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Abstract. This paper aims to study graded modules over a graded algebra

Λ given by a locally finite quiver with homogeneous relations. By construct-
ing a graded Nakayama functor, we discover a novel approach to establish

Auslander-Reiten formulas, from which we derive almost split sequences in

the category of all graded Λ-modules. In case Λ is locally left (respectively,
right) bounded, the category of finitely presented graded modules and that of

finitely copresented graded modules both have almost split sequences on the

left (respectively, right). We shall also obtain existence theorems for almost
split triangles in various derived categories of graded Λ-modules. In case Λ is

locally bounded, an indecomposable complex in the bounded derived category

of finite dimensional graded modules is the starting (respectively, ending) term
of an almost split triangle if and only if it has a finite graded projective reso-

lution (respectively, injective coresolution); and consequently, this bounded
derived category has almost split triangles on the right (respectively, left) if

and only if every graded simple module is of finite graded projective (respec-

tively, injective) dimension. Finally, we specialize to the existence of almost
split sequences and almost split triangles for graded representations of any

locally finite quiver.

Introduction

Graded algebras play an essential role in many domains such as commutative
algebra, Lie theory, algebraic geometry and algebraic topology; see, for example,
[5, 13, 19, 32, 33]. The representation theory of locally finite dimensional graded
algebras have been studied thoroughly by numerous researchers; see, for example,
[6, 15, 35, 34]. Motivated by the application of the covering technique; see [8, 11, 16],
this paper aims to develop the representation theory of graded algebras given by
locally finite quivers with homogeneous relations.

Almost split sequences in abelian categories, introduced by Auslander and Re-
iten; see [4], and almost split triangles in triangulated categories, later developed
by Happel; see [20], provide a powerful tool for understanding these categories.
In the classical setting, the existence of almost split sequences for graded modules
was studied first by Gordon and Green; see [15], then by Auslander and Reiten;
see [5], and later by Martinez-Villa; see [34]. In the locally finite dimensional
case, Martinez-Villa established an Auslander-Reiten formula by the classical ap-
proach of tensor product and adjunction isomorphism, and he obtained an existence
theorem for almost split sequences ending with finitely presented graded modules
in the category of locally finite dimensional graded modules. In this paper, we
shall provide a novel approach to establish an Auslander-Reiten formula for finitely
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presented graded modules and a generalized Auslander-Reiten formula for finitely
copresented graded modules, which enable us to obtain an existence theorem in
the category of all graded modules for almost split sequences ending with finitely
presented graded modules or starting with finitely copresented graded modules.

Determining which categories have almost split sequences or almost split trian-
gles has long been a key research topic; see, for example, [14, 29, 30, 31, 34]. It is
known that the category of finitely generated graded modules over a graded artin
algebra or a graded order which is an isolated singularity has almost split sequences;
see [6, 15]. Our results yield many interesting abelian categories of graded modules
having almost split sequences on one or two sides, and derived categories of graded
modules having almost split triangles on one or two sides. The content of the paper
is outlined section by section as follows.

In Section 1, we shall lay down the foundation of the paper. In Section 2, we
study some generalities about the category GModΛ of all unitary graded left mod-
ules over a graded algebra Λ given by a locally finite quiver with homogeneous
relations. Of fundamental importance, there exists a duality between the piece-
wise finite dimensional graded modules over Λ and those over its opposite; see
(2.2.2), and the categories gprojΛ and ginjΛ of finitely generated graded projective
modules and of finitely cogenerated graded injective modules are Hom-finite and
Krull-Schmidt; see (2.12.2). As in the classical graded setting, GModΛ has enough
projective objects and enough injective objects; see (2.3.4) and (2.4.5).

In Section 3, we study the existence of almost split sequences for graded Λ-
modules. We first construct a Nakayama functor from gprojΛ to GModΛ; see
(3.2.1), which leads to an Auslander-Reiten formula for finitely presented graded Λ-
modules and a generalized Auslander-Reiten formula for finitely copresented graded
modules; see (3.4.3). These enable us to establish an existence theorem in GModΛ
for almost split sequences ending with finitely presented graded modules or starting
with finitely copresented graded modules; see (3.5.1). In case Λ is locally left
(respectively, right) bounded, the categories of finitely presented graded modules
and of finitely copresented graded modules have almost split sequences on the left
(respectively, right); see (3.6.1). And in case Λ is locally bounded, the category of
finite dimensional graded modules has almost split sequences; see (3.6.2).

In Section 4, we study almost split triangles in various derived categories of
graded Λ-modules. Indeed, the graded Nakayama functor ensures the existence in
the derived categories of almost split triangles ending with bounded complexes over
gprojΛ or starting with bounded complexes over ginjΛ; see (4.1.2). In case Λ is
locally left and right noetherian, an indecomposable complex of finitely generated
(respectively, cogenerated) graded modules is the ending (respectively, starting)
term of an almost split triangle if and only if it has a finite graded projective res-
olution (respectively, injective coresolution); see (4.3.1). And the bounded derived
category of finite dimensional graded Λ-modules has almost split triangles on the
right (respectively, left) if and only if every graded simple Λ-module is of finite
graded projective (respectively, injective) dimension.

In Section 5, we study the existence of almost split sequences and almost split
triangles for graded representations of a locally finite quiver Q. In case Q is strongly
locally finite, this has been done for ungraded representations; see [9]. Our results
say that the abelian category of finitely presented (respectively, copresented) graded
representations has almost split sequences on the left (respectively, right) if and
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only if Q has no infinite path with a starting (respectively, end) point; see (5.1.2).
And the bounded derived category of finitely presented graded representations has
almost split triangles if and only if so does the bounded derived category of finitely
copresented graded representations if and only if Q has no infinite path; see (5.2.2).

1. Preliminaries

The objective of this section is to lay down the foundation of this paper. We shall
fix some terminology and notation which will be used throughout this paper and
collect some preliminary results.

1.1. Linear algebra. Throughout this paper, let k denote a commutative field.
All tensor products will be over k. Given a set S, the k-space spanned by S will
be written as kS. We shall write Modk for the category of all k-spaces and modk
for the category of finite dimensional k-spaces. We shall make a frequent use of
the exact functor D = Homk(−, k) : Modk → Modk, which restricts to a duality
D : modk → modk. The following statement is well-known.

1.1.1. Lemma. Given U, V ;M,N ∈ Modk, there exists a k-linear map

ρ : Homk(U, V )⊗Homk(M,N)→ Homk(U ⊗M,V ⊗N) : f ⊗ g 7→ ρ(f ⊗ g)

such that ρ(f ⊗g)(u⊗m) = f(u)⊗g(m) for u ∈ U and m ∈M , which is natural in
all variables. Moreover, ρ is an isomorphism in case U, V ∈ modk or M,N ∈ modk.

Remark. In case ρ is an isomorphism, we shall identify f ⊗ g with ρ(f ⊗ g).

As an immediate consequence of Lemma 1.1.1, we have the following statement.

1.1.2. Corollary. Let U and V be k-vector spaces.
(1) There exists a natural k-linear map σ : DU ⊗ V → Homk(U, V ) in such a way

that σ(f ⊗ v)(u) = f(u)v, for all f ∈ DU , v ∈ V and u ∈ U . Moreover, σ is
an isomorphism in case U or V is finite dimensional.

(2) There exists a natural k-linear map θ : DV ⊗ DU → D(V ⊗ U) such that
θ(f ⊗ g)(v ⊗ u) = f(v)g(u), for all f ∈ DU , g ∈ DV ; u ∈ U and v ∈ V .
Moreover, θ is an isomorphism in case U or V is finite dimensional.

1.2. Quivers. Let Q = (Q0, Q1) be a quiver, where Q0 is the set of vertices and
Q1 is the set of arrows between vertices. Given an arrow α : x → y in Q1, we call
x the starting point and y the end point of α; and write s(α) = x and e(α) = y.
For each vertex x ∈ Q0, one associates a trivial path εx with s(εx) = e(εx) = x.
A path of positive length n is a sequence ρ = αn · · ·α1, where αi ∈ Q1 such that
s(αi+1) = e(αi), for all 1 ≤ i < n. One says that Q is locally finite provided, for
any x ∈ Q0, that the set Q1(x,−) of arrows α with s(α) = x and the set Q1(−, x)
of arrows β with e(β) = x are both finite. Moreover, Q is strongly locally finite
provided, for any x, y ∈ Q0, that the set Q(x, y) of paths from x to y is finite.

The opposite quiver Qo of Q is defined in such a way that (Qo)0 = Q0 and
(Qo)1 = {αo : y → x | α : x → y ∈ Q1}. A non-trivial path ρ = αn · · ·α1

in Q(x, y), where αi ∈ Q1, corresponds to a non-trivial path ρo = αo
1 · · ·αo

n in
Qo(y, x). For convenience, the trivial path in Qo at a vertex x will be identified
with the trivial path in Q at x.

1.3. Algebras given by quivers with relations. In this paper, a k-algebra
does not necessarily have an identity. Let Q = (Q0, Q1) be a locally finite quiver.
We shall write kQ for the path algebra of Q over k and kQ+ for the two-sided
ideal in kQ generated by Q1. A two-sided ideal in kQ is called a relation ideal
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if it is contained in (kQ+)2. An element in kQ is called homogeneous if it is a
linear combination of paths of the same length, and a relation ideal in kQ is called
homogeneous if it is generated by some homogeneous elements.

Let Λ = kQ/R, where R is a relation ideal of kQ. We fix some notation for Λ,
which will be used throughout this paper. Write γ̄ = γ + R ∈ Λ for γ ∈ kQ, and
ex = ε̄x for x ∈ Q0. Then, {ex | x ∈ Q0} is a complete set of pairwise orthogonal
idempotents in Λ. Note that the opposite algebra of Λ is Λo = kQo/Ro, where
Ro = {ρo | ρ ∈ R}. We shall write γ̄ o = γo +Ro for γ ∈ kQ, but ex = εx +Ro for
x ∈ Q0. In this way, we have an algebra anti-isomorphism Λ→ Λo : γ̄ → γ̄o.

Noetherian algebras play an important role in commutative algebra and algebraic
geometry. In our context, noetherianness will be replaced by local noetherianness
as follows: Λ is called locally left noetherian if the left Λ-modules Λex with x ∈ Q0

are noetherian; locally right noetherian if the right Λ-modules exΛ with x ∈ Q0 are
noetherian. As examples, recall that Λ is called special multi-serial provided, for
any α ∈ Q1, that there exists at most one β ∈ Q1 such that βα /∈ R and at most one
γ ∈ Q1 such that αγ /∈ R. In this case, for any x ∈ Q0, both

∑
α∈Q1(x,−) Λᾱ and∑

β∈Q1(−,x) β̄Λ are finite sums of uniserial modules; see [22, 17]. Then, it follows

that Λex and exΛ are noetherian. Hence, Λ is locally left and right noetherian.
Finally, we shall say that Λ is locally left bounded if the Λex with x ∈ Q0 are finite

dimensional, locally right bounded if the exΛ with x ∈ Q0 are finite dimensional, and
locally bounded if Λ is locally left and right bounded; compare [11, (2.1)]. Clearly, a
locally left or right bounded algebra is locally left or right noetherian, respectively.

1.4. Additive categories. Throughout this paper, all categories are additive k-
categories in which morphisms are composed from the right to the left. All functors
between additive k-categories are additive. Let A be an additive k-category. A full
subcategory of A is called strictly full if it is closed under isomorphisms. An object
in A is called strongly indecomposable if it has a local endomorphism algebra. One
says that A is Hom-finite if all morphisms spaces in A are finite dimensional over k,
and Krull-Schmidt if A is nonzero such that every nonzero object is a finite direct
sum of strongly indecomposable objects. In case A is Hom-finite, it is well-known
that A is Krull-Schmidt if and only if all idempotents in A split; see [31, (1.1)].

A morphism f : X → Y in A is called left minimal provided that every morphism
g : Y → Y such that gf = f is an automorphism, and right minimal provided that
every morphism g : X → X such that fg = f is an automorphism. Applying
Corollary 1.4 in [25] and its dual, we obtain the following well-known statement.

1.4.1. Proposition. Let A be a Krull-Schmidt k-category.

(1) A nonzero morphism f : X → Y in A is left minimal if and only if pf 6= 0, for
any nonzero retraction p : Y → N.

(2) A nonzero morphism f : X → Y in A is right minimal if and only if fq 6= 0,
for any nonzero section q : M → X.

Finally, a morphism f : X → Y in A is called left almost split if f is not a section
and every non-section morphism g : X → Z factors through f ; and minimal left
almost split if it is left minimal and left almost split. Dually, one defines right
almost split morphisms and minimal right almost split morphisms in A; see [4].

1.5. Exact categories. Let A be an exact k-category, that is an extension-closed
full subcategory of an abelian k-category A. Given objects X,Y ∈ A, we write
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ExtiA(X,Y ) = ExtiA(X,Y ) for all integers i ≥ 0. And one says that A is Ext-finite
if ExtiA(X,Y ) is finite dimensional for all X,Y ∈ A and i ≥ 0. An object P in A is

called Ext-projective if every short exact sequence 0 // X // Y // P // 0
in A splits. The Ext-injective objects in A are defined dually. If A is abelian, then
the projective objects and the injective objects inA coincide with the Ext-projective
objects and the Ext-injective objects, respectively.

An epimorphism f : X → Y in A is called superfluous if a morphism g : M → X
in A such that f ◦ g is an epimorphism is an epimorphism, and a monomorphism
f : X → Y is called essential if a morphism h : Y → N in A such that h ◦ f is
a monomorphism is a monomorphism. Let X be an object in A. A superfluous
epimorphism f : P → X with P projective in A is called a projective cover of X
in A, and an essential monomorphism g : X → I with I injective in A is called an
injective envelope of X in A. The following statement is well-known; see [23, (3.4)].

1.5.1. Lemma. Let A be an exact k-category.

(1) An epimorphism f : P → X with P projective in A is a projective cover of X
in A if and only if f is right minimal.

(2) A monomorphism g : X → I with I injective in A is an injective envelope of
X in A if and only if g is left minimal.

Recall that a short exact sequence 0 // X
f // Y

g // Z // 0 in A is
called an almost split sequence if f is minimal left almost split and g is minimal
right almost split. In this case, one calls X the starting term and Z the ending
term, and we write X = τZ and Z = τ−X; see [4].

We shall say that A has almost split sequences on the left if every strongly
indecomposable and non Ext-injective object is the starting term of an almost
split sequence, and A has almost split sequences on the right if every strongly
indecomposable and non Ext-projective object is the ending term of an almost split
sequence, and finally, A has almost split sequences if it has almost split sequences
on the left and on the right.

1.6. Almost split triangles. Let T be a triangulated k-category with transla-

tion functor [1]. An exact triangle X
f // Y

g // Z
δ // X[1] in A is called

almost split if f is minimal left almost split and g is minimal right almost split; see
[20]. In this case, one calls X the starting term and Z the ending term, and we write
X = τZ and Z = τ−X. We say that T has almost split triangles on the right if
every strongly indecomposable object is the ending term of an almost split triangle,
T has almost split triangles on the left if every strongly indecomposable object is
the starting term of an almost split triangle, and T has almost split triangles if it
has almost split triangles on the right and on the left.

1.7. Derived categories. Let A be a strictly full additive subcategory of an
abelian category A. We denote by C(A) the additive category of complexes over
A with shift functor [1], and by C+(A), C−(A) and Cb(A) the full additive
subcategories of C(A) of bounded-below complexes, of bounded-above complexes
and of bounded complexes, respectively. Given a complex M. ∈ C(A), a quasi-
isomorphism f . : P . → M. in C(A) with P . a complex of projective objects is
called a projective resolution of M., and a quasi-isomorphism g. : M. → I. in C(A)
with I. a complex of injective objects is called a injective coresolution of M..
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Fix ∗ ∈ {b,+,−}. Endowed with the induced shift functor [1], the quotient
K∗(A) of C∗(A) modulo the null-homotopic morphisms is a triangulated category
with exact triangles given by the mapping cones of morphisms; see [36, (III.2.1.1)].
Clearly, K∗(A) is a full triangulated subcategory of K∗(A). A morphism in K∗(A)
is called a quasi-isomorphism if it is a quasi-isomorphism in K∗(A). By the same
argument used in [36, (III.3.1.1), (III.3.1.2)], we see that the quasi-isomorphisms in
K∗(A) form a localizing class compatible with the triangulation of K∗(A). Thus,
the localization D∗(A) of K∗(A) at quasi-isomorphisms is a triangulated category;
see [36, (II.1.6.1)], called a derived cateogry of A. We shall say that A has enough
A-projective objects if every object X in A admits an epimorphism f : P → X in
A, where P ∈ A is projective in A.

1.7.1. Proposition. Let A be a strictly full additive subcategory of an abelian cate-
gory A. If A has enough A-projective objects, then Db(A) can be regraded as a full
triangulated subcategory of Db(A).

Proof. Clearly, Kb(A) is a full triangulated subcategory of K(A). The inclusion
functors q : Kb(A) → K(A); i : Kb(A) → Kb(A) and j : Kb(A) → D(A) in-
duce triangle-exact functors qD : Db(A) → D(A); iD : Db(A) → Db(A) and
jD : Db(A) → D(A) such that qD = jD ◦ iD. It is well-known that jD is fully
faithful; see [36, (III.3.4.5)]. If A has enough A-projective objects, then qD is fully
faithful; see [8, (1.11)], and so is iD. The proof of the proposition is completed.

2. Categories of graded modules

The objective of this section is to study generalities concerning graded modules
over graded algebras given by locally finite quivers with homogeneous relations. The
results obtained in this section will be needed not only in the following sections of
this paper but also in future study of Koszul algebras given by locally finite quivers.

Throughout this section let Λ = kQ/R, where Q is a locally finite quiver and
R is a homogeneous relation ideal of kQ. Then Λ is a positively graded k-algebra
with grading Λ = ⊕i≥0Λi, where Λi = {γ̄ | γ ∈ kQi}. For convenience, set Λi = 0
for i < 0. Write J = ⊕i≥1Λi, which is a graded two-sided ideal of Λ. The opposite
algebra Λo is also positively graded as Λo = ⊕i≥0Λo

i , where Λo
i = {γ̄ o | γ ∈ kQi},

for all i ≥ 0. Note that this grading for the opposite algebra is different from the
classical one; see [37, (1.2.4)].

2.1. Graded modules. A left Λ-module M is unitary if M =
∑
x∈Q0

exM and

graded if M = ⊕i∈ZMi, where the Mi are k-spaces such that ΛjMi ⊆Mi+j , for all
i, j ∈ Z. Let M be a graded unitary left Λ-module. Then M = ⊕i∈Z;x∈Q0

Mi(x)
as a k-space, where Mi(x) = exMi, called the (i, x)-piece of M . Given u ∈ eyΛjex,
we shall write M(u) : Mi(x) → Mi+j(y) for the k-linear map given by the left
multiplication by u. An element m ∈ M is called homogeneous of degree i if
m ∈ Mi and pure if m ∈ Mi(x) for some (i, x) ∈ Z×Q0. A Λ-submodule N of M
is called graded if N =

∑
i∈Z(Mi ∩ N). In this case, N is graded as N = ⊕i∈ZNi,

where Ni = Mi ∩ N , such that if m =
∑

(i,x)∈Z×Q0
mi,x ∈ N with mi,x ∈ Mi(x),

then mi,x ∈ N for all (i, x) ∈ Z×Q0.

Let M,N be graded unitary left Λ-modules. A Λ-linear morphism f : M → N
is graded if f(Mi) ⊆ Ni for all i ∈ Z. In this case, f restricts to k-linear maps
fi : Mi → Ni and fi,x : Mi(x) → Ni(x) such that f = ⊕i∈Zfi = ⊕(i,x)∈Z×Q0

fi,x.
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Conversely, given k-linear maps fi,x : Mi(x) → Ni(x) with (i, x) ∈ Z × Q0, the
k-linear map f = ⊕(i,x)∈Z×Q0

fi,x : M → N is graded Λ-linear if and only if
ufi,x(m) = fi+j,y(um), for m ∈Mi(x) and u ∈ eyΛjex with i, j ∈ Z and x, y ∈ Q0.

The graded unitary left Λ-modules together with the graded Λ-linear morphisms
form an abelian k-category, which will be written as GModΛ. The morphism spaces
and the extension groups in GModΛ will be written respectively as GHomΛ(M,N)
and GExtiΛ(M,N). Moreover, we put GEndΛ(M) = GHomΛ(M,M). The following
statement is evident; compare [37, page 20].

2.1.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver. If
{Mσ}σ∈Σ is a family of modules in GModΛ, then
(1) there exists a direct sum M = ⊕σ∈ΣMσ, defined by Mi(x) = ⊕σ∈Σ (Mσ)i(x)

for all (i, x) ∈ Z×Q0.
(2) there exists a product N = Πσ∈ΣMσ, defined by Ni(x) = Πσ∈Σ (Mσ)i(x), for

all (i, x) ∈ Z×Q0.

Let M ∈ GModΛ with M = ⊕i∈ZMi = ⊕i∈Z;x∈Q0
Mi(x). One says that M is

bounded above if Mi = 0 for i� 0, bounded below if Mi = 0 for i� 0 and bounded
if Mi = 0 for all but finitely many i ∈ Z. The full subcategories of GModΛ of
bounded below modules and of bounded above modules will be written as GMod+Λ
and GMod−Λ, respectively. Moreover, M is called locally finite dimensional if Mi

is finite dimensional for all i ∈ Z and piecewise finite dimensional if Mi(x) is finite
dimensional for all (i, x) ∈ Z×Q0. We shall denote by gmodΛ the full subcategory
of GModΛ of piecewise finite dimensional modules.

Let V ∈ Modk. Setting (M ⊗ V )i = Mi ⊗ V , we obtain a graded module
M ⊗ V = ⊕i∈Z(M ⊗ V )i ∈ GModΛ. Let s ∈ Z. The grading s-shift M〈s〉 of M is
defined by M〈s〉i = Mi+s for all i ∈ Z. For a morphism f : M → N in GModΛ,
the grading s-shift f〈s〉 : M〈s〉 → N〈s〉 of f is defined by f〈s〉i = fi+s, for all i ∈ Z.
It is clear that (M ⊗ V )〈s〉 = M〈s〉 ⊗ V, for all s ∈ Z and V ∈ Modk.

2.2. The duality D. In the classical graded setting, there exists a duality for
locally finite dimensional graded modules given by applying componentwise the
functor D; see [35, page 70]. In our setting, we shall apply the functor D piecewise
in order to obtain a duality for piecewise finite dimensional graded modules.

Given M ∈ GModΛ, we define DM = ⊕(i,x)∈Z×Q0
D(M−i(x)) ∈ GModΛo,

whose left Λ-multiplication is such, for ϕ ∈ D(M−i(x)) and u ∈ exΛjey, that
uo · ϕ = ϕ ◦M(u), that is, (uo ·ϕ)(m) = ϕ(um), for m ∈ M−i−j(y). In particular,
(DM)i = ⊕x∈Q0

D(M−i(x)) and (DM)i(x) = D(M−i(x)) for i ∈ Z and x ∈ Q0.
Given a morphism f : M → N in GModΛ, we define a morphism Df : DN → DM
in GModΛo by setting (Df)i,x = D(f−i,x), for all (i, x) ∈ Z × Q0. This clearly
yields a contravariant functor D : GModΛ→ GModΛo.

2.2.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Consider M ∈ GModΛ and V ∈ Modk.
(1) Given s ∈ Z, we have D(M〈s〉) = (DM)〈−s〉.
(2) There exists a natural monomorphism ρ : M → D2M in GModΛ, which is an

isomorphism in case M ∈ gmodΛ.
(3) There exists a binatural morphism θ : DM ⊗ DV → D(M ⊗ V ) in GModΛo,

which is an isomorphism in case M ∈ gmodΛ or V ∈ modk.

Proof. Statement (1) is evident. For (i, x) ∈ Z × Q0, we have a canonical k-
linear monomorphim ρi,x : Mi(x) → D2(Mi(x)) = (D2M)i(x). Given m ∈ Mi(x),
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u ∈ eyΛjex and f ∈ D(Mi+j(y)), we have

ρi+j,y(um)(f) = f(um) = (uo · f)(m) = ρi,x(m)(uo · f) = (u · ρi,x(m))(f).

That is, ρi+j,y(um) = u ρi,x(m). Thus, ρ = ⊕(i,x)∈Z×Q0
ρi,x : M → D2M is a

monomorphism in GModΛ, which is clearly natural in M . If M ∈ gmodΛ, then
Mi(x) ∈ modk, and hence, ρi,x is a k-linear isomorphism, for all (i, x) ∈ Z × Q0.
That is, ρ is an isomorphism. This establishes Statement (2).

Next, given (i, x) ∈ Z×Q0, we have (DM ⊗DV )i(x) = D(M−i(x))⊗DV and
(D(M⊗V ))i(x) = D(M−i(x)⊗V ). Let θi,x : D(M−i(x))⊗DV → D(M−i(x)⊗V ) be
the k-linear map as defined in Corollary 1.1.2(2). Given g ∈ D((M−i(x)), f ∈ DV
and u ∈ exΛjey, it is easy to verify that

(uo · θi,x(g ⊗ f))(m⊗ v) = θi+j,y(uo (g ⊗ f))(m⊗ v), for m ∈M−i−j(y), v ∈ V.

That is, uo · θi,x(g ⊗ f) = θi+j,y(uo (g ⊗ f)). And consequently, we have a
morphism θ = ⊕(i,x)∈Z×Q0

θi,x : DM⊗DV → D(M⊗V ) in GModΛo. It is a routine
verification that θ is natural in M and V . Finally, if M ∈ gmodΛ or V ∈ modk
then, by Corollary 1.1.2(2), θi,x is a k-linear isomorphism for all (i, x) ∈ Z × Q0.
That is, θ is an isomorphism in GModΛo. The proof of the proposition is completed.

As a consequence of Lemma 2.2.1(2), we obtain our promised duality as follows.

2.2.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. The contravariant functor D : GModΛ→ GModΛo is exact and restricts to
a duality D : gmodΛ→ gmodΛo.

The following statement says that D converts direct sums into direct products.

2.2.3. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Given Mσ ∈ GModΛ with σ ∈ Σ, we have D(⊕σ∈ΣMσ) ∼= Πσ∈ΣD(Mσ).

Proof. Let Mσ ∈ GModΛ with σ ∈ Σ. Write M = ⊕σ∈ΣMσ and N = Πσ∈ΣD(Mσ).
Fix (i, x) ∈ Z×Q0. ThenMi(x) =⊕σ∈Σ (Mσ)i(x) andNi(x) = Πσ∈ΣD((Mσ)−i(x)).
For each σ ∈ Σ, denote by qσ : (Mσ)i(x) → Mi(x) the canonical injection. Then,
we have a canonical k-linear isomorphism

Φi,x : (DM)i(x) = D(⊕σ∈Σ (Mσ)−i(x))→ Πσ∈ΣD((Mσ)−i(x)) = Ni(x)

such that Φi,x(f) = (f ◦ qσ)σ∈Σ for all f ∈ (DM)i(x). Given f ∈ (DM)i(x)
and u ∈ exΛjey, it is easy to verify that uo · Φi,x(f) = Φi+j,y(uo · f). This yields
an isomorphism Φ = ⊕(i,x)∈Z×Q0

Φi,x : DM → N in GModΛ. The proof of the
proposition is completed.

2.3. Graded projective modules. A projective object in GModΛ is called
graded projective. For each a ∈ Q0, we put Pa = Λea = ⊕(i,x)∈Z×Q0

exΛiea. Since
Q is a locally finite, Pa is locally finite dimensional with (Pa)i = 0 for all i < 0. To
describe the graded morphisms starting from these modules, we fix some notation.
Let M ∈ GModΛ. Given a pure element m ∈ Ms(a) with s ∈ Z and a ∈ Q0, the
right multiplication by m yields a graded Λ-linear morphism M [m] : Pa〈−s〉 →M.
By definition, M [m](ea) = eam = m.

2.3.1. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Consider Pa〈−s〉 with (s, a) ∈ Z ×Q0 and M ∈ GModΛ. Then we have a
natural k-linear isomorphism η : GHomΛ(Pa〈−s〉,M)→Ms(a) : f 7→ f(ea), whose

inverse is given by ϕ : Ms(a)→ GHomΛ(Pa〈−s〉,M) : m 7→M [m].
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Proof. Let f ∈ GHomΛ(Pa〈−s〉,M). Observing that ea ∈ Pa〈−s〉s(a), we see that
m = f(ea) ∈ Ms(a) such that f = M [m]. It is easy to verify that η−1 = ϕ. The
proof of the proposition is completed.

The following statement is an immediate consequence of Proposition 2.3.1.

2.3.2. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Then, Pa〈−s〉⊗V is a graded projective module, for (s, a) ∈ Z×Q0 and V ∈ Modk.

In the sequel, we shall denote by GProjΛ the strictly full additive subcategory
of GModΛ generated by the Pa〈−s〉 ⊗ V with (s, a) ∈ Z×Q0 and V ∈ Modk, and
by gprojΛ the one generated by the Pa〈−s〉 with (s, a) ∈ Z×Q0. We shall describe
the morphsims in GProj Λ; compare [8, (7.6)]. Given u ∈ eaΛs−teb = Pb〈−t〉s, in
order to simplify the notation, we shall write the right multiplication by u as

P [u] : Pa〈−s〉 → Pb〈−t〉 : v 7→ vu.

Note that this notation does not distinguish P [u] from its grading shifts.

2.3.3. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Consider Pa〈−s〉 ⊗ V and Pb〈−t〉 ⊗ W with (s, a), (t, b) ∈ Z × Q0 and
V,W ∈ Modk. We have a k-linear isomorphism

ϕ : eaΛs−teb⊗Homk(V,W )→GHomΛ(Pa〈−s〉⊗V, Pb〈−t〉⊗W ) : u⊗f 7→ P [u]⊗f.
Proof. Clearly, we have a k-linear map ϕ as stated in the proposition. Choose a
k-basis {u1, . . . , un} of eaΛs−teb. Consider ω ∈ Ker(ϕ). Then, ω =

∑n
i=1 ui ⊗ fi,

where fi ∈ Homk(V,M). Given v ∈ V , we have ϕ(ω)(ea⊗v) =
∑n
i=1 ui⊗fi(v) = 0,

and hence, fi(v) = 0, for all 1 ≤ i ≤ n. Hence, ω = 0. So, ϕ is a monomorphism.
On the other hand, let f ∈ GHomΛ(Pa〈−s〉 ⊗ V, Pb〈−t〉 ⊗W ). Given v ∈ V ,

observing that ea⊗ v ∈ Pa〈−s〉s⊗V , we have f(ea⊗ v) =
∑n
i=1 ui⊗wi,v, for some

unique wi,v ∈W . This yields k-linear maps fi : V →W : v 7→ wi,v, for i = 1, . . . , n,
such that f = ϕ(

∑n
i=1 ui ⊗ fi). The proof of the proposition is completed.

The following statement is well-known in case Λ has an identity; see [37, (2.2)].

2.3.4. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Then GModΛ has enough projective objects.

Proof. Let M ∈ GModΛ. For (i, x) ∈ Z×Q0, the multiplication map yields a graded
morphism fi,x : Px 〈−i〉 ⊗Mi(x) → M . Consider P = ⊕(i,x)∈Z×Q0

Px〈−i〉 ⊗Mi(x)
with canonical injections qs,a : Pa〈−s〉 ⊗Ms(a)→ P, for (s, a) ∈ Z×Q0. Then, we
have a graded morphism f : P →M such that f ◦qs,a = fs,a for all (s, a) ∈ Z×Q0.
Clearly, f : P →M is an epimorphism with P graded projective. The proof of the
proposition is completed.

2.4. Graded injective modules. An injective object in GModΛ is called a
graded injective. Given a ∈ Q0, write P o

a = Λoea ∈ gprojΛo. Applying the duality
D, we obtain Ia = DP o

a ∈ gmodΛ with (Ia)i(x) = D(exΛo
−iea), for (i, x) ∈ Z×Q0.

Note that Ia is locally finite dimensional with (Ia)i = 0 for i > 0. Given f ∈(Ia)i(x)
and u ∈ eyΛjex, by definition, uf ∈ (Ia)i+j(y) = D(eyΛo

−i−jea) such that

(uf)(vo) = f(uovo), for all v ∈ eaΛ−i−jey.

So, Ia(u) =D(P o
a (uo)) : (Ia)i(x)→ (Ia)i+j(y), where P o

a (uo) : P o
a (y)−i−j→P o

a (x)−i
is the left multiplication by uo.

2.4.1. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Consider M ∈ GModΛ and Ia〈s〉 ⊗ V with (s, a) ∈ Z×Q0 and V ∈ Modk.
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Then, we have a natural k-linear isomorphism

ψ : GHomΛ(M, Ia〈s〉 ⊗ V )→ Homk(M−s(a), V ).

Proof. First, we have a k-linear isomorphism θa : Homk(eaΛo
0ea, V )→V :g 7→g(ea).

Given (i, x) ∈ Z×Q0, by Corollary 1.1.2(1), we have a k-linear isomorphism

σi,x : Ia〈s〉i(x)⊗ V = D(exΛo
−i−sea)⊗ V → Homk(exΛo

−i−sea, V )

so that σi,x(h⊗ v)(uo) = h(uo)v, for h ∈ D(exΛo
−i−sea), u ∈ eaΛ−i−sex and v ∈ V .

Further, given any morphism f : M → Ia〈s〉 ⊗ V in GModΛ, we have a k-linear
map f−s,a : M−s(a)→ Ia〈s〉−s(a)⊗ V . This yields a natural k-linear map

ψ : GHomΛ(M, Ia〈s〉 ⊗ V )→ Homk(M−s(a), V ) : f 7→ θa ◦ σ−s,a ◦ f−s,a.

Suppose that ψ(f) = 0. Fix (i, x) ∈ Z × Q0 and m ∈ Mi(x). We may write
fi,x(m) =

∑r
j=1 hj ⊗ vj , where hj ∈ D(exΛo

−i−sea) and the vj are k-linearly in-

dependent in V . If u ∈ eaΛ−i−sex, then f−s,a(um) = ufi,x(m) =
∑r
j=1 uhj ⊗ vj .

Observing that uhj ∈ Ia〈s〉−s(a), we obtain

0 = ψ(f)(um) =
∑r
j=1 σ−s,a(uhj ⊗ vj)(ea) =

∑r
j=1(uhj)(ea)vj =

∑r
j=1 hj(u

o)vj .

Since the vj are k-linearly independent, hj(u
o) = 0 for j = 1, . . . , r. Hence, hj = 0,

for j = 1, . . . , r. In particular, fi,x(m) = 0. Thus, fi,x = 0 for all (i, x) ∈ Z × Q0.
That is, f = 0. So, ψ is a monomorphism.

Consider now a k-linear map g : M−s(a) → V . Given (i, x) ∈ Z × Q0, we shall
define a k-linear map fi,x : Mi(x) → Ia〈s〉i(x) ⊗ V . For any m ∈ Mi(x), we have
a k-linear map gi,x(m) : exΛo

−i−sea → V such that gi,x(m)(uo) = g(um) for all
u ∈ eaΛ−i−sex. This yields a k-linear map fi,x : Mi(x)→ Ia〈s〉i(x)⊗ V , sending m

to σ−1i,x (gi,x(m)). In other words, σi,x(fi,x(m)) = gi,x(m), for all m ∈Mi(x).

Consider v ∈ eyΛjex and m ∈Mi(x). Given u ∈ eaΛ−i−j−sey, we obtain

σi+j,y(fi+j,y(vm))(uo) = gi+j,y(vm)(uo) = g(uvm) = gi,x(m)((uv)o).

On the other hand, σ−1i,x (gi,x(m)) =
∑r
p=1 hp ⊗ vp, for some hp ∈ D(exΛo

−i−sea)

and vp ∈ V . Thus, vfi,x(m) =
∑r
p=1(vhp)⊗ vp with vhp ∈ D(eyΛo

−i−j−sea). So

σi+j,y(vfi,x(m))(uo)=
∑s
p=1(vhp)(u

o)vp=
∑s
p=1σi,x(hp⊗vp)((uv)o)=gi,x(m)((uv)o).

Thus, σi+j,y(vfi,x(m)) = σi+j,y(fi+j,y(vm)). Hence, fi+j,y(vm) = vfi,x(m). This
yields a morphism f = (fi,x)(i,x)∈Z×Q0

: M → Ia〈s〉 ⊗ V in GModΛ such that
ψ(f) = g. The proof of the proposition is completed.

The following statement is an immediate consequence of Proposition 2.4.1.

2.4.2. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Then Ia〈s〉 ⊗ V is graded injective for any (s, a) ∈ Z×Q0 and V ∈ Modk.

We denote by GInjΛ the strictly full additive subcategory of GModΛ generated
by the Ia〈s〉 ⊗ V with (s, a) ∈ Z × Q0 and V ∈ Modk, and by ginjΛ the strictly
full additive subcategory of GInjΛ generated by the Ia〈−s〉 with (s, a) ∈ Z × Q0.
To describe the morphisms in GInjΛ, we need to introduce some notation. Given
u ∈ eaΛt−seb with s, t ∈ Z and a, b ∈ Q0, the right multiplication by uo yields
a graded Λo-linear morphism P [uo] : P o

b 〈−t〉 → P o
a〈−s〉. Applying the duality

D : gmodΛo → gmodΛ, we obtain a morphism I[u] = D(P [uo]) : Ia〈s〉 → Ib〈t〉 in
GInjΛ. Note that this notation does not distinguish I[u] from its grading shifts.
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2.4.3. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Consider Ia〈s〉 ⊗ V and Ib〈t〉 ⊗ W, for some (s, a), (t, b) ∈ Z × Q0 and
V,W ∈ Modk. Then, we have a k-linear isomorphism

φ : eaΛt−seb⊗Homk(V,W )→GHomΛ(Ia〈s〉⊗V, Ib〈t〉⊗W ) : u⊗f 7→ I[u]⊗f.
Proof. First, since eaΛt−seb is finite dimensional, we have a k-linear isomorphism
η : eaΛt−seb → D2(ebΛ

o
t−sea) such that η(u)(g) = g(uo) for all u ∈ eaΛt−seb and

g ∈ D(ebΛ
o
t−sea). Moreover, by Lemma 1.1.1, we have a k-linear isomorphism

ρ : D2(ebΛ
o
t−sea)⊗Homk(V,W )→ Homk(D(ebΛ

o
t−sea)⊗V,W ) : ϕ⊗ f 7→ ρ(ϕ⊗ f)

such that ρ(ϕ⊗ f)(g⊗ v) = ϕ(g)f(v), for all g ∈ D(ebΛ
o
t−sea) and v ∈ V . Further,

as did in the proof of Proposition 2.4.1, we consider two k-linear isomorphisms
θb : Homk(ebΛ

o
0eb, V )→W : g 7→ g(eb) and

σ−t,b : D(ebΛ
o
0eb)⊗W → Homk(ebΛ

o
0eb,W ) : g ⊗ w 7→ σ−t,b(g ⊗ w)

such that σ−t,b(g⊗w)(eb) = g(eb)w. Since (Ia〈s〉⊗V )−t(b) = D(ebΛ
o
t−sea)⊗V, we

obtain a k-linear isomorphism

ψ : GHomΛ(Ia〈s〉⊗V, Ib〈t〉⊗W )→Homk(D(ebΛ
o
t−sea)⊗V,W ) :h 7→ θb◦σ−t,b◦h−t,b.

In view of the above k-linear isomorphisms, we obtain a k-linear isomorphism

φ = ψ−1◦ ρ ◦ (η ⊗ id) : eaΛt−seb⊗Homk(V,W )→GHomΛ(Ia〈s〉⊗V, Ib〈t〉⊗W ).

Now, given u ∈ eaΛt−seb and f ∈ Homk(V,W ), it is a routine verification that
(ρ ◦ (η ⊗ id))(u ⊗ f) = ψ(I[u] ⊗ f), that is, φ(u ⊗ f) = I[u] ⊗ f . The proof of the
proposition is completed.

In order to state a dual statement of Proposition 2.3.1, for each a ∈ Q0, we
denote by e?a the k-linear map in (Ia)0 = D(kea) such that e?a(ea) = 1.

2.4.4. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Consider M ∈ GModΛ and Ia〈s〉 with (s, a) ∈ Z × Q0. Given m ∈ M−s(a), we
have a graded morphism f : M → Ia〈s〉 such that f(m) = e?a.

Proof. Fix m ∈M−s(a) with (s, a) ∈ Z×Q0. Considering the k-linear isomorphism
θa : Homk(eaΛo

0ea, k) → k : g 7→ g(ea), by Proposition 2.4.1, we have a k-linear

isomorphism ψ : GHomΛ(M, Ia〈s〉)→ Homk(M−s(a), k) : f 7→ θa ◦ f−s,a.
Consider h ∈ Homk(M−s(a), k) such that h(m) = 1. Then, ψ(f) = h for some

f ∈ HomΛ(M, Ia〈s〉). So, f−s,a(m)(ea) = θa(f−s,a(m)) = ψ(f)(m) = h(m) = 1.
Hence, f−s,a(m) = e?a. That is, f(m) = e?a. The proof of the lemma is completed.

The following statement is well-known in case Λ has an identity; see [37, (2.2)].

2.4.5. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Then, GModΛ has enough injective objects.

Proof. Let M ∈ GModΛ. Considering DM ∈ GModΛo, we have a graded Λo-linear
epimorphism g : P o → DM, where P o = ⊕(i,x)∈Z×Q0

P o
x〈−i〉⊗D(Mi(x)); see (2.3.4).

Applying the exact functor D yields a graded monomorphism Dg : D2M → DP o.
And by Proposition 2.2.2(1), we obtain a graded monomorphism h : M → DP o.
Now, we deduce from Proposition 2.2.3 and Lemma 2.2.1(2) that

DP o ∼= Π(i,x)∈Z×Q0
D(P o

x〈−i〉 ⊗D(Mi(x))) ∼= Π(i,x)∈Z×Q0
Ix〈i〉 ⊗D2(Mi(x)),

which is graded injective. The proof of the proposition is completed.
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2.5. Graded semisimple modules. A nonzero module in GModΛ is called graded
simple if it contains exactly two graded submodules. For each a ∈ Q0, we put
Sa = Pa/Jea, which is clearly graded simple.

2.5.1. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Then, a module S ∈ GModΛ is graded simple if and only if S ∼= Sa〈i〉 for
some i ∈ Z and a ∈ Q0.

Proof. Let S ∈ GModΛ be graded simple. Choose some 0 6= m ∈ Si(a) with
(i, a) ∈ Z × Q0. Then, S = Λm and Jm = 0. By Proposition 2.3.1, we have a
graded epimorphism p : Pa〈−i〉 → S such that p(ea) = m. This induces a graded
epimorphism p̄ : Sa〈−i〉 = Pa〈−i〉/(JPa)〈−i〉 → S. Since Sa〈−i〉 is graded simple,
S ∼= Sa〈−i〉. The proof of the proposition is completed.

A nonzero module in GModΛ is called graded semisimple if it is a sum of graded
simple modules. They can be characterized as follows.

2.5.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. A nonzero module M ∈ GModΛ is graded semisimple if and only if JM = 0;
if and only if DM is graded semisimple.

Proof. Let M ∈ GModΛ be nonzero. If M is graded semisimple, then JM = 0
by Proposition 2.5.1. If JM = 0, then M = ⊕(i,a)∈Z×Q0

Mi(a), where Mi(a) is a
graded semisimple submodule of M . This proves the first equivalence.

If JM = 0, by definition, Jo · DM = 0, and hence, DM is graded semisimple.
Suppose that JM 6= 0, say um 6= 0 for some m ∈ Mi(x) with (i, x) ∈ Z × Q0 and
u ∈ eyΛjex with j ≥ 1 and y ∈ Q0. Then, f(um) 6= 0 for some f ∈ D(Mi+j(y)),
that is, (uo ·f)(m) = f(um) 6= 0. Thus, Jo ·DM 6= 0. Therefore, DM is not graded
semisimple. The proof of the proposition is completed.

2.6. Graded radical. Let M ∈ GModΛ. A graded submodule of M is called
graded maximal if it is maximal among the graded submodules of M. We shall
describe all graded maximal submodules of M . An element m ∈ M is called a
top-element if m ∈Mn(a)\JM for some (n, a) ∈ Z×Q0. In this case, we can find a
k-subspace Ln,a of Mn(a), containing Mn(a)∩ JM , such that Mn(a) = Ln,a⊕ km.
Setting Li,x = Mi(x) for (i, x) ∈ Z×Q0 with (i, x) 6= (n, a), we obtain a k-subspace
L(m) = ⊕(i,x)∈Z×Q0

Li,x of M , which is of codimension one such that m 6∈ L(m).

2.6.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Consider a module M in GModΛ. A graded submodule L of M is graded maximal
if and only if L = L(m) for some top-element m ∈M ; and in this case, JM ⊆ L.
Proof. Let M ∈ GModΛ. Consider a top-element m ∈Mn(a) with (n, a) ∈ Z×Q0.
We claim that L(m) is a Λ-submodule of M . Otherwise, there exist some m′ ∈ Li,x
and u ∈ eyΛjex with i, j ∈ Z and x, y ∈ Q0 such that um′ ∈ Mi+j(y)\Li+j,y. By
definition, (i+ j, y) = (n, a). If j = 0, then (i, x) = (n, a) and u ∈ eaΛ0ea = kea, so
um′ ∈ Li,x = Li+j,y, absurd. If j > 0, then um′ ∈ Mn(a) ∩ JM ⊆ Ln,a = Li+j,y,
a contradiction. This establishes our claim. Being of codimension one, L(m) is
graded maximal in M . Since Mn(a) ∩ JM ⊆ Ln,a, we see that JM ⊆ L(m).

Let L be a graded maximal submodule of M . Then, we have a graded simple
module M/L = ⊕(i,x)∈Z×Q0

(Mi(x) + L)/L. By Proposition 2.5.1, M/L ∼= Sa〈−n〉
for some (n, a) ∈ Z×Q0. Therefore, (Mn(a)+L)/L = k(m+L) for some top element
m ∈Mn(a)\Ln(a), and Li(x) = Mi(x) for all (i, x) ∈ Z×Q0 with (i, x) 6= (n, a). As
a consequence, Mn(a) = Ln(a) + km and Mn(a) ∩ JM ⊆ Ln(a). Since m 6∈ Ln(a),
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we see that Mn(a) = Ln(a) ⊕ km. In view of the above construction, L = L(m).
The proof of the lemma is completed.

The graded radical radM of M is the intersection of all graded maximal sub-
modules of M . A graded submodule N of M is called graded superfluous in M if
N + L 6= M for any proper graded submodule L of M .

2.6.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. If M ∈ GModΛ, then radM = JM , which contains all graded superfluous
submodules of M .

Proof. Let M ∈ GModΛ. By Lemma 2.6.1, JM ⊆ radM. Consider m ∈ M\JM .
Write m =

∑
(i,x)∈Z×Q0

mi,x, where mi,x ∈ Mi(x). Then, mn,a 6∈ JM for some

(n, a) ∈ Z×Q0. By Lemma 2.6.1, we have a graded maximal submodule L(mn,a)
of M with mn,a /∈ L(mn,a). Then, m 6∈ L(mn,a), and hence, m /∈ radM . So,
radM = JM . Suppose that N is a graded superfluous submodule of M with
N 6⊆ radM . Then, N 6⊆ L, for some graded maximal submodule L of M . Thus
N + L = M, a contradiction. The proof of the proposition is completed.

Remark. In case Q is finite, it is known that radM = JM for modules M in
GMod−Λ; see, for example, [35, Page 70].

As an immediate consequence of Proposition 2.6.2, we obtain the following state-
ment, which is well-known in case Q is finite.

2.6.3. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Then, rad(ΛΛ) = J and radPa = Jea for all a ∈ Q0.

We have a sufficient condition for radM to be graded superfluous in M , which
is known in case Q is finite; see [35, Page 70].

2.6.4. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. If M ∈ GMod+Λ, then radM is graded superfluous in M .

Proof. Let M ∈ GMod+Λ. Assume that radM + N = M , where N is a graded
submodule of M with N 6= M . We may find a minimal s such that Ns 6= Ms.
Choose m ∈ Ms(a)\Ns(a) for some a ∈ Q0. By the minimality of s, we see that
Ms(a)∩JM ⊆ Ns(a). In particular, m is a top-element. It is easy to see that there
exists a k-subspace Ls,a, containing Ns(a), of Ms(a) such that Ms(a) = Ls,a⊕ km.
Since Ms(a) ∩ JM ⊆ Ls,a, by Lemma 2.6.1, we may construct a graded maximal
submodule L(m) of M . Since Ns(a) ⊆ Ls,a, we have N ⊆ L(m), and consequently,
M = L(m), absurd. The proof of the proposition is completed.

Example. Let M be a graded module over k[x], which is illustrated as follows:

· · · // v−n
x // · · · // v−2

x // v−1
x // v0 u−1,

xoo

where x · v0 = 0. By Proposition 2.6.2, radM = k{. . . , v−n, . . . , v−2, v−1, v0} 6= M.
Observe that M = radM +N , where N = k〈u−1, v0〉 is a graded submodule of M .
Thus, radM is not graded superfluous in M .

Given M ∈ GModΛ, we put topM = M/radM , called the graded top of M . The
following statement is known in case Q is finite; see [35, Page 70].

2.6.5. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
If M ∈ GMod+Λ is nonzero, then topM is graded semisimple.
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Proof. Let M ∈ GMod+Λ be nonzero. By Proposition 2.6.4, radM is graded
superfluous in M . In particular, topM 6= 0. Since radM = JM ; see (2.6.2), topM
is graded semisimple by Proposition 2.5.2. The proof of the corollary is completed.

Remark. Corollary 2.6.5 includes the graded version of Nakayama Lemma, which
is known for positively graded algebras with an identity; see [37, (2.9.2)].

2.7. Finitely generated modules. Note that every finitely generated module
in GModΛ is generated by finitely many pure elements. This fact leads to the
following notion.

2.7.1. Definition. Let Λ=kQ/R be a graded algebra with Q a locally finite quiver.
Given M ∈GModΛ, a set {m1, . . . ,mr} of pure elements in M is called a top-basis
if {m1 + radM, . . . ,mr + radM} is a k-basis of topM and M = Λm1 + · · ·+ Λmr.

2.7.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Given M ∈ GModΛ, the following statements are equivalent :

(1) M is finitely generated ;
(2) M admits a finite top-basis ;

(3) M is bounded below and topM is finite dimensional.

Proof. Let M ∈ GModΛ be nonzero. Assume that Statement (1) holds. Clearly,
M ∈ GMod+Λ. By Corollary 2.6.5, topM is graded semisimple. Being finitely
generated, topM is finite dimensional; see (2.5.1). Thus, Statement (3) holds.

Suppose that Statement (3) holds. We may choose pure elements m1, . . . ,mr in
M such that {m1 + radM, . . . ,mr + radM} is a k-basis of topM . In particular,
M/radM = (

∑r
i=1 Λmi + radM)/radM. Since radM is graded superfluous in M ;

see (2.6.4), M =
∑r
i=1 Λmi. Thus, Statement (2) holds, and so does Statement

(1). The proof of the proposition is completed.

2.8. Graded projective cover. A superfluous epimorphism in GModΛ is called
graded superfluous, and a projective cover of a module in GModΛ is called a graded
projective cover.

2.8.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) An epimorphism f : M → N in GModΛ is graded superfluous if and only if
Ker(f) is graded superfluous in M ; and in this case, f−1(radN) = radM .

(2) An epimorphism f : P →M in GMod−Λ with P graded projective is a graded
projective cover of M if and only if Ker(f) ⊆ radP.

Proof. Statement (1) is easily adapted from the non-graded setting; see, for exa-
mple, [1, (5.15)]. Consider an epimorphism f : P →M in GMod−Λ with P graded
projective. By Propositions 2.6.2 and 2.6.4, radP is the largest superfluous graded
submodule of P . So, every graded submodule of radP is superfluous in P . Now,
Statement (2) follows from Statement (1). The proof of the lemma is completed.

Example. Given a ∈ Q0, the canonical projection pa : Pa → Sa is a graded
projective cover of Sa.

We are ready to construct a graded projective cover for every finitely generated
graded module; compare [29, (1.1)].

2.8.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. A module M ∈ GModΛ admits a graded projective cover

f : Pa1〈−s1〉⊕ · · · ⊕Par〈−sr〉 →M : eai 7→ mi
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if and only if {m1, . . . ,mr} with mi ∈Msi(ai) is a top-basis for M.

Proof. Let {m1, . . . ,mr} be a top-basis for M , where mi ∈ Msi(ai) with si ∈ Z
and ai ∈ Q0. In view of Proposition 2.3.1, we obtain a graded epimorphism

f : Pa1〈−s1〉⊕ · · · ⊕Par〈−sr〉 →M : eai 7→ mi.

Since {m1 + radM, . . . ,mr + radM} is k-linearly independent, it follows that
Ker(f) ⊆ rad(⊕ri=1Pa1〈−s1〉). So f is a graded projective cover of M ; see (2.8.1).

Suppose that M has a graded projective cover as stated in the proposition. Then,
M =

∑r
i=1 Λmi and topM =

∑r
i=1 k(mi + radM). Let

∑r
i=1 λi(mi + radM) = 0,

where λi ∈ k. Since radP = f−1(radM); see (2.8.1), there exists some u ∈ radP
such that f(u) =

∑r
i=1 λimi =

∑r
i=1 f(λieai). Since Ker(f) ⊆ radP ; see (2.8.1),

we have
∑r
i=1 λieai ∈ ⊕ri=1rad(Pai〈−si〉). So, λi = 0, for i = 1, . . . , r. That is,

{m1, . . . ,mr} is a top-basis for M . The proof of the proposition is completed.

A module M in gmodΛ is called finitely presented if it admits a graded projective
presentation over gprojΛ, that is an exact sequence

P−1
d−1

// P 0 d0
// M // 0

in gmodΛ, where P 0, P−1 ∈ gprojΛ. Such a graded projective presentation is called
minimal if d−1 and d0 are both right minimal. Applying Proposition 2.8.2 and
Schanuel’s Lemma, we obtain the following statement.

2.8.3. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Then, every finitely presented module in gmodΛ admits a minimal graded projective
presentation over gprojΛ, which is unique up to isomorphism.

2.9. Graded socle. Let M ∈ GModΛ. The graded socle socM of M is the sum of
all graded simple submodules of M . A graded submodule N of M is called graded
essential in M if N ∩ L 6= 0 for any nonzero graded submodule L of M.

2.9.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver. If
M ∈ GModΛ, then socM is contained in every essential graded submodule of M
such that (socM)i(x) = {m ∈Mi(x) | Jm = 0} for all (i, x) ∈ Z×Q0.

Proof. Let M ∈ GModΛ. Assume that L is an essential graded submodule of M .
If S is a graded simple submodule of M , then S = L ∩ S ⊆ L. Thus, socM ⊆ L.
The second part of the statement follows from Proposition 2.5.2. The proof of the
lemma is completed.

In general, socM is not necessarily graded essential in M . Nevertheless, we have
the following sufficient condition for this to happen.

2.9.2. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver. If
M ∈ GMod−Λ, then socM is graded essential in M .

Proof. Let M ∈ GMod−Λ. Consider a nonzero graded submodule N of M . Choose
0 6= m ∈ Ni for some integer i. Since N ∈ GMod−Λ, there exists some j ≥ 0 such
that Λjm 6= 0 but Λj+1m = 0. By Lemma 2.9.1, Λjm ⊆ socM . The proof of the
lemma is completed.

Example. Consider Λ = kQ/R, where

Q : 1α
β

2
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and R = 〈βα〉. Then, P1 = k{e1, β̄, ᾱ, ᾱ2, · · · } with socP1 = kβ̄. Observe that
L = k{ᾱ, ᾱ2, · · · } is a graded submodule of P1 such that L ∩ socP1 = 0. So, socP1

is not graded essential in P1.

The next statement describes the graded socle for modules in ginjΛ.

2.9.3. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
If a ∈ Q0, then socIa = ke?a, which is graded essential in Ia.

Proof. Fix a ∈ Q0. Note that (Ia)0 = D(eaΛo
0ea) = ke?a. Since (Ia)i = 0 for i > 0,

by Lemma 2.9.1, e?a ∈ socIa. So, (socIa)0 = ke?. Consider 0 6= f ∈ (Ia)−i(x) for
some i > 0 and x ∈ Q0. Then, f(uo) 6= 0 for some u ∈ eaΛiex, that is, (u·f)(ea) 6= 0.
By Lemma 2.9.1, f /∈ socIa. Thus, socIa = (socIa)0 = ke?a. Moreover, by Lemma
2.9.2, socIa is graded essential in Ia. The proof of the corollary is completed.

2.10. Finitely cogenerated modules. A module M in GModΛ is called finitely
cogenerated if socM is finitely generated and graded essential in M .

2.10.1. Definition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Given M ∈ GModΛ, a set {m1, . . . ,mr} of pure elements in M is called a
soc-basis if socM has {m1, . . . ,mr} as a k-basis and is graded essential in M.

Finitely cogenerated graded modules are characterized as follows.

2.10.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Given M ∈ GModΛ, the following statements are equivalent :

(1) M is finitely cogenerated ;
(2) M admits a finite soc-basis ;
(3) M is bounded above and socM is finite dimensional.

Proof. Let M ∈ GModΛ be nonzero. Assume that Statement (1) holds. Then,
socM is finitely generated and graded semisimple. By Proposition 2.5.1, socM is
finite dimensional. Thus, socM has a k-basis {m1, . . . ,mr}, where mi ∈ Msi(ai)
with (si, ai) ∈ Z×Q0. Set s = s1+· · ·+sr. Then Mj∩socM = 0 for j > s. Suppose
that there exists 0 6= m ∈ Mp for some p > s. Since socM is graded essential in
M , there exists some u ∈ Λt with t ≥ 0 such that 0 6= um ∈ Mt+p ∩ socM , a
contradiction. Hence, Statement (3) holds.

Suppose that Statement (3) holds. Then, socM has a k-basis {m1, . . . ,mr},
where the mi are pure elements in M . Since socM is graded essential in M , by
Lemma 2.9.2, {m1, . . . ,mr} is a soc-basis for M . Hence, Statement (2) holds. The
proof of the proposition is completed.

As an immediate consequence of Proposition 2.10.2 and Corollary 2.9.3(3), we
obtain the following statement.

2.10.3. Corollary. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Then, every module in ginjΛ is finitely cogenerated, and every graded sub-
module of a finitely cogenerated graded module is finitely cogenerated.

2.11. Graded injective envelope. An essential monomorphism in GModΛ is
called graded essential, and an injective envelope of a module in GModΛ is called
a graded injective envelope.

2.11.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) A monomorphism f : M → N in GModΛ is graded essential if and only if
Im(f) is graded essential in N ; and in this case, socN = f(socM).
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(2) A monomorphism f : M → I in GMod+Λ with I graded injective is a graded
injective envelope of M if and only if socI ⊆ Im(f).

Proof. Statement (1) is easily adapted from the non-graded setting; see, for exam-
ple, [1, (5.13)]. By Lemmas 2.9.1 and 2.9.2, socI is the smallest essential graded
submodule of I. Thus, every graded submodule of I containing socI is graded
essential in I. Now, Statement (2) follows from Statement (1). The proof of the
lemma is completed.

Example. Given a ∈ Q0, by Lemma 2.4.4, we have a graded monomorphism
qa : Sa → Ia, sending ea + Jea to e?a. By Corollary 2.9.3, Im(qa) = socIa, and by
Lemma 2.11.1, qa is a graded injective envelope of Sa.

We are ready to construct a graded injective envelope for every finitely cogene-
rated graded module.

2.11.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. A module M in GModΛ admits a graded injective envelope

g :M→Ia1〈s1〉 ⊕ · · · ⊕ Iar〈sr〉 : mi 7→ e?ai

if and only if {m1, . . . ,mr} with mi ∈M−si(ai) is a soc-basis for M.

Proof. Suppose that {m1, . . . ,mr} is a soc-basis for M, where mi ∈ M−si(ai).
Then, socM = km1⊕· · ·⊕kmr. By Lemma 2.4.4, we have a graded monomorphism

q : socM → Ia1〈s1〉 ⊕ · · · ⊕ Iar〈sr〉 = I : mi 7→ e?ai .

By Corollary 2.9.3, socI = ke?a1⊕ · · · ⊕ ke?ar = Im(q). Since the inclusion map
h : socM → M is graded essential; see (2.11.1), we have a graded monomorphism
g : M → I such that g ◦ h = q. Since socI = Im(q) ⊆ Im(g), by Lemma 2.11.1(2),
g is a graded injective envelope of M .

Suppose that g : M → Ia1〈s1〉 ⊕ · · · ⊕ Iar〈sr〉 = I is a graded injective envelope
of M . By Lemma 2.11.1, ke?a1⊕· · ·⊕ke

?
ar = g(socM), where e?ai ∈ Iai〈si〉−si . Thus,

e?ai = g(mi) for some mi ∈ (socM)−si(ai) ⊆M−si(ai). Since g is a monomorphism,
M is bounded above and {m1, . . . ,mr} is a k-basis of socM . By Lemma 2.9.2, socM
is graded essential in M . The proof of the proposition is completed.

A module M in gmodΛ is called finitely copresented if it admits a graded injective
copresentation over ginjΛ, that is an exact sequence

0 // M
d0
// I0

d1 // I1,

in gmodΛ with I0, I1 ∈ ginjΛ. Such a graded injective copresentation is called

minimal if d
0

and d1 are both left minimal. Applying Corollary 2.10.3, Proposition
2.11.2 and the dual of Schanuel’s Lemma, we obtain the following statement.

2.11.3. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Every finitely copresented module in gmodΛ admits a minimal graded injective co-
presentation over ginjΛ, which is unique up to isomorphism.

2.12. Krull-Schmidt subcategories. In this subsection, we provide several
Hom-finite Krull-Schmidt subcategories of GModΛ, which will play an important
role in our later study of almost split sequences and almost split triangles.

2.12.1. Lemma. Let Λ = kQ/R be graded algebra with Q a locally finite quiver.
If P ∈ gprojΛ and I ∈ ginjΛ, then GHomΛ(P,M) and GHomΛ(M, I) are finite
dimensional, for all M ∈ gmodΛ.
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Proof. We shall only prove the first part of the statement. Let P ∈ gprojΛ. Then
P ∼= ⊕ri=1Pai〈−si〉, where (si, ai) ∈ Z × Q0. Given M ∈ gmodΛ, by Proposition
2.3.1, GHomΛ(P,M) ∼= ⊕ri=1Msi(ai). The proof of the lemma is completed.

The following statement exhibits some particular feature of the graded setting.

2.12.2. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) The category gprojΛ is Hom-finite Krull-Schmidt and contains all finitely gene-
rated graded projective modules in GModΛ.

(2) The category ginjΛ is Hom-finite Krull-Schmidt and contains all finitely cogene-
rated graded injective modules in GModΛ.

Proof. We shall only prove Statement (1). By Lemma 2.12.1, gprojΛ is Hom-
finite. Given s ∈ Z and a ∈ Q0, by Proposition 2.3.3, GEndΛ(Pa〈−s〉) ∼= kea.
Thus, gprojΛ is Krull-Schmidt. If M ∈ GModΛ is finitely generated and graded
projective, then it has a graded projective cover f : P → M with P ∈ gprojΛ; see
(2.8.2), and hence, M ∼= P . The proof of the lemma is completed.

We write gmod+,bΛ, gmod−,bΛ and gmodbΛ for the full subcategories of GModΛ
of finitely generated modules, of finitely cogenerated modules, and of finite dimen-
sional modules, respectively. Clearly, they are all subcategories of gmodΛ.

2.12.3. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) The restricted functor D : gmod+,bΛ→ gmod−,bΛo is a duality.

(2) Both gmod+,bΛ and gmod−,bΛ are Hom-finite Krull-Schmidt extension-closed

subcategories of GModΛ, whose intersection is gmodbΛ.

Proof. (1) Let M ∈ gmod+,bΛ. Then, we have a graded epimorphism f : P → M
with P ∈ gprojΛ. Applying the duality D : gmodΛ → gmodΛo; see (2.2.2), we
obtain a graded monomorphism Df : DM → DP with DP in ginjΛo. By Corollary
2.10.3, DM ∈ gmod−,bΛo. Dually, if N ∈ gmod−,bΛo, then DN ∈ gmod+,bΛ.

(2) Clearly gmod+,bΛ is closed under direct summands and extensions, and by

Lemma 2.12.1, it is Hom-finite. So, gmod+,bΛ is Krull-Schmidt. Then, by State-
ment (1), gmod−,bΛ is Hom-finite Krull-Schmidt and extension-closed in GModΛ.
Finally, let M ∈ GModΛ be finitely generated and finitely cogenerated. By Propo-
sitions 2.12.4 and 2.10.2, M is bounded. Since the modules in gprojΛ are locally
dimensional, so are those in gmod+,bΛ. As a consequence, M ∈ gmodbΛ. The proof
of the lemma is completed.

In view of Lemma 2.12.3(2), gmod+,bΛ and gmod−,bΛ are exact k-categories,
which are not abelian in general. A module M ∈ GModΛ is called noetherian if
every graded submodule of M is finitely generated. Note that this is equivalent to
M being noetherian as a ungraded Λ-module; see [37, (5.4.7)].

2.12.4. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite

quiver. Then gmod+,bΛ or gmod−,bΛ is abelian if and only if Λ is locally left or
right noetherian; and in this case, gmod+,bΛ or gmod−,bΛ is Ext-finite, respectively.

Proof. Suppose that gmod+,bΛ is abelian. Since gmod+,bΛ is closed under graded
quotients, it is closed under graded submodules. In particular, Λ is locally left noe-
therian. Conversely, suppose that Λ is locally left noetherian. Then, the modules
in gprojΛ are noetherian, and so are those in gmod+,bΛ. Therefore, gmod+,bΛ is
abelian. As a consequence, every module in gmod+,bΛ admits a graded projective
resolution over gprojΛ. In view of Lemma 2.12.1, we see that gmod+,bΛ is Ext-finite.
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Finally, Λ is locally right noetherian if and only if Λo is locally left noetherian.
In view of the duality D : gmod+,bΛo → gmod−,bΛ; see (2.12.3), we see that the
second part of the statement holds. The proof of the proposition is completed.

Next, we shall study the full subcategories gmod+,pΛ and gmod−,iΛ of GModΛ
of finitely presented modules and of finitely copresented modules, respectively.

2.12.5. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) The duality D : gmodΛ → gmodΛo restricts to two mutually quasi-inverse

functors D : gmod+,pΛ→ gmod−,iΛo and D : gmod−,iΛo → gmod+,pΛ.

(2) Both gmod+,pΛ and gmod−,iΛ are Hom-finite Krull-Schmidt extension-closed

subcategories of GModΛ, whose intersection is gmodbΛ.

Proof. (1) Given M ∈ gmod+,pΛ, it admits a graded projective presentation

P−1 // P 0 // M // 0, where P−1, P 0 ∈ gprojΛ. Applying D yields a graded

injective copresentation 0 // DM // DP 0 // DP−1 with DP 0,DP−1∈ ginjΛo.
That is, DM ∈ gmod−,iΛo. Dually, if N ∈ gmod−,iΛo, then DN ∈ gmod+,pΛ. In
view of Proposition 2.2.2, we have a duality D : gmod+,pΛ→ gmod−,iΛo.

(2) By Lemma 2.12.3, gmod+,pΛ is Hom-finite, and by Proposition 2.1 in [2], it is
extension-closed in GModΛ. Assume that M ∈ gmod+,pΛ with M = M1⊕M2. By
Lemma 2.11.3, M admits a graded projective cover f : P →M with Ker(f) finitely
generated. Being finitely generated, M i has a graded projective cover f i : P i →M i

for i = 1, 2. Then, Ker(f) ∼= Ker(f1) ⊕ Ker(f2). In particular, Ker(f i) is finitely
generated, and hence, M i ∈ gmod+,pΛ for i = 1, 2. Thus, gmod+,pΛ is closed
under direct summands. So, gmod+,pΛ is Krull-Schmidt. Then, by Statement (1),

gmod−,iΛ is also Hom-finite Krull-Schmidt and extension-closed in GModΛ.
Finally, assume that M ∈ gmodbΛ. Let t ∈ Z be such that Mi = 0 for i ≥ t. By

Proposition 2.8.2, M has a graded projective cover f : P → M with P ∈ gprojΛ.
Write L = Ker(f). Then L = ⊕i∈ZLi, where Li ⊆ Pi for all i ∈ Z, and Li = Pi
for all i ≥ t. Given i > t, we see that Li = Pi = Ji−tPt ⊆ radL. This implies
that topL = ⊕i≤t(Li + radL)/radL. On the other hand, since P is locally finite
dimensional, ⊕i≤tPi is finite dimensional, and so is ⊕i≤tLi. Thus, topL is finite

dimensional. Since L ∈ GMod+Λ, by Proposition 2.7.2(3), L is finitely generated.

So, M ∈ gmod+,pΛ. Dually, M ∈ gmod−,iΛ. The proof of the lemma is completed.

It is evident that the projective objects in gmod+,pΛ are the modules in gprojΛ;
and the injective objects in gmod−,iΛ are the modules in ginjΛ.

2.12.6. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. The finitely cogenerated injective objects in gmod+,pΛ are the finite dimen-
sional modules in ginjΛ; and the finitely generated projective objects in gmod−,iΛ
are the finite dimensional modules in gprojΛ.

Proof. We shall only prove the first part of the statement. Given M ∈ GModΛ
and n ∈ Z, we see that M≥n = ⊕i≥nMi is a graded submodule of M . Let L be

an injective object in gmod+,pΛ, which is finitely cogenerated. Being an essential
monomorphism in GModΛ; see (2.11.1), the inclusion map j : socL → L is an
injective envelope of socL in gmod+,pΛ. On the other hand, by Proposition 2.11.2,
socL admits an injective envelope q : socL→ I in GModΛ with I ∈ ginjΛ. Since L
is finite dimensional; see (2.12.5), L = L≥n for some n ∈ Z. Fix arbitrarily t < n.
Since socI ∼= socL, which is generated in degrees ≥ n, we see that soc(I≥t) = socI.
Hence, q co-restricts to a graded essential monomorphism q≥t : socL → I≥t in
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GModΛ; see (2.11.1). Since I≥t is finite dimensional and L is injective in gmod+,pΛ,
there exists a graded morphism f : I≥t → L such that j = f ◦ q≥t. Since q≥t is
graded essential, f is a monomorphism. And since Lt = 0, we have It = 0. This
shows that I is finite dimensional. In particular, I ∈ gmod+,pΛ. Therefore, L ∼= I.
The proof of the proposition is completed.

Applying Proposition 2.12.6, we obtain the following interesting statement.

2.12.7. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. The following statements hold.

(1) Every Sx with x ∈ Q0 has an injective envelope in gmod+,pΛ if and only if Λ

is locally right bounded if and only if gmod−,iΛ = gmodbΛ.
(2) Every Sx with x ∈ Q0 has a projective cover in gmod−,iΛ if and only if Λ is

locally left bounded if and only if gmod+,pΛ = gmodbΛ.

Proof. We shall only prove Statement (1). Clearly, Λ is locally right bounded if

and only if Λo is locally left bounded, or equivalently, ginjΛ ⊆ gmodbΛ. By Lemma
2.12.5, the last condition is equivalent to gmod−,iΛ = gmodbΛ. In this case, it is
evident that Ix is the injective envelope of Sx in gmod+,pΛ, for every x ∈ Q0.

Next, suppose that Sx has an injective envelope jx : Sx → Lx in gmod+,pΛ, for
every x ∈ Q0. As argued in the proof of Proposition 2.12.6, we see that Lx ∼= Ix.
Thus, Ix is finite dimensional. So, Λ is locally right bounded. The proof of the
proposition is completed.

3. Graded almost split sequences

The objective of this section is to study the existence of almost split sequences for
graded modules. We shall first construct a graded Nakayama functor, which allows
us to establish directly a graded Auslander-Reiten formula for finitely presented
graded modules and a generalized Auslander-Reiten formula for finitely copresented
graded modules. From these formulas we derive two existence theorems for almost
split sequences in the category of all graded modules, one for finitely presented
graded modules and one for finitely copresented graded modules. Finally, we shall
study when the category of finitely presented graded modules and that of finitely
copresented graded modules have almost split sequences.

3.1. Graded transpose. In the locally finite dimensional graded case, Marinez-
Villa has introduced the transpose of a graded Λ-module; see [34, (1.4)]. In our
setting, we need to take more caution in the construction. We start with defining a
contravariant functor (−)t : GModΛ → GModΛo as follows. Given M ∈ GModΛ,
we define M t = ⊕i∈Z(M t)i ∈ GModΛo, where (M t)i = ⊕x∈Q0GHomΛ(M〈−i〉, Px),
as follows. Given ϕ ∈ GHomΛ(M〈−i〉, Px) and u ∈ exΛjey, considering the graded
morphisms ϕ〈−j〉 : M〈−i − j〉 → Px〈−j〉 and P [u] : Px〈−j〉 → Py, the right
multiplication by u, we set uo · ϕ = P [u] ◦ ϕ〈−j〉 ∈ GHomΛ(M〈−i−j〉, Py). In
particular, we have M t

i (x) = GHomΛ(M〈−i〉, Px) for all (i, x) ∈ Z × Q0. Given
a morphism f : M → N in GModΛ, setting (f t)i,x = GHomΛ(f〈−i〉, Px) for all
(i, x) ∈ Z×Q0, we obtain a morphism f t : N t →M t in GModΛo.

3.1.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M ∈ GModΛ and s ∈ Z, then M〈s〉t ∼= M t〈−s〉.
(2) If M ∈ GModΛ and V ∈ modk, then (M ⊗V )t ∼= M t ⊗DV.
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Proof. We shall only prove Statement (2). Let M ∈ GModΛ and V ∈ modk. For
any x ∈ Q0, applying first the adjunction isomorphism; see [37, (2.4.9)] and then
Lemma 1.1.2(1), we obtain

GHomΛ(M ⊗ V, Px) ∼= Homk(V,GHomΛ(M,Px)) ∼= GHomΛ(M,Px)⊗DV.
Now, in view of the definition of (−)t, we see that (M ⊗ V )t ∼= M t ⊗ DV . The
proof of the lemma is completed.

The following statement is essential for our later investigation.

3.1.2. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. The contravariant functor (−)t : GModΛ → GModΛo is left exact and
restricts to a duality (−)t : gprojΛ→ gprojΛo such that P ta

∼= P o
a for all a ∈ Q0.

Proof. Since the functors GHomΛ(−, Px) with x ∈ Q0 are left exact, so is (−)t. Fix
a ∈ Q0. Given (i, x) ∈ Z×Q0, by Proposition 2.3.3, we have a k-linear isomorphism

fai,x : (P o
a )i(x) = exΛo

i ea → GHomΛ(Pa〈−i〉, Px) = (Pa)ti(x) : vo → P [v].

It is easy to verify that fa = ⊕(i,x)∈Z×Q0
fai,x : P o

a → P ta is an isomorphism in

GModΛo. Similarly, we may construct an isomorphism ga : (P oa )t → (P o
a )o = Pa in

GModΛ. This yields an isomorphism ζa = ga ◦ (fa)t : P tta → Pa in gprojΛ.
Fix u ∈ eaΛseb. We consider the graded morphisms P [u] : Pa → Pb〈s〉 and

P [uo] : P o
b 〈−s〉 → P o

a , the right multiplications by u and uo, respectively. Given
v ∈ ebΛi−sex, we have P [uv] =P [v] ◦P [u], that is,

fai,x(P [uo]i,x(v
o))=GHom(P [u]〈−i〉,Px)(f bi−s,x(vo)).

So, fai,x ◦ P [uo]i,x = P [u]ti,x ◦ f b〈−s〉i,x, and hence, fa ◦ P [uo] = P [u]t ◦ f b〈−s〉.
Similarly, P [u]◦ga = gb〈s〉◦P [uo]t. This implies that P [u]◦ζa = ζb〈s〉◦P [u]tt. Since
every morphism in HomΛ(Pa, Pb〈s〉) is of the form P [u]; see (2.3.3), ζa is natural
in Pa. It is easy to see that ζa extends to a natural isomorphism ζ

P
: P tt → P for

every module P ∈ gprojΛ. Thus, id ∼= (−)t◦(−)t. Similarly, idgprojΛo ∼= (−)t◦(−)t.
The proof of the proposition is completed.

Recall that the exact category gmod+,pΛ is Hom-finite and Krull-Schmidt; see
(2.12.5). A morphism f : M → N in gmod+,pΛ is called radical if it lies in the
Jacobson radical of gmod+,pΛ. The following statement is interesting.

3.1.3. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Consider M ∈ gmod+,pΛ with a finitely generated graded projective presentation

P−1
d−1

// P 0 d0
// M // 0.

(1) If M is indecomposable and not graded projective, then d−1 is left minimal.
(2) The epimorphism d0 is a graded projective cover if and only if d−1 is radical.

Proof. (1) Suppose that M is indecomposable and not graded projective. Let
j : N → P 0 be the kernel of d0 : P 0 → M. Since N = Im(d−1), there exists a
graded epimorphism v : P−1 → N such that d−1 = jv. Suppose that fd−1 = d−1

for some graded morphism f : P 0 → P 0. Since v is an epimorphism, fj = j. This
yields a commutative diagram with exact rows

0 // N
j // P 0 d0

//

f
��

M //

g

��

0

0 // N
j // P 0 d0

// M // 0
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in GModΛ. Assume that g is not a graded automorphism. Since M is indecom-
posable and GEndΛ(M) is finite dimensional, gs = 0 for some s ≥ 1. Thus,
d0fs = gsd0 = 0. Therefore, fs = jh, for some h : P0 → N . So, jhj = fsj = j,
and hence, hj = idN . As a consequence, M is graded projective, a contradiction.
Thus, g is a graded automorphism, and so is f . That is, d−1 is left minimal.

(2) By Lemma 2.8.1(2), d0 is a graded projective cover of M if and only if
Im(d−1) ⊆ radP 0. Since P 0 is graded projective, this is equivalent to d−1 being
radical. The proof of the lemma is completed.

We are ready to define the graded transpose. Let M ∈ gmod+, pΛ. By Lemma
2.11.3, M admits a minimal graded projective presentation

P−1
d−1

// P 0 d0 // M // 0
over gprojΛ. Applying the left exact functor (−)t : GModΛ → GModΛop; see
(3.1.2) yields an exact sequence

0 // M t
(d0)t // (P 0)t

(d−1)t// (P−1)t // Coker(d−1)t // 0

in gmodΛo. Write TrM = Coker(d−1)t, called the graded transpose of M .

3.1.4. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M,N ∈ gmod+,pΛ, then Tr(M ⊕N) ∼= TrM ⊕ TrN.
(2) If M ∈ gmod+,pΛ, then M is graded projective if and only if TrM = 0.

Proof. Statement (1) follows from the fact that the functor (−)t is additive. Let
M ∈ gmod+,pΛ with a minimal graded projective presentation

P−1
d−1

// P 0 d0 // M // 0

over gprojΛ. The necessity of Statement (2) is evident. Suppose that TrM = 0.
Then (d−1)t is a retraction, and by Proposition 3.1.2, d−1 is a retraction. In view
of Lemma 3.1.3(2), d−1 = 0. So, M ∼= P 0. The proof of the lemma is completed.

The following statement is well-known in the finite dimensional ungraded setting.
Our approach is different and the proof is shorter; compare [7, (IV.1.7)].

3.1.5. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite
quiver. Consider M ∈ gmod+,pΛ with a minimal graded projective presentation

P−1
d−1
// P 0 d0 // M // 0

over gprojΛ. If M is indecomposable and not graded projective, then TrM is inde-
composable and not graded projective with a minimal graded projective presentation

(P 0)t
(d−1)t // (P−1)t

c // TrM // 0.

Proof. Suppose that M is indecomposable and not graded projective. By Lemma
3.1.3, d−1 is left minimal and radical, and by Proposition 3.1.2, (d−1)t is right
minimal and radical. Then, c is a graded projective cover of TrM by Lemma
3.1.3(2). So, the graded projective presentation of TrM stated in the proposition is
minimal. Now, applying the duality (−)t : gprojΛo → gprojΛ yields a commutative
diagram with exact rows and vertical isomorphisms

P−1
d−1

//

∼=
��

P 0 d0 //

∼=
��

M

∼=
��

// 0

(P−1)tt
(d−1)tt // (P 0)tt

(d0)tt // Tr2M // 0.
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Assume that TrM = X1 ⊕ X2, where X1, X2 are non-zero. If X1 or X2 is
graded projective, then the co-restriction of (d−1)t to a non-zero direct summand
of (P−1)t is zero. So (d−1)t is not left minimal; see (1.4.1), and hence, d−1 is not
right minimal, a contradiction. Thus, Xi is not graded projective, for i = 1, 2.
By Lemma 3.1.4, M ∼= Tr2M ∼= TrX1 ⊕ TrX2 with TrXi 6= 0 for i = 1, 2, a
contradiction. The proof of the proposition is completed.

3.2. The graded Nakayama functor. Composing the contravariant functors
(−)t and D, we obtain two covariant functors ν = D ◦ (−)t : GModΛ → GModΛ
and ν− = (−)t ◦ D : GModΛ → GModΛ. By Propositions 2.2.2 and 3.1.2, they
restrict to two functors ν : gprojΛ→ ginjΛ and ν− : ginjΛ→ gprojΛ respectively.

3.2.1. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) The functors ν : gprojΛ→ ginjΛ and ν− : ginjΛ→ gprojΛ are mutually quasi-

inverse such that ν(Pa〈s〉 ⊗ V ) ∼= Ia〈s〉 ⊗ V, for (s, a) ∈ Z×Q0 and V ∈modk.

(2) Given M ∈ GModΛ and P ∈ gprojΛ, we have a binatural k-linear isomorphism

ΦP,M : GHomΛ(M,νP )→ DGHomΛ(P,M).

Proof. (1) By Propositions 2.2.2 and 3.1.2, the functors ν : gprojΛ → ginjΛ and
ν− : ginjΛ→ gprojΛ are mutually quasi-inverse. Given V ∈ modk, by Lemmas 3.1.1
and 2.2.1(2) and Proposition 3.1.2, ν(Pa〈s〉 ⊗ V ) ∼= D(P o

a 〈−s〉 ⊗DV ) ∼= Ia〈s〉 ⊗ V.
(2) Consider Pa〈s〉 with (s, a) ∈ Z×Q0 and M ∈ GModΛ. By Proposition 3.1.2,

we obtain natural graded isomorphisms fa〈−s〉 : P o
a 〈−s〉 → P ta〈−s〉 in gprojΛo and

D(fa)〈s〉 : (νPa)〈s〉 → Ia〈s〉 in ginjΛ. So, we have a k-linear isomorphism

ρ s,a
M

= GHomΛ(M,D(fa)〈s〉) : GHomΛ(M, (νPa)〈s〉)→ GHomΛ(M, Ia〈s〉),
which is natural in M and Pa〈s〉. Next, by Proposition 2.3.1, we obtain a k-linear
isomorphism ηs,a

M
: GHomΛ(Pa〈s〉,M) → M−s(a), which is clearly natural in M

and Pa〈s〉. This yields a binatural k-isomorphism

D(ηs,a
M

) : DM−s(a)→ DGHomΛ(Pa〈s〉,M).

Finally, we have a k-linear isomorphism θa : D(eaΛo
0ea) → k : h 7→ h(ea).

Applying Proposition 2.4.1 for the case V = k, we get a k-linear isomorphism

ψs,a
M

: GHomΛ(M, Ia〈s〉)→ D(M−s(a)) : g 7→ θa ◦ g−s,a,
which is clearly natural in M . Fix u ∈ eaΛt−seb. Consider P [u] : Pa〈s〉 → Pb〈t〉 and
P [uo] : P o

b 〈−t〉 → P o
a 〈−s〉, the right multiplications by u and by uo respectively.

Setting I[u] = D(P [uo]), we claim that

GHomΛ(M, Ia〈s〉)
ψs,a

M //

GHomΛ(M,I[u])

��

D(M−s(a))

D(M(u))

��
GHomΛ(M, Ib〈t〉)

ψt,b

M //D(M−t(b))

commutes. Indeed, given g ∈ GHomΛ(M, Ia〈s〉) and m ∈ M−t(b), it is a routine
verification that (θa ◦ g−s,a ◦M(u))(m) = g−t,b(m)(uo) = (θb ◦ I[u]−t,b ◦ g−t,b)(m).

Since every morphism in HomΛ(P o
b 〈−t〉, P o

a 〈−s〉) is of the form P [uo]; see (2.3.3),
ψs,a

M
is natural in Pa〈s〉. Thus, we obtain a binatural k-linear isomorphism

ΦPa〈s〉,M = D(ηs,a
M

) ◦ ψs,a
M
◦ ρs,a

M
: GHomΛ(M,νPa〈s〉)→ DGHomΛ(Pa〈s〉,M).

It is easy to see that ΦPa〈s〉,M extends to a binatural k-linear isomorphism ΦP,M
for ever P ∈ gprojΛ. The proof of the theorem is completed.
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Remark. By Theorem 3.2.1, the functor ν : gprojΛ → GModΛ is a Nakayama
functor as defined in [30, (5.4)].

3.3. Graded Auslander-Reiten translations. Given M ∈ gmod+,pΛ and
N ∈ gmod−,iΛ, we put τM = DTrM and τ−N = TrDN, called the right and
the left Auslander-Reiten translate of M and N , respectively.

3.3.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M ∈ gmod+,pΛ is indecomposable not graded projective, then τM ∈ gmod−,iΛ
is indecomposable not graded injective such that τ−(τM) ∼= M .

(2) If N ∈ gmod−,iΛ is indecomposable not graded injective, then τ−N ∈ gmod+,pΛ
is indecomposable not graded projective such that τ(τ−N) ∼= N.

Proof. We shall only prove Statement (2). Let N ∈ gmod−,iΛ be indecomposable
and not graded injective with a minimal graded injective copresentation

0 // N
d0 // I0

d1 // I1

over ginjΛ. Applying the duality D : gmodΛ → gmodΛo yields a minimal graded
projective presentation

DI1
Dd1 // DI0

Dd0 // DN // 0

over gprojΛo, where DN is indecomposable and not graded projective. By Propo-
sition 3.1.5, TrDN is indecomposable and not graded projective with a minimal
graded projective presentation

ν−I1
ν−(d1)// ν−I0

c // τ−N // 0

over gprojΛ. So, τ−N ∈ gmod+,pΛ. Dually, we deduce from Proposition 3.1.5 and
Theorem 3.2.1(1) a commutative diagram with exact rows and vertical isomorphism

0 // N
d0 //

∼=
��

I0
d1 //

∼=
��

I1

∼=
��

0 // τ(τ−N)
d // ν(ν−I0)

ν(ν−(d1))// ν(ν−I1)

in gmod−,iΛ. The proof of the lemma is completed.

3.4. Graded Auslander-Reiten formulae. The classical approach to estab-
lish an Auslander-Reiten formula involves the tensor product and the adjunction
isomorphism; see [3, (I.3.4)], [12, (VI.5.1)], [24] and [34, (1.6.1)]. We shall take a
novel approach by using the graded Nakayama functor. The key ingredient is the
following exact sequence for a finitely presented graded module M , which relates
the functors GHomΛ(−, τM) and DGHomΛ(M,−) in a surprising way.

3.4.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

Consider a short exact sequence 0 // X
f // Y

g // Z // 0 in GModΛ. Given

M ∈ gmod+,pΛ, there exists an exact sequence of k-linear maps

0 // GHomΛ(Z, τM) // GHomΛ(Y, τM)
f∗
// GHomΛ(X, τM)

// DGHomΛ(M,Z)
Dg∗ // DGHomΛ(M,Y ) // DGHomΛ(M,X) // 0,

where f∗ = GHomΛ(f, τM) and g∗ = GHomΛ(M, g).
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Proof. Consider M ∈ gmod+,pΛ with a minimal graded projective presentaion

P−1
d−1
// P 0 d0

// M // 0.

In view of Proposition 3.1.5, we obtain a minimal graded injective copresentation

0 // τM // νP−1
νd−1

// νP 0.

Fix L ∈ GModΛ. We shall compute the kernel and the cokernel of the morphism
GHomΛ(L, νd−1). Firstly, applying GHomΛ(L,−) to the minimal graded injective
co-presentation of τM , we obtain an exact sequence

0 //GHomΛ(L, τM) //GHomΛ(L, νP−1)
GHomΛ(L, νd

−1) // GHomΛ(L, νP 0).

Secondly, applying DGHomΛ(−, L) to the minimal graded projective presentation
of M , we deduce from Theorem 3.2.1(2) a commutative diagram with exact lower
row and vertical isomorphisms

GHomΛ(L, νP−1)

∼=
��

GHomΛ(L, νd
−1) // GHomΛ(L, νP 0)

∼=
��

DGHomΛ(P−1, L)
DHomΛ(d

−1,L) //DGHomΛ(P 0, L)
D(d0)∗// DGHomΛ(M,L) // 0,

where (d0)∗ = GHomΛ(d0, L). This yields an exact sequence

GHomΛ(L, νP−1)
GHomΛ(L, νd

−1) // GHomΛ(L, νP 0) // DGHomΛ(M,L) // 0.

Combining the above two exact sequences for each of Z, Y and X, we obtain a
commutative diagram with exact rows and exact columns

0

��

0

��

0

��
0 // GHomΛ(Z, τM) //

��

GHomΛ(Y, τM)
f∗
//

��

GHomΛ(X, τM)

��
0 // GHomΛ(Z, νP−1) //

GHomΛ(Z,νd
−1)

��

GHomΛ(Y, νP−1) //

GHomΛ(Y,νd
−1)

��

GHomΛ(X, νP−1) //

GHomΛ(X,νd
−1)

��

0

0 // GHomΛ(Z, νP 0) //

��

GHomΛ(Y, νP 0) //

��

GHomΛ(X, νP 0) //

��

0

DGHomΛ(M,Z)
Dg∗ //

��

DGHomΛ(M,Y )

��

// DGHomΛ(M,X) //

��

0,

0 0 0

where the two middle rows are exact because νP−1 and νP 0 are graded injective.
Using the Snake Lemma, we obtain the desired exact sequence stated in the lemma.
The proof of the lemma is completed.

Similarly, for a finitely copresented graded module M , the right exact functor
DGHomΛ(−,M) and the left exact functor D2GHomΛ(τ−M,−) are nicely related.
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3.4.2. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

Consider a short exact sequence 0 // X
f // Y

g // Z // 0 in GModΛ. Given

M ∈ gmod−,iΛ, we have an exact sequence

0 //D2GHomΛ(τ−M,X) //D2GHomΛ(τ−M,Y )
D2(g∗)//D2GHomΛ(τ−M,Z)

// DGHomΛ(X,M)
Df∗
// DGHomΛ(Y,M) // DGHomΛ(Z,M) // 0,

where f∗ = GHomΛ(f,M) and g∗ = GHomΛ(τ−M, g).

Proof. Since gmod−, iΛ is Krull-Schmidt, we may assume that M ∈ gmod−,iΛ is
indecomposable and not graded injective. By Lemma 3.3.1(2), τ−M ∈ gmod+,pΛ
with M ∼= τ(τ−M). And by Lemma 3.4.1, we have an exact sequence

0 // GHomΛ(Z,M) // GHomΛ(Y,M)
f∗
// GHomΛ(X,M) //

DGHomΛ(τ−M,Z)
Dg∗ // DGHomΛ(τ−M,Y ) // DGHomΛ(τ−M,X) // 0.

Now, applying the exact functor D = Homk(−, k) yields the desired exact se-
quence stated in the lemma. The proof of the lemma is completed.

We shall denote by GModΛ and GModΛ the quotient categories of GModΛ
modulo the ideal P of morphisms factoring through graded projective modules and
the ideal I of those factoring through graded injective modules, respectively. Given
M,N ∈ GModΛ, we write

GHomΛ(M,N) = GHomΛ(M,N)/P(M,N)

and

GHomΛ(M,N) = GHomΛ(M,N)/I(M,N).

Moreover, put GEndΛ(M) = GHomΛ(M,M) and GEndΛ(M) = GHomΛ(M,M).

We are ready to obtain the promised Auslander-Reiten formulae as follows.

3.4.3. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) Given M ∈ gmod+,pΛ and X∈GModΛ, we have a natural k-linear isomorphism

DGHomΛ(M,X) ∼= GExt1Λ(X, τM).

(2) Given M ∈ gmod−,iΛ and X∈GModΛ, we have a natural k-linear isomorphism

DGHomΛ(X,M) ∼= D2GExt1Λ(τ−M,X).

Proof. (1) Let M ∈ gmod+,pΛ and X ∈ GModΛ. By Proposition 2.3.4, there exists

a short exact sequence 0 // L
q // P

p // X // 0 in GModΛ, where P is
graded projective. Applying GHomΛ(−, τM) yields an exact sequence

0 // GHomΛ(X, τM) // GHomΛ(P, τM)
q∗ // GHomΛ(L, τM)

// GExt1Λ(X, τM) // 0,

where q∗ = GHomΛ(q, τM). Thus, Coker(q∗) ∼= GExt1Λ(X, τM), which is clearly
natural in X. On the other hand, by Lemma 3.4.1, we have an exact sequence

0 // GHomΛ(X, τM) // GHomΛ(P, τM)
q∗ // GHomΛ(L, τM)

η // DGHomΛ(M,X)
D(p∗) // DGHomΛ(M,P ) // DGHomΛ(M,L) // 0,
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where p∗ = GHomΛ(M,p). Therefore, Ker(D(p∗)) = Im(η)∼= Coker(q∗). It is not
hard to see that this isomorphism is natural in X. Since P is graded projective, we
have an exact sequence

GHomΛ(M,P )
p∗ // GHomΛ(M,X) // GHomΛ(M,X) // 0.

So, we have an isomorphism DGHomΛ(M,X) ∼= Ker(D(p∗)), which is clearly nat-
ural in X. As a consequence, we obtain a natural isomorphism

DGHomΛ(M,X)∼=GExt1Λ(X, τM).

(2) Let M ∈ gmod−,iΛ and X ∈ GModΛ. By Proposition 2.4.5, there exists a

short exact sequence 0 // X
q // I

p // L // 0 in GModΛ, where I is graded

injective. Applying D2GHomΛ(τ−M,−), we obtain an exact sequence

0 // D2GHomΛ(τ−M,X) // D2GHomΛ(τ−M, I)
D2(p∗)// D2GHomΛ(τ−M,L)

// D2GExt1Λ(τ−M,X) // 0,

where p∗ = GHomΛ(τ−M,p). Thus, Coker(D2(p∗)) ∼= D2GExt1Λ(τ−M,X), which

is clearly natural in X. And by Lemma 3.4.2, we have an exact sequence

0 // D2GHomΛ(τ−M,X) // D2GHomΛ(τ−M, I)
D2(p∗)// D2GHomΛ(τ−M,L)

η // DGHomΛ(X,M)
D(q∗) // DGHomΛ(I,M) // DGHomΛ(L,M) // 0,

where q∗ = GHomΛ(q,M). Thus, Ker(D(q∗)) = Im(η) ∼= Coker(D2(p∗)), which is
natural in X. Since I is graded injective, we have an exact sequence

GHomΛ(I,M)
q∗ // GHomΛ(X,M) // GHomΛ(X,M) // 0.

This yields a natural isomorphism DGHomΛ(X,M) ∼= Ker(D(q∗)). As a conse-
quence, we obtain a natural isomorphism

DGHomΛ(X,M) ∼= D2GExt1Λ(τ−M,X).

The proof of the theorem is completed.

Remark. (1) We call the formula stated in Theorem 3.4.3(2) the generalized
Auslander-Reiten formula.
(2) In case Q is finite, Theorem 3.4.3(1) was established by Martinez-Villa for
graded modules M in gmod+,pΛ and X in gmodΛ; see [34, Page 42].

3.5. Graded almost split sequences. To the best of our knowledge, there
exists no existence theorem for almost split sequences starting with finitely copre-
sented (graded) modules in the category of all (graded) modules. over a general
(graded) algebra. Using our generalized Auslander-Reiten formula and the result in
[30, (3.7)]; see also [31, (2.3)], we are able to fill up this gap in our graded setting.

3.5.1. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M ∈ gmod+,pΛ is indecomposable and not graded projective, then there exists

an almost split sequence 0 // τM // E // M // 0 in GModΛ.

(2) If M ∈ gmod−,iΛ is indecomposable and not graded injective, then there exists

an almost split sequence 0 // M // E // τ−M // 0 in GModΛ.

Proof. We shall only prove Statement (2), since the proof for Statement (1) is similar

and shorter. Let M ∈ gmod−,iΛ be indecomposable and not graded injective. Then,
GEndΛ(M) 6= 0. By Lemma 3.3.1, τ−M ∈ gmod+,pΛ is indecomposable. Thus, M
and τ−M are strongly indecomposable; see (2.12.5). And by Theorem 3.4.3(2),
we have a functorial isomorphism Φ : D2GExt1Λ(τ−M,−) → DGHomΛ(−,M). In
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particular, D2GExt1Λ(τ−M,M) ∼= DGEndΛ(M), which is finite dimensional. So,

GExt1Λ(τ−M,M) ∼= D2GExt1Λ(τ−M,M) 6= 0. As a consequence, GExt1Λ(τ−M,M)
has a nonzero socle as a left GEndΛ(M)-module.

Composing the canonical monomorphism GExt1Λ(τ−M,−)→D2GExt1Λ(τ−M,−)

with Φ : D2GExt1Λ(τ−M,−)→ DGHomΛ(−,M), we obtain a functorial monomor-

phism Ψ : GExt1Λ(τ−N,−)→ DGHomΛ(−,M). In view of Theorem 2.3(2) in [31],
we have a desired almost split sequence as stated in Statement (2). The proof of
the theorem is completed.

Remark. In case Q is finite, an existence theorem in gmodΛ for almost split se-
quences ending with finitely presented modules was obtained in [34, (1.6.1), (1.7.1)].

Next, we shall study the existence of almost split sequences in the exact categories
gmod+,pΛ and gmod−,iΛ. As shown below, their almost split sequences are also
almost split sequences in GModΛ; compare [9, (3.6)].

3.5.2. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M ∈ gmod+,pΛ is indecomposable not graded injective, then there exists an

almost split sequence 0 // M // N // L // 0 in gmod+,pΛ if and only

if M ∈ gmodbΛ; and in this case, the sequence is also almost split in GModΛ.

(2) If M ∈ gmod−,iΛ is indecomposable not graded projective, then there exists an

almost split sequence 0 // L // N // M // 0 in gmod−,iΛ if and only if

M ∈ gmodbΛ; in this case, the sequence is an almost split sequence in GModΛ.

Proof. We shall only prove Statement (1). Let M ∈ gmod+,pΛ be indecomposable

and not graded injective. If M ∈ gmodbΛ, then M ∈ gmod−,iΛ, and by Theorem

3.5.1(2), there exists an almost split sequence 0 // M // E // τ−M // 0 in

GModΛ, where τ−M ∈ gmod+,pΛ. Since gmod+,pΛ is extension-closed in GModΛ;
see (2.12.5), this is an almost split sequence in gmod+,pΛ. Conversely, suppose that

0 // M // N // L // 0 is an almost split sequence in gmod+,pΛ. Then,
L is indecomposable and not graded projective. In view of Theorem 3.5.1, we can
construct a commutative diagram

0 // M
f //

u

��

N

v

��

g // L //// 0

0 // X
q // Y

p // L // 0,

where the lower row is an almost split sequence in GModΛ with X ∈ gmod−,iΛ.
Note that there exists an integer n such that M = M≥n; N = N≥n and L = L≥n.

Since X≥n is finite dimensional, gmod+,pΛ contains a commutative diagram

0 // M
f //

u≥n

��

N

v≥n

��

g // L // // 0

0 // X≥n
q≥n // Y≥n

p≥n // L // 0.

Since p is not a retraction and Li = 0 for all i < n, neither is p≥n. Thus, v≥n is
a section, and consequently, u≥n is a monomorphism. So, M is finite dimensional.

As has been shown, 0 // M // N // L // 0 is isomorphic to the almost

split sequence 0 // M // E // τ−M // 0 in GModΛ. The proof of the
theorem is completed.
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3.6. Subcategories having almost split sequences. In this subsection, we
shall study when gmod+,pΛ, gmod−,iΛ and gmodbΛ have almost split sequences.

3.6.1. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

If Λ is locally left (respectively, right) bounded, then gmod+,pΛ and gmod−,iΛ both
have almost split sequences on the left (respectively, right).

Proof. We only prove the first part of the statement. Let Λ be locally left bounded.
By Lemma 2.12.3(2), gmod+,pΛ = gmodbΛ ⊆ gmod−,iΛ. Consider an indecompos-
able and not Ext-injective module M in gmod+,pΛ. Then, M is finite dimensional
and not graded injective. By Theorem 3.5.2(1), gmod+,pΛ has an almost split se-
quence starting with M . So, gmod+,pΛ has almost split sequences on the left.

Next, let N ∈ gmod−,iΛ be indecomposable and not Ext-injective. In par-
ticular, N is not graded injective. By Theorem 3.5.1(2), there exists an almost

split sequence 0 // N // E // τ−N // 0 in GModΛ, where τ−N lies in

gmod+,pΛ ⊆ gmod−,iΛ. Since gmod−,iΛ is extension-closed in GModΛ; see (2.12.5),

this is an almost split sequence in gmod−,iΛ. So, gmod−,iΛ has almost split se-
quences on the left. The proof of the theorem is completed.

Example. Consider the locally right bounded graded algebra Λ = kQ/R, where

α

β
1

2

3

γ

δ

4Q : 5 6 · · ·

and R = 〈γα − δβ〉. By Theorem 3.6.1, gmod+,pΛ has almost split sequences on
the right. On the other hand, S1 has a minimal graded projective resolution

0 // P4 ⊕ P4
// P2 ⊕ P3

// P1
// S1

// 0.

Thus, radP1 ∈ gmod+,pΛ. Since rad2P1
∼= P4 and soc(radP1) = 0, radP1 is

indecomposable and not graded injective. Being infinite dimensional, radP1 is
not the starting term of any almost split sequence in gmod+,pΛ; see (3.5.2). Thus,
gmod+,pΛ does not have almost split sequences on the left.

We conclude this section with the following statement, which generalizes the
result stated in [15, (3.5)].

3.6.2. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

If Λ is locally (left, right ) bounded, then gmodbΛ has almost split sequences (on the
left, on the right ).

Proof. If Λ is locally left or right bounded, then gmodbΛ coincides with gmod+,pΛ
or gmod+,pΛ; see (2.12.7), which has almost split sequences on the left or right
respectively; see (3.6.1). The proof of the theorem is completed.

4. Graded almost split triangles

The objective of this section is to study the existence of almost split triangles
in various derived categories of graded modules. The graded Nakayama functor
constructed in Section 3 allows us to apply the results in [30, Section 5] for this
purpose. Some of our results are analogous to those of Happel for finite dimensional
ungraded algebras in [20, 21]. Throughout this section let Λ = kQ/R be a graded
algebra, where Q is a locally finite quiver and R is a relation ideal in kQ.
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4.1. The existence in general. The bounded complexes of projective objects
and those of injective objects in an abelian category play an essential role in the
study of almost split triangles in their derived categories; see [20, 21, 30].

4.1.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
(1) The categories Kb(gprojΛ) and Kb(ginjΛ) are Hom-finite and Krull-Schmidt.

(2) The Nakayama functor induces two mutually quasi-inverse triangle equivalences
ν : Kb(gprojΛ)→ Kb(ginjΛ) and ν− : Kb(ginjΛ)→ Kb(gprojΛ).

Proof. (1) Since gprojΛ is Hom-finite and Krull-Schmmidt; see (2.12.2), Cb(gprojΛ)
is a Hom-finite additive subcategory of Cb(gmodΛ), which is closed under direct
summands. Therefore, Cb(gprojΛ) is Krull-Schmidt, and consequently, Kb(gprojΛ)
is Hom-finite and Krull-Schmidt; see [28, page 431]. Similarly, Kb(ginjΛ) is Hom-
finite and Krull-Schmidt.

(2) The Nakayama functor ν : gprojΛ → GModΛ induces two mutually quasi-
inverse equivalences ν : gprojΛ→ ginjΛ and ν− : ginjΛ→ gprojΛ; see (3.2.1). Ap-
plying them component-wise, we obtain two mutually quasi-inverse triangle equiv-
alences ν : Kb(gprojΛ)→ Kb(ginjΛ) and ν− : Kb(ginjΛ)→ Kb(gprojΛ). The proof
of the lemma is completed.

It is well-known that Kb(gprojΛ) and Kb(ginjΛ) are full triangulated subcate-

gories of Db(gmodΛ) and Db(GModΛ); see [38, (10.4.7)], while Db(gmodΛ) and
Db(GModΛ) are full triangulated subcategories ofD(gmodΛ) andD(GModΛ) re-
spectively; see [36, (III.3.4.5)]. Note, however, that D(gmodΛ) is not necessarily a
triangulated subcategory ofD(GModΛ).

4.1.2. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

If P .∈ Kb(gprojΛ) is indecomposable, then Db(gmodΛ), D(gmodΛ), Db(GModΛ)

and D(GModΛ) each have an almost split triangle νP .[−1] //L. // P . // νP ..

Proof. Let P . ∈ Kb(gprojΛ) be indecomposable. By Lemma 4.1.1, P . and νP . are
strongly indecomposable. Considering the Nakayama functors ν : gprojΛ→gmodΛ
and ν : gprojΛ → GModΛ; see (3.2.1), we deduce from Theorem 5.8 in [30] a
desired almost split triangle in each of Db(gmodΛ), D(gmodΛ), Db(GModΛ) and
D(GModΛ). The proof of the theorem is completed.

4.2. The existence in the locally noetherian case. The bounded derived
category of finitely generated graded modules over noetherian graded algebras is
important in geometry; see, for example, [10, (2.12.6)].

4.2.1. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

If Λ is locally left or right noetherian, then Db(gmod+,bΛ) or Db(gmod−,bΛ) is a
Hom-finite Krull-Schmidt full triangulated subcategory of Db(gmodΛ), respectively.

Proof. Assume that Λ is locally left noetherian. Then, gmod+,bΛ is an Ext-finite
abelian subcategory of gmodΛ; see (2.12.4). By Corollary B in [26], Db(gmod+,bΛ)

is Hom-finite and Krull-Schmidt. Since gmod+,bΛ has enough graded projective
modules; see (2.8.2), Db(gmod+,bΛ) is a full triangulated subcategory ofDb(gmodΛ);
see (1.7.1). The proof of the lemma is completed.

In case Λ is locally left and right noetherian, bothDb(gmod+,bΛ) andDb(gmod−,bΛ)

are full triangulated subcategories of Db(gmodΛ).

4.2.2. Theorem. Let Λ = kQ/R be a locally left and right noetherian graded alge-
bra, where Q is a locally finite quiver.
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(1) If M.∈Db(gmod+,bΛ) is indecomposable, then Db(gmodΛ) has an almost split

triangle N. // L. // M. // N.[1] if and only if M. admits a finite graded

projective resolution over gprojΛ; and in this case, N. ∈ Db(gmod−,bΛ).

(2) If M.∈Db(gmod−,bΛ) is indecomposable, then Db(gmodΛ) has an almost split
triangle M. // L. // N. // M.[1] if and only if M. admits a finite graded

injective coresolution over ginjΛ; and in this case, N. ∈ Db(gmod+,bΛ).

Proof. We shall only prove Statement (1). Consider an indecomposable complex

M. in Db(gmod+,bΛ). If M. has a graded projective resolution P . in C b(gprojΛ),
then M. ∼= P . in Db(gmodΛ). By Theorem 4.1.2, Db(gmodΛ) has an almost split

triangle νP .[−1] // L. // M. // νP ., where νP .[−1] ∈ Db(gmod−,bΛ).

Conversely, suppose that N. // L. // M. // N.[1] is an almost split tri-
angle in Db(gmodΛ). Since gmod+,bΛ is abelian with enough graded projective mo-
dules, M. has a graded projective resolution in C−(gprojΛ); see [18, (7.5)]. Now,
it follows from Theorem 5.2 in [30] that M. has a graded projective resolution in
C b(gprojΛ). The proof of the theorem is completed.

Example. Theorem 4.2.2 holds for graded special multi-serial algebras.

4.3. Existence in the locally bounded case. In this subsection, we shall con-
centrate on the bounded derived category of finite dimensional graded Λ-modules.
Although our results are analogous to those of Happel in [20, 21], they do exhibit
some particular features of the locally bounded graded setting.

4.3.1. Proposition. Let Λ = kQ/R be a locally bounded graded algebra, where Q

is a locally finite quiver. If M. ∈ Db(gmodbΛ) is indecomposable, then

(1) Db(gmodbΛ) has an almost split triangle N. // L. // M. // N.[1] if and
only if M. has a finite graded projective resolution over gprojΛ;

(2) Db(gmodbΛ) has an almost split triangle M. // L. // N. // M.[1] if and
only if M. has a finite graded injective coresolution over ginjΛ.

Proof. Since Λ is locally bounded, gprojΛ and ginjΛ are contained in gmodbΛ. Thus,
gmodbΛ is a Hom-finite Krull-Schmidt abelian k-category with enough projective
objects and enough injective objects. In view of Theorem 3.2.1, we have a Nakayama
functor ν : gprojΛ → gmodbΛ. Now, the result follows directly from Theorem 5.12
in [30]. The proof of the proposition is completed.

We are ready to obtain the sufficient and necessary conditions for the bounded
derived category of finite dimensional graded modules to have almost split triangles.

4.3.2. Theorem. Let Λ = kQ/R be a locally bounded graded algebra, where Q is

a locally finite quiver. Then Db(gmodbΛ) has almost split triangles on the right
(respectively, left) if and only if every graded simple module in modΛ is of finite
graded projective (respectively, injective) dimension.

Proof. Since Λ is locally bounded, gmodbΛ is a Hom-finite Krull-Schmidt abelian
k-category with enough projective objects and enough injective objects. So, every

complex in Cb(gmodbΛ) has a graded projective resolution in C−(gmodbΛ) and a
graded injective coresolution in C+(ginjΛ); see [18, (7.5)]. Then, it is not hard

to see that every complex in Cb(gmodbΛ) has a finite graded projective resolution

over gprojΛ if and only if every module in gmodbΛ is of finite graded projective
dimension, or equivalently, every graded simple module in gmodbΛ is of finite graded
projective dimension. Dually, every complex in Cb(gmodbΛ) has a finite graded
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injective coresolution over ginjΛ if and only if every simple module in gmodbΛ is
of finite graded injective dimension. Now, the statement follows immediately from
Proposition 4.3.1. The proof of the theorem is completed.

Remark. The bounded derived category of finite dimensional modules over a finite
dimensional ungraded algebra has almost split triangles on either side if and only
if it has almost split triangles on both sides; see [21, (1.5)]. As shown below, this
is not the case in the locally bounded graded setting.

Example. Consider the locally bounded graded algebra Λ = kQ/R, where

Q : · · · // n
αn // n− 1 // · · · // 2

α2 // 1
α1 // 0

and R = k〈αiαi+1 | i ≥ 1〉. Given n ≥ 0, we see that Sn is of graded projec-
tive dimension n and of infinite graded injective dimension. By Theorem 4.3.2,
Db(gmodbΛ) has almost split triangles on the right but not on the left.

5. Graded representations of quivers

In this section, we shall specialize to graded representations of an arbitrary locally
finite quiver Q. In this case, we shall strengthen some of the results obtained in
Sections 3 and 4, which are analogous to those for ungraded representations of
strongly locally finite quivers stated in [9].

5.1. Graded almost split sequences. We shall restrict our attention to finitely
presented graded representations and finitely co-presented graded representations.

5.1.1. Lemma. Let Q be a locally finite quiver. Then gmod+,pkQ and gmod−,ikQ
are hereditary abelian k-categories, which are Hom-finite and Krull-Schmidt.

Proof. By Lemma 2.12.5, gmod+,pkQ and gmod−,ikQ are Hom-finite Krull-Schmidt
and extension-closed in GModkQ. Note that the category of all unitary left kQ-
modules is hereditary; see [14, (8.2)]. In particular, GExt2kQ(M,N) = 0 for all
M,N ∈ GModkQ. So, GModkQ is hereditary. Since GModkQ has enough projec-
tive objects; see (2.4.5), a subobject of a projective object in GModkQ is projective.

Consider a morphism f : P → P ′ in gprojkQ. Since Im(f) is graded projec-
tive, P ∼= Ker(f) ⊕ Im(f). So, Ker(f) ∈ gprojkQ. By Proposition 2.1 in [2],
gmod+,pkQ is closed under kernels and cokernels, and consequently, it is abelian.
Since GModkQ is hereditary, so is gmod+,pkQ. Finally, by Lemma 2.12.5(1),

gmod−,ikQ is also hereditary and abelian. The proof of the lemma is completed.

Note that kQ is locally left bounded if and only if Q has no infinite path with a
starting point, and it is locally right bounded if and only if Q has no infinite path
with an end point.

5.1.2. Theorem. Let Q be a locally finite quiver. The following statement holds.
(1) The abelian category gmod+,pkQ has almost split sequences on the left if and

only if Q contains no infinite path with a starting point.
(2) The abelian category gmod−,ikQ has almost split sequences on the right if and

only if Q contains no infinite path with an end point.

(3) Both gmod+,pkQ and gmod−,ikQ have almost split sequences if and only if Q
contains no infinite path.

Proof. The sufficiency of Statement (1) follows from Theorem 3.6.1. Suppose
that Q has an infinite path with a starting point, say it starts with an arrow
a → b. Then, Pb is infinite dimensional and not graded injective. By Theorem
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3.5.2(1), gmod+,pkQ has no almost split sequence starting with Pb. This estab-
lishes Statement (1). And Statement (2) follows dually. Finally, the necessity of
Statement (3) follows from Statements (1) and (2). If Q contains no infinite path,

then gmod+,pkQ = gmod−,ikQ = gmodbkQ, which has almost split sequences by
Theorem 3.6.2. The proof of the theorem is completed.

5.2. Graded almost split triangles. First of all, by Lemma 5.1.1 and Propo-
sition 1.7.1, both Db(gmod+,pkQ) and Db(gmod−,ikQ) are Hom-finite and Krull-
Schmidt full triangulated subcategories of Db(gmodkQ).

5.2.1. Theorem. Let Q be a locally finite quiver. The following statements hold.

(1) If M. ∈Db(gmod+,pkQ) is indecomposable, then Db(gmodkQ) has an almost

split triangle N. // L. // M. // N.[1], where N. ∈ Db(gmod−,ikQ).

(2) If M.∈Db(gmod−,ikQ) is indecomposable, then Db(gmodkQ) has an almost

split triangle M. // L. // N. // M.[1], where N. ∈ Db(gmod+,pkQ).

Proof. We shall only prove Statement (1). Let M. ∈ Db(gmod+,pkQ) be indecom-
posable. Since gmod+,pkQ is hereditary; see (5.1.1), M. has a graded projective
resolution P . ∈ C b(gprojΛ). Since M. ∼= P . in Db(gmodΛ), by Theorem 4.1.2, there

exists an almost split triangle νP .[−1] // L. // M. // νP . in Db(gmodΛ),

where νP .[−1]∈Db(gmod−,ikQ). The proof of the theorem is completed.

The following statement is analogous to Theorem 7.11 in [9], which contains a
partial converse of

5.2.2. Theorem. Let Q be a locally finite quiver. Then, the following statements
are equivalent :

(1) Db(gmod+,pkQ) has almost split triangles (on the left, on the right);

(2) Db(gmod−,ikQ) has almost split triangles (on the left, on the right);
(3) Q has no infinite path (with a starting point, with an end point).

Proof. In view of the duality D : gmod+,pkQo → gmod−,ikQ, we shall only prove
the equivalence of Statements (1) and (3). Suppose first that Db(gmod+,pkQ) has
almost split triangles on the left. By Corollary 7.3(1) in [9], gmod+,pkQ has almost
split sequences on the left; and by Theorem 5.1.2(1), Q has no infinite path with a
starting point. Suppose conversely that Q has no infinite path with a starting point.
Then, gmod+,pkQ = gmodbkQ; and by Theorem 5.1.2(1), gmod+,pkQ has almost
split sequences on the left. Moreover, by Proposition 2.12.6, every indecomposable
injective object in gmod+,pkQ is isomorphic to a finite dimensional module Ix in
ginjkQ for some x ∈ Q0, whose socle Sx is simple and admits a projective cover Px
in gmod+,pkQ. By Corollaries 2.2(2) and 7.3(1) in [9], Db(gmod+,pkQ) has almost
split triangles on the left.

Next, suppose that Db(gmod+,pkQ) has almost split triangles on the right. By
Corollary 7.3(1) in [9], every Sx with x ∈ Q0 admits an injective envelope in
gmod+,pkQ. By Proposition 2.12.7(1), Q has no infinite path with an end point.
Suppose conversely that Q has no infinite path with an end point. By Proposition
2.12.7, every Sx with x ∈ Q0 has an injective envelope Ix in gmod+,pkQ, and by
Theorem 3.6.1, gmod+,pkQ has almost split sequence on the right. By Corollary
7.3(2) in [9], Db(gmod+,pkQ) has almost split triangles on the right. Finally, com-
bining what has been shown, we see that Db(gmod+,pkQ) has almost split triangles
if and only if Q has no infinite path. The proof of the theorem is completed.
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