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Introduction

Tilted algebras, that is endomorphism algebras of tilting modules over
a hereditary algebra, have been one of the main objects of study in repre-
sentation theory of algebras since their introduction by Happel and Ringel
[10]. As a generalization, Happel, Reiten and Smalø studied endomorphism
algebras of tilting objects of a hereditary abelian category which they call
quasi-tilted algebras [9]. The latter has attracted a lot of attention of recent
investigations. So far all complete characterizations of tilted or quasi-tilted
algebras are module-theoretical [9, 10]. On the other hand, Gabriel’s theo-
rem says that a finite-dimensional algebra over an algebraically closed field
is determined, up to Morita equivalence, by its bound quiver [6] . It is then
natural and interesting to characterize tilted or quasi-tilted algebras in terms
of their bound quiver. This has been done for tilted algebras of type An, Ãn

and for tame concealed algebras [1, 11, 15]. As the problem in general seems
very difficult, if not impossible, we shall consider it for string algebras, that
is monomial biserial algebras [3, 5]. As results we shall find some simple
combinatorial criteria for a string algebra to be tilted or quasi-tilted. As a
consequence, this will enable one to construct a lot of new examples of tilted
algebras. Finally we shall determine all quasi-tilted string algebras which are
not tilted.

1. Preliminaries

We first fix some terminology and notations which will be used throughtout
this paper. Let Q be a finite quiver. For an arrow α of Q, denote by s(α) its
start-point, by e(α) its end-point and by α−1 its formal inverse with start-
point s(α−1) = e(α) and end-point e(α−1) = s(α), and write (α−1)−1 = α.
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A walk in Q of length n(> 0) is a sequence w = c1 · · · cn with ci an arrow
or the inverse of an arrow such that e(ci+1) = s(ci) for 1 ≤ i < n. We call
the ci edges of w, in particular c1 the initial edge and cn the terminal edge.
Moreover, we define s(w) = s(c1) and e(w) = e(cn) and say that w is a walk
from s(w) to e(w). Finally we define w−1 = c−1

n · · · c−1
1 . A trivial walk at a

vertex a is the trivial path εa with e(εa) = s(εa).

A walk w in Q is called reduced if w is trivial or w = c1 · · · cn such that
ci+1 6= c−1

i for all 1 ≤ i < n. A non-trivial reduced walk w = c1 · · · cn is called
a reduced cycle if s(w) = e(w) and cn 6= c−1

1 ; and a simple cycle if in addition
s(c1), . . . , s(cn) are distinct. Note that a reduced cycle can be written in
many equivalent forms by choosing different vertex as its start-point.

Let w = c1 · · · cn be a non-trivial reduced walk in Q. Let w1 = ci · · · cj

with 1 ≤ i ≤ j ≤ n and w2 = cr · · · ct with 1 ≤ r ≤ t ≤ n be subwalks of
w. We say that w1, w2 point to the same direction in w if there are paths p, q
of Q such that either w1 = p, w2 = q or w1 = p−1, w2 = q−1 and otherwise
they point to opposite directions in w.

Let k be an algebraically closed field. Denote by kQ+ the ideal of the
path algebra kQ generated by the arrows of Q. If I is an ideal of kQ such
that (kQ+)n ⊆ I ⊆ (kQ+)2 for some n ≥ 2, then the pair (Q, I) is called a
bound quiver. We say that a bound quiver (Q′, I ′) is a full bound subquiver
of (Q, I) if Q′ is a full subquiver of Q and I ′ = kQ′ ∩ I.

Let (Q, I) be a bound quiver. A path p in Q is called a zero-path if p ∈ I.
A zero-path is called a zero-relation on Q if none of its proper subpaths is
a zero-path. Let w = c1 · · · cn be a non-trivial reduced walk in Q. We say
that a subwalk u = ci · · · ci+r is a zero-relation contained in w if u = p or
p−1 with p a zero-relation on Q. By saying that a reduced cycle contains
no zero-relation we mean none of its written forms contains a zero-relation.
Note that a zero-relation on Q may appear many times in a reduced walk.

Let A be a finite-dimensional basic k-algebra. Then A ∼= kQ/I with (Q, I)
a bound quiver. We shall identify the category of the finite-dimensional right
A-modules with that of the finite-dimensional representations of (Q, I).

1.1. Definition [3]. A k-algebra A is called a string algebra if A ∼= kQ/I
with (Q, I) a bound quiver satisfying the following:
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(1) I is generated by a set of paths.
(2) each vertex of Q is start-point or end-point of at most two arrows.
(3) for an arrow α, there is at most one arrow β such that αβ 6∈ I and

at most one arrow γ such that γα 6∈ I.

In the sequel by saying that A = kQ/I is a string algebra, we mean that
(Q, I) is a bound quiver satisfying the above-stated conditions. We now state
some known facts about string algebras.

1.2. Proposition [3, 13]. Let A = kQ/I be a string algebra. Then
(1) A is of tame representation type.
(2) A is of finite representation type if and only if all reduced cycle of Q

contains at least one zero-relation.
(3) A is of directed representation type if and only if all reduced cycle of

Q contains at least two zero-relations pointing to opposite directions.

The first two statements follow directly from the facts that each inde-
composable module over a string algebra is either a string module or a band
module (see sections 2 and 3 for definitions) and that there is at most finitely
many isoclasses of string modules of each dimension. The third one is a re-
formulation of a result of de la Peña [13].

2. Quasi-tilted string algebras

In this section we shall find a simple combinatorial criterion for decid-
ing whether a string algebra is quasi-tilted or not. Recall that a finite-
dimensional k-algebra is quasi-tilted if and only if its global dimension is at
most two and each indecomposable module is either of projective dimension
at most one or of injective dimension at most one [9].

Let A = kQ/I be a string algebra. A reduced walk in Q is called a string
if it contains no zero-relation. One says that a string w starts or ends in a
deep if there is no arrow γ such that γ−1w or wγ is a string, respectively;
and it starts or ends on a peak if there is no arrow δ such that δw or wδ−1 is
a string, respectively.

If w = εa is the trivial path at a, then the string module M(w) is the
simple module at a. Let now w = c1c2 · · · cn be a non-trivial string. For
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0 ≤ i ≤ n, let Ui = k; and for 1 ≤ i ≤ n, let Uci
be the identity map sending

x ∈ Ui to x ∈ Ui+1 if ci is an arrow and otherwise the identity map sending
x ∈ Ui+1 to x ∈ Ui. The string module M(w) is then defined as follows: for
a vertex a, M(w)a is the direct sum of the spaces Ui such that s(ci) = a if
a appears in w, otherwise M(w)a = 0; for an arrow α, M(w)α is the direct
sum of the maps Uci

such that ci = α or c−1
i = α if α appears in w, otherwise

M(w)α is the zero map.

For a vertex a of Q, we denote by P (a) and I(a) the indecomposable
projective and injective module at a, respectively. It is then well-known that
P (a) = M(u−1v), where u, v are paths starting with a such that u−1v is a
string starting and ending in a deep; and I(a) = M(pq−1), where p, q are
paths ending with a such that pq−1 is a string starting and ending on a peak.

2.1. Lemma. Let A = kQ/I be a string algebra. Let w = p−1
1 q1 · · · p−1

r qr

be a string, where the pi, qj are paths which are non-trivial for 1 < i ≤ r and
1 ≤ j < r. If the projective dimension of M(w) is greater than one, then one
of the following holds:

(1) there is a non-trivial path zi with 2 ≤ i ≤ r such that pizi and qi−1zi

are both zero-paths.

(2) there is a non-trivial path z1 such that z−1
1 w is a reduced walk and

p1z1 is a zero-path while p1α is not a zero-path, where α is the initial arrow
of z1.

(3) there is a non-trivial path zr+1 such that wzr is a reduced walk and
qrzr+1 is a zero-path while qrβ is not a zero-path, where β is the initial arrow
of zr+1.

Proof. Assume that the projective dimension of M(w) is greater than one.
For each 1 ≤ i ≤ r, write ai = s(qi) and let ui, vi be the paths of non-negative
length such that u−1

i p−1
i qivi is a string which starts and ends in a deep. Then

P (ai) = M(u−1
i p−1

i qivi). It is easy to see that P = ⊕r
i=1P (ai) is the projective

cover of M(w). Let K be the kernel of the canonical epimorphism from P
to M(w). By calculating the dimensions, we see that K ∼= ⊕r+1

i=1Ki, where
K1 = 0 if u1 is trivial and otherwise K1 = M(u−1) with u the path so that
u1 = αu for an arrow α; Ki = M(u−1

i vi−1) for 2 ≤ i ≤ r; and Kr+1 = 0 if
vr is trivial and otherwise Kr+1 = M(v) with v the path so that vr = δv for
an arrow δ. Since M(w) is of projective dimension greater than one, at least
one of the Ki is not projective.
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Suppose first that Ki = M(u−1
i vi−1) is not projective for some 2 ≤ i ≤ r.

Then u−1
i vi−1 does not start or not end in a deep. In the first case, there

is an arrow βi such that β−1
i u−1

i vi−1 is a string. In particular the initial
arrow of uiβi is not contained in the path vi−1. Hence qi−1uiβi is a zero-path.
Moreover piuiβi is a zero-path since u−1

i p−1
i qivi is a string starting in a deep.

Let zi = uiβi in this case. Similarly in the second case there is an arrow γi

such that qi−1viγi and piviγi are zero-paths. Let zi = viγi in this case. Hence
(1) holds.

Suppose now that K1 is not projective. Then u1 = αu with α an arrow
and K1 = M(u−1). Since M(u−1) is not projective, u−1 does not start or not
end in a deep. In the first case, there is an arrow β1 such that β−1

1 u−1 is a
string. However p1αuβ1 = p1u1β1 is a zero-path since u−1

1 p−1
1 q1v1 is a string

starting in a deep. Let z1 = αuβ1 in this case. Otherwise there is an arrow
γ1 such that u−1γ1 is a string. Note then that u is non-trivial. Therefore αγ1

is a zero-relation. Let z1 = αγ1 in this case. Thus (2) holds. Similarly we
can show that (3) holds if Kr+1 is not projective. The proof is completed.

The following notion is essential for our characterization of quasi-tilted
string algebras.

2.2. Definition. Let A = kQ/I be a string algebra. A reduced walk w is
called a sequential pair of zero-relations in (Q, I) if w contains exactly two
zero-relations and these two zero-relations point to the same direction in w.

Note that the two zero-relations in a sequential pair of zero-relations can
be the same zero-relation on the quiver. For instance one can get such a
sequential pair of zero-relations from a simple cycle containing exactly one
zero-relation.

2.3. Lemma. Let A = kQ/I be a string algebra such that there is no
sequential pair of zero-relations in (Q, I). Then each string module is either
of projective dimension at most one or of injective dimension at most one.

Proof. Assume that there is a string w such that M(w) has both projective
dimension and injective dimension greater than one. Let w = p−1

1 q1 · · · p−1
r qr,

where the pi, qj are paths which are non-trivial for 1 < i ≤ r, 1 ≤ j < r. We
shall obtain a sequential pair of zero-relations by considering only the case
where p1 is non-trivial and qr is trivial, since the other cases can be treated
similarly. Assume that this is the case. Then by Lemma 2.1, there is a path
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z1 = αz′1 with α an arrow such that p1z1 is a zero-path whereas p1α is not;
or there is a non-trivial path zi with 2 ≤ i ≤ r such that pizi and qi−1zi are
zero-paths; or there is a zero-path zr+1 = βz′r+1 with β an arrow so that wzr

is a reduced walk.
We now write w = q0p

−1
1 q1 · · · qr−1p

−1
r with q0 a trivial path. Then by the

dual of Lemma 2.1, there is a zero-path y0 = y′0γ with γ an arrow such that
y0w is a reduced walk; or there is a non-trivial path yi for some 1 ≤ i ≤ r−1
such that both yiqi and yipi are zero-paths; or there is a path yr = y′rδ with
δ an arrow so that yrpr is a zero-path whereas δpr is not.

Suppose first that y0 = y′0γ exists. If z1 = αz′1 exists, then γα is a zero-
relation since p1α is not a zero-path. Therefore y0α = y′0γδ is a sequential pair
of zero-relations. If zj exists for some 1 < j < r, then y0p

−1
1 q1 · · · p−1

j−1qj−1zj

is a sequential pair of zero-relations.
Suppose now that yi exists for some 0 < i < r. If zj exists for some

1 ≤ j ≤ i, then yipiq
−1
i−1 · · · q−1

j pjzj is sequential pair of zero-relations. If zj

exists for some i < j < r, then yiqip
−1
i+1 · · · p−1

j−1qj−1zj is a sequential pair of
zero-relations.

Suppose finally that yr = y′rδ exists. If zj exists for some 1 ≤ j ≤ r,
then yrprq

−1
r−1 · · · q−1

j pjzj is a sequential pair of zero-relations. If zr+1 = βz′r+1

exists, then δβ is a zero-relation since prδ is non-zero. Hence y′rδβ is a
sequential pair of zero-relations. This completes the proof of the lemma.

Let A = kQ/I be a string algebra. A reduced cycle w = c1c2 · · · cn in Q
is called a band if w is not a power of a reduced cycle of less length and all its
powers contain no zero-relation. Let φ be an indecomposable automorphism
of a k-vector space V . For 1 ≤ i ≤ n, define V (i) = V . For 1 ≤ i ≤ n−1, let
fci

be the identity map from V (i) to V (i+1) if ci is an arrow; and otherwise
the identity map from V (i + 1) to V (i), and let fcn be the map sending
x ∈ V (n) to φ(x) ∈ V (1) if cn is an arrow; and otherwise the map sending
x ∈ V (1) to φ−1(x) ∈ V (n). The band module N = N(w, φ) determined
by w and φ is then defined as follows: for each vertex a of Q, if a appears
in w, then Na is the direct sum of the spaces V (i) such that s(ci) = a, and
otherwise Na is the zero-space. For each arrow α of Q, if α appears in w,
then Nα is the direct sum of the maps fci

such that ci = α or ci = α−1; and
otherwise Nα is the zero-map. For 1 ≤ i ≤ n, denote by hi the canonical
projection from Ns(ci) to V (i). Then for 1 ≤ i ≤ n, hifci

= Nci
hi+1 if ci is

an arrow; and Nc−1
i

hi = hi+1fci
if ci is the inverse of an arrow (we identify

i + 1 with its remainder divided by n).
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2.4. Lemma. Let A = kQ/I be a string algebra such that there is no
sequential pair of zero-relations in (Q, I). Then each band module is either
of projective dimension at most one or of injective dimension at most one.

Proof. Let w = c1c2 · · · cn be a band. Let N = N(w, φ) be a band module
as defined above, and we keep all the notations. Assume that the injective
and projective dimension of N are both greater than one. We shall find a
sequential pair of zero-relations. Note that DTr(N) = N [3, section 3]. Thus
Hom(D(AA), N) 6= 0 and HomA(N, A) 6= 0 [13, (2.4)]. Let a0 be a vertex
such that there is a non-zero homomorphism f from I(a0) to N . Note that
I(a0) = M(pq−1), where p, q are paths so that pq−1 is a string starting and
ending in a peak. Clearly I(a0) is not simple since B is indecomposable.
Thus f factors through the socle factor of I(a0). Therefore we may assume
that p = uα0 with α0 an arrow such that there is a non-zero homomorphism
g from M(u) to N . Let u = αt−1 · · ·α1 with αi : ai+1 → ai an arrow for
0 < i < t (when t = 1, u = εa1). Note that the homomorphism g from
M(u) to N consists of a family of linear maps ga : M(u)a → Na, where a
runs over the vertices of Q. Let r with 1 ≤ r ≤ t be minimal so that gar

is non-zero. We shall show that ar appears in w as a sink. In fact, there is
some 1 ≤ m ≤ n such that garhm 6= 0. Hence ar = s(cm). Assume that cm

is an arrow, say from ar to b. Then gb = 0, this follows from the minimality
of r if b = ar−1 and otherwise from the fact that M(u)b = 0. We now have
garhmfcm = M(u)cmgbhm+1 = 0 (we identify m+1 with its remainder divided
by n). This is contrary to the fact that fcm is an isomorphism. Thus cm is
the inverse of an arrow. Using the same argument we see that cm−1 is an
arrow. Therefore ar does appear in w as a sink.

Note that the band w is not an oriented cycle. Thus up to equivalence,
we can write w = p1q

−1
1 · · · psq

−1
s , where the pi, qi are non-trivial paths with

s(p1) = s(qs). Now ar = e(ps0) = e(qs0) for some 1 ≤ s0 ≤ s. We want
to show that both qs0αr−1 · · ·α0 and ps0αr−1 · · ·α0 are zero-paths. It suffices
to show that both qs0 and ps0 contain a vertex which does not appear in
αt−1 · · ·αr. Suppose on the contrary that this is not the case. Then ps0 or
qs0 is a subpath of αt−1 · · ·αr. Assume that qs0 = αr+d · · ·αr with 0 ≤ d <
t − r. Since ar = s(cm), we have cm+i = α−1

r+i for 0 ≤ i ≤ d. Note that
gar+1hm+1fcm = M(u)αrgarhm 6= 0. Hence gar+1 6= 0. Inductively gar+d+1

6= 0.
Now ar+d+1 = s(qs0) = s(ps0+1) (we identify s0 +1 with its remainder divided
by s). Hence cm+d+1 is an arrow (we identify m + d + 1 with it remainder
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divided by n), say from ar+d+1 to x. Then

gar+d+1
hm+d+1fcm+d+1

= M(u)cm+d+1
gxhm+d+2.

However gx = 0 since x does not appear in u, this is contrary to the fact
that fcm+d+1

is an isomorphism. Thus qs0αr−1 · · ·α0 and ps0αr−1 · · ·α0 are
zero-paths. Using the fact that HomA(N,A) 6= 0, we can dually show that
there is a non-trivial path q so that for some 1 ≤ t0 ≤ s, both qqt0 and
qpt0 are zero-paths. It is now easy to see that we have a sequential pair of
zero-relations. The proof of the Lemma is completed.

We are now ready to get our main result of this section.

2.5. Theorem. Let A = kQ/I be a string algebra. Then A is quasi-tilted
if and only if there is no sequential pair of zero-relations in (Q, I).

Proof. Assume first that (Q, I) contains no sequential pair of zero-
relations. In particular there is no path in Q containing two overlapping
zero-relations. Therefore the global dimension of A is at most two [7, (1.2)].
Let M be an indecomposable A-module. Then M is either a string module
or a band module [3]. Applying Lemmas 2.3 and 2.4, we see that either the
projective dimension or the injective dimension of M is at most one. Thus
A is quasi-tilted.

Conversely let q be a sequential pair of zero-relations of (Q, I). If q is
a path containing two overlapping zero-relations, then the global dimension
of A is greater than two [7, (1.2)]. Hence A is not quasi-tilted. Otherwise
we may assume that q is of the form q = z1wz2, where z1, z2 are two paths
which are zero-relations and w = p−1

1 q1 · · · p−1
r qr is a string such that the

pi, qj are paths which are non-trivial for 1 < i ≤ r, 1 ≤ j < r. We shall
prove that M(w) has projective and injective dimensions both greater than
one. First write z2 = δuρ with δ, ρ arrows and u a path of non-negative
length. For each 1 ≤ i ≤ r, let ai = s(pi) and let ui, vi be the paths such
that u−1

i p−1
i qivi is a string starting and ending in a deep. Note that u−1

i vi−1

is a string for all 1 < i ≤ r and vr = δu. Moreover P (ai) = M(u−1
i p−1

i qivi),
and P = ⊕r

i=1P (ai) is the projective cover of M(w). Let K be the kernel
of the canonical epimorphism from P to M(w). Then K ∼= ⊕r+1

i=1Ki, where
K1 = 0 if u1 is trivial and otherwise K1 = M(u−1) with u the path so that
u1 = αu for an arrow α; Ki = M(u−1

i vi−1) for 2 ≤ i ≤ r; and Kr+1 = M(v).
Since vρ is not a zero-path, Kr+1 is not projective. This implies that M(w)
has projective dimension greater than one. Dually one can show that the
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injective dimension of M is greater than one. Therefore A is not quasi-tilted.
This completes the proof of the theorem.

3. Tilted string algebras

In this final section we shall find a sufficient and necessary condition for
a string algebra to be tilted. Moreover we shall determine all quasi-tilted
string algebras which are not tilted.

Let A = kQ/I be a string algebra, and let Θ be a simple cycle of Q
containing no zero-relation. Let α be an arrow of Q. We say that α enters
Θ if e(α) ∈ Θ whereas s(α) 6∈ Θ. Similarly we say that α leaves Θ if s(α) ∈ Θ
whereas e(α) 6∈ Θ. Finally we say that α is attached to Θ if it enters or leaves
Θ. Moreover, we call an arrow β a left or right annihilator of α if βα or αβ is
a zero-relation, respectively. It follows easily from the definition of a string
algebra that α has a left or right annihilator in Θ if α leaves or enters Θ,
respectively.

3.1. Lemma. Let A = kQ/I be a connected quasi-tilted string algebra.
Let Θ be a simple cycle of Q containing no zero-relation. Let α be an arrow
entering Θ and contained in only one zero-relation on Q. If w is a reduced
walk having α as its terminal edge, then w contains no zero-relation and the
start-point of each edge of w is not on any reduced cycle of Q.

Proof. By Theorem 2.5, there is no sequential pair of zero-relations in
(Q, I). By assumption, α has exactly one right annihilator β in Θ. Write
Θ = βu with u a reduced walk such that e(u) = s(β) = e(α). Let w =
cn · · · c1c0 be a reduced walk, where c0 = α and ci = αi or α−1

i with αi an
arrow for 1 ≤ i ≤ n. Assume that w contains a zero-relation, say cs · · · cs0

with s0 ≥ 0 minimal. If cs · · · cs0 is a path, then cs · · · cs0 · · · c0β is a path
containing two zero-relations, which is impossible. If cs · · · cs0 is the inverse of
a path, then we consider the reduced walk w1 = αβuc−1

0 · · · c−1
s0
· · · c−1

s . Note
that βuc−1

0 · · · c−1
s0
· · · c−1

s−1 contains no zero-relation by the minimality of s0

and the hypotheses on Θ and α. Thus w1 is sequential pair of zero-relations,
which is a contradiction.

To prove the second part of the statement, we first show that s(ci) is not
on Θ for all 0 ≤ i ≤ n. If this is not the case, let t with 0 ≤ t ≤ n be minimal
such that s(ct) ∈ Θ. Then t ≥ 1 and e(ct) 6∈ Θ. Thus αt has a left or right
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annihilator γ in Θ. Let c = γ or γ−1 such that cct is a walk. Then cct is a
zero-relation contained in the reduced walk cct · · · c1c0, which is impossibe as
we have shown.

Suppose now that there is some minimal r with 0 ≤ r ≤ n such that s(cr)
is on a reduced cycle Θ0. If cr does not belong to Θ0, then cr is attached to
Θ1, and hence it has a left or right annihilator δ in Θ0. Let d = δ or δ−1 such
that dcr is a walk. Then dcr is a zero-relation contained in the reduced walk
dcr · · · c0, which is impossible by (1). If cr belongs to Θ0, then r = 0 by the
minimality of r. Thus we can write Θ0 = d1 · · · dmc0, where di or d−1

i is an
arrow for 1 ≤ i ≤ m and s(d1) = e(c0) = e(α) ∈ Θ, which is contrary to our
previous claim. The proof is completed.

Recall that a branch with pivot b is a finite connected full bound subquiver
containing the vertex b of the following infinite bound quiver whose zero-
relations are all possible αβ:

b
@

@
@

@@R b
@

@@R
@@R b
b

¡
¡

¡
¡¡µ

b

¡
¡¡µ

¡¡µb

α β

¡
¡µ@

@R
α ββ α

@@R b
b

¡¡µbα β α βα β α β@@R b
b

¡¡µb @@R b
b

¡¡µb
¢̧A

. . .
¢̧A
. . .

¢̧A ¢̧ A
. . .

¢̧A ¢̧A
. . .

¢̧A ¢̧A
. . .

Let (Γ, J) be a bound quiver, and let B be a branch with pivot b and
underlying quiver ∆. One says that a bound quiver (Q, I) is obtained from
(Γ, J) by adding B at b if Q = Γ ∪∆, Γ ∩∆ = {b}, and all relation on Q
has its support either in Γ or in ∆ [14, (4.4)].

3.2. Lemma. Let A = kQ/I, Θ and α be as in Lemma 3.1. Let (Q′, I ′)
be the full bound subquiver of (Q, I) so that the vertices of Q′ are those of Q
and the arrows of Q′ are those of Q different from α. Let B be the connected
component of (Q′, I ′) containing s(α) and C the one containing e(α). Then

(1) Q′ is the disjoint union of B and C.
(2) B is a branch with pivot b, where b = s(α).
(3) Let (Γ, J) be the full bound subquiver of (Q, I) generated by C and α.

Then (Q, I) is obtained from (Γ, J) by adding the branch B at b.
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Proof. By Lemm 3.1, B and C are disconnected in (Q′, I ′). Thus Q′ is
the disjoint union of B and C since Q is connected. Let ∆ be the underlying
quiver of B. Then ∆∩ Γ = {b} and ∆∪ Γ = Q. Moreover α appears in any
reduced walk w with s(w) ∈ ∆ and e(w) ∈ Γ . Therefore all zero-relation
on Q lies completely either in Γ or in ∆ since α is contained in only one
zero-relation αγ, where γ is the right annihilator of α in Θ.

It remains to show that B is a branch with pivot b. First note that B is
a tree by Lemma 3.1. Thus for each arrow δ of B, there is a unique reduced
walk w(δ) in B from s(δ) to b. We define δ to be positive if the initial edge
of w(δ) is δ; and to be negative otherwise. One can easily conclude that B
is a branch with pivot b from the following properties of B.

(a) There is at most one arrow δ+ in B starting with b and at most one
δ− ending with b. Moreover if δ+, δ− both exist, then δ+δ− is a zero-relation.
In fact s(α) = b implies that there is at most one arrow in B starting with b
since α 6∈ B. If there are two arrows δ1, δ2 ending with b, then either δ1α or
δ2α is a zero-relation, which contradicts Lemma 3.1. Suppose now that δ+, δ−
are arrows with e(δ+) = s(δ−) = b. Note that δ+α is not a zero-relation by
Lemma 3.1. Hence δ+δ− is a zero-relation since A is a string algebra.

(b) Let a be a vertex of B other than b. Then there is in B at most one
arrow starting with a of each sign and at most one ending with a of each sign.
Moreover there are at most three arrows starting or ending with a in B. In
fact, if δ1, δ2 are two distinct positive arrows starting with a, then w(δ1), w(δ2)
are two distinct reduced walks from a to b, which is impossible. If δ1, δ2 are
two distinct negative arrows starting with a, then w(δ1) = w(δ2) = γ−1v,
where γ is an arrow ending with a and v is a reduced walk with e(v) = b.
We may then assume that γδ1 is a zero-relation. Therefore δ−1

1 γ−1vα is a
reduced walk containing a zero-relation, which is contrary to Lemma 3.1.
Thus there is at most one negative arrow of B starting with a. Similarly
one can show that there is at most one arrow ending with a of each sign.
Suppose now that there are four arrows γ1, γ2, γ3, γ4 starting or ending with
a. We may assume that s(γ1) = s(γ2) = a = e(γ3) = e(γ4), and further γ1 is
positive. Then w(γ1) = γ1v1, where v1 is a reduced walk with e(v1) = b. By
the definition of a string algebra, we can assume that γ3γ1 is a zero-relation.
Hence γ3γ1v1α is a reduced walk in Q containing a zero-relation, which is
contrary to Lemma 3.1.

(c) A path p = δ1 · · · δn in B with δ1 negative or δn positive is not a
zero-path. In fact, assume that p is a zero-path. If δn is positive, then
w(δn) = δnv2, where v2 is a reduced walk with e(v2) = b. Hence δ1 · · · δnv1α
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is a reduced walk containing a zero-relation, which is impossible by Lemma
3.1. If δ1 is negative, then δ−1

n · · · δ−1
1 w(δ1)α is a reduced walk containing a

zero-relation, which is also contrary to Lemma 3.1.
(d) If δ+δ− is a path with δ+ positive and δ− negative, then it is zero-

relation. Moreover all zero-relation in B is of this form. In fact, suppose
that e(δ+) = s(δ−) = a. We may assume to a 6= b by (1). Since δ− is
negative, w(δ−) = du, where d = γ or γ−1 with γ an arrow different from δ−
and u is a reduced walk with e(u) = b. If s(γ) = a, then γ is positive. So δ+γ
is not a zero-relation by (c). Hence δ+δ− is a zero-relation. If e(γ) = a, then
γ is negative by (b). Hence γδ− is not a zero-relation by (c). Thus δ+δ− is
a zero-relation. Finally let p = δ1 · · · δn with n ≥ 2 be a zero-relation in B.
Then δ1 is positive and δn is negative by (c). Thus there is some 1 ≤ i ≤ n
such that δi is positive and δi+1 is negative. Hence δiδi+1 is a zero-relation.
Hence i = 1 and p = δ1δ2. This completes the proof of the Lemma.

3.3. Lemma. Let A = kQ/I be a quasi-tilted string algebra, and let
Θ be a simple cycle in Q containing no zero-relation. If there is an arrow
entering Θ and one leaving Θ, then

(1) all arrow attached to Θ is contained in only one zero-relation on Q,
(2) the arrows attached to Θ are pairwise disjoint, and
(3) the right annihilator of an arrow entering Θ and the left annihilator

of an arrow leaving Θ point to opposite directions in Θ.

Proof. Let α be an arrow entering Θ and β be one leaving Θ. Let γ
be a right annihilator of α and δ a left annihilator of β in Θ. Assume that
γ, δ point to the same direction in Θ. Then Θ contains a reduced walk u1

with initial edge γ and terminal edge δ. Hence αu1β is a sequential pair of
zero-relations, which is a contradiction to Theorem 2.5. Thus (3) holds.

To show (1), let p = α1 · · ·αn be a zero-relation on Q with αr = α
for some 1 ≤ r ≤ n. Then r < n since otherwise α1 · · ·αnγ would be a
sequential pair of zero-relations. If αr+1 · · ·αn does not lie in Θ, then there
is a minimal t with r < t ≤ n such that αt is not in Θ. Note then that
αt leaves Θ, and hence it has a left annihilator γt in Θ. If t = r + 1, then
e(γr+1) = s(αr+1) = e(αr) = s(γ). Thus γr+1, γ point to the same direction
in Θ, which is contrary to what we have proved. If t > r+1, then αr+1 · · ·αt−1

lies in Θ. Since p is a zero-relation, αr+1 6= γ and αt−1 6= γt. Then γ, γt point
to the same direction in Θ, which is again contrary to what we have proved.
Thus αr+1 · · ·αn lies in Θ. Hence we can write Θ = αr+1 · · ·αnu2γ

−1 with u2

a reduced walk. If αr+1 6= γ, then αr+1, δ point to the same direction in Θ.
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Thus Θ contains a reduced walk u3 with initial edge αr+1 and terminal edge
δ. This implies that α1 · · ·αr+1 · · ·αnu2γ

−1u3β is a sequential pair of zero-
relations, which is a contradiction. Hence αr+1 = γ. Consequently p = αγ.
We can dually show that δβ is the only zero-relation containing β.

It remains to show (2). If s(β) = e(α), then δ, γ point to the same
direction in Θ, which is impossible. If e(β) = s(α), then δβαγ is a sequential
pair of zero-relations. Therefore α, β are disjoint. Let now α′ 6= α be another
arrow entering Θ. By Lemma 3.1, s(α′) 6= s(α). Assume that e(α′) = e(α).
Since A is a string algebra, Θ contains two arrows γ, γ′ starting with e(α).
Since αγ is the only zero-relation containing α, γ′ is the right annihilator of
α′ in Θ. This implies that γ′, δ point to the same direction in Θ, which is
contrary to (3). Therefore α, α′ are disjoint. Similarly if β′ 6= β is another
arrow leaving Θ, then β, β′ are disjoint. The proof is completed.

We are now ready to have our promised criterion for deciding a string
algebra is tilted or not.

3.4. Theorem. Let A = kQ/I be a string algebra. Then A is tilted if
and only if the following conditions are satisfied:

(1) there is no sequential pair of zero-relations in (Q, I);
(2) if Θ is a simple cycle of Q containing no zero-relation, then the arrows

attached to Θ either all enter Θ or all leave Θ.

Proof. Assume first that A is tilted. Then A is quasi-tilted. Hence
(1) is satisfied by Theorem 2.5. Suppose now that there are in Θ a simple
cycle Θ containing no zero-relation, an arrow α entering Θ and an arrow β
leaving Θ. By Lemma 3.3, α, β are disjoint. Moreover α is contained in only
one zero-relation αγ and β is contained in only one zero-relation βδ, where
γ, δ are arrows in Θ. Let now (Q′, I ′) be the full bound subquiver of (Q, I)
generated by Θ, α and β. Combining Lemmas 3.3 and 3.1, we infer that
(Q′, I ′) is convex in (Q, I). Thus A′ = kQ′/I ′ is tilted since A is [8, (6.5)].
Let ΓA′ be the Auslander-Reiten quiver of A′. It is easy to see that the
indecomposable projective A′-module at s(α) is in a ray tube and the others
are in a preprojective component of ΓA′ . Dually the indecomposable injective
A′-module at e(β) is in a coray tube and the others are in a preinjective
component of ΓA′ . As a consequence the complete slice would lie in a regular
component of Γ ′, which is well-known to be impossible since A′ is tame.
Hence (2) is also satisfied.
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Conversely suppose that (Q, I) satisfies both (1) and (2). We may fur-
ther assume that (Q, I) is connected. By Theorem 2.5, A is quasi-tilted.
If all possible simple cycle in Q contains zero-relations, then A is of finite
representation type, and hence tilted [9, (3.6)]. Assume now that there is a
simple cycle Θ which contains no zero-relation. If there is no arrow attached
to Θ, then A is the hereditary algebra kΘ. Otherwise let α1, · · · , αt be the
arrows attached to Θ, which we may assume all enter Θ. Let γi be a right
annihilator of αi in Θ for 1 ≤ i ≤ t.

We first consider the case where there is some αi, say α1 is contained
in two distinct zero-relations. One of these is α1γ1, and let the other one
be p = β1 · · · βm with α1 = βr for some 1 ≤ r ≤ m. Then r < m by (1).
It follows from (2) that βr+1 · · · βm lies completely in Θ. Let a = s(p) and
b = e(p). Write p = β1uβm with u a path containing no zero-relation. Note
that βr+1 is different from γ1 since otherwise p = α1γ1. Thus the string
module M(u) is a direct summand of the radical of P (a). Moreover it is easy
to see that M(u) is also a direct summand of the socle factor of I(b). Thus
P (a) and I(b) lie in the same connected component of the Auslander-Reiten
quiver of A. Hence A is tilted since A is quasi-tilted [4, (5.3)].

It remains to consider the case where each αi with 1 ≤ i ≤ t is contained in
only one zero-relation, that is αiγi. Then the γi are distinct since A is a string
algebra. Let bi = s(αi) and ai = e(αi) for 1 ≤ i ≤ t. By Lemma 3.1, the bi

are distinct. Denote by (Q′, I ′) the full bound subquiver of (Q, I) generated
by Θ and the arrows α1, · · · , αt. By Lemma 3.2, (Q, I) is obtained from
(Q′, I ′) by adding a branch at each vertex bi. Note that radP (bi) = M(ui),
where ui is the maximal subpath (maybe trivial) of Θ starting with a and not
containing γi. Thus radP (bi) lies in the mouth of a non-homogeneous tube
of the tame hereditary algebra kΘ. Since the γi are distinct, the radP (bi) are
pairwise non-isomorphic, and hence pairwise orthogonal. Therefore A is a
domestic tubular extension of kΘ, and hence tilted [14, (4.9)]. The theorem
is now established.

We would like to point out that the characterization of tilted gentle al-
gebras stated in [12] is not complete. In fact the statement there states
essentially only the first condition of Theorem 3.4. Nevertheness it is true
that all tilted gentle algebras are of type An or Ãn. However, by using the
above result, it is easy to construct tilted string algebras of quite arbitrary
types.
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3.5. Definition. A bound quiver is said to be of type Ãn,r,t with n, r, t
positive if

(1) the quiver consists of a non-oriented cycle Θ of type Ãn and r arrows
α1, . . . , αr entering Θ and t arrows β1, . . . , βt leaving Θ with the r + t arrows
αi, βj pairwise disjoint;

(2) the relations are αiγi with 1 ≤ i ≤ r and δjβj with 1 ≤ j ≤ s, where
the γi, δj are arrows in Θ such that each pair γi, δj point to opposite directions
in Θ.

We are now able to determine all quasi-tilted string algebras which are
not tilted.

3.6. Theorem. Let A = kQ/I be a connected string algebra. Then A is
a quasi-tilted algebra which is not tilted if and only if (Q, I) is obtained from
a bound quiver of type Ãn,r,t by adding a branch at each of the vertices not
on the cycle. Moreover in this case, A is iterated tilted of type Ãm.

Proof. Assume that A = kQ/I is quasi-tilted and not tilted. By Theorems
2.5 and 3.4, there are in Q a simple cycle Θ containing no zero-relation,
an arrow entering Θ and an arrow leaving Θ. Let α1, . . . , αr be the arrows
entering Θ and β1, . . . , βs the ones leaving Θ. By Lemma 3.3., the r+t arrows
αi, βj are disjoint. Moreover each αi is contained in exactly one zero-relation
αiγi and each βj is contained in exactly one zero-relation βjδj, where γi, δj are
arrows in Θ such that γi, δj point to opposite directions for all 1 ≤ i ≤ r, 1 ≤
j ≤ t. Let (Q′, I ′) be the full bound subquiver of (Q, I) generated by Θ and
the arrows αi, βj with 1 ≤ i ≤ r; 1 ≤ j ≤ t. Then (Q′, I ′) is a bound quiver
of type Ãn,r,t. Moreover by Lemma 3.2 and its dual, (Q, I) is obtained from
(Q′, I ′) by by adding a branch at each of s(α1), . . . , s(αr), e(β1), . . . , e(βt).

Conversely let (Q′, I ′) be a bound quiver of type Ãn,r,t with Θ, αi, γi, βj, δj

as defined in Definition 3.5. Assume that (Q, I) is obtained from (Q′, I ′) by
adding a branch Di at s(αi) for each 1 ≤ i ≤ r and a branch Ej at e(βj)
for each 1 ≤ j ≤ t. Clearly A is a string algebra. Hence A is not tilted
by Theorem 3.4. Moreover (Q, I) satisfies all the conditions as stated in
part (iv) of Theorem (A) of [2]. Thus A is iterated tilted of type Ãm. It
remains to show that A is quasi-tilted. Assume that this is not the case.
Then (Q, I) contains sequential pairs of zero-relations by Theorem 2.5. Note
that all zero-relation on Q is of length two. Thus there is a reduced walk
w = c1c2 · · · cs−1cs with s ≥ 3, where c1, c2, c3 and c4 are arrows such that c1c2
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and cs−1cs are the only zero-relations contained in w. By definition each zero-
relation is completely contained either in (Q′, I ′) or in a branch. Note that
each branch contains no sequential pair of zero-relations and that all reduced
walk lying completely in a branch starting or ending with the pivot contains
no zero-relation. Thus both c1c2 and cs−1cs are in (Q′, I ′). We consider only
the case c1c2 = αi0γi0 for some 1 ≤ i0 ≤ r. We now show that c2 · · · cs−1 lies
in Θ. In fact if this is not the case, let i1 with 2 < i1 ≤ s − 1 be minimal
such that ci1 is not in Θ, then either ci1 = α−1

i for some 1 ≤ i ≤ r or ci1 = βj

for some 1 ≤ j ≤ t. Suppose that ci1 = α−1
i . Then ci1+1 is in the branch

Di since ci1+1 6= αi. As a consequence ci1+1 · · · cs−1cs is reduced walk in Di

satring with the pivot s(αi) et containing a zero-relation, which is impossible.
Similarly it is impossible that ci1 = β−1

j with 1 ≤ j ≤ t. Therefore c2 · · · cs−1

is contained in Θ. In particular cs−1cs = δj0βj0 for some 1 ≤ j0 ≤ t. Thus
γi0 · · · c3 · · · cs−2δj0 is a reduced walk contained in Θ. This however implies
that γi0 , δj0 point to the same direction in Θ, which is a contradiction. The
proof is completed.
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[4] F. Coehlo and A. Skowroński, On Auslander-Reiten components for
quasi-tilted algebras, Fund. Math. 149 (1996), 67-82.

16



[5] K. R. Fuller, Biserial Rings, Lecture Notes in Mathematics, 734
(Springer, Berlin, 1979), 64-90.

[6] P. Gabriel, Auslander-Reiten sequences and representation-finite alge-
bras, Lecture Notes in Mathematics, 831 (Springer, Berlin, 1980), 1-71.

[7] E. L. Green, D. Happel and D. Zacharia, Projective resolutions over
algebras with zero relations, Illinois J. Math. 29 (1985), 180-190.

[8] D. Happel, Triangulated categories in the representation theory of fi-
nite dimensional algebras, London Math. Soc. Lecture Notes Series 119
(1988).

[9] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and
quasitilted algebras, Memoirs Amer. Math. Soc. 575 (1996).

[10] D. Happel and C. M. Ringel, Tilted Algebras, Trans. Amer. Math. Soc.
274 (1982), 399-443.

[11] D. Happel and D. Vossieck, Minimal algebras of infinite representation
type with preprojective component, Manucripta Math. 42 (1983), 221-
243.

[12] F. Huard, Tilted gentle algebras, Comm. Algebra (to appear).

[13] J. A. de la Peña, Representation-finite algebras whose Auslander-Reiten
quiver is planar, J. London Math. Soc. (2) 32 (1985), 62-74.

[14] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes
in Mathematics 1099 (Springer, Berlin, 1984).

[15] O. Roldán, Tilted algebras of types Ãn, B̃n, C̃n and B̃Cn, Ph.D. thesis,
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