradiction. This completes the proof.

We are now able to get a combinatorial characterization of the special
biserial algebras of global dimension at most two.
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3.4. Theorem. Let A = kQ/I be a special biserial algebra. Then
the global dimension of A is at most two if and only if (Q, I) satisfies the
following properties:

(GD1) The start-point of a binomial relation does not lie in another dif-
ferent binomial relation.

(GD2) There is no path of the form p1p2p3, where p1, p2, p3 are non-
trivial paths such that p2 is a string and p1p2, p2p3 are the only zero-relations
contained in the path.

(GD3) Let (αpβ, γqδ) be a binomial relation, where α, β, γ, δ are some
arrows and p, q are some paths. If u is a non-zero path with e(u) = s(α),
then either uαp or uγq is non-zero. Dually if v is a non-zero path with
s(v) = e(β), then either pβv or qδv is non-zero.

Proof. We need only to prove the sufficiency. Assume that (Q, I) satisfies
(GD1), (GD2) and (GD3). Let a be a vertex of Q, and let K =radP (a).
We shall show that the projective dimension of K is at most one. This will
complete the proof.

Assume first that a is the start-point of a binomial relation (αq1, βq2),
where α, β are some arrows and q1, q2 are some non-trivial paths. Then
K = M(q1q

−1
2 ). We shall verify that the string q1q

−1
2 satisfies none of (PD1),

(PD2), (PD3) and (PD4) as stated in Lemma 2.5. In fact it follows easily
from (GD2) that (PD1) or (PD2) does not occur. Moreover (PD3) does not
occur by (GD3). Finally (PD4) does not occur by (GD1). Therefore the
projective dimension of K is at most one in this case.

Assume now that a is not the start-point of a binomial relation. Suppose
that K is of projective dimension greater than one. Then there is a non-
trivial path u1 = α1 · · ·αr = α1u2, where αi : ai−1 → ai is an arrow and u2 is
a path, such that a = a0 and M(u2) is a direct summand of K. Hence M(u2)
is of projective dimension greater than one. By Lemma 2.5, one of the cases
(PD1), (PD2) and (PD4) occurs. Now (PD1) does not occur by (GD2). If
(PD4) occurs, that is a1 is the start-point of a binomial relation (β1v1, u2v2),
where β1 is an arrow and v1, v2 are non-trivial paths since u2 is a string. Note
that α1β1 is a zero-relation, and α1 · · ·αrβ2 with β2 the initial arrow of v2 is
a zero path. By (GD3), v2 is an arrow. This implies that M(v1) is the first
syzygy of M(u2), and hence not projective. So there is an arrow ρ such that
either ρ−1v1 is a reduced walk or v1ρ is a non-zero path. In the first case, β1ρ
is a zero-relation, which is contrary to (GD2) shown by the path α1β1ρ. In
the second case v2ρ is a zero-relation. Note that u1v2 is also a zero-relation.
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This leads also to a contradiction to (GD2) since v2 is an arrow.
Otherwise a1 is not the start-point of a binomial relation, and there is

a path αr+1u3, where αr+1 is an arrow and u3 is a non-trivial path, such
that u2αr+1 is non-zero and u2αr+1u3 contains a zero-relation αs · · ·αr+1u3

with 1 < s ≤ r + 1. Note that α1 · · ·αs−1αs · · ·αr+1 is also a zero-relation.
By (GD2), the non-zero path αs · · ·αr+1 is not string. Thus αs · · ·αr+1 is
a maximal subpath of a binomial relation. Hence s > 2 since a1 is not the
start-point of a binomial relation. Therefore α2 · · ·αs · · ·αr+1 = u2αr+1 is a
zero path, which is a contradiction. The proof is completed.

4. Main result

In this final section, we shall obtain our promised combinatorial criteria
for deciding if a special biserial algebra which is not a string algebra is tilted
or not. Note that such a special biserial algebra admits a indecomposable
projective-injective module. Hence it is tilted if and only if it is quasi-tilted
[3]. Recall that an algebra A is quasi-tilted if its global dimension is at most
two and each indecomposable module is either of projective dimension at
most one or of injective dimension at most one [8].

In order to formulate our main result, we need the following concept.

4.1. Definition. Let A = kQ/I be a special biserial algebra. A reduced
walk w in Q is called a sequential pair of zero-relations if

(1) w = p1p2p3, where the pi are non-trivial paths such that p1p2 and p2p3

are the only zero-relations contained in w; or
(2) w = pw1q, where w1 is a string and p, q are paths which are the only

zero-relations contained in w.

Example. Consider the special biserial algebra given by the quiver
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bound by the relations βα−δγ, δµ and ργ. Then δµψ−1φ−1ργ is a sequential
pair of zero-relations, while ργα−1β−1δµ is not.
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Remark. Let A = kQ/I be a special biserial algebra. It is easy to verify
that each path with more than one zero-relations contains a sequential pair
of zero-relation, and so does a reduced walk of the form pwq, where w is a
string and p, q are some zero paths.

4.2. Lemma. Let A = kQ/I be a special biserial algebra of global dimen-
sion two. If there is a string module of projective and injective dimensions
both equal to two, then (Q, I) admits a sequential pair of zero-relations.

Proof. Note first that (Q, I) satisfies (GD1), (GD2) and (GD3) as stated
in Theorem 3.4. Let now w be a string such that M(w) has projective and
injective dimensions both equal to two. We shall find a sequential pair of
zero-relations in (Q, I).

We first consider the case where w = ε is a trivial path at a vertex a.
Then w = ε−1ε = εε−1. By Lemma 2.5, either (PD1) or (PD4) occurs, and
by Lemma 2.6, either (ID1) or (ID4) occurs. Assume that (PD1) occurs,
that is there is a zero-relation p with initial arrow such that s(α) = a. If
(ID1) occurs, then there is a zero-relation q with e(q) = a. Thus qp is a
sequential pair of zero-relations. If (ID4) occurs, then there is a binomial
relation (uβ, vγ), where u, v are some paths and β, γ are some arrows such
that e(α) = a. Then either βα or γα is a zero-relation, which is a contradic-
tion to (GD2). Dually (PD4) and (ID1) can not both occur. Finally (PD4)
and (ID4) can not both occur by (GD1).

Suppose now that w is non-trivial. Write w = p−1
1 q1 · · · qr−1p

−1
n qn, where

n ≥ 1, the pi and the qj are paths which are non-trivial for 1 < i ≤ n and
1 ≤ j < n. We shall consider only the case where p1 is non-trivial and qn is
trivial, since the other cases can be treated similarly. In this situation, we
have w = q0p

−1
1 q1 · · · qn−1p

−1
n with q0 the trivial path at e(p1). By Lemma

2.5, one of the cases (PDi) with 1 ≤ i ≤ 4 occurs, and by Lemma 2.6, one
of the cases (IDi) with 1 ≤ i ≤ 4 occurs. We shall complete the proof by
considering separately the following cases.

(1) Case (PD1) occurs, that is there is a path p0 with initial arrow α1 such
that p1p0 is a zero path while p1α1 is non-zero. If (ID1) occurs, then there is
a zero-relation with terminal arrow β0 such that e(β0) = e(p1) = s(α1). Now
β0α1 is a zero-relation since p1 is non-trivial and p1α1 is non-zero. Thus β0p
gives rise to a contradiction to (GD2). If e(p1) is the end-point of a binomial
relation, then it is of the form (u0, v0p1) with u0, v0 some non-trivial paths.
Note that v0p1α1 is a zero path. Thus v0p1p0 contains two distinct zero-
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relation since p1α1 is non-zero, and hence a sequential pair of zero-relations.
In all other cases, observing that pi is non-trivial for all 1 ≤ i ≤ n, it is easy to
verify that there is a path ur such that urpr is a zero path for some 1 ≤ r ≤ n.
Thus (urpr)q

−1
r−1 · · · q−1

1 (p1p0) contains a sequential pair of zero-relations.

(2) Case (PD2) occurs, that is there is a zero-relation qn+1 with initial
arrow αn+1 such that p−1

n αn+1 is a reduced walk. If (ID2) occurs or e(pn) is
the end-point of a binomial relations, then there is an arrow βn+1 such that
βn+1pn is a non-zero path. Thus βn+1αn+1 is a zero-relation. Then βn+1qn+1

gives rise to a contradiction to (GD2). In all other cases, observing that the qi

with 0 < i < n are non-trivial, it is easy to verify that there is a path vs such
that vsqs is a zero path and vsqsp

−1
s+1 is a reduced walk for some 0 ≤ s < n.

Thus (vsqs)p
−1
s+1 · · · p−1

n (qn+1) contains a sequential pair of zero-relations.

(3) Case (PD3) occurs, that is for some 1 < s ≤ n, there is a non-zero
path us such that psus and qs−1us are both zero paths. Note that e(ps) is
not the end-point of a binomial relation by (GD3), moreover, the qi with
0 < i < s and the pi with s ≤ i ≤ n are non-trivial. It is easy to verify
that each of (IDi) with 1 ≤ i ≤ 4 implies that either for some 0 ≤ r < s,
there is a path vr such that vrqr is a zero path and vrqrp

−1
r+1 is a reduced

walk; or for some s ≤ t ≤ n, there is a path vt such that vtpt is a zero path.
In the first case (vrqr)p

−1
r+1 · · · p−1

s−1(qs−1us) contains a sequential pair of zero-
relations. In the second case, (vtpt)q

−1
t−1 · · · q−1

s (psus) contains a sequential
pair of zero-relations.

(4) The vertex s(p1) is the start-point of a binomial relation (p1u1, q1v1),
where u1, v1 are some non-trivial paths. If (ID1) occurs, then there is a zero
path v0 with terminal arrow β0 such that β0p

−1
1 is a reduced walk. Then β0γ1

is a zero-relation, where γ1 is the initial arrow of u1. Now y0γ1 gives rise to
a contradiction (GD2). If (ID2) occurs, then there is path yn with terminal
arrow βn such that ynpn is a zero path while βnpn is non-zero. If n = 1, then
β1p1u1 is a zero path. Therefore y1p1u1 contains two distinct zero-relations
since β1p1 is a non-zero path, and hence a sequential pair of zero-relations.
If n > 1, then p2v1 is a zero-path. Thus (ynpn)q−1

n−1 · · · q−1
3 (p2v1) contains

a sequential pair of zero-relations. Note now that e(p1) and e(q1) are not
end-points of binomial relations by (GD1) and there is no non-zero path y
such that e(y) = s(p1) and yp1 and yq1 are both zero paths. If (ID3) or
(ID4) occurs, then it is easy to see that n > 1 and for some 2 ≤ r ≤ n, there
is a path vr such that vrpr is a zero path. Therefore (vrpr)q

−1
r−1 · · · q−1

3 (p2v1)
contains a sequential pair of zero-relations.
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(5) Assume that n > 1 and s(pn) is the start-point of a binomial relation
(pnun, vn), where un, vn are some non-trivial paths. If (ID2) occurs, then
there is a non-trivial path yn with terminal arrow βn such that ynpn is a
zero path while βnpn is non-zero. Note that βnpnun is a zero path. Thus
ynpnun contains two distinct zero-relations since βnpn is non-zero, and hence
a sequential paire of zero-relations. Note that e(pn) is not the end-point of
a binomial relation. Thus in all other cases, for some 0 ≤ s < n, there is a
non-zero path ys such that ysqs is a zero-path and ysqsp

−1
s+1 is reduced walk.

Note that qn−1un is a zero path. Thus (ysqs)p
−1
s+1 · · · p−1

n−1(qn−1un) contains a
sequential pair of zero-relations.

(6) Assume that n > 1 and some s(ps) with 1 < s < n is the start-point of
a binomial relation (psus, qsvs), where us, vs are some non-trivial paths. Note
that e(qs−1) and e(qs) are not end-points of binomial relations by (GD1). It
is then easy to check that each of the (IDi) with 1 ≤ i ≤ 4 implies that either
for some 0 ≤ r < s there is a non-trivial path yr such that yrqr is a zero path
and yrqrp

−1
r+1 is a reduced walk; or for some s < t ≤ n, there is a non-trivial

path yt such that ytpt is a zero path. Note that qs−1us, ps+1vs are both zero
paths. Thus in the first case, (yrqr)p

−1
r+1 · · · p−1

s−1(qs−1us) contains a sequential
pair of zero-relation. Similarly in the second case, (ytpt)q

−1
t−1 · · · q−1

s+1(ps+1vs)
contains a sequential pair of zero-relation. The proof is now completed.

4.3. Lemma. Let A = kQ/I be a special biserial algebra of global di-
mension two. If there is a band module of projective and injective dimensions
both equal to two, then (Q, I) admits a sequential pair of zero-relations.

Proof. First (Q, I) satisfies (GD1), (GD2) and (GD3) as stated in The-
orem 3.4. Let w = p1q

−1
1 · · · pnq−1

n be a band, where n ≥ 1, the pi and the
qi are non-trivial paths such that s(p1) = s(qn). Let N be a band module of
support w such that N is of projective and injective dimensions both equal
to two. Define p0 = pn, pn+1 = 1 and q0 = qn, qn+1 = 1. By Lemma 2.7,
either some s(pr) with 1 ≤ r ≤ n is the start-point of a binomial relation
(qr−1q, prp) or there is a path us such that psus and qsus are both zero paths
for some 1 ≤ s ≤ n. By the dual of Lemma 2.7, either some e(qm) with
1 ≤ m ≤ n is the end-point of a binomial relation (upm, vqm) or there is a
path vt such that vtpt and vtqt−1 are both zero paths for some 1 ≤ t ≤ n.

Suppose first that the binomial relation (qr−1q, prp) with 1 ≤ r ≤ n ex-
ists. Then pr−1q, qrp are both zero paths. If the binomial relation (upm, vqm)
with 1 ≤ m ≤ n exists, then m 6= r − 1 and m 6= r by (GD1). Note
that vpm+1 and uqm−1 are both zero paths. Thus (vpm+1)q

−1
m+1 · · · q−1

r−2(pr−1q)
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contains a sequential pair of zero-relations provided that m < r − 1 and
(uqm−1)p

−1
m−1 · · · p−1

r+1(qrp) contains a sequential pair of zero-relations provided
that m > r. If the path vt exists such that vtpt and vtqt−1 are both zero paths
for some 1 ≤ t ≤ n, then t 6= r by (GD3). Thus (vtpt)q

−1
t+1 · · · q−1

r−1(pr−1q) con-
tains a sequential pair of zero-relations provided that t < r and (vtqt−1)p

−1
t−1 · · · p−1

r+1(qrp)
contains a sequential pair of zero-relations provided that t > r.

Suppose now that the path us exists such that psus and qsus are both
zero paths for some 1 ≤ s ≤ n. If the binomial relation (upm, vqm) with
1 ≤ m ≤ n exists, then m 6= s by (GD3). Note that vpm+1 and uqm−1 are
both zero paths. Thus (vpm+1)q

−1
m+1 · · · q−1

s−1(psus) contains a sequential pair
of zero-relations provided that m < s and (uqm−1)p

−1
m−1 · · · p−1

s+1(qsus) contains
a sequential pair of zero-relations provided that m > s. If the path vt exists
such that vtpt and vtqt−1 are both zero paths for some 1 ≤ t ≤ n, then
(vtpt)q

−1
t · · · q−1

s−1(psus) contains a sequential pair of zero-relations if t ≤ s;
and otherwise (vtqt−1)p

−1
t−2 · · · p−1

s+1(qsus) contains a sequential pair of zero-
relations. This completes the proof.

We are now able to obtain our main result as follows.

4.4. Theorem. Let A = kQ/I be a special biserial algebra which is not
a string algebra. Then A is tilted if and only if (Q, I) satisfies the following:

(1) There is no sequential pair of zero-relations.

(2) The start-point of a binomial relation does not lie in another different
binomial relation.

(3) Let (αpβ, γqδ) be a binomial relation, where α, β, γ, δ are some arrows
and p, q are some paths. If u is a non-zero path with e(u) = s(α), then either
uαp or uγq is non-zero. Dually if v is a non-zero path with s(v) = e(β), then
either pβv or qδv is non-zero.

Proof. Since A is not a string algebra, there is at least one indecomposable
projective-injective module. Thus it follows from a result of Coelho and
Skowroński [3] that A is tilted if and only if A is quasi-tilted. We shall show
that A is quasi-tilted if and only if (Q, I) satisfies the conditions as stated in
the theorem.

Assume first that (Q, I) satisfies (1), (2) and (3). By theorem 3.4, the
global dimension of A is at most two. Let M be an indecomposable module
in mod A which is not projective-injective. Then M is either a string module
or a band module by Theorem 1.4. It follows now from Lemmas 4.2 and 4.3
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that M is either of projective dimension at most one or of injective dimension
at most one. Therefore A is quasi-tilted.

Conversely assume that A is quasi-tilted. In particular the global di-
mension of A is at most two. By Theorem 3.4, (Q, I) satisfies (2) and (3).
Assume on the contrary that (Q, I) admits a sequential pair of zero-relation
w̃. If w̃ = p1p2p3, where p1, p2, p3 are non-trivial paths and p1p2 and p2p3

are the only zero-relations contained w̃. By Theorem 3.4, p2 is not a string.
Then there is a binomial relation (α1uα2, p2), where α1, α2 are arrows and u1

is a path. Let β1 be the terminal arrow of p1 and β3 the initial arrow of p3.
Then β1α1, α2β3 are zero-relations. Therefore β1α1uα2β3 is a seuqential pair
of zero-relations with u1 a string.

Thus we may assume that w̃ is of the form w̃ = pwq, where w is a string
and p, q are paths which are the only zero-relations contained in w̃. We may
further assume that w̃ is such that w is of minimal length. Let α be the
terminal arrow of p and β the initial arrows of q. We claim that αw and
wβ are strings. In fact, we write w = p−1

1 q1 · · · p−1
n qn, where the pi and the

qj are paths which are non-trivial for 1 < i ≤ n and 1 ≤ j ≤ n. Note that
wβ = p−1

1 q1 · · · p−1
n qnβ is a reduced walk without zero-relations. Suppose that

wβ is not a string. Then qnβ is a maximal subpath of a binomial relation,
which is necessarily of the form (pnγun, qnβ), where γ is an arrow and un is
a path. If n = 1, then αγ is a zero-relation. The path p1γ gives rise to a
contradiction to Lemma 3.3. Thus n > 1, hence pn and qn−1 are non-trivial.
Write qn−1 = vn−1δ, where vn−1 is a path and δ is an arrow. Then δγ is a
zero-relation. Let w1 = p−1

1 q1 · · · p−1
n−1vn−1. Then w1 is a proper substring of

w such that p1w1δγ is a sequential pair of zero-relation. This contradicts the
minimality of the length of w. Thus wβ is a string, and so is αw by duality.
It follows now from Lemma 2.3 and its dual that the string module M(w)
is of projective and injective dimensions both greater than one, which is a
desired contradiction. The proof is completed.

Combining our main result in [12] with the above theorem, we obtain a
complete characterization of tilted special biserial algebras in terms of bound
quivers.

Example. Consider the algebra defined by the bound quiver
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where the relations are ρψ, αφ, ρη, γβµ and all possible paths αβ as well as
all possible differences ρφ − αη. This is a special biserial algebra satisfying
the conditions (1), (2) and (3) as stated in the above theorem. Thus it is a
tilted algebra.

We conclude the paper with some remarks. The module category of a
tilted special biserial algebra is well-understood. In fact one easily read off
its Auslander-Reiten quiver from its bound quiver. To be more precise, let
A = kQ/I be a special biserial algebra which is not hereditary of type Ãn and
let ΓA the Auslander-Reiten quiver of A. Then a component of Γ is either
of shape NÃn or (−N)Ãn, or a standard tube or the connecting component.
Assume that (Q, I) admits r(≥ 0) full bound subquivers of type Ãn (of which
r1 is not of type Ã2) having an arrow entering them; and s(≥ 0) full bound
subquivers of type Ãn (of which s1 is not of type Ã2) having an arrow leaving
them. Then ΓA contains exactly r + s standard orthogonal tubular families,
r components of shape NÃn, s components of shape (−N)Ãn and 2(r1 + s1)
non-homogeneous tubes.
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[16] A. Skowroński, On nonexistence of oriented cycles in Auslander-Reiten
quivers, Acta Universitatis Carolinae — Mathematica et Physica, 25
(1984), 45 - 52.
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