
MODULE CATEGORIES OF SMALL RADICAL NILPOTENCY

SHIPING LIU AND YOUQI YIN

Abstract. This paper aims to initiate a study of the representation theory

of representation-finite artin algebras in terms of the nilpotency of the radical
of their module category. Firstly, we shall calculate this nilpotency explicitly

for hereditary algebras of type An and for Nakayama algebras. Surprisingly,

this nilpotency for an artin algebra coincides with its Loewy length if and only
if the algebra is a hereditary Nakayama algebra. Secondly, given a positive

integer m up to four, we shall find all artin algebras for which this nilpotency
is equal to m and provide a complete description of their module category.

Introduction

Let A be a connected artin algebra of finite representation type. The central
objective of the representation theory is to study the category modA of finitely
generated left A-modules, that is to classify its indecomposable modules and de-
scribe the maps between them. For instance, the representation theory of Nakayama
algebras is well understood; see, for example, [2, Section V.2]. An important result
says that rad(modA), that is the radical of modA, is nilpotent; see [2, (V.7.6)], and
also [12, 14]. Observe that A is simple if and only if rad(modA) vanishes. It is nat-
ural to ask whether the nilpotency of rad(modA) determines completely, or to what
extent, the representation theory of A. One may approach this question from two
aspects. Firstly, given a class of representation-finite algebras A, one may calculate
or estimate the nilpotency of rad(modA); and secondly, given an integer n, one
may find a complete list of representation-finite algebras A such that rad(modA)
is of nipotency n and describe their representation theory if possible.

As to the first problem under the most general setting, the Harada-Sai Lemma
says that the nipotency of rad(modA) is bounded by 2b−1, where b is the maximal
length of all indecomposable modules in modA; see [12]. A sharper bound is given
in [10] which depends also on the maximal length of all indecomposable modules.
By a completely different approach, this nilpotency is shown to be the maximal
depth of the composite of the projective cover and the injective envelope of simple
modules in modA; see [9]. In this paper, we shall use the latter result to show
that the nilpotency of rad(modA) is equal to n in case A is a hereditary algebra
of type An; see (2.5), and it is equal to m − 1, where m is the maximal sum of
the composition length of the projective cover and that of the injective envelope of
simple modules in case A is a Nakayama algebra; see (2.7). It is evident that the
nilpotency of rad(modA) is greater than or equal to the nilpotency of the radical
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of A. Surprisingly, these two numbers coincide if and only if A is hereditary of type
An with a linear orientation, that is, a hereditary Nakayama algebra; see (2.6).

This paper is mainly devoted to the second problem for small nilpotencies up
to four. The result for nilpotency two is straightforward: the only artin algebras
are hereditary algebras of type A2; see (5.1). The list for nilpotency three is short
and nice, consisting of two well understood classes, namely, the hereditary algebras
of type B2 or A3 and the non-hereditary Nakayama algebras with radical squared
zero; see (5.2). However, it is quite long to obtain the list for nilpotency four. First,
we shall show that they are all string algebras; see (3.1) and (4.1), an artin version
of Butler and Ringel’s string algebras defined by a quiver with relations; see [7].
Then, we shall divide them into three classes: the hereditary algebras of type A4, the
non-hereditary Nakayama algebras of Loewy length three, and the non-hereditary
non-Nakayama tri-string algebras; see (5.3), where the last class of algebras are
string algebras with radical cubed zero plus some other additional conditions; see
(3.5) and (4.4). The representation theory of all above-mentioned algebras will be
explicitly described. In particular, the module category of a tri-string algebra is
similar to that of Nakayama algebra; see (5.4) and (5.5).

Our tool consists of the Auslander-Reiten theory of irreducible maps and almost
split sequences and the theory of degrees of irreducible maps, the latter appears
to be particularly applicable in this topic. Our results provide some evidences
that the nilpotency of rad(modA) depends only on the composition lengths of the
indecomposable projective or injective modules and determines to certain extent the
shape of the Auslander-Reiten quiver of A, and we believe that they will stimulate
future research in this direction. We are grateful to Gordana Todorov for pointing
out a mistake in a previous version of the paper.

1. Preliminaries

The main objective of this section is to fix the notation and the terminology, which
will be used throughout the paper, and collect some known results which will be
needed for our investigation. Beside this, we shall also obtain some new results.

1) Radical of module categories. Throughout this paper, A stands for a
connected artin algebra and radA for the radical of A. The Loewy length of A,
that is the minimal integer s such that radsA = 0, will be written as ``(A). We
shall denote by modA the category of finitely generated left A-modules in which the
morphisms are composed from the right to the left, and by indA the full subcategory
of modA generated by the indecomposable modules. By a projective or injective
module in indA we mean a module in indA which is projective or injective in
modA, respectively. The radical of modA is the two-sided ideal rad(modA) in
modA generated by the non invertible maps in indA. A map in modA is called
radical if it lies in rad(modA). We shall write radm(modA) for the m-th power
of rad(modA) for each integer m ≥ 0 and rad∞(modA) for the intersection of all
radm(modA) with m ≥ 0. In case A is representation-finite, there exists a minimal
integer m such that radm(modA) = 0; see [2, (V.7.6)], which will be called the
nilpotency of rad(modA), and also, the radical nipotency of modA.

Let M be a module in modA. The composition length of M will be simply
called the length and written as `(M). And the top, the radical and the socle of M



MODULE CATEGORIES OF SMALL RADICAL NILPOTENCY 3

will be written as topM , radM and socM , respectively. Moreover, for each simple
module S in modA, we shall fix a projective cover π

S
: PS → S and an injective

envelope ι
S

: S → IS , and put θ
S

= ι
S
◦ π

S
. For convenience of reference, we state

the following well-known fact ; see, for example, [2, (III.1.15)].

1.1. Lemma. Let A be an artin algebra. If S, T are simple modules in modA, then
S is a direct summand of the top of the radical of PT if and only if T is a direct
summand of the socle of the socle-factor of IS.

2) Auslander-Reiten theory. A comprehensive account of the Auslander-
Reiten theory of irreducible maps and almost split sequences can be found in [2].
By a sink map and a source map in modA, we mean a minimal left almost split map
and a minimal right almost split map respectively. For convenience of reference, we
state the following well known fact; see [2, (V.5.5)].

1.2. Lemma. Let A be an artin algebra. If P is a projective injective module in
modA of length at least two, then there exists in modA an almost split sequence

0 // radP
(q,p1)

T

// P ⊕ radP/socP
(p,q1) // P/socP // 0.

The following statement strengthens slightly a result stated in [13].

1.3. Lemma. Let A be an artin algebra. Consider almost split sequences

0 // X1

(f1,u1)
T

// Y ⊕M
(g1,v1)// Z1

// 0

and

0 // X2

(f2,u2)
T

// Y ⊕N
(g2,v2)// Z2

// 0

in modA, where Y is indecomposable. If Y is not a direct summand of M , then
(f1, f2) : X1 ⊕X2 → Y is irreducible if and only if so is (g1, g2)T : Y → Z1 ⊕ Z2.

Proof. We shall prove only the necessity. Assume that (f1, f2) : X1 ⊕X2 → Y is
irreducible. If X1 6∼= X2, then Z1 6∼= Z2, and hence, (g1, g2)T is irreducible; see [4,
page 92]. Otherwise, there exists an isomorphism f : X1 → X2, which induces an
isomorphism g : Z2 → X1. This gives rise to an almost split sequence

0 // X1

(f2f,u2f)
T

// Y ⊕ Y ′
(gg2,gv2)// Z1

// 0.

On the other hand, (f1, f2f) : X1 ⊕X1 → Y is irreducible. By Lemma 1.10 in
[15] and the dual of Corollary 3.4 in [4], (g1, gg2)T : Y → Z1⊕Z1 is irreducible. As
a consequence, (g1, g2)T is irreducible. The proof of the lemma is completed.

Throughout, ΓA stands for the Auslander-Reiten quiver of A, which is a valued
translation quiver having as vertex set the set of isomorphism classes of modules
in indA and as translation the Auslander-Reiten translation τ = DTr with quasi-
inverse τ− = TrD, where D : modA → modAop denotes the standard duality and
Tr : modA → modAop denotes the transpose. For brevity, a module in indA will
be identified with its isomorphism class in ΓA. We shall say that ΓA is planar if
the middle term of any almost split sequence in modA is either indecomposable or
a direct sum of two indecomposable modules.

A path X0
// X1

// · · · // Xn in ΓA with n ≥ 1 is called sectional provided
that τXi+1 6∼= Xi−1 for all 0 < i < n and pre-sectional provided that τXi+1

∼= Xi−1
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with 0 < i < n occurs only if there exists an irreducible map f : Xi−1⊕Xi−1 → Xi

or g : Xi → Xi+1 ⊕Xi+1; see [15, (1.4)].

By an irreducible map in indA we mean a map in indA which is irreducible in
modA. A path of irreducible maps in indA is called sectional or pre-sectional if the
corresponding path in ΓA is sectional or pre-sectional respectively. In a diagram of

irreducible maps in indA, a left dotted arrow X oo Y indicates that X = τY .

1.4. Definition. A diagram Ω of irreducible maps in indA is called fitting provided,
for all modules M and τ−M in Ω , that the maps fi : M → Mi of domain M and
the maps gi : Mi → τ−M of co-domain τ−M in Ω , for i = 1, . . . , r, fit in an almost
split sequence

0 // M
(f1,··· ,fr,f)T// M1 ⊕ · · · ⊕Mr ⊕XM

(g1,··· ,gr,g)// τ−M // 0

in modA. Such a fitting diagram Ω is called mesh-complete if XM = 0 for all
modules M and τ−M in Ω ; and in this case, the sub-diagram formed by fi and gi
with 1 ≤ i ≤ r is called a mesh in indA.

We shall use frequently the following well known statement to construct fitting
diagrams of irreducible maps in indA.

1.5. Lemma. Let A be an artin algebra. Consider an almost split sequence

0 // X
(f1,··· ,fr)T// Y1 ⊕ · · · ⊕ Yr

(g1,...,gr) // Z // 0

in modA, where Y1, . . . , Yr are indecomposable.

(1) If fi is a monomorphism for some 1 ≤ i ≤ r, then gj is a monomorphism, and
hence, Xj is not injective for every j 6= i.

(2) If gi is an epimorphism for some 1 ≤ i ≤ r, then fj is an epimorphism, and
hence, Xj is not projective for every j 6= i.

3) Degrees of irreducible maps. Given a map f : X → Y in modA, its
depth dp(f) is defined to be s if f ∈ rads(X,Y )\rads+1(X,Y ); and to be infinity if
f ∈ rad∞(X,Y ); see [9]. This terminology allows us to reformulate the notion of
degrees of irreducible maps as follows; compare [15, (1.1)].

1.6. Definition. Let f : X → Y be an irreducible map in modA with X or Y in
indA. The left degree dl(f) of f is defined to be the minimal integer n such that
there exists a map g : M → X of depth n with fg ∈ radn+2(M,Y ); and dl(f) =∞
if such an integer n does not exist. The right degree dr(f) of f is defined dually.

Remark. It is handy to view the degrees of an irreducible map f : X → Y in the
following way. If g : M → X is a map of depth s < dl(f), then fg is of depth s+ 1;
and if h : Y → N is a map of depth t < dr(f), then hf is of depth t+ 1.

We shall use frequently the following statement, which combines the corollaries
to Lemmas 1.2 and 1.3 stated in [15].

1.7. Lemma. Let A be an artin algebra. Consider an irreducible map f : X → Y
in modA, where X or Y is indecomposable.

(1) The left degree of f is equal to one if and only if f is a sink epimorphism.
Moreover, dl(f) =∞ in case Y is projective.
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(2) The right degree of f is equal to one if and only if f is a source epimorphism.
Moreover, dr(f) =∞ in case X is injective.

The key ingredient in the application of degrees of irreducible maps is the reduc-
tion of finite degrees illustrated in the following two statements, which are quoted
or reformulated from results stated in [15, (1.2), (1.3), (1.11)].

1.8. Lemma. Let A be an artin algebra. Consider an almost split sequence

0 // X
(f1,f2)

T

// Y1 ⊕ Y2
(g1,g2)// Z // 0

in modA, where Y1, Y2 are non-zero. If dl(g1) < ∞, then dl(f2) < dl(g1) ; and if
dr(f1) <∞, then dr(g2) < dr(f1).

1.9. Lemma. Let A be an artin algebra. If (f1, f2)T : X → Y1⊕Y2 is an irreducible
map of left degree n, where X,Y1, Y2 ∈ indA, then there exists a fitting diagram

τY1 g1
$$

Y1

X

f1 ::

f2
$$

τY2
g2

::

Y2

in indA such that (g1, g2) is an irreducible map of left degree < n.

We quote the following statement from [15, (1.6), (1.15)].

1.10. Proposition. Let A be an artin algebra, and let ΓA have a pre-sectional path

Yn // Yn−1 // · · · // Y1 // Y0.

(1) There exist irreducible maps fi : Yi → Yi−1 such that dp(f1 · · · fn) = n.

(2) If the path is sectional and fi : Yi → Yi−1 is irreducible, then dp(f1 · · · fn) = n.

(3) If (f, f1) : X ⊕ Y1 → Y0 is an irreducible map with f : X → Y0 non-zero, then
dl(f) > n, and dl(f) =∞ in case Yi is projective for some 0 ≤ i ≤ n.

(4) If (fn, g)T : Yn → Yn−1 ⊕ Y is an irreducible map with g : Yn → Y non-zero,
then dr(g) > n, and dr(g) = n in case Yi is injective for some 0 ≤ i ≤ n.

The following statement will be useful for our investigation.

1.11. Lemma. Let A be an artin algebra with a fitting diagram

X0
h0

##
X1

f1 ;;

h1

##

Y0

Xn−1

;;

hn−1

##
Y1

g1

;;

Xn

hn
##

fn ;;

Yn−1

;;

Yn
gn

;;

in indA, where Xi = τYi−1 for i = 1, . . . , n. Then, there exists a map f : Xn → Y0
of depth n+ 1.
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Proof. By the assumption, Xn → · · · → X1 → X0 and Yn → · · · → Y1 → Y0 are
pre-sectional paths in ΓA. By Proposition 1.10(1), we can find a map g : Xn → X0

of depth n, and by Lemma 1.10(3), dl(h0) > n. Thus, dp(h0g) = n+ 1. The proof
of the lemma is completed.

Remark. In the sequel, a fitting diagram as described in Lemma 1.11 will be called
a ladder of height n from Xn to Y0.

4) Valued translation quivers. Let ∆ be a valued quiver. The valuation
(dxy, d

′
xy) for an arrow x → y in ∆ is trivial if dxy = d′xy = 1; and in this case,

the valuation will be omitted. If Σ is a valued subquiver of ∆, then the valuation
for each arrow in Σ will be the same as in ∆. Given an integer n ≥ 1, we shall

denote by ~An the trivially valued quiver, whose vertices are the integers 1, . . . , n
and whose arrows are i→ i+ 1, for i = 1, . . . , n− 1. Moreover, we shall denote by
Ân a trivially valued quiver of type An with a non-linear orientation.

Given a valued quiver ∆ with no oriented cycle, one defines a valued translation
quiver Z∆ as follows. The vertices are the pairs (n, x), where n ∈ Z and x ∈ ∆0.
Each arrow x → y in ∆ with valuation (vxy, v

′
xy) induces arrows (n, x) → (n, y)

with valuation (vxy, v
′
xy) and (n − 1, y) → (n, x) with valuation (v′xy, vxy), where

n ∈ Z, in Z∆. The translation of Z∆ is defined so that it sends (n, x) to (n− 1, x),
for all n ∈ Z and x ∈ ∆0; see [6, (1.7)].

Let Γ be a valued translation quiver with translation ρ. If x is a vertex x in Γ
such that ρ(x) is defined, then the mesh starting with ρ(x) and ending with x is
the valued subquiver y1 β1

&&
ρ(x)

α1
88

αr &&

... x,

yr
βr

88

where α1, . . . , αr are the arrows in Γ starting with ρ(x), and β1, . . . , βr are the
arrows ending with x. In this case, β1α1, . . . , βrαr are called the components of the
mesh. Such a mesh is called monomial if r = 1 and binomial if r = 2. A full valued
translation subquiver Ω of Γ is called mesh-complete if every mesh in Γ , whose
starting point and ending point lie in Ω , lies entirely in Ω .

Two paths ξ and ζ in Γ are called homotopic if there exists a sequence of paths
ξ = ξ1, ξ2, . . . , ξm = ζ such that for each 1 ≤ i < m, either ξi = ξi+1 or else,
ξi = ηiβiαiθi and ξi+1 = ηiδiγiθi, where ηi, θi are paths in Γ , while βiαi and
δiγi are components of the same mesh; compare [6, (1.2)]. This is an equivalence
relation on the set of paths in Γ , which is compatible with the concatenation of
paths. Observe that two homotopic paths are parallel (that is, they star with the
same vertex and end with the same vertex) of the same length.

1.12. Lemma. The following statements hold in Z~An with n ≥ 2.

(1) Any two parallel paths are homotopic, and hence, of the same length.

(2) Every path of length n is homotopic to a path passing through a monomial mesh.

Proof. Let ξ and ζ be paths in Z~An from a vertex x to another vertex y. It is clear
that ξ = ζ in case ξ or ζ is sectional. In particular, Statement (1) holds if ξ or ζ is
of length ≤ 1. Suppose that ξ and ζ are of length > 1. Write ξ = ξ1α and ζ = ζ1γ,
where α : x→ x1 and γ : x→ y1 are arrows. If α = γ, then ξ is homotopic to ζ by
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the induction hypothesis. Otherwise, neither ξ nor ζ is sectional. Then, we obtain

a path η: ρ
−x  y, where ρ denotes the translation of Z~An. Consider the arrows

β : x1 → ρ−x and δ : y1 → ρ−x. By the induction hypothesis, we deduce that ξ is
homotopic to ηβα, while ζ is homotopic to ηδγ. Since ηβα and ηδγ are homotopic
by definition, ξ is homotopic to ζ. This establishes Statement (1).

Assume now that ξ : x  y is a path of length n. By Statement (1), it suffices
to find a path from x to y, which passes through a monomial mesh. With no loss
of generality, we may assume that x = (0, i) for some 1 ≤ i ≤ n. Then, y = (s, j)
for some s ≥ 0 and 1 ≤ j ≤ n. Let Σ be the convex hull generated by (0, i) and
(n− i, i), which has two boundary paths

x = (0, i)→ (0, i+ 1)→ · · · → (0, n− 1)→ (0, n)→ (1, n− 1)→ · · · → (n− i, i)
and

x = (0, i)→ (1, i− 1)→ · · · → (i− 2, 2)→ (i− 1, 1)→ (i− 1, 2)→ · · · → (n− i, i).
Since these paths are of length n− 1, any path from x to a vertex in Σ is of length
< n. Hence, y 6∈ Σ . That is, either i ≤ j ≤ n and s > n− j, or else, 1 ≤ j < i and
s > i. This yields a path

x= (0, i)→· · ·→ (i− 1, 1)→ (i-1, 2)→ (i, 1)→· · ·→ (i, j)→· · ·→ (s, j) = y
or

x = (0, i)→· · ·→ (0, n)→ (1, n−1)→ (1, n)→· · ·→ (n−j+1, j)→· · ·→ (s, j) = y,

which passes through a monomial mesh. The proof of the lemma is completed.

Suppose that Γ is connected. A connected full valued subquiver ∆ of Γ is called
a section if it is convex, contains no oriented cycle, and meets exactly once every
ρ-orbit in Γ . In this case, there exists a canonical embedding Γ → Z∆ sending ρnx
to (−n, x); see [17, (2.1),(2.3)].

5) Hereditary algebras. Let A be a connected hereditary artin algebra. It is
well known that the projective modules in ΓA generate a section in the preprojective
component; see [2, (VIII.1.15)], and dually, the injective modules generate a section
in the preinjective component. We shall say that A is hereditary of type ∆, where
∆ is a valued quiver, provided that the section of the preprojective component of
ΓA generated by the projective modules is isomorphic to ∆.

1.13. Proposition. Let A be a connected non-simple artin algebra. Then A is
hereditary of finite representation type if and only if ΓA has a connected non-trivial
mesh-complete valued translation subquiver Γ in which the projective modules gene-
rate a section ∆ and the injective modules also generate a section. In this case, ΓA
coincides with Γ and embeds in Z∆ as a convex translation subquiver.

Proof. Suppose that A is hereditary and representation-finite. Since A is not simple,
ΓA is non-trivial finite and connected; see [2, (VII.2.1)]. Hence, the projective
modules in ΓA generate a section ∆; see [2, (VIII.1.15)], and dually, the injective
modules in ΓA also generate a section; see [2, (VIII.5.4)]. Consider the canonical
embedding of ΓA into Z∆. Let X0 → · · · → Xn−1 → Xn be a path in Z∆. We may
assume that Xi = (si, Pi), where si ≥ 0 and Pi ∈ ∆ with τ−s0P0, τ

−snPn ∈ ΓA.
We shall show that τ−siPi ∈ ΓA for every 0 ≤ i ≤ n. Otherwise, there exists some
0 < t ≤ n such that τ−stPt ∈ ΓA and τ−st−1Pt−1 /∈ ΓA. Then, τ−sPt−1 is an
injective module, where 0 ≤ s < st−1. Now Xt−1 → Xt is induced from an arrow
Pt−1 → Pt or Pt → Pt−1 in ∆. In the first case, st = st−1 and s < st. This yields
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an arrow τ−sPt−1 → τ−sPt in ΓA. Since A is hereditary, τ−sPt is injective, and
hence, τ−stPt /∈ ΓA, absurd. In the second case, st = st−1 + 1 and s+ 1 < st. This
yields an arrow τ−sPt−1 → τ−s−1Pt in ΓA. Then τ−s−1Pt is injective, and hence,
τ−stPt /∈ ΓA, absurd. Thus, ΓA is convex in Z∆.

Conversely, assume that Γ is a connected non-trivial mesh-complete valued trans-
lation subquiver of ΓA, having a section ∆ generated by the projective modules in
Γ and a section Σ generated by the injective modules in Γ . Then, every module
M in Γ is uniquely written as M = τ−sP = τ tI, where s, t ≥ 0 and P ∈ ∆ and
I ∈ Ω . In particular, Γ is finite. Moreover, it is easy to see that τM ∈ Γ if M is
not projective and τ−M is in ∈ Γ if M is injective.

Fix a module P in ∆. We claim that every indecomposable direct summand M
of radP lies in ∆. Suppose that M 6∈ ∆. Since P is projective, M is not injective.
If P is injective, then M = radP and M → P and P → τ−M are the only arrows
in ΓA starting or ending in P ; see (1.2). Not being projective, τ−M /∈ ∆. Thus,
∆ = {P} and hence, Γ = {P}, absurd. Thus, P is not injective. As shown above,
the path P → τ−M → τ−P lies in Γ , and so does M → P → τ−M , absurd.
This establishes our claim. In particular, Γ contains all arrows X → P in ΓA.
Let P → Y be an arrow in ΓA. If P is not injective, then Γ contains the path
P → Y → τ−P . Otherwise, Y = P/socP with an arrow τY → P . As has been
shown, τY ∈ ∆, and consequently, Y ∈ Γ .

Dually, if I is a module in Σ , then Γ contains all arrows I → Y and X → I in
ΓA. Furthermore, if X → M and M → Y are arrows in ΓA, where M ∈ Γ and
M /∈ ∆∪Σ , then Γ contains the paths τM → X →M and M → Y → τ−M . This
shows that Γ is a finite connected component of ΓA. As a consequence, Γ = ΓA;
see [2, (VII.2.1)]. In particular, ∆ contains essentially all projective modules in
indA. It follows from our claim that A is hereditary of type ∆. The proof of the
proposition is completed.

Remark. An hereditary algebra of type ∆, where ∆ is a valued quiver, will also

be called hereditary of type ∆̄ , where ∆̄ is the underlying valued graph of ∆.

2. The A-hereditary case and the Nakayama case

The main objective of this section is to calculate the nilpotency of rad(modA) in
case A is a hereditary of type An or a Nakayama algebra. We start with some
general properties of indA in case radn(modA) vanishes, which confirm that the
Auslander-Reiten quiver of modA is controlled somehow by its radical nilpotency.

2.1. Lemma. Let A be an artin algebra with radn(modA) = 0 for some n > 1. If
f : X → Y is a non-zero map in indA, then dp(f) ≤ n − 1, where the equality
occurs only if X is projective and Y is injective.

Proof. Let f : X → Y be a non-zero map in indA. Then, f /∈ radn(X,Y ), and
hence, dp(f) ≤ n− 1. Suppose that dp(f) = n− 1. If Y is not injective, then the
injective envelope q : Y → I is a radical map such that 0 6= qf ∈ radn(X, I), a
contradiction. Dually, X is projective. The proof of the lemma is completed.

2.2. Lemma. Let A be an artin algebra with radn(modA) = 0 for some n > 1.
Consider non-zero radical maps fi : Xi → Xi+1 in indA, for i = 1, . . . , n− 1.
(1) If the fi are monomorphisms, then X1 is simple projective and Xn is injective.
(2) If the fi are epimorphisms, then X1 is projective and Xn is simple injective.
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Proof. We consider only the case where f1, . . . , fn−1 are monomorphisms. In view
of Lemma 2.1, we see easily that dp(fn−1 · · · f1) = n − 1. Thus, X1 is projective
and Xn is injective. If X1 is not simple, then there exists a radical monomorphism
f : S → X1, where S is simple. This yields that 0 6= ffn−1 · · · f1 ∈ radn(S,Xn), a
contradiction. The proof of the lemma is completed.

The following statement says that the degrees of irreducible maps are bounded
by the radical nilpotency of modA.

2.3. Lemma. Let A be an artin algebra with radn(modA) = 0 for some n > 1.

(1) If f : X → Y is an irreducible epimorphism in indA, then dl(f) ≤ n− 1.
(2) If f : X → Y is an irreducible monomorphism in indA, then dr(f) ≤ n− 1.

Proof. Let f : X → Y be an irreducible epimorphism in indA. By Lemma 2.1, its
kernel q : L → X is of depth ≤ n − 1. Since fq = 0, by definition, dl(f) ≤ n − 1.
The proof of the lemma is completed.

The following statement says that the lengths of pre-sectional paths in ΓA are
bounded by the radical nilpotency of modA.

2.4. Lemma. Let A be an artin algebra with radn(modA) = 0 for some n > 1.
If ΓA contains a pre-sectional path X0

// X1
// · · · // Xm−1 // Xm, then

m ≤ n− 1, where the equality occurs only if X0 is projective and Xn−1 is injective.

We are ready to calculate the radical nilpotency of the module category of a
hereditary algebra of type An.

2.5. Theorem. Let A be a hereditary artin algebra of type An for some n ≥ 1.
Then the radical of modA is nilpotent of nilpotency n.

Proof. We may assume that n ≥ 2. Let ∆ be the section of ΓA generated by

the projective modules, which is a quiver of type An. Since Z∆ ∼= Z~An; see [11,

(5.6)], we may regard ΓA as a convex translation subquiver of Z~An; see (1.13).
In particular, every mesh in ΓA is monomial or binomial. Since ΓA is finite and
contains no oriented cycle, EndA(X) is a division algebra for any module X in ΓA.
Given an arrow X → Y in ΓA, since it has a trivial valuation and is the only path
from X to Y , HomA(X,Y ) is one dimensional over each of EndA(X) and EndA(Y ).
Combining these two facts with Lemma 1.7, we obtain the following statement.

Sublemma. Let f : τX → Y and g : Y → X be irreducible maps in indA. If the
mesh ending with X is monomial, then gf = 0; and otherwise, gf forms a basis of
HomA(τX,X) over each of EndA(τX) and EndA(X).

For each arrow α : X → Y in ΓA, we choose an irreducible map fα : X → Y
in modA. Given a path ξ = α1 · · ·αm in ΓA, where the αi are arrows, we put

fξ = fα1 · · · fαm . Since ΓA is convex in Z~An, two paths ξ, ζ in ΓA are homotopic
in ΓA if and only if they are homotopic in ZAn; and in this case, we deduce from
the sublemma that fξ = 0 if and only fζ = 0. Moreover, if ξ is a path of length n,
then it is homotopic to a path in ΓA passing through a monomial relation, and by
the sublemma, fξ = 0. This implies that radn(modA) = 0.

It remains to show that radn−1(modA) 6= 0. Let M1 → · · · → Mt−1 → Mt be
a sectional path in ΓA of maximal length. Then, Mi = τ−siPi, where si ≥ 0 and
Pi ∈ ∆, for i = 1, . . . , t. Since the Mi are pairwise different, so are the Pi, and
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hence, t ≤ n. Suppose that t < n. Since ∆ is of type An, it contains an edge P —P1

or P —Pt, where P 6∈ {P1, . . . , Pt}. Assume that the first case occurs. If M1 is
not projective, then none of the Mi is projective. Applying τ if necessary, we may
assume that M1 = P1. By the maximality of t, we see that M1 → P is an arrow
in ∆. Hence, there exists an irreducible monomorphism f1 : M1 → P . Then, M1

is not injective and there exists an irreducible monomorphism f2 : M2 → τ−M1;
see ( 1.5). By induction, M1, . . . ,Mt are not injective. This yields a sectional path
P → τ−M1 → · · · → τ−Mt in ΓA, contrary to the maximality of t. Thus, t = n.
By Lemma 1.10, radn−1(M1,Mn) 6= 0. The proof of the theorem is completed.

The following statement describes in particular the Auslander-Reiten quiver of

a hereditary artin algebra of type ~An.

2.6. Theorem. Let A be a connected artin algebra of finite representation type. If
``(A) = n, then rad(modA) is of nilpotency ≥ n, where the equality occurs if and

only if A is hereditary of type ~An ; and in this case, ΓA is a wing of rank n.

Proof. Suppose that radnA = 0 and radn−1A 6= 0 for some integer n ≥ 1. It is
clear that radn−1(modA) 6= 0, and hence, rad(modA) is of nilpotency ≥ n. If A

is hereditary of type ~An, then rad(modA) is of nilpotency n; see (2.5). Suppose

conversely that radn(modA) = 0. If n = 1, then A is hereditary of type ~A1.
Otherwise, there exist orthogonal primitive idempotents e0, e1, . . . , en−1 in A such
that en−1(radA)en−2 · · · e1(radA)e0 6= 0. This yields a path of radical maps

Pn−1
f0,n−1 // Pn−2

f0,n−2 // · · ·
f02 // P1

f01 //// P0

in indA, where Pj = Aej , such that f01 · · · f0,n−2f0,n−1 6= 0. We observe that

f0j 6∈ rad2(Pj , Pj−1), that is, f0j is irreducible, for j = 1, . . . , n − 1. Since the Pj
are projective, the path is a sectional. Starting with it and applying repeatedly
Lemma 1.5, we can construct a fitting diagram

P0 g11
##

P1

f01 ;;

g12 ##

τ -P1 g22

##
f02

;;

##

f12 ;;

##
##

Pn-2

;;

g1,n-1
##

τ -Pn-2

;;

g2,n-1 ##

;;

##
τ2-nPn-2 gn-1,n-1

##
Pn-1

f0,n-1 ;;

τ -Pn-1

f1,n-1 ;; ;;

τ2-nPn-1

fn-2,n-1 ;;

τ1-nPn-1.

in indA, where fij with 0 ≤ i < j ≤ n − 1 are irreducible monomorphisms. We
shall show that the diagram is mesh-complete.

(1) The modules τ−iPi with 0 ≤ i ≤ n−1 are injective and gij with 1 ≤ i ≤ j < n
are irreducible epimorphisms.

Since f01, . . . , f0,n−1 are monomorphisms, by Lemma 2.2, P0 is injective. Fix
0 < i < n− 1. We obtain two sectional paths of irreducible maps

τ−iPn−1
fi,n−1 // τ−iPn−2 // · · · // τ−iPi+1

fi,i+1 // τ−iPi

and
Pn−1−i

g1,n−i // τ−Pn−i // · · · // τ1−iPn−1
gi,n−1 // τ−iPn−1
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in indA. By Lemma 1.10, dp(gi,n−1 · · · g1,n−i) = i. For each j with i < j ≤ n−1, we
have an irreducible map (fij , gi,j−1) : τ−iPj ⊕ τ1−iPj−2 → τ−iPj−1 and a sectional

path Pj−i−1 → τ−Pj−i−1 → · · · → τ−iPj−1 in ΓA. Since Pj−i−1 is projective, by
Lemma 1.10(3), dl(fij) = ∞. Thus, dp(fi,i+1 · · · fi,n−1gi,n−1 · · · g1,n−i) = n − 1.
and by Lemma 2.1, τ−iPi is injective. This shows that P0, τ

−P1, . . . , τ2−nPn−2 are
injective, and consequently, g11, . . . , gn−1,n−1 are irreducible epimorphisms. Then,
by Lemma 2.2(2), τ1−nPn−1 is injective. Finally, we deduce from Lemma 1.5(2)
that gij is an irreducible epimorphism for every 1 ≤ i ≤ j < n.

(2) The maps (gij , fi,j+1) : τ1−iPj−1 ⊕ τ−iPj+1 → τ−iPj with 0 < i ≤ j < n− 1
are sink maps.

Suppose that this is not true, say (gst, fs,t+1) with 0 < s < n − 1 is not a sink
map. We may assume that s is minimal. Then, there exists an irreducible map
(gst, ft, fs,t+1) : τ1−sPt−1 ⊕Mt ⊕ τ−sPt+1 → τ−sPt, where Mt is indecomposable.
If s = 1, then we obtain a pre-sectional path Pn−1 → · · · → Pt+1 → Pt → Mt in
ΓA, and by Lemma 1.10(1), we have a map θ : Pn−1 → Mt of depth n − t. Since
Pj is projective, dl(ft) = dl(f1j) = ∞ for 2 ≤ j ≤ t − 1; see (1.10). Therefore,
dl(f12 · · · f1tftθ) = n, a contradiction. In case s > 1, by the minimality of s, we see
that Mt is projective. Then, gst is a monomorphism; see (1.5), a contradiction.

(3) The maps gi,n−1 : τ1−iPn−2 → τ−iPn−1 with 0 < i < n are sink maps.
Suppose that this does not hold, say gs,n−1 with 0 < s < n is not a sink map.

This yields an irreducible map (gs,n−1, fn−1) : τ1−sPn−2⊕Mn−1 → τ−sPn−1, where
Mn−1 is indecomposable. We may assume that s is minimal. In case s = 1, we
obtain pre-sectional path Mt → τ−Pn−1 → · · · → τ−P1, and then, a ladder of
height n − 1 from Pn−1 to τ−P1. By Lemma 1.11, radn(Pn−1, τ

−P1) 6= 0, absurd.
In case s > 1, it follows from the minimality of s that Mn−1 is projective. Then,
gs,n−1 is a monomorphism; see (1.5), a contradiction.

By the above statements, the diagram is mesh-complete in indA. Forgetting its
irreducible maps, we obtain a mesh-complete translation subquiver Γ of ΓA, which
is a wing of rank n and has all the properties stated in Proposition 1.13. Thus A

is hereditary of type ~An with ΓA = Γ . The proof of the theorem is completed.

We conclude this section with the case where A is a Nakayama algebra. Since
ΓA is planar; see [2, page 197], an irreducible monomorphism or epimorphism in
indA is of infinite left or right degree respectively; see [8, (6.2)].

2.7. Theorem. Let A be a Nakayama algebra. Then the nilpotency of rad(modA)
is the maximal number of `(PS)+`(IS)−1, where S ranges over the simple modules.

Proof. It amounts to show that dp(θS) = `(PS)+`(IS)−2, for every simple module
S in modA; see [9, (2.7)]. Write n = `(IS). If n = 1, then ι

S
is an isomorphism,

and hence, dp(ι
S
) = 0. Otherwise, it is well known; see, for example, [2, Page 197]

that there exists a sequence of canonical irreducible monomorphisms

S
qn−1 // radn−2IS

qn−2 // · · ·
q2 // radIS

q1 //// IS .

Thus, ι
S

= fq1 · · · qn−1, where f : IS → IS is an isomorphism. Since dl(qi) = ∞;
see [8, (6.2)], dp(ι

S
) = dp(q1 · · · qn−1) = n−1. Thus, dp(ι

S
) = `(IS)−1 in any case.

Dually, dp(π
S
) = `(PS)−1. Now, if n = 1, then dp(θ

S
) = dp(π

S
) = `(PS)+`(IS)−2.

Otherwise, since dr(qi) =∞ for i = 1, . . . , n− 1, we see that

dp(θ
S
) = dp(q1 · · · qn−1πS

) = `(PS)− 1 + n− 1 = `(PS) + `(IS)− 2.
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The proof of the theorem is completed.

As an immediate consequence, we obtain the following interesting statement.

2.8. Corollary. Let A be a connected Nakayama algebra, and let m be the nilpo-
tency of rad(modA).

(1) If A is hereditary, then m = ``(A); and otherwise, ``(A)+1 ≤ m ≤ 2·``(A)−1.
(2) If the projective modules in indA are of the same length, then m = 2 ·``(A)−1.

Proof. If A is hereditary, then it is not hard to see that A is of type ~An; see [2,
(VIII.5.4)], and by Theorem 2.6, m = ``(A). Suppose that A is not hereditary. By
Theorem 2.6, m > ``(A). Moreover, `(PS) ≤ ``(A) and `(IS) ≤ ``(A), for every
simple module S in modA. By Theorem 2.7, m ≤ 2 · ``(A)− 1.

Suppose that the projective modules in indA are of the same length n. Then,
``(A) = n. Given a projective module P in indA, considering the projective cover
of the injective envelope of P , we see that P is injective. Thus, by Theorem 2.7,
m = 2n− 1. The proof of the corollary is completed.

Example. Let A = kQ/(kQ+)n, where k is a field, Q is a quiver consisting of a
single oriented cycle and kQ+ is the ideal in kQ generated by the arrows. Then
rad(modA) is nilpotency 2n− 1.

3. String algebras

The objective of this preparatory section is to study the depth of the projective cover
and the injective envelope of simple modules over some special classes of algebras.
For this purpose, we first generalize the Butler and Ringel’s notion of string algebras
given by a quiver with relations; see [7] and then introduce a subclass of wedged
string algebras. When the radical of a wedged string algebra is cubed zero, we
shall be able to describe the almost split sequences involving the indecomposable
projective or injective modules, which yields in particular a description of the depths
of projective covers and injective envelopes of simple modules.

3.1. Definition. An artin algebra A is called a string algebra provided that the
radical of any projective module, as well as the socle-factor of any injective module,
in indA is either uniserial or a direct sum of two uniserial modules.

Remark. For finite dimensional algebras given by a quiver with relations, our
notion of a string algebra coincides with the one defined in [7, Section 3].

As a special case of the theorem stated in [7, Section 1], the following statement
gives an explicit description of the almost split sequence with a short proof.

3.2. Proposition. Let A be an artin algebra with P a projective module in indA.
If S is a simple direct summand of radP , then the canonical short exact sequence

0 // S
q // P

p // P/S // 0

is an almost split sequence if and only if the socle-factor of IS has a simple socle.

Proof. Let S be a direct summand of radP . The inclusion map q : S → P is
irreducible. Write J = radA. We may assume that P = Ae0 and S ∼= Ae1/Je1,
where e0, e1 are primitive idempotents in A. It is well known that S = Au, for some
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u ∈ e1Je0\e1J2e0. Putting N = P/S, we obtain a minimal projective presentation

Ae1
Ru // Ae0 // N // 0,

where Ru denotes the right multiplication by u. Applying HomA(−, A) to this
sequence yields a minimal projective presentation

e0A
Lu // e1A // TrN // 0

in modAop, where Lu denotes the left multiplication by u.

Suppose that the socle-factor of D(e1A) has a simple socle, that is, e1J has a
simple top. Since u 6∈ e1J2, we see that e1J/e1J

2 = (u + e1J
2)A, and since J is

nilpotent, e1J = uA. Thus, TrN ∼= e1A/uA = e1A/e1J ∼= S, and consequently,
DTrN ∼= D(e1A/e1J) ∼= Ae1/Je1 ∼= S. Now, it is not hard to see that the canonical
short exact sequence stated in the proposition is an almost split sequence.

Suppose that the canonical short exact sequence is an almost split sequence.
In particular, DTrN ∼= S, and consequently, S admits a minimal injective co-

presentation 0 // S // D(e1A) // D(e0A). In particular, the socle of the

socle-factor of D(e1A) is isomorphic to the simple socle of D(e0A). The proof
of the proposition is completed.

Remark. The dual of Proposition 3.2 is left for the reader to formulate.

Motivated by the previous statement, we introduce the following notion.

3.3. Definition. Let A be an artin algebra.

(1) A projective module P in indA is called wedged if radP = S1⊕S2, where S1, S2

are simple such that the socle-factor of ISi
has a simple socle, for i = 1, 2.

(2) An injective module I in indA is called co-wedged if I/socI = S1 ⊕ S2, where
S1, S2 are simple such that the radical of PSi

has a simple top, for i = 1, 2.

Remark. It is easy to see that a projective module P in indA is wedged if and
only if the injective module DP in indAop is a co-wedged.

Example. Let A be an algebra over a field given by a quiver Q with relations. A
projective module in indA is wedged if and only if its support has a wedge shape

a
α

yy
β

%%
b c,

where α is the only arrow in Q ending in b and β is the only arrow ending in c.

The following statement plays an important role in our investigation.

3.4. Lemma. Let A be an artin algebra with P a projective module in indA. If A
is a string algebra and P is wedged, then there exists a mesh-complete diagram

S1
q1

##

τ−S1 f1
##

P

g1 ;;

g2
##

τ−P

S2

q2

;;

τ−S2

f2

;;

in indA, where S1, S2 are simple ; and in this case, IS1 , IS2 are uniserial of length
at least two. Conversely, if such a mesh-complete diagram exists in indA, then
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(1) P is wedged with radP ∼= S1 ⊕ S2 and topP ∼= τ−P ;

(2) dp(π
S
) = dp(f1g1) = dp(g2q1) = dp(g1q2) = 2;

(3) IS1
∼= τ−S2 in case `(IS1

) = 2; and IS2
∼= τ−S1 in case `(IS2

) = 2.

Proof. Suppose that A is a string algebra and radP = S1 ⊕ S2, where Si is simple
such that soc(ISi

/Si) is simple, for i = 1, 2. Being indecomposable, ISi
/Si is uni-

serial, and hence, ISi is uniserial of length ≥ 2, for i = 1, 2. Considering the
inclusion map qi : Si → P , by Proposition 3.2, we obtain an almost split sequence

0 // Si
qi // P

gi // τ−Si // 0, for i = 1, 2. Since (q1, q2) : P1 ⊕ P2 → P is

a sink map, by Lemma 1.3, (g1, g2)T : P → τ−S1 ⊕ τ−S2 is irreducible. Being
non-uniserial, P is not a direct summand of the radical of any projective module
in indA. This implies that (g1, g2)T is a source map. Since P is not injective; see
(1.2), we obtain a mesh diagram in indA as stated in the lemma.

Suppose that indA contains such a mesh-complete diagram. By Lemma 1.3,
(q1, q2) is an irreducible map. If it is not a sink map, then we have an irreducible map
(q1, q2, f) : S1 ⊕ S2 ⊕M → P , where M is indecomposable. Since P is projective,
M is not injective. This yields an irreducible map g : P → τ−S1 ⊕ τ−S2 ⊕ τ−M ,
absurd. Thus, (q1, q2) is a sink monomorphism. In particular, radP ∼= S1 ⊕ S2.
Since qi is a source map, soc(ISi

/Si) is simple; see (3.2), for i = 1, 2. That is,
P is wedged. Write S = τ−P . Since `(P ) = 3, we see that S is simple. On the
other hand, dp(f1g1) = 2; see (1.11). Thus, π

S
= f1g1h, where h : PS → P is an

isomorphism. Therefore, topP ∼= τ−P and dp(π
S
) = 2.

If g2q1 ∈ rad3(S1, τ
−S2), then q1 + uq2 ∈ rad2(S1, τ

−S2) for some u : S1 → S2;
see [15, Lemma 1.2]. Since q1 is irreducible, u is an isomorphism. Hence, (q1, q2) is
not irreducible; see [4, Proposition 1], absurd. Thus, dp(g2q1) = 2. And similarly,
dp(g1q2) = 2. Since `(τ−S1) = 2, we see that S2

∼= soc(τ−S1). Thus, IS2
∼= τ−S1

in case `(IS2
) = 2. Similarly, IS2

∼= τ−S1 in case `(IS2
) = 2. The proof of the

lemma is completed.

Remark. The dual statement of Lemma 3.4 is left for the reader to formulate.

3.5. Definition. A string artin algebra A is called a wedged string algebra if every
projective module in indA is uniserial or wedged, and every injective module in
indA is uniserial or co-wedged.

By definition, Nakayama algebras are wedged string algebras. On the other
hand, as shown below, hereditary non-Nakayama wedged string algebras are rare.

3.6. Proposition. Let A be a connected artin algebra. Then the following state-
ments are equivalent :

(1) A is a hereditary algebra of type Â3 or B2 ;
(2) A is a hereditary non-Nakayama wedged string algebra ;
(3) A is a hereditary algebra with a wedged projective module in indA or indAop ;
(4) there exists a mesh-complete diagram

S1
q1

##

τ−S1 f1
##

P

g1 ;;

g2
##

τ−P,

S2

q2

;;

τ−S2
f2

;;
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in indA or indAop, where S1, S2 are simple projective, and τ−P is simple
injective. In this case, rad3(modA) = 0.

Proof. It is evident that Statement (2) implies Statement (3). Suppose that State-
ment (1) holds. Then, the projective modules in ΓA or those in ΓAop generate a
section ∆, which is either a trivially valued quiver S1

// P S2,oo or a single val-

ued arrow S1
// P with valuation (1, 2). Since A is hereditary, S1, S2 are simple

such that radP = S1 ⊕ S2, where S2 = S1 if the second case occurs. Moreover, the
inclusion map qi : Si → P is a source map, and hence, soc(ISi

/Si) is simple; see
(3.2), for i = 1, 2. That is, P is wedged. Thus, Statement (3) holds.

Suppose that Statement (3) holds, say indA contains a wedged projective module
P with radP = S1⊕S2, where S1, S2 are simple. By Lemma 3.4, there exists a mesh-
complete diagram in indA as stated in Statement (4), where τ−P ∼= topP and f1, f2
are epimorphisms; see (1.5). Since A is hereditary, S1, S2 are projective. If f1 is
not a source map, then there exists an irreducible map (g, f1) : τ−S1 → N ⊕ τ−P ,
where N is indecomposable. Since g1 is a sink map, N is projective, and so is
τ−S1, absurd. Similarly, f2 is a source map. As a consequence, τ−S1 and τ−S2 are
injective, and since A is hereditary, so is τ−P . Thus, Statement (4) holds.

Suppose that Statement (4) holds, say indA contains a mesh-complete diagram
as stated in Statement (4). Since S1 is simple projective, P is projective, and since
τ−P is simple injective, τ−S1 and τ−S2 are injective. Forgetting the irreducible
maps and identifying the isomorphic modules, we obtain a translation subquiver
Γ of ΓA with all the properties stated in Proposition 1.13, in which the projective
modules generate a section of type Â3 or B2 in case S1 6∼= S2 or S1

∼= S2, respectively.
Thus, A is hereditary of type Â3 or B2 with ΓA = Γ . In particular, S1, S2, P
are essentially the only projective modules in indA, while τ−S1, τ

−S2, τ
−P are

essentially the only injective modules in indA. By Lemma 3.4, P is wedged. Being
of length two, τ−S1 and τ−S2 are uniserial. That is, A is a non-Nakayama wedged
string algebra. Therefore, Statements (1) and (2) hold. Finally, since every path of
three irreducible maps in the diagram has a zero composite, rad3(modA) = 0. The
proof of the proposition is completed.

We shall concentrate on a smaller class of wedged string algebras.

3.7. Lemma. Let A be a wedged string algebra with radical cubed zero.
(1) Every projective or injective module in indA is of length ≤ 3.
(2) Every uniserial module of length 3 in indA is projective injective.

Proof. Since rad3A = 0, every uniserial module in modA is of length ≤ 3. Since
A is a wedged string algebra, every projective or injective module in indA is of
length ≤ 3. Let L be a uniserial module of length 3. Consider its projective cover
f : P → L and injective envelope g : L→ I. Since L has a simple top and a simple
socle, P and I are indecomposable. Since `(P ) ≤ 3 and `(I) ≤ 3, both f and g are
isomorphisms. The proof of the lemma is completed.

Example. The path algebra over a field of the quiver ◦ //// ◦ is a string algebra
with radical squared zero. However, it is not a wedged string algebra.

We shall describe almost split sequences involving indecomposable projective or
injective modules over a wedged string algebra with radical cubed zero. By Lemma
3.4 and its dual, it suffices to consider uniserial projective or injective module.
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3.8. Lemma. Let A be a wedged string algebra with radical cubed zero. Let S be a
simple module in modA such that IS is uniserial of length 2 with IS/S = S1.

(1) If PS1
is uniserial of length 2, then there exists an almost split sequence

0 // S
ι
S // IS

p // S1
// 0

in modA, where IS ∼= PS1
. In particular, dp(ι

S
) = 1.

(2) If PS1
is uniserial of length 3, then there exists a mesh-complete diagram

PS1 p1
##

radPS1

q1 ;;

p2 ##

oo IS p

##
S

ι
S
;;

oo S1

in indA. In particular, dp(ι
S
) = 1.

(3) If PS1
is wedged, then there exists a mesh-complete diagram

S2 q2
##

oo IS f2

##
PS1

p2 ;;

p1
##

oo S1

S

q1 ;;

oo τ−S
f1

;;

in indA such that ι
S

= p2q1. In particular, dp(ι
S
) = 2.

Proof. If PS1
is uniserial, then radPS1

has a simple top. By the dual of Lemma 3.2,
we obtain an almost split sequence as stated in Statement (1). If `(PS1

) = 2 = `(IS),
then it is clear that PS1

∼= IS . This establishes Statement (1).
Suppose that PS1

is uniserial of length 3. Then, PS1
is projective-injective; see

(3.7), and we obtain an almost split sequence as stated in Statement (1). Since
S1 = soc(IS/S), by Lemma 1.1, S = top(radPS1) = radPS1/socPS1 . By Lemma
1.2, we obtain an almost split sequence

0 // radPS1

(q1,p2)
T

// PS1
⊕ S

(p1,q2)// PS1
/socPS1

// 0

with S = soc(PS1/socPS1). Since `(PS1/socPS1) = 2 = `(IS), we have an isomor-
phism u : PS1/socPS1 → IS such that ι

S
= uq2. Replacing q2 by ι

S
, we obtain a

mesh-complete diagram as stated in Statement (2). This establishes Statement (2).
Suppose that PS1

is wedged. Since S1 = soc(IS/S), we see that radPS1
= S⊕S2,

where S2 is simple; see (1.1). By Lemma 3.4, we obtain a mesh-complete diagram

S2 q2
##

τ−S2 h2

##
PS1

g2 ;;

p1
##

S1,

S

q1 ;;

τ−S
h1

;;

in indA such that dp(g2q1) = 2. Since `(IS) = 2, we see that ι
S

= vg2q1, for
some isomorphism v : τ−S2 → IS ; see (3.4). Putting p2 = vg2, we obtain a mesh-
complete diagram as stated in Statement (3). The proof of the lemma is completed.

3.9. Lemma. Let A be a wedged string algebra with radical cubed zero. Let S be a
simple module in modA such that IS is uniserial of length 3 with soc(IS/S) = S1.
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(1) If PS1
is uniserial of length 2, then there exists a mesh-complete diagram

IS p

##
PS1

q1 ;;

p1
##

oo IS/S

S

q2 ;;

oo S1

q ;;

in indA such that ι
S

= q1q2. In particular, dp(ι
S
) = 2.

(2) If PS1 is uniserial of length 3, then there exists a mesh-complete diagram

PS1 p2
##

IS p

##
radPS1

q3 ;;

p3
##

oo radIS

q1 ;;

p1
##

oo IS/S,

S

q2 ;;

oo S1

q ;;

in indA such that ι
S

= q1q2. In particular, dp(ι
S
) = 2.

(3) If PS1
is wedged, then there exists a mesh-complete diagram

IS p
##

S2 f2
##

oo radIS

q1 ;;

p1
##

oo IS/S,

PS1

p2 ;;

g
##

oo S1
q

;;

S

f ;;

oo τ−S
h

;;

in indA such that ι
S

= q1p2f . In particular, dp(ι
S
) = 3.

Proof. Since `(IS) = 3, we see that S1 = top(radIS) with a canonical projection
p1 : radIS → S1. Therefore, we have a projective cover p2 : PS1 → radIS . This
yields two short exact sequences

(?) 0 // S
q2 // radIS

p1 // S1
// 0

and

(†) 0 // S2
f2 // PS1

p2 // radIS // 0,

where S2 is a (possibly zero) submodule of radPS1
. Since IS is projective-injective;

see (3.7), by Lemma 1.2, we obtain an almost split sequence

(∗) 0 // radIS
(q1,p1)

T

// IS ⊕ S1
(p,q) // IS/S // 0.

Suppose first that PS1
is uniserial of length 2. Then p2 is an isomorphism. Hence,

we may assume that PS1
= radIS . Then S = radPS1

. In particular, q2 : S → PS1
is

irreducible. Since p1 is irreducible, (?) is an almost split sequence; see [2, (V.5.9)].
This yields a mesh-complete diagram in indA as stated in Statement (1). Since
S → PS1

→ IS is a sectional path, dp(q1q2) = 2; see (1.10). Since q1q2 6= 0, we may
assume that ι

S
= q1q2. This establishes Statement (1).

Suppose that PS1 is uniserial of length 3. Then, PS1 is projective-injective; see
(3.7). Since `(radIS) = 2, we see that S2 is simple, and hence, S2 = socPS1 . Thus,
we may assume that radIS = PS1

/socPS1
. Moreover, S = top(radPS1

); see (1.1).
By Lemma 1.2, we obtain an almost split sequence
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0 // radPS1

(q3,p3)
T

// PS1
⊕ S

(p2,q2)// radIS // 0.

On the other hand, since q2 and p1 are irreducible, (?) is an almost split sequence.
This yields a mesh-complete diagram as stated in Statement (2). A seen above,
dp(q1q2) = 2 and we may assume that ι

S
= q1q2. This establishes Statement (2).

Suppose now that PS1
is wedged. Then S2 is simple. Thus, radPS1

= S2 ⊕ S0,
where S0 is simple. Since p2(radPS1

) 6= 0, we see that p2(S0) 6= 0, and hence,
q1(p2(S0)) 6= 0. Therefore, S0

∼= socIS = S. We may assume that S0 = S with
an inclusion map f : S → PS1 . Since PS1 is wedged, it follows from Lemma 3.2
that (†) is an almost split sequence. In particular, τ−S2 = radIS . Combining the
mesh-complete diagram stated in Lemma 3.4 and the almost split sequence (∗),
we obtain a mesh-complete diagram as stated in Statement (3) with dp(p2f) = 2.
Since IS is projective, dl(q1) =∞, and hence, dp(q1p2f) = 3. Since q1p2f 6= 0, we
may assume that ι

S
= q1p2f . The proof of the lemma is completed.

Remark. The dual statements of Lemmas 3.8 and 3.9 hold true, which are left for
the reader to formulate.

3.10. Corollary. Let A be a wedged string algebra with radical cubed zero. If S
is a simple module in modA, then dp(π

S
) ≤ 3 and dp(ι

S
) ≤ 3.

Proof. Let S be a simple module in modA. By Lemma 3.7, `(IS) ≤ 3. If `(IS) = 1,
then dp(ι

S
) = 0. If IS is uniserial of length 2 or 3, then it follows from Lemmas 3.8

and 3.9 that dp(ι
S
) ≤ 3. If IS is co-wedged, by the dual of Lemma 3.4, dp(ι

S
) = 2.

Dually, dp(π
S
) ≤ 3. The proof of the corollary is completed.

4. Module categories of radical nilpotency at most four

The objective of this section is to divide the class of artin algebras such that the
radical of their module category has a vanishing fourth power into two subclasses:
hereditary algebras of type A4 and tri-string algebras. We begin with the following
fact that these algebras need to be string algebras.

4.1. Proposition. Let A be an artin algebra. If rad4(modA) = 0, then A is a
string algebra and ΓA is planar.

Proof. Assume that rad4(modA) = 0. Then, A is representation-finite; see [2,
(V.7.6)]. We shall first show that ΓA is planar. Suppose on the contrary that there
exists in modA an almost split sequence

0 // X
(f1,...,fr)

T

// Y1 ⊕ · · · ⊕ Yr
(g1,...,gr) // Z // 0,

where r ≥ 3 and Y1, . . . , Yr are indecomposable. Applying Lemmas 1.7 and 1.8, we
deduce easily that dl(gi) ≥ 3 and dr(fi) ≥ 3, for i = 1, . . . , r.

We claim that g1, g2, g3 are all monomorphisms. Otherwise, we may assume
that g1 is an epimorphism. By Lemma 2.3, dl(g1) ≤ 3. Then, by Lemma 1.8,
(f2, f3)T : X → Y2 ⊕ Y3 is of left degree ≤ 2, and by Lemma 1.9, we obtain an
irreducible map v = (v2, v3) : τY2 ⊕ τY3 → X of left degree one, which is a sink
epimorphism by Lemma 1.7. This implies that Y1 is projective. In particular,
f1 is a monomorphism. In a dual manner, we obtain a source monomorphism
w = (w2, w3)T : Z → τ−Y2 ⊕ τ−Y3. In particular, Z is not injective. Observing
that τY2 → X → Y3 is a pre-sectional path in ΓA, by Proposition 1.10, we may
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assume that f3v2 is of depth 2. Since dl(g3) ≥ 3, the composite g3f3v2 is of depth 3.
By Lemma 2.1, Z is injective, a contradiction. This establishes our claim. Dually,
f1, f2, f3 are all epimorphisms.

If r ≥ 4, then one of the Yi, say Y1, is projective-injective; see [5] or [16, Theorem
7]. In particular, g1 is an epimorphism, a contradiction. Thus, r = 3.

Since the gi are all monomorphisms, Y1, Y2, Y3 are not injective. Hence, we have
an irreducible map h = (h1, h2, h3)T : Z → τ−Y1 ⊕ τ−Y2 ⊕ τ−Y3. Consider a
source map (h, h4)T : Z → τ−Y1 ⊕ τ−Y2 ⊕ τ−Y3 ⊕M . If M is non-zero, since
(g1, g2, g3) is a sink map, M is projective, and consequently, Z is not injective.
This yields an almost split sequence starting with Z, whose middle term is a direct
sum of at least four indecomposable modules, a contradiction. Thus, h is a source
map. Since the fi are all epimorphisms, we obtain in a dual fashion a sink map
p = (p1, p2, p3) : τY1 ⊕ τY2 ⊕ τY3 → X. For each 1 ≤ i ≤ 3, choose ϕi to be one
of the two composites gjfj with j 6= i. As argued above, we see that ϕipi is of
depth 3, and by Lemma 2.1, Z is injective and τYi is projective, for i = 1, 2, 3. And
dually, X is projective and τ−Yi is injective, for i = 1, 2, 3.

If τYi is not simple for some 1 ≤ i ≤ 3, then we obtain a radical monomorphism
qi : Si → τYi, where Si is simple. Since pi and (f1, f2, f3)T are also monomorphisms,
fjpiqi 6= 0 for some 1 ≤ j ≤ 3. Since gj is a monomorphism, gjfjpiqi 6= 0, a
contradiction. Thus, τY1, τY2 and τY3 are all simple. Dually, τ−Y1, τ

−Y2 and τ−Y3
are all simple. Since h is a source epimorphism and p is a source monomorphism,
we conclude that `(X) = `(Z) = 4.

Furthermore, given 1 ≤ i ≤ 3, we see that hϕipi = 0. Hence, ϕipi factors
through the simple socle S of Z. Since τYi is simple, τYi ∼= S. That is, Yi ∼= τ−S,
for i = 1, 2, 3. In view of the above almost split sequence, we get 8 = 3 · `(τ−S),
absurd. This shows that ΓA is indeed planar. Since A is representation-finite,
the radical of any indecomposable projective module, as well as the socle-factor of
any indecomposable injective module, is uniserial or a direct sum of two uniserial
modules; see [1, (4.6)]. That is, A is a string algebra. The proof of the proposition
is completed.

Remark. If A is a string algebra given by a quiver with relations, then ΓA is
planar; see [7]. We do not know, however, if this is still true for a general string
artin algebra.

We shall study hereditary algebras of type A4 according to their Loewy length.

4.2. Proposition. Let A be a connected artin algebra. Then A is hereditary of

type A4 with Loewy length three if and only if rad4(modA) = 0 and there exists a
projective module P in indA or indAop such that radP = M1 ⊕M2, where M1,M2

are uniserial and M1 is not simple. In this case, there exists in indA or indAop a
mesh-complete diagram

S1 j1
##

τ−S1 g1
##

τ−2S1
h2
##

M1

f1 ;;

q1

##

τ−M1

h1 ;;

g2
##

τ−2M1,

P

f2 ;;

p2
##

τ−P

g3 ;;

M2

q2 ;;

τ−M2

f3 ;;

where S1,M1, P,M2 are projective, while τ−2S, τ−2M1, τ
−P, τ−M2 are injective.
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Proof. Let A be hereditary of type A4 such that rad3A = 0 and rad2A 6= 0. By
Proposition 2.5, rad4(modA) = 0. Moreover, the projective modules in ΓA or those

in ΓAop generate a section ∆ : P0
// P1

// P P2.oo Thus, radP = P1 ⊕ P2.
Since A is hereditary, P0 and P2 are simple. Thus, P1 is uniserial of length two.

Suppose now that rad4(modA) = 0 and P is a projective module in indA such
that radP = M1 ⊕M2, where M1,M2 are uniserial and M1 is not simple. Then,

A is neither a hereditary algebra of type ~A4 nor a diamond algebra. By Theorem
2.6, rad3A = 0, and hence, l(M2) = 2. Note that P is not injective; see (1.2)
and the inclusion maps qi : Mi → P are irreducible, i = 1, 2. Put S1 = radM1,
which is simple. The inclusion map j1 : S1 →M1 is radical. Since rad4(S1, P ) = 0
and q1j1 6= 0, dp(j1) ≤ 2. If dp(j1) = 2 then, by Lemma 2.1, P is injective, a
contradiction. Starting with the irreducible monomorphisms j1, q1, q2 and applying
Lemma 1.5 repeatedly, we obtain a fitting diagram in indA, consisting of all modules
except τ−2M1 and all irreducible maps except h2, g3 of the diagram stated in the
proposition. We shall complete the construction of the desired diagram.

(1) The modules S1,M2 are simple projective, M1 is projective, while τ−2S1,
τ−M2 and τ−P are injective.

Note that M2 → P → τ−M1 → τ−2S1 and S1 → M1 → P → τ−M2 are pre-
sectional paths in ΓA. By Lemma 2.4, S1 and M2 are projective, while τ−2S1 and
τ−M2 are injective. If M2 is not simple, then we may find a pre-sectional path
U →M2 → P → τ−M1 → τ−2S1 in ΓA, a contradiction; see (2.4). Moreover, since
S1 is simple projective, M1 is projective. Finally, considering the ladder of height
2 from M1 to τ−P , we obtain a map f : M1 → τ−P with dp(f) = 3; see (1.11).
By Lemma 2.1, τ−P is injective.

(2) The maps j1 and g1 are source monomorphisms.
Suppose that j1 : S1 →M1 is not a source map. This yields an irreducible map

(g, j1) : S1 → N⊕M1, where N is indecomposable. Thus, we can construct a ladder
of height 3 from S1 to τ−P , and by Lemma 1.11, we obtain a map h : S1 → τ−P of
depth 4, a contradiction. Next, since q1 is a monomorphism, so is g1. If g1 is not a
source map, then we get an irreducible map (u, h1) : L⊕ τ−M1 → τ−2S1, where L
is indecomposable. Observing that u : L→ τ−2S1 is an irreducible monomorphism;
see (1.5), we obtain pre-sectional path M2 → P → τ−M1 → τ−2S1 → τ−L in ΓA,
a contradiction; see (2.4).

(3) There exists an injective module τ−2M1 together with a sink epimorphism
(h2, g3) : τ−2S1 ⊕ τ−P → τ−2M1.

Since `(M1) = 2, by Statement (2), τ−S1 is simple and isomorphic to a sub-
module of τ−M1. On the other hand, since M2 → P → τ−M1 is a pre-sectional
path in ΓA, we get a non-zero map w : M2 → τ−M1; see (1.10). Thus, M2 is
isomorphic to a simple submodule of τ−M1. Since M2 6∼= τ−S1, we see that τ−M1

is not injective. Thus, we may complete the construction of the fitting diagram
stated in the proposition. By Proposition 4.1, (h2, g3) : τ−2S1 ⊕ τ−P → τ−2M1 is
a sink map. Considering the ladder of height 2 from P to τ−2M1, we obtain a map
v : P → τ−2M1 of depth 3; see (1.11). By Lemma 2.1, τ−2M1 is injective.

(4) The maps (g1, f2) : τ−S1 ⊕ P → τ−M1 and (g2, f3) : τ−M1 ⊕ τ−M2 → τ−P
are sink epimorphisms, while q2 is a source monomorphism.

By Proposition 4.1, we have sink epimorphisms (g1, f2) : τ−S1⊕P → τ−M1 and
(g2, f3) : τ−M1 ⊕ τ−M2 → τ−P . If q2 is not a source map, then we can find an
irreducible map (q2, w)T : M2 → P ⊕W , where W is indecomposable. This yields
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a ladder of height 3 from M2 to τ−2M1, and by Lemma 1.11, there exists a map
θ : M2 → τ−1M1 of depth 4, absurd.

By the above statements, the diagram constructed above is mesh-complete. For-
getting the irreducible maps yields a translation subquiver of ΓA with all the prop-
erties stated in Proposition 1.13. Thus, A is hereditary of type A4. Since rad2P 6= 0,
we see that ``(A) = 3. The proof of the proposition is completed.

4.3. Proposition. Let A be a connected artin algebra. Then A is hereditary of

type A4 with Loewy length two if and only if rad4(modA) = 0 and there exists a
projective module P in indA or indAop with radP ∼= S1⊕S2, where S1, S2 are simple
such that soc(IS1/S1) not simple. In this case, there exists in indA or indAop a
mesh-complete diagram

M1 g1
##

τ−M1
h2
##

S1

f1 ;;

q1

##

τ−S1

h1 ;;

g2
##

τ−2S1

P

f2 ;;

p2
##

τ−P

h3 ;;

g3
##

S2

q2 ;;

τ−S2

f3 ;;

τ−2S2,

where M1, S1, P, S2 are projective, and τ−M1, τ
−2S1, τ

−P, τ−2S2 are injective.

Proof. Let A be a hereditary algebra of type A4 with rad2A = 0. By Proposition
2.5, rad4(modA) = 0. Moreover, the indecomposable projective modules in ΓA or
those in ΓAop generate a section ∆ : P0

// S1 Poo // S2, where S1, S2 are

simple such that S1 ⊕ S2
∼= radP . Since the inclusion map q1 : S1 → P is not a

source map, soc(IS1
/S1) is not simple; see (3.2).

Suppose now that rad4(modA) = 0 and there exists a projective P in indA
with radP = S1 ⊕ S2, where S1, S2 are simple such that soc(IS1

/S1) is not simple.
Note that the inclusion mapi qi : Si → P is an irreducible monomorphism, for
i = 1, 2, and q1 is not a source map; see (3.2). Since A is not a diamond algebra,
by Proposition 4.1, there exists a source map (f1, q1)T : S1 → M1 ⊕ P , where M1

is indecomposable and f1 : S1 → M1 is an irreducible monomorphism. Starting
with f1, q1, q2 and applying Lemma 1.5 repeatedly, we obtain a fitting diagram in
indA, consisting of all modules except τ−2S1 and all irreducible maps except h2, h3
of the diagram stated in the proposition. We shall complete the construction of the
desired mesh-complete diagram.

(1) The modules S1, S2,M1 are projective, and τ−M1, τ−P , τ−2S2 are injective.
Note that M1 → τ−S1 → τ−P → τ−2S2 and S2 → P → τ−S1 → τ−M1 are

pre-sectional paths in ΓA. By Lemma 2.4, M1 and S2 are projective, while τ−2S2

and τ−1M1 are injective. Considering the ladder of height two from S1 to τ−P , we
obtain a map θ : S1 → τ−P of depth 3; see (1.11). Hence, τ−P is injective; see (2.1).
If S1 is not projective, then we can find a pre-sectional path X → S1 → P → τ−S2

in ΓA. By Lemma 2.4, τ−S2 is injective, a contradiction. Thus, S1 is projective.

(2) The maps (g1, f2) : M1 ⊕ P → τ−S1 and (g2, f3) : τ−S1 ⊕ τ−S2 → τ−P are
sink epimorphisms, while g1, q2, f3 are source monomorphisms.

By Proposition 4.1, (g1, f2) and (g2, f3) are sink epimorphisms. Since q1 is a
monomorphism, so is g1. If g1 is not a source map, then there exists an irreducible
map (g, h1) : N ⊕ τ−S1 → τ−M1, where N is indecomposable. Observing that
g : N → τ−M1 is a monomorphism; see (1.5), we obtain a pre-sectional path
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S2 → P → τ−S1 → τ−M1 → τ−N in ΓA, a contradiction; see (2.4). Finally, since
f1 is a monomorphism, so is f3; see (1.5). Suppose that q2 or f3 is not a source
monomorphism. Since S2 is simple, we see easily that there exists an irreducible
map (f3, h)T : τ−S2 → τ−P ⊕ L, where L is indecomposable. This yields a ladder
of height 3 from S1 to τ−2S2, a contradiction; see (1.11).

(3) There exists an injective module τ−2S1 together with a sink epimorphism
(h2, h3) : τ−M1 ⊕ τ−P → τ−2S1.

By Lemma 1.11, g1f1 6= 0. Thus, S1 is isomorphic to a simple submodule of
τ−S1. Since f1 is a monomorphism, so is f2. Thus, f2q2 6= 0, and hence, S2

isomorphic to a simple submodule of τ−S1. Clearly, S1 6∼= S2. Having a non-
simple socle, τ−S1 is not injective. Thus, we may complete the construction of
the fitting diagram stated in the proposition. By Proposition 4.1, (h2, h3) is a sink
epimorphism. Considering the ladder of height 2 from P to τ−2S1, we obtain a
map v : P → τ−2M1 of depth 3; see (1.11). By Lemma 2.1, τ−2S1 is injective.

In view of the above statements, the diagram constructed above is mesh-complete.
By Proposition 1.13, A is hereditary of type A4 with S1, S2, P,M1 being essentially
the only projective modules in indA. Since S1, S2 are simple, we see that ``(A) = 2.
The proof of the proposition is completed.

For our purpose, we need to put more conditions on wedged string algebras.

4.4. Definition. A wedged string algebra A is called a tri-string algebra provided
that the following conditions are satisfied.

(1) The cube of the radical of A is zero.
(2) If S is a simple module in modA, then `(PS) + `(IS) ≤ 5.
(3) If S is a simple direct summand of the radical of a wedged projective module or

the socle-factor of a co-wedged injective module in indA, then `(PS)+`(IS) ≤ 4.
(4) A wedged projective module and a co-wedged injective module in indA have

no common composition factor.

Example. (1) A local Nakayama algebra of Loewy length three satisfies all but
the second conditions stated in Definition 4.4.

(2) A tri-string algebra over a field is given by the following quiver with relations
α6α5α4 = 0 and αi+1αi = 0, for i ∈ {1, 2, 3, 6, 7, 9} :

◦ α1 // ◦ α2 //

��

◦ α3 // ◦ α4 // ◦ α5 // ◦ α6 // ◦ α7 // ◦ α8 // ◦

◦ ◦ α10 // ◦
α9

OO

We shall show that rad4(modA) = 0 in case A is a tri-string algebra. It amounts
to study the depth of θ

S
for each simple module S in modA.

4.5. Lemma. Let A be a tri-string algebra with S a simple module in modA. If PS
or IS is uniserial of length 3, then dp(θ

S
) ≤ 3.

Proof. We consider only the case where IS is uniserial of length 3. Then, by
Definition 4.4(2), `(PS) ≤ 2. Since dp(ι

S
) ≤ 3; see (3.10), we may assume that

`(PS) = 2. Put S0 = radPS , which is simple. Then, S is a direct summand of
soc(IS0/S0); see (1.1). Since `(PS) + `(IS) = 5, by Definition 4.4(3), IS0 is not
co-wedged. Hence, IS0 is uniserial. By Lemma 3.2, the inclusion map j : S0 → PS
is a source monomorphism, whose co-kernel π

S
: PS → S is a sink epimorphism.



MODULE CATEGORIES OF SMALL RADICAL NILPOTENCY 23

Write S1 = soc(IS/S). Then, S is a direct summand of the top of radPS1
; see

(1.1). Since `(PS)+`(IS) = 5, by Definition 4.4(3), PS1 is not wedged. Thus, PS1 is
uniserial of length 2 or 3; see (3.7). By Lemma 3.9(1) and (2), there exists sectional

a path of irreducible maps S
q2 // M

q1 // IS in indA such that ι
S

= q1q2. Since
PS1

and IS are projective, viewing the diagrams in Lemma 3.9(1) and (2), we see
that dl(q2) = dl(q1) =∞; see (1.7) and (1.10). Therefore, dp(θ

S
) = dp(q1q2πS

) = 3.
The proof of the lemma is completed.

4.6. Lemma. Let A be a tri-string algebra with S a simple module in modA. If S
is a direct summand of the radical of a wedged projective module or the socle-factor
of a co-wedged injective module, then dp(θ

S
) ≤ 3.

Proof. We consider only the case where P is a wedged projective module with
radP = S ⊕ S2 and topP = S1. Then, IS is uniserial of length 2 or 3; see (3.4).
If `(IS) = 3, then dp(θS) ≤ 3; see (4.5). Let `(IS) = 2. Since S1 = soc(IS/S); see

(1.1), by Lemma 3.8(3), we obtain a path of irreducible maps S
q1 // P

p2 // IS1 in
indA, where q1 is a source map, such that ι

S
= p2q1 and dp(ι

S
) = 2.

On the other hand, by Definition 4.4(3), `(PS) ≤ 2. We need only to consider
the case where `(PS) = 2. Write S0 = radPS , which is simple. Then, S is a direct
summand of soc(IS0/S0); see (1.1). By Definition 4.4(4), IS0 is not co-wedged,
that is, IS0

is uniserial. By Proposition 3.2, the inclusion map j : S0 → PS is a
source monomorphism, whose co-kernel π

S
: PS → S is a sink epimorphism. Since

q1 : S → P is a source map, PS is injective, and hence, dr(πS
) = ∞. Therefore,

dp(θ
S
) = dp(ι

S
π

S
) = 3. The proof of the lemma is completed.

4.7. Lemma. Let A be a tri-string algebra with S a simple module in modA. If PS
is wedged or IS is co-wedged, then dp(θ

S
) ≤ 3.

Proof. We consider only the case where PS is wedged with radPS = S1⊕S2, where
S1, S2 are simple. Then, dp(π

S
) = 2; see (3.4). By Definition 4.4(2), `(IS) ≤ 2. We

may assume that `(IS) = 2. Moreover, IS1
, IS2

are uniserial of length 2 or 3; see
(3.4) and (3.7). Then, S = soc(ISi

/Si); see (1.1), for i = 1, 2.
Suppose first that IS1

or IS2
is of length 3, say `(IS1

) = 3. Then, IS1
is projective-

injective with S = soc(IS1/S1) = radIS1/S1. In view of the almost split sequence
as stated in Lemma 1.2, we obtain an irreducible monomorphism q1 : S → IS1/S1

with dl(q1) = ∞; see (1.10). Since `(IS1
/S1) = 2 = `(IS), we find an isomorphism

u : IS1
/S1 → IS such that ι

S
= uq1. Thus, dp(θ

S
) = dp(q1πS

) = 3. Suppose now
that `(IS1

) = `(IS2
) = 2. By Lemma 3.4, we obtain a mesh-complete diagram

S1 q1
""

oo IS2 f1
""

PS

g1 <<

g2 ""

oo S

S2

q2

<<

oo IS1

f2

<<

in indA. Since `(IS) = 2, there exists an irreducible map g : S → N , where N
is indecomposable. Since (f1, f2) : IS2

⊕ IS1
→ S is a sink map, N is projective.

Hence, dl(g) = ∞ and S is a direct summand of radN . Since `(PS) + `(IS) = 5,
by Definition 4.4(3), N is uniserial. Then, radN = S = socN , and consequently,
`(N) = 2 = `(IS). Thus, ι

S
= wg, for some isomorphism w : N → IS . Hence,

dp(θ
S
) = dp(gπ

S
) = 3. The proof of the lemma is completed.
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The following is our promised result.

4.8. Proposition. Let A be a tri-string artin algebra. Then rad4(modA) = 0.

Proof. It suffices to show that dp(θ
S
) ≤ 3, for every simple module S in modA; see

[9, (2.7)]. By Lemmas 4.5 and 4.7, we may assume that `(PS) ≤ 2 and `(IS) ≤ 2.
By Corollary 3.10, we may further assume that `(PS) = `(IS) = 2. Set S1 = socPS
and S0 = topIS . Observing that S1 = radPS and S0 = IS/S, we see that S is
a direct summand of each of soc(IS1

/S1) and top(radPS0
); see (1.1). If IS1

is co-
wedged, then soc(IS1

/S1) = IS1
/S1, and by Lemma 4.7, dp(θ

S
) ≤ 3. Similarly,

if PS0
is wedged, then dp(θ

S
) ≤ 3. Suppose now that IS1

and PS0
are uniserial.

Since S1 = radPS , by Proposition 3.2, the inclusion map j : S1 → PS is a source
monomorphism, whose co-kernel π

S
: PS → S is a sink epimorphism. Similarly,

ι
S

: S → IS is a source monomorphism. By Lemma 1.7(1), dl(ιS ) ≥ 2 > dp(π
S
).

Thus, dp(θ
S
) = dp(ι

S
π

S
) = 2. The proof of the proposition is completed.

We are ready to state and prove the main result of this section.

4.9. Theorem. Let A be a connected artin algebra. Then rad4(modA) = 0 if and
only if A is a hereditary algebra of type A4 or a tri-string algebra.

Proof. By Propositions 2.5 and 4.8, we need only to prove the necessity. Suppose
that rad4(modA) = 0 and A is not a hereditary algebra of type A4. By Proposition
4.1, A is a string algebra. Let P be a non-uniserial projective module in indA.
Then, radP = S1 ⊕ S2, where S1, S2 are uniserial. By Propositions 4.2 and 4.3, Si
is simple and the inclusion map qi : Si → P is a source map, and hence, soc(ISi/Si)
is simple; see (3.2), for i = 1, 2. That is, P is wedged. Dually, every non-uniserial
injective module is co-wedged. Thus, A is a wedged string algebra. Now, we shall
verify one by one the conditions stated in Definition 4.4.

(1) Note that A is representation-finite and rad4A = 0. If rad3A 6= 0, then
rad3(modA) 6= 0. That is, A is of Loewy length 4 and rad(modA) is of nilpotency

4. By Theorem 2.6, A is hereditary of type ~A4, a contradiction. Thus, rad3A = 0.
(2) Let S be a simple module in modA. The projective cover π

S
: PS → S

and the injective envelope ι
S

: S → IS are such that dp(ι
S
π

S
) ≤ 3; see (2.1). By

Lemma 3.7, `(PS) ≤ 3 and `(IS) ≤ 3. Suppose that `(IS) = 3. If IS is co-wedged
then, by the dual of Lemma 3.4, dp(ι

S
) = 2. If IS is uniserial of length 3, then

dp(ι
S
) ≥ 2; see (3.9). Dually, if `(PS) = 3, then dp(π

S
) ≥ 2. If `(PS) = `(IS) = 3,

then dp(ι
S
π

S
) ≥ 4, a contradiction. Therefore, `(PS) + `(IS) ≤ 5.

(3) Let S be a simple direct summand of the radical of a wedged projective
module P in indA. Write radP = S ⊕ S2 and S1 = topP. Then, IS is uniserial of
length ≥ 2; see (3.4). In particular, S1 = soc(IS/S); see (1.1). By Lemmas 3.8(3)
and 3.9(3), dp(ι

S
) = `(IS). Suppose first that `(IS) = 3. Since dp(ι

S
) = 3 and

dp(ι
S
π

S
) ≤ 3, we see that π

S
is an isomorphism. Therefore, `(PS) + `(IS) = 4.

Suppose now that `(IS) = 2. Then, dp(ι
S
) = 2. If π

S
is an isomorphism, then

`(PS)+`(IS) = 3. Otherwise, dp(ι
S
π

S
) ≥ 3. Thus, dp(ι

S
π

S
) = 3. As a consequence,

dp(π
S
) = 1. That is, π

S
is irreducible. On the other hand, since P1 is wedged, the

inclusion map q : S → P1 is a source map; see (3.2). Thus, PS is projective-injective.
In particular, PS is uniserial and the canonical projection p : PS → PS/socPS is
a source map. Since π

S
is irreducible, PS/socPS ∼= S. Therefore, `(PS) = 2, and

consequently, `(PS) + `(IS) = 4. Dually, if S is a simple direct summand of the
socle-factor of a co-wedged injective module in indA, then `(PS) + `(IS) = 4.
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(4) Consider a wedged projective module P0 and a co-wedged injective module
I0. Write topP0 = S0 and radP0

∼= S1 ⊕ S2, and socI0 = T0 and I0/T0 = T1 ⊕ T2,
where Si, Tj are simple, 0 ≤ i, j ≤ 2. As mentioned above, ISi is uniserial of length
≥ 2 and dp(ι

Si
) ≥ 2, i = 1, 2. Dually, PTj

is uniserial and dp(π
Tj

) ≥ 2, j = 1, 2.

Since `(P0) + `(I0) = 6, as shown above, S0 6∼= T0. Since ISi
is uniserial, Si 6∼= T0

for i = 1, 2. And since PTj
is uniserial, S0

∼= Tj for j = 1, 2. If Si ∼= Tj for
some 1 ≤ i, j ≤ 2, then dp(π

Si
) = dp(π

Tj
) ≥ 2. This yields that dp(ι

Si
π

Si
) ≥ 4, a

contradiction. The proof of the theorem is completed.

5. Main statements

The objective of this section is to provide, for each 2 ≤ n ≤ 4, an explicit list
of connected artin algebras whose module category is of radical nilpotency n and
describe the indecomposable modules and the almost split sequences in their module
category. We start with the easy case where n = 2.

5.1. Proposition. Let A be a connected artin algebra. The radical of modA is of

nilpotency two if and only if A is hereditary of type ~A2.

Proof. We need only to prove the necessity; see (2.5). If rad(modA) 6= 0 and
rad2(modA) = 0, then radA 6= 0 and rad2A = 0. By Theorem 2.6, A is hereditary

of type ~A2. The proof of the proposition is completed.

Remark. In case A is given by a quiver with relations, the above result is stated
in a master dissertation under the supervision of the first named author; see [18].

The following statement is the list of algebras whose module category is of radical
nilpotency three.

5.2. Theorem. Let A be a connected artin algebra. The radical of modA is of
nilpotency three if and only if A is a hereditary algebra of type A3 or B2, or else, a
non-hereditary Nakayama algebra with radical squared zero.

Proof. If A is hereditary of type A3 or B2, then rad2(modA) 6= 0; see (5.1) and
rad3(modA) = 0; see (2.5) and (3.6). If A is a non-hereditary Nakayama algebra
with rad2A = 0, then ``(A) = 2. By Corollary 2.8(1), rad(modA) is of nilpotency
m with 3 ≤ m ≤ 3. This establishes the sufficiency.

Conversely, assume that rad(modA) is of nilpotency 3. By Theorem 2.5, A is
not a hereditary algebra of type A4. By Theorem 4.9, A is a tri-string algebra. In
particular, A is a wedged string algebra.

Suppose first that A is a Nakayama algebra. By Corollary 2.8(1), ``(A) = 3 if

A is hereditary, and otherwise, ``(A) = 2. That is, A is hereditary of type ~A3 or a
non-hereditary Nakayama algebra with rad2A = 0.

Suppose now that A is not a Nakayama algebra. Then, there exists a wedged
projective module P in indA or indAop with radP = S1 ⊕ S2, where S1, S2 are
simple. By Lemma 3.4, there exists in indA or indAop a mesh-complete diagram

S1 q1

##

τ−S1 f1
##

P

g1 ;;

g2
##

τ−P,

S2

q2

;;

τ−S2
f2

;;
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where τ−P ∼= topP , such that dp(g2q1) = dp(q1g2) = dp(f1g1) = 2. Since
rad3(modA) = 0, by Lemma 2.1, S1, S2 are projective and τ−P is injective. In

view of Proposition 3.6, we conclude that A is hereditary of type B2 or Â3. The
proof of the theorem is completed.

Remark. The hereditary Nakayama algebras with radical squared zero are here-
ditary algebras of type A1 or A2.

We are ready to obtain the list of connected artin algebras whose module category
is of radical nilpotency four.

5.3. Theorem. Let A be a connected artin algebra. The radical of modA is of
nilpotency four if and only if A is a hereditary algebra of type A4, a non-hereditary
Nakayama algebra of Loewy length three, or a non-hereditary non-Nakayama tri-
string algebra.

Proof. If A is hereditary of type A4, then rad(modA) is of nilpotency 4; see (2.5).
In view of Proposition 4.8 and Theorem 4.9, we may assume that A is a tri-string
algebra. Since rad3A = 0, we see that ``(A) ≤ 3. And since rad4(modA) = 0,
rad(modA) is of nilpotency m ≤ 4.

Suppose first that A is a Nakayama algebra. By Corollary 2.8, m = ``(A) < 4
in case A is hereditary; and otherwise, ``(A) + 1 ≤ m ≤ 2 · ``(A) − 1. Therefore,
m = 4 if and only if A is non-hereditary of Loewy length three. The theorem holds
in this case.

Suppose now that A is not a Nakayama algebra. Being a tri-string algebra, A is a
wedged string algebra. If A is hereditary then, by Proposition 3.6, rad3(modA) = 0,
and hence, m < 4. Otherwise, by Proposition 5.1 and Theorem 5.2, we see that
m 6∈ {1, 2, 3}, that is, m = 4. Therefore, m = 4 if and only if A is not hereditary.
The proof of the theorem is completed.

Remark. The hereditary Nakayama algebras of Loewy length three are heredi-

tary algebras of type ~A3 and the hereditary non-Nakayama tri-string algebras are
hereditary algebras of type B2 or Â3.

Next, we shall describe the module categories whose radical is nilpotent of nilpo-
tency up to four. For the hereditary case, this is done in Theorem 2.6 and Propo-
sitions 3.6, 4.2 and 4.3. In view of Theorem 4.9, it suffices to consider tri-string
algebras. We start with describing their indecomposable modules.

5.4. Theorem. Let A be a connected tri-string algebra.
(1) If M is a module in indA, then M is of length at most three ; and if M is not

projective or injective, then M is uniserial of length at most two.

(2) If M,N are non-isomorphic non-uniserial modules in indA, then they have no
common composition factor.

(3) If A is not a local Nakayama algebra of Loewy length 2, then Ext1A(S, S) = 0
for every simple module S in modA.

Proof. Let M be a module in indA, which is neither projective nor injective.
Then, there exist radical maps f : P → M and g : M → I in indA such that
gf 6= 0, where P is projective and I is injective. Since rad4(modA) = 0; see
(4.8), dp(gf) ≤ 3. As a consequence, f or g is irreducible. We may assume that
g : M → I is irreducible. Since M is not projective, I is not simple. That is,
2 ≤ `(I) ≤ 3; see (3.7). Note that I = IS , where S = socI. Suppose first that I is
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co-wedged with I/S = S1⊕S2 where S1, S2 are simple. By the dual of Proposition
3.4, we may assume that M ∼= τS1. Since `(I) = 3, we obtain `(M) = 2. Being
indecomposable, M is uniserial. Suppose now that I is uniserial. If `(I) = 3, then I
is projective-injective; see (3.7), and hence, M = radI, which is uniserial of length
two. Let `(I) = 2. Since M is not projective, by Proposition 3.8, M = S. Since
the projective or injective modules in indA are of length ≤ 3, Statement (1) holds.

To prove Statement (2), note that the non-uniserial modules in indA are wedged
projective or co-wedged injective modules. By Definition 4.4(4), we only need to
consider two non-isomorphic wedged projective modules P1 and P2 in indA. Write
topP1 = S0 and radP1 = S1 ⊕ S2, where S1, S2 are simple; and topP2 = T0 and
radP2 = T1 ⊕ T2, where T1, T2 are simple. Then, T0 6∼= S0 by the assumption.
Since ISi

, ITj
are uniserial of length ≥ 2; see (3.4), PSi

, PTj
are of length ≤ 2 by

Definition 4.4(3). Hence, T0 6∼= Si and S0 6∼= Tj , for 1 ≤ i, j ≤ 2. Suppose that
S1
∼= T1. Then, S1 is a direct summand of each of radPS0 and radP T0 . Thus,

S0 and T0 are direct summands of IS1
/S1. Since S0 6∼= T0, we see that IS1

is not
uniserial, a contradiction. This establishes Statement (2).

Suppose that Ext1A(S, S) 6= 0, for some simple module S in modA. That is, S is
a direct summand of radPS . Observing that `(IS) ≥ 2, we deduce from Definition
4.4(3) that PS is uniserial. Assume that `(PS) = 3. Then, PS is projective-injective;
see (3.7), and S = top(radPS) ∼= soc(PS/S1), where S1 = socPS . Moreover,
IS1
∼= PS with S ∼= soc(IS1

/S1). By Lemma 1.1, S1
∼= top(radPS) = S. Hence,

IS ∼= PS , and consequently, `(PS) + `(IS) = 6, a contradiction to Definition 4.4(2).
Thus, `(PS) = 2. Dually, `(IS) = 2. Since S = socPS , we see that PS ∼= IS . That
is, PS is projective-injective. Being connected, A is a local Nakayama algebra of
Loewy length two. The proof of the theorem is completed.

Remark. In view of Definition 4.4 and Theorem 5.4, we obtain some necessary
and sufficient combinatorial conditions for a string algebra given by a quiver with
relations to be a tri-string algebra. This is left for the reader to formulate explicitly.

Example. Let A be an algebra over a field given by the quiver

◦
α
��

β // ◦
γ //

δ��

◦

◦ ◦
with relations γβ = 0 and δβ = 0. Then rad4(modA) 6= 0.

Finally, we shall describe the almost split sequences in the module category of
a tri-string algebra. Recall that a non-injective module in indA is either a wedged
projective module or a uniserial module of length one or two; see (5.4).

5.5. Theorem. Let A be a tri-string artin algebra. Then every almost split sequence
in modA is isomorphic to one of the following ones.

(1) If P is a wedged projective module in indA with radP = S1 ⊕ S2, where S1, S2

are simple, then there exists an almost split sequence

0 // P // P/S1 ⊕ P/S2
// topP // 0.

(2) If M is a non-injective uniserial module of length two with an injective envelope
IM , then there exists an almost split sequence

0 // M // IM // IM/M // 0
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in case IM is co-wedged ; and otherwise, an almost most split sequence

0 // M // IM ⊕ topM // IM/socM // 0.

(3) If S is the socle of a co-wedged injective module I with I/S = S1 ⊕ S2, where
S1, S2 are simple, then there exists an almost split sequence

0 // S // M1 ⊕M2
// I // 0,

where socMi = radMi = S and topMi = Si, for i = 1, 2.

(4) If S is a simple direct summand of the radical of a wedged projective module P,
then there exists an almost split sequence

0 // S // P // P/S // 0.

(5) If S is the socle of a non-simple uniserial injective module I and is not a direct
summand of the radical of any wedged projective module, then there exists an
almost split sequence

0 // S // N // N/S // 0,

where N = I in case `(I) = 2, and N = radI in case `(I) = 3.

Proof. Let δ : 0 // M // N // L // 0 be an almost split sequence in
modA. By Theorem 5.4, `(M) ≤ 3. Consider first the case where `(M) = 3. Not
being injective, M is not uniserial; see (3.7), and consequently, M = P, a wedged
projective module in indA with radP = S1 ⊕ S2, where S1, S2 are simple. By
Lemma 3.4, δ is of the form as stated in Statement (1).

Consider now the case where `(M) = 2. Being indecomposable, M is uniserial.
Write S = socM and S1 = topM = M/S. Then, socIM = S and IM ∼= IS . Since
M is not injective, `(IM ) = 3. Suppose first that IM is co-wedged. Then, S1 is
a direct summand of IM/S, say IM/S = S1 ⊕ S2, where S2 is simple. Observe
that IM/M ∼= S2. By the dual of Lemma 3.2, δ is of the first form as stated in
Statement (2). Suppose now that IM is uniserial. Then, IM is projective-injective
with M = radIM and radIM/S = topM . By Lemma 1.2, δ is of the second form
as stated in Statement (2).

Consider finally the case where M = S, a non-injective simple module in modA
with IS = I. In case I is co-wedged, by the dual of Lemma 3.4, δ is of the
form as stated in Statement (3). Otherwise, I is uniserial of length 2 or 3. Write
S1 = soc(I/S) and P = PS1

. If P is wedged, then S is a direct summand of radP ,
and by Propositions 3.8(3) and 3.9(3), δ is of the form as stated in Statement (4).
In case P is uniserial, viewing the first two statements of each of Propositions 3.8
and 3.9, we conclude that δ is of the form as stated in Statement (5). The proof of
the theorem is completed.
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