KOSZUL DUALITY FOR NON-GRADED DERIVED CATEGORIES

MOHAMMED BOUHADA, MIN HUANG, AND SHIPING LIU

ABSTRACT. We are concerned with relating derived categories of all modules
of two dual Koszul algebras. First, we give a complete account of Koszul
complexes, Koszul algebras and Koszul duals in terms of locally finite quivers
with relations. Then, we generalize the well-known Acyclic Assembly Lemma
and formalize an old method of extending a functor from an additive category
into a complex category to its complex category. Applying these techniques to
a Koszul algebra defined by a gradable quiver, we extend Beilinson, Ginzburg
and Soergel’s Koszul duality to dualities between a 2-real-parameter family of
pairs of categories derived from subcategories of the complex categories of all
modules of the Koszul algebra and its Koszul dual. In case the Koszul algebra
is locally bounded on one side and its Koszul dual is locally bounded on the
other side, our Koszul duality restricts to an equivalence of the bounded derived
categories of finitely supported modules, and an equivalence of the bounded
derived categories of finite dimensional modules.

INTRODUCTION

The history of Koszul theory traces back to Cartan and Eilenberg’s computing
the cohomology groups of a Lie algebra using the Koszul resolution; see [8, Chapter
8, Section 7). Later, various Koszul resolutions were used to compute the homology
and the cohomology of Hopf algebras, restricted Lie algebras and Steenrod alge-
bra; see [7, 24]. In dealing with graded algebras arising from algebraic topology,
Priddy formalized the Koszul theory of Koszul complexes and Koszul algebras and
discovered a duality among homology algebras of certain Koszul algebras; see [27].
This beautiful theory has applications in many branches of mathematics such as
algebraic topology; see [14, 28], algebraic geometry; see [4, 5], quantum group; see
[19], commutative algebra; see [9], the representation theory of Lie algebras; see
[5, 30] and that of associative algebras; see [11, 12, 20, 21].

Beilinson, Ginzburg and Soergel described in [5] the Koszul duality in terms
of graded derived categories of two dual Koszul algebras; see also [4, 10, 15, 23].
More precisely, they established an equivalence between the category derived from a
subcategory of the bounded-above complex category of the graded module category
of a left finite Koszul algebra and the category derived from a subcategory of the
bounded-below complex category of the graded module category of its Koszul dual.
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Their duality restricts to an equivalence of the bounded derived categories of finitely
generated graded modules if the Koszul algebra is of finite length and its Koszul dual
is left noetherian. Under the setting of positively graded categories, Mazorchuk,
Ovsienko and Stroppel generalized in [25] the Koszul duality to Koszul categories;
see, for a similar consideration, [22].

The classic Koszul duality deals with derived categories of graded module cate-
gories. However, it is also important to study derived categories of non-graded
modules of Koszul algebras, for instance, those arising from mixed geometry; see [5,
(1.4.2)]. This is even more interesting from the representation theoretic viewpoint;
see [1, 2]. Indeed, given an algebra with radical squared zero defined by a gradable
quiver, which turns out to be a Koszul algebra, Bautista and Liu established an
equivalence between its bounded derived category of finite dimensional modules and
the bounded derived category of finitely co-presented modules of the path algebra
of the opposite quiver, that is the Koszul dual; see [2, (3.9)].

The objective of this paper is to present a self-contained complete account of
the Koszul theory of Koszul complexes, Koszul algebras, Koszul duals and Koszul
duality from a combinatorial viewpoint. In particular, our Koszul algebra is an
algebra defined by a locally finite quiver with homogeneous relations such that every
principal simple module has a linear projective resolution; see (2.14) and compare
[20]. In case the quiver is gradable, we shall extend the classic Koszul duality, by
establishing equivalences between a 2-real-parameter family of pairs of categories
derived from subcategories of the complex categories of all modules of a Koszul
algebra and its Koszul dual. In contrast to the highly sophisticated technique of
spectral sequences used in [5], our technique is elementary with detailed arguments.
Let us outline the content of the paper section by section.

In Section 1, we shall lay down the foundation of the paper. Besides collec-
ting and proving some preliminary results, we shall introduce some new classes of
algebras defined by a locally finite quiver with relations, which include the locally
bounded categories; see [6, (2.1)] and path algebras of strongly locally finite quivers;
see [3, Page 100]. Their representation theory is worth future investigation.

In Section 2, we shall prepare for constructing linear projective resolutions and
linear injective co-resolutions. We shall start with projective covers in the most
general case; see (2.3, 2.4). Then, we shall obtain a class of principal injective modu-
les in the locally finite dimensional case; see (2.5), and study injective envelopes in
the strongly locally finite dimensional case; see (2.9, 2.10). Finally, we shall show
that a graded algebra is quadratic if and only if every principal simple module
admits a linear projective 2-presentation; see (2.13) and compare [5, (2.3.3)].

In Section 3, we shall present a description of Koszul complexes, Koszul algebras
and Koszul duals in terms of locally finite quivers with quadratic relations. Given a
quadratic algebra A, we shall define a local Koszul complezx for each principal simple
A-module S; see (3.3) and compare [5, (2.6)], which is a projective resolution of S
if and only if S has a linear projective resolution; see (3.4). Next, we shall define
the quadratic dual A' of A by the opposite quiver with dual quadratic relations:
see (3.7) and compare [5, (2.8.1)], and show that A' is Koszul if and only if A is



DERIVED CATEGORIES 3

Koszul; see (3.10) and compare [5, (2.9.1)], [25, Theorem 30]. In case A is locally
finite dimensional, we show that A is Koszul if and only if its opposite algebra is
Koszul, or equivalently, every simple A-module admits a particular linear injective
co-resolution; see (3.13) and compare [5, (2.2.1)].

In Section 4, we shall provide tools for constructing Koszul duality. Let A
be an additive category with countable direct sums. First, we relate by taking
total complex the double complex category DC(A) to the complex category C(A);
see (4.1), and obtain a generalization of the Acyclic Assembly Lemma; see [31,
(2.7.1)], which ensures the acyclicity of the total complex of a substantially larger
family of double complexes; see (4.3). Next, we introduce a homotopy theory in
DC(A), which is compatible with taking total complex; see (4.4, 4.5). Finally,
we formalize an old method for extending a functor from an additive category B
into C'(A) to the complex category C(B). Such extended an functor descends to
the homotopy category K (B); see (4.8), but only to categories derived from some
possible subcategories of C'(B); see (4.9).

In Section 5, we shall describe our Koszul duality. Let 4 be a quadratic algebra A
defined by a locally finite gradable quiver. We first construct two Koszul functors
. each sends one of the module categories ModA and ModA' into the complex
category of the other; see (5.1). As explained above, they are extended to two
complex Koszul functors: each sends one of the complex categories C'(ModA) and
C’(Mod/l!) into the other one. Our generalized Acyclic Assembly Lemma ensures
that they descend to a 2-real-parameter family of pairs of derived Koszul functors:
each pair interchanges a pair of categories derived from subcategories of C'(ModA)
and C(ModA'); see (5.3), all but the classical pair considered in [5, 25] contain
doubly infinite complexes.

In case A is Koszul, the Koszul functors send an indecomposable injective A'-
module to the minimal projective resolution of a simple A-module and an inde-
composable projective A-module to the minimal injective co-resolution of a simple
A'-module, respectively; see (5.4). Moreover, the composites of one Koszul functor
and the extension of the other one send respectively a bounded-above A'-module
to its minimal injective co-resolution and a A-module to its minimal projective res-
olution; see (5.5, 5.6). Using this fact, we show that each pair of derived Koszul
functors is a pair of mutually quasi-inverse triangle equivalences; see (5.7). If A
is locally bounded on one side and A s locally bounded on the other side, then
our Koszul duality restricts to an equivalence of the bounded derived categories of
finitely supported modules, and an equivalence of the bounded derived categories
of finite dimensional modules; see (5.8) and compare [5, (2.12.6)]. This case occurs,
for instance, when the quiver has no right infinite path or no left infinite path.

1. PRELIMINARIES

The objective of this section is to recall some background and collect and prove
some preliminary results. The terminology and notation introduced in this section
will be used throughout the paper.
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I. LINEAR ALGEBRA. Throughout, £ denotes a commutative field. All tensor
products will be over k unless the otherwise is explicitly stated. The k-vector space
freely spanned by a set S will be written as kS. Let Modk stand for the category
of all k-spaces and modk for the category of finite dimensional k-spaces. We shall
make a frequent use of the exact functor D = Homy(—, k) : Modk — Modk. The
following result is well-known.

1.1. LEMMA. Given U,V € modk and M, N € Modk, we obtain an isomorphism

p : Homy (U, V) ® Homg (M, N) - Hom(U® M, VQN): fRg— p(f®g),
natural in all variables, where p(f®g)(u®@m) = f(u)®g(m) foru € U andm € M.

REMARK. In the sequel, we shall identify the map ¢(f ® g) with f ® g.

As a consequence of Lemma 1.1, we obtain the following well-known result.

1.2. COROLLARY. Given U € modk and M, N € Modk, we obtain

(1) a natural isomorphism o : DU @ N — Homy (U, N) : f @ n +— o(f ® n), where
o(f®@n)(u) = f(u)n, forue U and n € N;

(2) a natural isomorphism ¢ : DU Q@ DM — D(MQU): f@g+— o(f ®g), where
o(f®g)meu)=gim)f(u), forueU and m € M.

We shall need the following statement later.

1.3. LEMMA. Given morphisms f : U — M and g : N — V in modk, we obtain a
commutative diagram with vertical isomorphisms as follows:

f®Dg

U DV M ® DN
9U,vi J/OM,N
DV @ pU) —2Y22D _ p(N @ DM).

Proof. Composing the isomorphism U ® DV — D?U ® DV, induced from the
canonical isomorphism U — D?U, with the isomorphism D?U® DV — D(V®DU);
see (1.2), we obtain an isomorphism 60y such that Oy v (u® ()(v® &) = ((v)&(u),
foralu e U, v e V, ( € DV and £ € DU. Similarly, we obtain an isomorphism
Or, N, making the diagram stated in the lemma commute. Indeed, given u € U,
(e DV ,ne N and £ € DM, we obtain

Or,n ((f © Dg)(u® () (n®@ &) = Ou n(f(u) ®Cg)(n®&) =((g(n))E(f(u))
and

D(g@Df)Ouy(u@)(n®é) = Ouyvue)((g@Df)(n®E))
Ou,v (u @ C)(g(n) @Ef)
= ((g(n)&(f(w)).

The proof of the lemma is completed.

Let U € Modk. Given a subspace V of U, we shall denote by V* the subspace
of DU of linear forms vanishing on V', called the perpendicular of V in DU.
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1.4. LEMMA. Let U be a finite dimensional k-space.

(1) If V,W are subspaces of U, then (V + W)t = VLN W=, and on the other
hand, (V NW)L =V+ Wt

(2) If {u1,...,un} and {v1,...,vn} are bases of U with dual bases {uf,...,us}
and {v},..., vk} respectively, then Y ju; @ uf =Y i v; ® v} in U@ DU.

Proof. Statement (1) is evident. By Corollary 1.2, we obtain an isomorphism

0:U®Homy (U, k) — Endi(U) : u® f — 0(u® f). Given a basis {u1,...,u,} of U,

it is easy to see that 6 (3., u; ® u}) = 1y. The proof of the lemma is completed.

II. QUIVERS. Let Q = (Qo,Q1) be a locally finite quiver, where @) is a set of
vertices and @)1 is a set of arrows. Given an arrow « :  — y, we write © = s(«) and
y = e(a). Given x € Qq, one has a trivial path e, of length 0 with s(e,) = e(e,) = z.
A path of length n > 0 is a sequence p = a,, -+ a1, with ; € @1, such that
s(ais1) = e(ay), for i = 1,...,n — 1; and in this case, we write s(p) = s(a1) and
t(p) = t(an), and call a,, the terminal arrow of p. An infinite path in @ is called
right infinite if it has no ending point and left infinite if it has no starting point.

The opposite quiver of @Q is a quiver Q° defined in such a way that (Q°)o = Qo
and (Q°)1 ={a®:y 2>z | a:x — y € Q1}. A non-trivial path p = a,, -1
in Q(z,y), where o; € @1, corresponds to a non-trivial path p° = af---a2 in
Q°(y,x). However, the trivial path in Q at a vertex x will be identified with the

trivial path in Q° at x.

Fix an integer n > 0 and some vertices z,y of ). We shall denote by @,, the
set of paths of length n and by Q(z,y) the set of paths from x to y. Moreover,
we shall write Q,(z,y), Q<n(z,y), and Q>,(z,y) for the subsets of Q(x,y) of
paths of length n, of length < n, and of length > n, respectively. Further, we
put Qn(x, —) = U.e,@n(z, 2) and Qn(—, ) = U.cq,Q@n(z, ). Finally, we define
Q<n(z,—) = Uzeq, Q<n(z,2) and Q<n(—, ) = U,eq, Q<n(z,x), and similarly,
Q>n(z,—) = Uzeq, @>n(z, 2) and Q> (—, ) = Useq, @>n(2, ). For convenience,
we shall put Qs (z,y) = 0 for an integer s < 0.

We say that @ is strongly locally finite if Q(z,y) is finite for all x,y € Qo; see [3],
and gradable if Qyp = Upez @, a disjoint union called a grading, such that every
arrow is of the form x — y, where z € Q", y € Q"™ and n € Z; see [1, (7.1)].

III. PATH ALGEBRAS. An algebra in this paper does not necessarily have an iden-
tity, and an ideal in an algebra is always a two-sided ideal. Let Q = (Qo, Q1) be
a locally finite quiver. We denote by kQ the path algebra of @ over k, whose op-
posite algebra is kQ°. Given v = Y"7_, \ip; € kQ, where \; € k and p; are paths,
we shall write 7° = Zle Aip§ € kQ°. This yields an algebra anti-isomorphism
kQ — kEQ° 1y — ~°.

Let R be an ideal in kQ. We shall say that R is weakly admissible if R C (kQ*)?,
where kQ™ is the ideal in kQ generated by the arrows. A weakly admissible ideal
R is called locally admissible if, for any x,y € Qo, there exists ngz, > 0 such that
kQn(x,y) C R for all n > ny,; right (respectively, left) admissible if, for any x € Q,
there exists n, > 0 such that kQ,(x,—) C R (respectively kQ,(—,z) C R) for all
n > n,; and admissible if it is right and left admissible; compare [6, (2.1)].
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Let R be a weakly admissible ideal in Q. In this case, the pair (@, R) a called
bound quiver. For n > 0, we shall put R, = R N kQ,; and for z,y € Qo,
we write R(z,y) = RN kQ(z,y) and R,(z,y) = RN kQn(z,y). An element
p € R(zx,y) is called a relation in R from = to y. Such a relation p is called
quadratic if p € kQo(x,y); homogeneous if p € kQ,,(x,y) for some n > 2; monomial
if p € Q(z,y); and primitive if p = >.7_, \ip;, where \; € k and p; € Q(x,y)
are such that » .. Aip; € R for any ¥ C {1,...,s}. We shall say that R is
quadratic (respectively, homogeneous, monomial) if it is generated by a set of qua-
dratic (respectively, homogeneous, monomial) relations. A minimal generating set
2 of R is a set of primitive relations in R such that R is generated by {2 but not
by any proper subset of £2; and in this case, we put 2(z,y) = 2 N kQ(x,y) and
2(x,—) = Uzeq, 2(x, 2).

1.5. LEMMA. Let Q be a locally finite quiver with R a homogenous ideal in kQ. If
2 is a minimal generating set of R, the the classes of p modulo (kQT)R+ R(kQT),
with p € {2, are k-linearly independent.

Proof. Let {2 be a minimal generating set of R. Assume that A\jp;+-- -+ A-p,- lies in
(kQT)R+R(kQT), where \; € k are non-zero and p; € £2(z,y) are pairwise distinct,
for some x,y € Qo. Then, p1 = >0 _vip10; +Z§-:1§jUjCj7 where o; € 2\{p1}, and
7,03, &5,(j € kQ are homogeneous such that 7; or §; is of positive degree for every
1 <4 < s. Since p; and the o; are homogeneous, p; = Zje@ &j0;(j, where @ is
the set of indices j for which £;0;(; is of the same degree as p;, a contradiction to
the minimality of 2. The proof of the lemma is completed.

IV. ALGEBRAS AND MODULES. In this subsection we fix A = kQ/R, where @ is a
locally finite quiver and R is a weakly admissible ideal in kQ. Write ¥y = v+ R € A,
for v € kQ. Then, {e, = &, | ¢ € Qo} is a complete set of pairwise orthogonal
idempotents, that is 4 = @yeq, A€z = PregyesAd. The opposite algebra of A is
A° = kQ°/R°, where R° = {p° | p € R}. We shall write 7° = v° + R° for v € kQ,
but e, = e, + R° for & € Qy. This yields an anti-isomorphism A — A°: 5 — °.

We shall say that A is locally finite dimensional if e, Ae, is finite dimensional for
all z,y € Qo; compare [6, (2.1)]; strongly locally finite dimensional if R is locally
admissible; right (respectively, left) locally bounded if R is right (respectively, left)
admissible; and locally bounded if R is admissible; compare [6, (2.1)]. Clearly, a left
or right locally bounded algebra is strongly locally finite dimensional.

We shall write J for the ideal in A generated by & with a € Q1, and say that J
is locally nilpotent if, for each pair (z,y) € Qo x Qo, there exists an integer n,, > 0
such that e, J"*ve, = 0. We shall need the following easy result.

1.6. LEMMA. Let A = kQ/R, where Q is locally finite and R is weakly admissible.

(1) As a k-vector space, A = Ag © Ay © J?, where Ay has a k-basis {e, | v € Qo}
and Ay has a k-basis {& | o € Q1 }.

(2) The ideal R is locally admissible if and only if J is locally nilpotent; and in this
case, J contains only nilpotent elements.

Proof. We shall prove only the second part of Statement (2). Given u € J, write
w=>"_,u; with u; € ey, Jeg,, for some z;,y; € Qo. If J is locally nilpotent, then



DERIVED CATEGORIES 7

ey;J"ey;, = 0 for some n > 0 and all 1 < 4,5 < s, and consequently, u™ = 0. The
proof of the lemma is completed.

ExaMPLE. (1) If @ is a strongly locally finite quiver, then kQ is strongly locally
finite dimensional.

(2) Let 4 = kQ/R, where @ is a single loop « and R is generated by o — o®.
Then A is locally finite dimensional, but not strongly locally finite dimensional.

A left A-module M is called unitaryif M =5 2€Qo ez M. Such a unitary module
M is called finitely supported if e, M = 0 for all but finitely many x € Qg and locally
finite dimensional if e, M is finite dimensional for all x € QQy. We shall denote by
Mod A the category of all left unitary A-modules, and by Mod®4, mod A and mod®A
its full subcategories of finitely supported modules, of locally finite dimensional
modules and of finite dimensional modules, respectively.

Let M € ModA. We shall write rad M for the Jacobson radical, and socM for
the socle, of M. We shall call S;(M) = {u € M | Ju = 0} the J-socle, JM the
J-radical, and Ty(M) = M/JM the J-top, of M. Recall that a submodule of M is
essential if it intersects non-trivially every non-zero submodule of M. Associated

with a € Qg, we have a principal projective module P, = Ae, and a principal simple
module S, = P,/JP, in ModA.

1.7. LEMMA. Let A = kQ/R be a strongly locally finite dimensional algebra.

(1) If a € Qo, then JP, is the largest proper submodule of P,.

(2) The non-isomorphic simple modules in Mod A are S, with a € Qo; and conse-
quently, S;(M) = socM, for all M € ModA.

(3) If M € Mod A has a finitely supported essential socle, then every quotient mo-
dule of M has an essential socle.

Proof. (1) If N is a submodule of P, not contained in JP,, then e, —u € N for some
u € JP,. Since u = ue,, we see that (e, + equ + -+ + equ™ 1) (e, —u) = e, € N.

(2) Let S be a simple module in ModA. Being unitary, S is generated by an
element u in e,S, for some a € Qy. By Statement (1), we have an epimorphism
f: P, — S with J =Ker(f), and hence, S = S,,.

(3) Let socM be essential in M and supported by ag,...,a, € Qp. Consider a
submodule N of M such that M/N has a non-zero element w + N € M /N, where
w € ey, M + -+ e M. Since J is locally nilpotent, eq; J'e,, = 0 for some ¢ > 0,
and for all i = 1,...,s; j =1,...,7. Suppose that v(w + N) # 0, for some v € J*.
Since socM is essential in M, there exists some u € A such that 0 # (uwv)w € socM.
In particular, €a; (uv)ep, # 0 for some 1 < i < sand 1 < j < r, a contradiction.
Thus, there exists some maximal 0 < n < ¢ such that J"(w + N) # 0. Then,
0+# J"(w+ N) Csoc(M/N). The proof of the proposition is completed.

REMARK. In case A is strongly locally finite dimensional, by Lemma 1.7(1), P, is
indecomposable for every a € Q.

EXAMPLE. Let A be the locally finite dimensional algebra defined by a loop a with
a relation a® — o. Then, the principal projective module A is decomposable. If a
acts identically on k, then k is a non-principal simple module with a zero J-socle.
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A representation M of the bound quiver (Q, R) consists of a family of k-spaces
M(z) with ¢ € Qo and a family of k-linear maps M(«) : M(z) — M(y) with
a:x — y € @, such that M(p) = 0 for all p € R(z,y) with z,y € Q. Here,
M(y) =32 MiM(tim,) o -+ 0 M(ai) for any v =32, Aictim, - @i € kQ(,y)
with A\; € k and a;; € Q1. In particular, we may write M (y) = M(vy), for v € kQ.
A morphism f: M — N of representations consists of a family of k-linear maps f,
with o € Qg such that f, o M(a) = N(a) o fs, for every a : ¢ — y in ). We shall
denote by Rep(Q, R) the category of all representations of (Q, R).

It is well known that a module M € Mod A can be regarded as a representation
M € Rep(Q, R) such that M(z) = e, M for z € Qp, and M(«) : M(z) - M(y)
is the left multiplication by @ for a € @Q1(z,y). A morphism f : M — N in
ModA can be regarded as a morphism (fz)zeq, : M — N in Rep(Q, R), where
fo @ M(xz) — N(x) is obtained by restricting f. Taking this point of view, we
shall define an exact functor D : ModA — ModA® as follows. Given a module
M, we define a module DM by (DM)(z) = Homy(M(x),k) for x € Qo, and
(DM)(a®) = Homy(M(a),k) for o € Q1. Given a morphism f : M — N, we
define a morphism Df : DN — DM by (Df), = Hom(f,, k), for every x € Q.

1.8. LEMMA. Let A = kQ/R, where Q is locally finite and R is weakly admissible.

(1) The functor D : modA — modA°® is an equivalence.
(2) If M € ModA and V € modk, then D(M ® V)= DM ® DV.

Proof. Statement (1) is evident, and Statement (2) follows from Corollary 1.2. The
proof of the lemma is completed.

V. GRADED ALGEBRAS. Let A = kQ/R, where @ is a locally finite quiver and
R is a homogeneous ideal in k). Then, A is positively graded with a J-grading
A = ®p>0d,, where A, = {7 | v € kQ,}. Observe that A° is also positively graded
as A% = @p>04;,, where A7 = {7° | v € kQ,}. One says that A is quadratic if R is
a quadratic ideal.

1.9. PROPOSITION. Let A = kQ/R, where Q is a locally finite quiver and R is a
homogeneous ideal in kQ. Then A is locally finite dimensional if and only if A is
strongly locally finite dimensional.

Proof. Assume that A is locally finite dimensional but R is not locally admissible.
Then Q(x,y), for some z,y € Qo, has arbitrarily long paths not lying in R. Since
eyAeg is finite dimensional, A0y + --- + A0, € R(z,y), where A\; € k are non-
zero and §; € Q(z,y)\R are of pairwise different lengths. Since R is homogeneous,
A0+ -+ Abp = p1 + - + ps, where p1,...,ps € R(z,y) are homogeneous of
pairwise different degrees. Then, each §; is a summand of a unique p;, say p;. Thus,
Soici(pi = Xidi) + (X5 pj) = 0, and Nid; = p; for i = 1,...,n, a contradiction.
The proof of the proposition is completed.

A module M € ModA is said to be graded if M = &;czM;, where the M, are
k-spaces such that A;M; C M, ; for all 4,5 € Z. Such a graded module M is said
to be generated in degree n if M = AM,,. A morphism f: M — N between graded
modules is called homogeneous of degree n if f(M;) C N1, for all i € Z; and in
this case, we shall write f; , : M;(x) — Niyn(x), where ¢ € Z and x € Qo, for the
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map obtained by restricting f. A graded morphism is a homogeneous morphism of
degree 0. Observe that the shifts of a graded module are isomorphic to each other
by homogeneous isomorphisms. The following statement is evident.

1.10. LEMMA. Let A = kQ/R, where Q is locally finite and R is homogeneous. A
sequence of homogeneous morphisms of degree n between graded modules

L—lom—2onN

is exact if and only if the sequence

Ll_n(x) fi—n,w M,L(l') Gitn,x Z+n7m(x)

is an exact sequence, for all i € Z and x € Q.

VI. DERIVED CATEGORIES. Throughout the paper, we shall compose morphisms
in any category from the right to the left. All functors between additive categories
are additive. Let A be a full additive subcategory of an abelian category 2. We
shall denote by C(A) and C®(A) the complex category and the bounded complex
category of A respectively, whose shift functor is written as [1]. By identifying an
object M with the stalk complex M][0], we shall regard A as a full subcategory of
C(A). Moreover, K(A) and K*(A) will stand for the homotopy category and the
bounded homotopy category of A, respectively. Let (X*,dy) be a complex in C'()A.
The twist t(X") of X" is the complex (M*, d;,) defined by M™ = X™ and d;; = —d%;
see [2, Section 4]. Clearly, t(M") = X*. One calls X" acyclic if all its cohomological
objects H*(X*) with n € Z, which are objects in 2, vanish. Given a morphism
[ X" = Y in C(A), its mapping cone Cy- is defined by CJ. = X" @Y™ and

m—+1
d¢,. = < 7d§+1 r? )
! f dy

A full additive subcategory o of C(A) is called derivable if it is closed under the
shifts and taking cones. In this case, the quotient category K(«7) of &/ modulo null-
homotopic morphisms is a triangulated subcategory of the triangulated category
K (20), and the localization D(&) of K(«/) at quasi-isomorphisms is a triangulated
category; see [26, Chapter 2, Sections 1.6 and 1.7], which we call the category derived
from /. In particular, we shall write D(A) and D?(A) for the categories derived
from C(A) and C*(A) and call them the derived category and the bounded derived
category of A, respectively.

2. PROJECTIVE COVERS AND INJECTIVE ENVELOPES

The objective of this section is to obtain some preparatory results for constructing
linear projective resolution and linear injective co-resolution, most of them are
generalizations of classical results for modules over a locally bounded category; see
[6, 13], or for representations of a strongly locally finite quiver; see [3].

Let A = kQ/R, where @ is a locally finite quiver and R is a weakly admissible
ideal in kQ. We shall denote by ProjA the full additive subcategory of ModA
generated by the modules isomorphic to P, ® V with a € Q¢ and V € Modk, and
by proj A the one generated by the modules isomorphic to P, with a € Q.
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We start with describing morphisms involving modules in ProjA. It is necessary
to fix some notation, which will be used for the rest of the paper. Let v € kQ(x,y)
and ¥ =v+ R € A, where x,y € Qu. The left multiplication by 7 yields a k-linear
map P,(7) : Pu(z) = P.(y) for every a € @, while the right multiplication by
7 yields a A-linear morphism P[y] : P, — P,, which restricts to a k-linear map
P[¥]a : Py(a) = Py(a) for every a € Q.

2.1. PROPOSITION. Let A = kQ/R, where Q is locally finite and R is weakly ad-
missible. Let M € ModA and V € Modk. Given a,b € Qq, we obtain

(1) a k-linear isomorphism Py : ey Aeq — Homp (P, Py) = u — Plul;

(2) a k-linear isomorphism M, : Homy(Py, M) — e M : f — f(eq);

(3) a k-linear isomorphism s : Hom 4 (P, ® V, M) — Homy (V, e, M);

(4) a k-linear map Mgy : epde, — Homy (e M, epM) @ u — M(u), where M(u)
denotes the left multiplication by u.

Proof. Statements (1), (2) and (4) are evident. Observing that P, is a A-k-

bimodule, we deduce Statement (3) from the adjoint isomorphism and Statement

(2). The proof of the proposition is completed.

In the locally finite dimensional case, the morphisms in ProjA are completely
described in the following statement; compare [1, (7.6)].

2.2. LEMMA. Let A = kQ/R be a locally finite dimensional algebra. Given a,b € Qg
and V,W € Modk, every A-linear morphism f : P,QV — P,@W is uniquely writ-
ten as f =Y Plu]® fu, where u runs over a basis of eqAey, and f,, € Homy(V, W).

Proof. Let f: P, @ V. — P, @ W be A-linear. Then, f(e, ® V) C e Ade, @ W. Let
{u1,...,u,} be a finite basis of e, Adep. If v € V, then f(e, ®v) = Y i | u; @wy, for
some unique wi, ..., w, € W. This yields k-linear maps f; : V — W : v — w,, for
i=1,...,n. We see easily that f =" | P[u;] ® f;, and this expression is unique.
The proof of the lemma is completed.

Let M € ModA. An epimorphism d : P — M with P € projA4 will be called a
J-minimal projective cover over projA if Ker(d) C JP. For instance, the canonical
projection d, : P, — S, is a J-minimal projective cover of S,, for every a € Qp. A
generating set {uq,...,us} of M is called a J-top basisif {us+JM,... us+J M} is
a k-basis of T;(M). The following statement is well-known in the finite dimensional
case; see [17, (1.1)], and its proof is left to the reader.

2.3. LEMMA. Let A = kQ/R, where Q is locally finite and R is weakly admissible.
A module M € ModA has a J-top basis {uy, ..., us} with u; € eq, M if and only if
it has a J-minimal projective cover d : Py, @+ @& P, — M with d(eq,) = u;, where
a1,-.-,05 € Qp.

Let M be a module in Mod A. Given an integer n > 1, a projective n-presentation
over proj/A of M is an exact sequence

dO

', po M 0

p—n dﬂ: anJrl . Pfl
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with P~ € projA, for i = 0,...,n. Such a projective n-presentation is called
J-minimal if Ker(d=%) € JP~% for i = 0,...,n. The following statement is well
known in case @ is finite; compare [11, (2.5)].

2.4. COROLLARY. Let A = kQ/R, where Q is locally finite and R is weakly admis-
sible. If a € Qo with Q1(a,—) = {a; :a = b; | i =1,...,r}, then S, admits a
J-minimal projective presentation

Pla1),~ . Pla, .
Py @ p, Lol 5o de g 0.
Proof. Let a € Qo with Q1(a,—) ={a; :a = b; |t =1,...,r}. It is evident that
Ker(d,) = JP, with a J-top basis {aj,---,a,}. Let j : JP, — P, be the inclusion
map. By Lemma 2.3, we obtain a J-minial projective coverd : Py, &---® P, — JP,
such that (P[@1],--- , P[@,]) = j o d. The proof of the corollary is completed.

Next, we shall study injective envelopes. Let us fix some notation. Given a € Qy,
we shall write P° = A%, € ModA° and I, = DP? € ModA. As a representation,
I,(x) = Homy (e, A%, k) for all © € Qo; and I,(«), with a € Q1, sends f € I,(x)
to Io(c)(f) € I,(y) so that I,(a)(f)(v°) = f(a°v®), for all v € e, Ae,.

2.5. PROPOSITION. Let A = kQ/R be a locally finite dimensional algebra. Let
M € ModA and V € Modk. Given a € Qq, we obtain a k-linear isomorphism

¢,, - Hom, (M, I, ® V') — Homg (e, M, V).

Proof. Fix a € Qg. We have a k-linear map ¢, : Homg (e, A%, V) = V : g — g(eq).
For z € Qo, we deduce from Corollary 1.2(1) a k-linear isomorphism

0y I(x) @ V = Homy (e, A4, k) @ V' — Homy (e, A%, V)
such that o,(h ® v)(u°) = h(u®)v, for h € I,(z), v € V and u € e,Ae,. Recall
that a A-linear morphism f : M — I, ® V consists of a family of k-linear maps
foreaM — I,(x) ® V with € Qp. In particular, we obtain a k-linear map

¢,, : Homp(M,I, @ V) — Homy (e, M, V) : f = g 0040 fy.

Suppose that ¢,,(f) = 0. We claim that f = 0, that is, f, = 0, for all z € Q.
Indeed, for any m € e, M, write f,(m) = Zle h;®v;, where h; € Homy (e, A%, k)
and v; € V such that vy,...,vs are k-linearly independent. Given any u € e, Ae,,

we obtain um € e, M such that fo(um) = uf,(m) =>"7_,(uh;) ® v;. Thus,

0= ¢, (f)(um) = 377 0a(ubs @ vi)(ea) = 325y (uhi)(ea)vi = 37_1 hi(u®)vi.

Since the v; are k-linearly independent, h;(u°) =0, for i = 1,...,s. Hence, h; =0,
fori=1,...,s. Thus, f,(m) =0, and hence, f, = 0. This establishes our claim.

Next, consider a k-linear map g, : e,M — V. Given x € Qp and m € e, M, we
have a k-linear map g,(m) : e, A%, = V : u® — g,(um), and then, a k-linear map
foiexM — I(2) @V :m = o7 (g.(m)). Let w € eyAe, with y € Qp. For any
u € eqdey, we have oy (f,(wm))(u®) = g,(wm)(u®) = go((uw)m). On the other
hand, writing g,(m) = Y.;_, 0,(h; ® v;) with h; € I,(z) and v; € V, we obtain
wfy(m) =woy (gz(m)) = >._, (wh;) ® v;. Then,

oy(wfa(m))(u®) = 37y hi(wu®)v; = 377 0w (hi @ vi)((uw)°®) = ga((uw)m),
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which is o, (f,(wm))(u®). Since o, is bijective, wfz(m) = f,(wm)). This shows
that the f, with x € Q¢ form a A-linear morphism f : M — I, ® V such that
&, (f) = ga. The proof of the proposition is completed.

REMARK. In case A is locally finite dimensional, by Proposition 2.5, I, ® V is
injective in Mod 4, for a € Qo and V' € Modk; compare [3, (1.3)]. We shall call
1, the principal injective module associated with a. In case A is strongly finite
dimensional, by Lemmas 1.7 and 1.8, I, indecomposable.

In general, I, is probably not injective. By abuse of notation, however, we shall
denote by InjA the full additive subcategory of ModA generated by the modules
isomorphic to I, ® V', where a € QQp and V € Modk, and by injA the one generated
by the modules isomorphic to I, with a € Q. To describe the morphisms in
InjA, we shall fix some notation. Given u € eyde, with a,b € @, the right
multiplication by u°yields a A°-linear morphism P[u°] : P? — P2. Applying
D : Mod A° — Mod A, we obtain a A-linear morphism I[u] = DP[u°] : I, — I,
such that I[u](f)(v°) = f(v°u®), for all f € I,(z) with € Qo and v € e, Ae,.

2.6. LEMMA. Let A = kQ/R be a locally finite dimensional algebra. Given a,b € Qg
and V,W € Modk, every A-linear morphism f : [,V — I,QW is uniquely written
as f =" I[u] @ fu, where u runs over a k-basis of eqAey, and f, € Homy(V, W).
Proof. Fix a,b € QQy. Since e, Aey is finite dimensional, we have a k-isomorphism
0o : eqdey, — Homy (Homy (ep A°eq, k), k) : u — 04 p(u)

such that 6,(u)(f) = f(u°), for f € Homy(epA°€q, k) = I,(b) Let V,W € Modk.
Consider the following k-linear isomorphisms

9a,b®1

eqdey @ Homy (V, W) Homy, (I, (), k) ® Homy (V, W)

|
Hom (I, @ V. I, @ W) Homy (1,(b) @ V, W),
where p and ¢ are as defined in Lemma 1.1 and Proposition 2.5, respectively. For

u € egdey, and h € Homy (V, W), we claim that ¢(I[u] @ h) = (po (0ap @ 1)) (u® h).
Indeed, ¢(I[u] ® h) is the composite of the maps in the sequence

Iul®h b

Iy(b) @ W —— Homy (e A%y, W) ——— W,

I,(b) @V

where o}, and i, are as defined in the proof of Proposition 2.5. Given g € I,(b) and
v €V, we obtain (¢(8q,5(u) ® h)) (g @ v) = 04p(uw)(g)h(v) = g(u°)h(v) and

¢(Iu] @ h)(g @ v) = oy (I[ul(g) @ h(v))(es) = I[ul(g)(es) h(v) = g(u®) h(v).
This establishes our claim. As a consequence, we obtain a k-linear isomorphism
¢—1opo(9a’b®1) s egdepy @Homy (V, W) — Homy (I, @V, I, @W) : u®h — IT[u]®h.
The proof of the lemma is completed.

We shall calculate explicitly the J-socle for I, and 1,/S;(l,).

2.7. LEMMA. Let A = kQ/R, where Q is a locally finite quiver and R is a weakly
admissible ideal. If a € Qq, then
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(1) S;(I,) has a k-basis {e;}, where e} € I,(a) withe}(e,) =1 and €f(eqJ e,) = 0;
(2) Sy(1,/Ss(1,)) has a k-basis {a* + S;(Il,) | @ : ¢ = a € Q1(—,a)}, where
a* € I,(x) such that a*(a°) =1 and o*(7°) =0 for all v € Q(x,a)\{a}.
Proof. Fix a € Q. Clearly, e € S;(I,). If f € I,(z) for some = € Qp, which
is neither zero nor a multiple of e, then f(u°) # 0 for some u € e,Je,, that is,

(u- f)(eq) # 0. Hence, f ¢ S;(I,). Thus, S;(I,) = key.

Fix some vertex © € QQp. Consider first a € Q1(z,a). The existence of a* follows
from Proposition 1.6(1). Observe that & - a* = €. Let f € Q1(x,y) with 8 # a.
For 6 € Q(y,a), since §3 # a, we obtain (3 - a*)(6°) = a*(3°6°) = 0. Therefore,
o+ S;(1,) € S;(1,/S5(1,)). Now, assume that Qp(z,a) = {a1,...,a.}. If
Yooy ial € Sy(1,) for some A; € k, then

Aj =20 A g (a9) =300 A - (@507) (ea) = (@5 - (i Aia)) (ea) =0,
for j =1,...,r. As a consequence, the classes o* + S;([,) with a € Q1(—,a) are
k-linearly independent in S;(I,/Ss(1,))-

Finally, consider g + S (I,) € Sy(1o/Ss(1s)), where g € I,(z) for some z € Q.
Let p € @>2(z,a). Write p = dor, where o : © — y is an arrow and § : y ~ a is
non-trivial. Since ag € S;(I,) and § is non-trivial, g(p°) = (ag)(6°) = 0. Hence,
g(ex(J°)%e,) = 0. By Lemma 1.6(1), g = D eQer(—a) M5 where Ay € k. Thus,
g+ S;(1,) = Eate(ia) Aa(a@* 4+ S5(1,)). The proof of the lemma is completed.

The following statement is well-known in the finite dimensional case.

2.8. COROLLARY. Let A = kQ/R be strongly locally finite dimensional. If a € Qo,
then Sy(I,) and S;(1,/S;(1,)) are essential socles of I, and I,/S(1,).

Proof. By Lemma 1.7(2), the J-socle of a module is its socle. Let h € I,(x)\S; (1),
for some x € Qg. Then, h(e,J%,) # 0. Since J° is locally nilpotent, there exists
a maximal positive integer s such that h(e,(J°)%es) # 0. Then, h(¢°) = X # 0
for some ¢ € Qs(x,a). Note that (h € I,(a) with ((h)(e,) = h(¢°) = A. By the
maximality of s, we see that ((h)(eq,J%€¢,) = 0. Hence, Ch = AeX € S;(I,). Thus,
Sy(I,) is essential in I,.

Write ¢ = B¢, where 8 € Q1(b,a) and £ € Qs—1(x,b) with b € Qp. Then,
€h € I,(b) with (£R)(B°) = h(C°) # 0. Therefore, E(h+ S5(1,)) = Eh+ Sy(1,) # 0.
By the maximality of s, we see that (£h)(ey(J°)%e,) = 0. By Lemma 1.6(1),
Eh+S;(1,) = 20 (=) Ao (@ +85(1a)) € S5(1a/Ss(1a)), where Ay € k. That
is, Sy(Ia/Ss(I,)) is essential in I,/S;(I,). The proof of the corollary is completed.

EXAMPLE. Let A be a locally finite dimensional algebra given by a loop a with a
relation o — a3. Then S;(D(A)) = 0, which is not essential in D(A).

Let M € ModA. A subset {us,...,us} of M is called an essential socle basis if
M has an essential socle, of which {us,...,us} is a k-basis. The following result is
well-known in case A is finite dimensional, and its proof is left to the reader.

2.9. LEMMA. Let A = kQ/R be a strongly locally finite dimensional algebra. A
module M € Mod A has an essential socle basis {uy,...,us} with u; € e, M if and
only if M has an injective envelope j : M — Iy, @ --- @ I, with j(u;) = e}, , where
al,...,0s € Qo.
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The following statement is well-known in case @ is finite.

2.10. COROLLARY. Let A = kQ/R be a strongly locally finite dimensional algebra.
If a € Qo with Q1(—,a) ={B; :b; —ali=1,...,s}, then

o 1[B1),.. 1[B.])"
0 g, o, g, U )Iblea---eafbﬂ

is a minimal injective co-presentation of S,, where j, sends eq + Je, to €.
Proof. Let a € Qp with Q1(—,a) = {B; : b > a|i=1,...,s}. By Corollary 2.8
and Lemma 2.9, j, is an injective envelope of S, with Im(j,) = S;(I,). By Lemma
2.7 and Corollary 2.8, {57 +S;(1a), - - -, 85 +Ss(I,)} is an essential socle basis for I,.
By Lemma 2.9, we obtain an injective envelope j : I,/S(I,) — Iy, ®- - -®I;,, sending
Bi +85(1a) to (0,...,¢5,...,0), fori=1,...,s. Since I1B:)(Br) = ey, we see that
(I[B]), .- 71[55])t is the composite of the canonical projection I, — I,/S;(1I,) and
the injective envelope j. The proof of the corollary is completed.

For the rest of this section, assume that A = kQ/R, where R is homogeneous.
Given a € Qo, in view of the J-grading A = ®,>04,, we see that P, and S, are
graded and generated in degree one. In case A is locally finite dimensional, then
I, is negatively graded as I, = ®p>0(ly)—n, where (I,)_, = Homy(Aye,, k), for
all n > 0. However, I, is not graded in general. For instance, if A is the path
algebra of a single loop «, then DA = Homy (S, >0ka™, k) ¥ ®p>oHomy (A, k).
The following statement is a variation of a classical result on graded projective
covers; see, for example, [11, (2.4)], and its proof is left to the reader.

2.11. LEMMA. Let A = kQ/R, where Q is locally finite and R is homogeneous. Let
M be a finitely generated graded module in ModA. If f : P — M and ' : P' - M
are homogeneous J-minimal projective covers, then f' = fog, where g: JP' — P
is a graded isomorphism.

The following result describes a J-minimal projective 2-presentation of a princi-
pal simple module in the graded case; compare [13, (2.4)].

2.12. LEMMA. Let A = kQ/R, where Q is locally finite and R is homogeneous with
a minimal generating set 2. Let a € Qo with Q1(a,—) ={a; :a—b; | i=1,...,r}
and 2(a,—) ={p1,...,ps}. If pj = Z;=1 Vijou with v;; € kQ(b;, ¢c;), then S, has
a J-minimal projective 2-presentation

(P[¥i])rxs (Plaa],--- ,Plar]) da

P,® - ®F, Py ®---® P, P, S, 0.

Proof. Let pj = 377, vijeu, where ;5 € kQ(bi, ¢;). Write dy = (Plau], -, Play])
and dy = (P[¥,])rxs- By Corollary 2.4, it suffices to show that dy co-restricts to
a J-minimal projective cover of Ker(d;). Since u; = (315,...,%;) € Ker(dy), by
Lemma 2.3, it amounts to show that {ui,...,us} is a J-top basis of Ker(d;).

Let v = (61,...,0,) € Ker(dy), where §; € kQ(b;,—). We may assume that
; € kQ(b;,c), for some ¢ € Qp. Since di(v) = 0, we obtain >_._, §;«; € R(a,c),
and hence, Y77 0ic; = 375 qwjip; + Dy mic = Doy (305 w;vij + i), where
wj € kQ(cj,c) and 1; € R(b;,c). This yields d; = > %_ w;vi; + 1, and hence,
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0; = > 5-1974j, for i = 1,...,7. As a consequence, v = Y7 @;u;. This shows
that Ker(dy) = > Au;.

Assume next that Y27 Nju; € JKer(di) = Y311, Ju;, where \; € k. Write
doroy Njug = 305 piug, with vy € kQT. Then, 3270 Njyig = o5 (Vi + nij),
where 7;; € R(b;, ¢;), for i = 1,...,7. Calculating 357, >>%_; N\jyijq, we obtain
Y= Nips = 251 vipj + ), where (; € R(a,¢;). By Lemma 1.5, A; = 0, for
1=1,...,s. The proof of the lemma is completed.

A projective n-presentation over proj 4 of a module is called linear if the mor-
phisms between the projective modules are homogenous of degree one. The follow-
ing statement extends a well-known result, saying that a classical Koszul algebra is
quadratic; see [5, (2.3.3)].

2.13. THEOREM. Let A = kQ/R, where Q is locally finite and R is homogeneous.
Then, A is quadratic if and only if every principal simple A-module admits a J-
minimal linear projective 2-presentation over projA.

Proof. Let {2 be a minimal generating set of R. Fix a € Qp. Since £2(a,—)
contains only finitely many quadratic relations, the necessity follows immediately
from Lemma 2.12. Assume that S, admits a linear projective 2-presentation over
projA. Letting Qi(a,—) = {a; :a = b; | i = 1,...,7}, we deduce from Lemmas
2.6, 2.11 and 2.12 a commutative diagram with exact rows

d2 di do

P, P P, Sa 0
. o o
Pl Plaq],-,Pla, a
P, ® 0P, d Pbl@"'@PbT( Gl : ])Pa S, 0,

where the upper row is a linear projective 2-presentation, fy, f1 are graded iso-
morphisms, and v;; € kQ(bi,¢;j). Since fi o dy is homogeneous of degree one,
Yij € kQ1(bs,¢;) and n; = Y _, vija; € Ra(a,cj), for j =1,...,s. By Lemma 2.3,

{uj = My, -»95) |7 =1,...,s}is a J-top basis of Ker(P[ai],--- , Pla,]).
Let p € 2(a,c) be a relation of degree n > 2. Write p = >.I_, vy, for
some 7v; € kQpn—_1(b;,c). Since (F1,...,%:) € Ker(Play],: -, Pla,]), we see that

(V153 %) = 20521 9juy, for some d; € kQyn—2(cj,¢). Then, v; = 0y + 327, 6;7ij,
where o; € R(b;,c), for i =1,...,r. This yields p=>""_, oy + 25:1 d,;m;. Since
n > 2, we see that p € R(kQT) + (kQ1)R, a contradiction to Lemma 1.5. The
proof of the theorem is completed.

A complex P* over projA is called a projective resolution over projA of a module
M if P* =0 for all i > 0, and H(P*) 2 M and HY(P") = 0 for i < 0. The following
definition is a variation of the classical one; see, for example, [5].

2.14. DEFINITION. Let A = kQ/R, where @ is a locally finite quiver and R is a

homogeneous ideal in kQ.

(1) A complex over Mod 4 is called linear if the differentials are homogeneous mor-
phisms of degree one between indecomposable modules.

(2) The algebra A is called Koszul if S, admits a linear projective resolution over
projA, for every a € Qq.
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REMARK. By Theorem 2.13, a Koszul algebra is quadratic; compare [5, (2.3.3)].

EXAMPLE. Given any locally finite quiver Q, it is evident that A = kQ/(kQ%)? is
a Koszul algebra.

3. KoszuL COMPLEXES AND KOSZUL DUALS

The objective of this section is to present a combinatorial account of Koszul com-
plexes, Koszul algebras and Koszul duals. Although our main results will be similar
to those stated in [5], we shall take an elementary approach with a local viewpoint
and provide detailed arguments.

Let A = kQ/R, where @ is a locally finite quiver and R is a quadratic ideal
in £Q. In order to define the local Koszul complexes, we need to introduce some
notation. Given a € 1, we obtain a derivation 0, : kQ — kQ, that is a k-linear
map, sending a path p to ¢ if p = ad; and to 0 if « is not a terminal arrow of p.
In particular, 0, vanishes on kQy and sends k@, to kQ,—1 for all p > 0. Fix some
a,z € Qo and n > 0. Recall that R, = RNkQ,, and R, (a,z) = R(a,x)NkQx(a,z).
We shall define a subspace R™ (a,z) of kQ,(a,z) by R™(a,z) = kQ,(a, ), for
n = 0,1, and R(”)(a,x) = No<j<n—jkQn—j—2(—,2) - Ry - kQj(a,—), forn > 2.
Observe that R?)(a,r) = Ry(a,z). We shall write R (a, —) = ®req, R (a,z).
As shown below, these subspaces are stable under the derivations.

3.1. LEMMA. Let Q be a locally finite quiver with R a quadratic ideal in kQ. Con-

sider an element v € R™ (a,x) for some n > 0 and a,z € Qo.

(1) If a € Q1(y, x), then Ou(y) € RV (a,y).

(2) If vy = a1y + -+ + QmYm, where v; € kQn_1(a,y;) and a; € Q1(yi,x), then
v € R®Y(a,y;), fori=1,...,m.

Proof. Let a € Q1(y,x). Clearly, 0,(89) = 0.(8) d, for f € Q1 and § € kQ. Since

Oa(kQn(a,z)) C kQn—1(a,z), we may assume that n > 3. Given 0 < j < n — 3,

write v = Y1 i(ipidi, where o € Qi(yi,); G € kQn-3—j(— ui); pi € Ry;

6; € kQj(a,—). Thus, d,(7) = >_i_10a(a;)(ipid;. Suppose that 9 (7) # 0. We

may assume that a; = « if and only if 1 < i < s, for some 1 < s < r. Then,

Oa(v) = D00, Gipidi € kQn_s_j(—,y) - R2 - kQj(a, —).

Thus, 94 () € R™ 1V (a,y). This establishes Statement (1), from which Statement
(2) follows immediately. The proof of the lemma is completed.

As a consequence, we obtain the following statement.
3.2. LEMMA. Let A = kQ/R, where Q is locally finite and R is quadratic. Given
a,z,y € Qo and n > 0, we obtain a A-linear morphism
07" (y,x) = Zate(y,x)P[@} ® 0y : Pp ® R(”)(a, z) = Py® R(nfl)(a’y).
Moreover, if p=>""", (;0; € R (a,z), where 6; € kQ,—1(a,y;) and ¢; € kQ1 (y;, x)
then O™ (y,z)(u® p) = 1" ul; ® d;, for all u € Py.

Proof. Fix a,xz,y € Qo and n > 0. By Lemma 3.1(1), we do have a A-linear
morphism 9; " (y,z) as defined in the lemma. Consider p = 3", (;6; € R (a, ),
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where 61 S szn_l(a,yi) and Cz S /{JQl(yi,:E). Write Cz = Zj’:l )\z’jOéj, where )\ij ek
and aq,...,as are the arrows in Q1 (y,z). For any u € P,, we obtain
", a)(u®p) = 31 (Plan] ® 0a,)(u®p)
= le,j=1 Z;L uNijoy @ O, (v)0;
= s u(Xio Nijdy) © 6.
The proof of the lemma is completed.
Fix a € Qp. Since R™(a,) is finite dimensional and vanishes for almost all
z € Qo, by Lemma 3.2, we obtain a sequence K, over projA as follows:

-n 9." —n-+1 -1 8‘1_1 0
K; K; K, K 0

where K, " = ®,eq, P ® R™(a,z) for every n > 0, and
9, = (9" (v, m))(y,x)GQoXQo FDreo e ® R (a,z) — Byeqo Py ® R(n_l)(av Y),

which is homogeneous of degree one, for every n > 0. Observing that K0 = P, ®ke,,
we obtain an augmented A-linear morphism 09 : K — S, : e, @ €4 + €4 + J P,

3.3. LEMMA. Let A = kQ/R with Q locally finite and R quadratic. If a € Qq, then
(1) Ker(0,™) C JK_,™ for n > 0;

(2) K is a linear complex over projA;

(3) Su has as a linear projective 2-presentation the sequence

K2 P g P g0 g 0.

Proof. Fix a € Q. We have Ker(d?) = JK?. Let w € Ker(d, ™), for some n > 0.
Then, e,w € Ker(9;™) for every z € Qq. Since e,w € P, ® R(™ (a,z), by definition,
0, " (egw) = Eyer 0, " (y, x)(exw) = 0, where 9, " (y, z)(e;w) € Py®R("_1)(a,y).
Thus, 9, " (y, z)(e,w) = 0, for every y € Qp.

Write e,w = >_;_, w;, where w; € J'P, ® R™(a,z). Since 9;"(y,x) is homo-
geneous of degree one, 9;"(y, z)(wg) = 0. Now, wy = e, @, where v € R™ (a, ).
Write v =3~ 0, (35, @, (5,0) B-€8. ), where g, € kQy—1(a,y). By definition,

aa_n(y’ JI)(6$®’7) = Za€Q1(y,m);z€Qo;BZGQ1(z,:r) @®aa(ﬁz§52) = Zﬁzte(Z,z) By®£ﬂy'

Since the By are k-linearly independent, 5, = 0, for all y € Q. This implies
that wo = 0. That is, e,w € JP, ® R™(a,z) for all € Qy. As a consequence,
w € JK_; ™. This establishes Statement (1).

Next, we shall show that 917" 0 9, = 0, for n > 1. Indeed, let v € P, and
v € R™(a,z), where € Qo. By the definition of R (a,z), we may assume
that v = pd, for some p € Ro(z,2) and § € kQn_2(a,2) with z € Qp. Write
p =i NiBic, where \; € k, a; € Q1(2,y;) and f3; € Q1(ys, ) with y; € Q. By
Lemma 3.2, we obtain

(0a 00, (v@y) =31 (050 8,™) (v @ Nifiaid) = v (Xoi_ Mifidi) © 6 = 0.
This establishes Statement (2).

Finally, assume that «; : @ — b;, i = 1,...,r are the arrows in Q1(a,—). Then,
K;'=®7_ P, ®ka;. Let 2 be a minimal generating set for R with p; : a ~ ¢;,
j = 1,...,s, the relations in 2(a,—). Then, K2 = @51, @ kpj. Writing
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pj = 22:1 vijou for some 7y;; € kQ1(bi,c;), in view of Lemma 3.2, we obtain a
commutative diagram

(P[Fi]) s Plai],- ,Pla, .
PCI@"'@PcS*]>Pb1@"'@PbT (Plan] [@-]) P, d s, 0
ifz \Lfl \Lfa ‘
872 671 60
K2 ¢ K;! : K — =5, 0

with fo, f1 and fa graded isomorphisms such that f,(eq) = e, ®e4; f1(ep,) = ep, @av;
and fa(ec,) = ec; ®@pj, fori=1,...,7; j=1,...,s. By Lemma 2.12, the lower row
is a linear projective 2-presentation of S,. The proof of the lemma is completed.

In the sequel, the linear complex K, will be called the local Koszul complex of
A at a. The following statement is a local version under the combinatorial setting
of a well-known result in [5, (2.6.1)].

3.4. THEOREM. Let A = kQ/R, where Q is locally finite and R is quadratic. If
a € Qo, then S, has a linear projective resolution over projA if and only if K is
a projective resolution of S,.

Proof. By Lemma 3.3, it suffices to show the necessity. Suppose that S, has a
linear projective resolution over projA. By Lemmas 2.11 and 3.3, there exists a
commutative diagram

. s pr1 a7 pp 47 pip . p-1_4"_ po 0
l/ffp \Lflfp lf—l \Lfo
o—p—1 ot 91
. Ka—p—l a Ka—p @ K;_p .. Ka_l ¢ Kg 0,
where p > 2, the upper row is a linear projective resolution of S,, and f=P,---, f°

are graded isomorphisms. In particular, 9, " co-restricts to a J-minimal projective
cover of Ker(91=%), fori=1,...,p.

We claim that 9,7~ co-restricts to J-minimal projective cover of Ker(d, 7). By
Lemma 3.3(1), it suffices to show that it is surjective. We may assume that K ? is
non-zero. Then, K7 = &7_, P, ® kp;, where p; € R®) (a,95), j =1,...,n, form
a basis of R®)(a, —); while K}=? = @ | P,. ® k(;, where ¢; € R?=V(a,z;), i = 1,

.., m, form a basis of R(p_l)(a, —). Observe that f~? o d~P~! is a J-minimal
projective cover of Ker(9d, 7). By Lemma 2.3, Ker(d,?) admits a normalized J-
top basis TP. Since f™P o dP~! is homogeneous of degree one, TP consists of
homogeneous elements of degree one.

Consider u = (u1,...,u,) € TP Ne.K; P, where z € @ and u; € Py, ® kp;.
Then u; = 5, ® p;, where v; € kQ1(y;,2);5 = 1,...,n. Since p; € R(p)(a,yj),
by Lemma 3.1(2), we may write p; = >~ 8;; (i, where &;; € kQq(;,y;). Since
0,P(u) =0, by Lemma 3.2, we obtain

21 (051 %0i) ® Go= 3001 22101027 (3; ® 6iGi) = 0.
Since the (; are k-linearly independent, we deduce that Z?:ﬁjgij = 0. That is,
N = Z?:ﬂjéij € R(z;, z). Since R is quadratic, n; € Ra(x;,2), fori=1,...,m.

Setting w = Y 7_;7;, we see that w € RPT(a, 2). Indeed, w = Y27 | 7i¢; with

1; € Ro(z4,2) and (; € kQp—1(a,z;); and for 0 < s < p—1, since p; € R(p)(a,yj), we
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may write w = Y &0;, where p; € kQp_o_s(—,y;), & € Ry and §; € kQ,(a, —).
In particular, e, @ w € Ka_p_l.

Let f; be the composite of 9P~ (y;,2) : P, ® R?*Y(a,z) - P,, ® R (a,y;)
and the canonical projection p; : P, ® RP)(a,y;) — P, ® kp;, for i = 1,...,n
Since v; € kQ1(y;, z), we deduce from Lemma 3.2 that

file: @ w)=pi (37107 (yin 2) (€2 @ 7p3)) =pi(X,, =, 75 @ P) =% @ pi = wi,
and hence, 9;7 e, ® w) = (file, @ w),..., fale: @ w)) = (u1,...,u,) = u.
This is establishes our claim. By Lemma 2.11, we obtain a graded isomorphism
fpt: PPl 5 K P! such that f"Pod P! = 9,7 1o f~P~1 By induction,

K 1is a projective resolution of S,. The proof of the theorem is completed.

The classical quadratic dual of a quadratic algebra is defined by the tensor al-
gebra of the dual space of the generating space under the left finiteness condition;
see [5, (2.8.1)]. We shall define the quadratic dual of A by the opposite quiver Q°.
For this, we need some preparation. Given n > 0, the finite basis Q,, of k@, has a
dual basis {£* | £ € Q.. } in D(kQ,,). Given v = > \;§;, where A\; € k and &; € Q,
we shall write v* = > \; & € D(kQ,,). This yields a k-linear isomorphism

Un  kQY = D(kQn) = 7 — 7"
Given ¢ € kQ,(z,y) with z,y € Qp, by abuse of notation, we shall identify £*

with its restriction to kQ,(x,y). In this way, {{* | € € Qn(x,y)} is the dual basis
of Qn(z,y) in D(kQ,(z,y)). We collect some basic properties as follows.

3.5. LEMMA. Let Q be a locally finite quiver with ¢ € kQq(x,y) and v € kQy(y, 2),
for some x,y,z € Qp and s,t > 0.

(1) If 6 € kQs and £ € kQy, then (’YC) (€6) = 7(€)¢*(9).
(2) If v € @iy, 2), then (v¢)*(n) = ¢(y(n)) for alln€ kQsy1.
Proof. We may assume that ¢ € Qs(z,y) and v € Q(y, z). To prove Statement (1),
we may assume § € Qs and & € Q. If (v()*(£) = 1, then &6 = (. Since £ and ~v
are of the same length, £ = v and § = ¢. Thus, v*(£)(*(6) = 1. If (v¢)*(&9) = 0,
then £§ # v¢. In particular, £ # v or d # (, and hence, v*(£)¢*(8) = 0.

Next, assume that v € Q1(y, z). To prove Statement (2), we may assume that
1N € Qs11. Write n = ad, for some o € 1 and ¢ € Q5. By Statement (1), we see

that (v¢)*(n) = v*(«)C*(9). If a # v, then (v()*(n) = 0 = (*(04(n)). Otherwise,
d = 04(n), and hence, (v¢)*(n) = ¢*(0y(n)). The proof of the lemma is completed.

Let R be a quadratic ideal in kQ. For z,y € Qo, let R,(y, ) be the subspace
of kQS(y, z) of elements p°, where p € kQ2(z,y) such that p* vanishes on Ra(z,y).

The ideal in kQ° generated by the Rh(y,z) with 2,y € Qo is denoted by R' and
called the quadratic dual of R. The following statement describes explicitly R'.

3.6. LEMMA. Let Q be a locally finite quiver and R be a quadratic ideal in kQ.
If 0 € kQu(x,y) with x,y € Qo and n > 0, then 0° € R.(y,x) if and only if
o* € R (z,y)*, the perpendicular of R™ (x,y) in D(kQ,(z,v)).

Proof. Let o € kQ(x,y), with 2,y € Qo and n > 0. If n = 0, 1, then R (y,z) = 0,
and since R (z,y) = kQn(z,y), we have R (z,y)t = 0. In case n = 2, since
Ro(z,y) = R (x,y), the lemma is the definition of Rj(y, ). Let n > 3. Consider
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the k-isomorphism ¥, (x,y) : kQ%(y,x) — D(kQn(z,y)) : p° — p*. By definition,
R(y,x) = Y15 R}, ;(y, 7), where

R!nvj (y,x) = Za,bGngQ?(QVT) ' R'2(b7 CL) an Jj— 2(?}; )7
and R (x,y) = ﬂ;-’:_(? R (z,y), where

R(n,j) (.1?, y) = Ea,bEQo an—j—Q(ba y) : RQ(G/, b) : kQ] (x? a)‘

First, assume that 0© € R, (y,z). To show that o* € R (x,y)*, we may assume
that 0° € kQ%(a,z) - Ry(b, a) - kQ5,_ ~i- 5(y,b), for some a,b € Qp and 0 < j <n—2.
Furthermore, we may assume that ¢® = (6ny)°, where v € kQ;(z,a), n € kQ2(a,b)
with 17° € Rb(b,a), and § € kQ,—2—;(b,y). Given any w € R(™ (z,y), we may write

w = 22:1 0iMiVis

where v; € kQj(z,a;), n; € Ra(as,b;), 6 € kn—j—2Q(bs,y), and a;,b; € Qp. Since
n* € Ra(a,b)*, we see that n*(n;) = 0 for all 1 < i < t. By Lemma 3.5(1),
o*(w) = (dny)* (w) = ZE:l §*(85) n*(ms) v*(7:) = 0. Therefore, o* € R™ (z,y)*.

Next, assume that o* € R (z,y)*. By Lemma 1.4(1), 0* € Z?:_OQ RO (z, )+
Since D(kQy(z,y)) = {p* | p € kQn(x,y)}, we may assume that o* € R™P)(x,y)*,
for some 0 <p <n—2. Write 0 = 1", 0y, with 0; € kQpn—p—2(b;, y) - kQ2(a;, b;) -
kQp(x,a;), where a;,b; € Qo such that (a;,b;) # (a;,b;) for i # j. By Lemma
3.5(1), we see that o} vanishes on

an—p—2(b37 y) - kQ?(a]’ ) ka(x a])

for any i # j. Therefore, of € R"™P)(x,y)*, for i = 1,...,m. Thus, we may
assume that o = §¢y, where 6 € kQ,—p—2(b,v), ¢ € kEQ2(a,b), v € kQ,(x,a), for
some a,b € Qq, such that ¢* is non-zero. Then, §* and v* are non-zero, and hence,
0F(v) =~} (u) =1, for some v € kQ,—p—2(b,y) and p € kQp(z, a).

Choose a basis {p1,...,pr;Pri1,---,Pst of kQ2(a,b), where {p1,...,p} is a
basis of Ra(a,b). Then, kQ2(a,b) has a basis {n1,...,nr;Mr41,.-.,Ms} such that

g, on5miiq, .- .,mi} is the dual basis of {p1,...,pr;prq1,...,ps}. Observe
that {n%,,...,n2} is a basis of Ry(b,a). Write ¢ = Y7 | A;n;, where \; € k. Then,
o =37, Ni(6n7)*. By Lemma 1.4, 0* € (kQpn—p—2(b,y) - Ra(a,b) - ka(x,a))L.
Given any 1 < ¢ < r, applying Lemma 3.5(1), we obtain

0=0*(vpip) = 3251 Aj(0n)* (i) = 325y Nid* (0)n (pi)v* (1) = N
Thus, o* = Y77 . Xi(6n;7)*, and consequently, o = 27 | Xi(yn;0). This im-
plies that 0° =37 | \iy°n96° € R, (y, ). The proof of the lemma is completed.

We are ready to define the quadratic dual of a quadratic algebra; compare [20,
page 69] and [5, (2.8.1)]

3.7. DEFINITION. Let A = kQ/R, where Q is a locally finite quiver and R is a
quadratic ideal in kQ. The quadratic dual of A is defined to be A= k;QO/R!, where
Q° is the opposite quiver of Q and R' is the quadratic dual of R.

3.8. PROPOSITION. Let A = kQ/R, where Q is locally finite and R is quadratic.
Then A' and A° are quadratic algebras with (A" = A and (A°)' = (4")°.
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Proof. By definition, A° and A' are quadratic algebras such that (A4')! = kQ/(R')"
and (4°)' = kQ/(R°)". Fix x,y € Qo, and consider the k-linear isomorphism
U5y, @) : kQa(x,y) = D(RQ3(y,2)) : v = (¥°)".

Given v,p € kQz(z,y), it is easy to see that (7°)*(p°) = p*(v) = v*(p). By
definition, v € (R"),(x,y) if and only if (v°)*(p°) = 0, for all p° € Ry(y,x). That
is, p*(7) = 0, for all p* € Ry(x,y)*. Since Ry(x,y) is finite dimensional, the latter
condition is equivalent to y € Ra(z,y). Thus, (R")' = R, and hence, (4')' = A.

Next, v € (R°)4(z,y) if and only if (v°)*(p°) = 0, for all p° € R3(y,z). That
is, v*(p) = 0, for all p € Ry(x,y). This is equivalent to 7° € Ry(y,z), that is,
v e (RYS(z,y). Hence, (R°)' = (R')°, and thus, (4°)" = k(Q°)°/(R")° = (4')°.
The proof of the proposition is completed.

REMARK. It is known that a left finite quadratic algebra is the right quadratic dual
of its left quadratic dual; see [5, (2.8.1)].

We shall give an alternative description of the local Koszul complexes of A in
terms of A'. We need some notation for A'. Write e, = ¢, + R' and Pfc = A!ez, for
z € Qo; and 7' =~° 4+ R', for v € kQ. Then, A' is graded as A' = @nzo/l!m where
AL ={~4"| v € kQ,}. Fix a € Qo. Given a € Qi (y,z), the right multiplication by
@ yields a A-linear map P[a] : P, — P,; and the right multiplication by o' yields
a k-linear map Pla'], : e A}, e, — e, AL e,. We define a sequence L7, as follows :

—n —1
ey e 5 0

with L™ = @zeq, P ® D(ea/l!nex) for n > 0; and d;" = (d;" (¥, 2)) (y,2)€Q0x Qo
for n > 0, where

de" (Y, 2) = ey Lla] ® DP[a']a : Pp ® D(egALe,) = P, @ D(eaAl_je,).

3.9. LEMMA. Let A = kQ/R, where Q is a locally finite quiver and R is a quadratic
ideal. If a € Qq, then L; is isomorphic to the local Koszul complex of A at a.
Proof. Fix a,z € Qo and n > 0. Recall that D(kQ,(a,z)) = {v* | v € kQn(a,x)}
and eq Al e, = {7 =4° + R'| v € kQn(a,z)}. By Lemma 3.6, v* € R (a,z)* if
and only if v° € R} (x,a). Thus, we obtain a k-bilinear form

<—,—>: RM(a,z) x eq A ex — k1 (8,7") = (),
which is non-degenerate on the right. If § € R(")(a,z) is non-zero, then v*(8) # 0,
that is, <d,7' ># 0, for some v € kQ,(a,r). Hence, <—,—> is non-degenerate.
This yields a k-linear isomorphism

bnla,x) : R (a,2) = D(ea Al en) : 6 — <8, —>.

We claim, for z,y € Q¢ and n > 0, that

Z(x Y, T 8‘1
R (a,2) S R (a,y)
¢n,(a7m)l \Lﬁﬁn—l(a,y)
>a .oy DPla']a
D(eqALe,) S D(eaA,_ey)

commutes. Given § € R (a,z) and ¢ € kQ,,_1(a,y), by Lemma 3.5(2), we obtain
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Y acon ) DPLAa(60 (@, 2)(0)(C) = Yocor ) @nla,2)(0)(Ca))
= ZaEQl(y,x)(aC)*((S)
= Yca iy (0u(d))
= [¢n—1(avy)zate(z,y)aa(‘s)](Cl)'

Thus, we obtain a commutative diagram with vertical isomorphisms

—n

80/
GamEQO]DQT Y R(n) (a7 17) — @yEQo]Dy & R(nil) (CL, y)
®(180n(a.2)) | [ Er—CE
d*'ﬂ
DreQoPr ® D(eqaApes) —— Syeqo by ® D(eaAizfley)a

for every n > 0. The proof of the lemma is completed.

The following result is a generalization of Proposition 2.9.1 in [5], where A is
assumed to be left finite; see also [25, Theorem 30].

3.10. THEOREM. Let A = kQ/R, where Q is a locally finite quiver and R is a
quadratic ideal. Then A is Koszul if and only if A' is Koszul.

Proof. By Proposition 3.8, (/1!)I = A. Thus, it suffices to prove the necessity.
Suppose that A is Koszul. Fix a € Q9. By Lemma 3.9, the local Koszul complex
of A at a is isomorphic to the sequence

L' e L pien -1 o 0

with L™" = ®aeq, P ® D(eqAnes) and d="=(d""(y,2))(y,2)eQox Qo> Where
d="(y,z) = Zate(w,y)P[a!] ® DP|a], : Py ® D(eqAnes) = P, @ D(eqAn_16ey).

We claim, for n > 0, that L' is exact at the degree —n. Since d~"~! and d~" are
homogeneous of degree one, by Lemma 1.10, it amounts to establish, for all b € Qg
and s € Z, the exactness of the sequence

—n—1
ds—l,b

(*) @zEQOebAL,1€;E ® D(eaAn+lez) > @yerebAgey ® D(ea/lney>
ar
—.b> @ZEQO ebA!5+1ez (24 D(eaAnflez)
with d;l? = (db_n(za y))(z,y)EQc)@Qoa where d;g(»’% y) = Zate(y7z)P[a!]b & DP[@](L.
If s <0, then eb/llsey = 0, and hence, (%) is exact. In case s = 0, it becomes

0——- eb/lé)eb ® D(eqAnep) L @Zereb/lllez ® D(eqAp—_1e;)
with d ;" = (dg ;' (2,0))zeq,, Where d_ ' (2,b0) = 3= co, 0.2 P[], ® DPla],.

Let f € D(e,Anep) be a non-zero function. In particular, f(uf) # 0, for some
BE€ Qi 2), u€esd,_1e, and z € Qp. That is, (DP|[B]a)(f)(u) # 0, and hence,
(DP[Bla)(f) # 0. Now, d;g(zﬂb)(eb ® f) = ZaGQl(b,z) a'® (DP[a]a)(f), which
is non-zero since the o' with a € Q;(b, z) are k-linearly independent. Thus, the
sequence (x) is exact.

It remains to consider the case s > 0. Since A is Koszul, by Theorem 3.4, the
complex Lj as stated in Lemma 3.9 is exact at degree —s. By Lemma 1.10, we

obtain an exact sequence
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d—s:l .
(%%) Dz, €aldn—1€:® D(eb/l!sﬂez) Bt Byecoaldney ® D(eb/l!sey)
boma
—_— ®w€QoeaAn+lem ® D<€b/1‘!g—]_e(l?)7
where db_’f;ll’a = (Xaecqiw.)Plola ® DP[o']) (y.2)eQox Qo APPlying the duality D
to the exact sequence (x%), we obtain an exact sequence which, by Lemma 1.3, is
isomorphic to (). The proof of the theorem is completed.

REMARK. In case A is Koszul, one calls A' the Koszul dual of A.

We conclude this section by studying when the opposite algebra of a Koszul
algebra is Koszul. By Proposition 3.8, (4°)' = (4')° = kQ/(R")°. We fix some
notation for (4')°. Write 9 = v+ (R")° for v € kQ; but e, = e, + (R)° for z € Q.
Then (4')° = ®p>0(4")9, where (49 = {9 | v € kQ,}. Fix a € Qo. Given
a € Q1(y,z), taking the dual of the right multiplication by a°® yields a A-linear
map I[a] = DP[a°] : I, — I,, and the left multiplication by o' yields a k-linear
map Pl(a') : e, ALe, — ey Al eq. We define a sequence T); over injA as follows:

0 n

0 70 e 71 Tr e it

a a

with T = @peg,le © ep A eq and d? = (di (Y, %)) (y,2)eQox Qo for n > 0, where
i (y,x) = ZaEQl(y,w) Ia) @ Pi(a)) : I, ® ep AL eq — I,® €y/1!n+1€a-
3.11. LEMMA. Let A = kQ/R, where Q is locally finite and R is quadratic. If

a € Qq, then T, is isomorphic to the dual of the local Koszul complex of A° at a.

Proof. Fix a € Qy. By Proposition 3.8 and Lemma 3.9, the local Koszul complex
of A° at a is isomorphic to the complex L* as follows:

L i Lt o 0
with L™ = @ycq, Py @ D(ea(A')5ey) and d™" = (d7"(2,9)) (2.4)o x Qo+ Where

a-"

d"(z,y) = Zate(y,z) Pla°l@DP[dl, : P;®D(ea(/1!)%+ley) - P£®D(ea(/1!)%ex)'

. ! . . . . . . .
Since e, (A")S e, is finite dimensional, we may compose the canonical k-isomorphism

D?(eq(A")0e,) = eq(A')2e, with the k-isomorphism eq(A')%e, — e, A} eq, sending
4 to 4. This yields a k-isomorphism 6, (a,z) : D2(eq(A")%e,) = ex A eq such that

I, © D2(ea(A')0e,) —2PP0):

n€x
1®0n(a,m)\L

I, ® ez/llnea

I, ® D2(ea(A)5 ;)

R
I[a]®P! (o
) Iy@ey/l!n+1€a

commutes, for every o € Q1(y,x). Since the L™™ are finite direct sums, by Lemma
1.8(1), we see that D(L") = T,. The proof of the lemma is completed.

As another preparation, we need to consider the Yoneda Ext-groups in Mod A
which are defined in a canonical way; see, for example, [18, Section IIL5].

3.12. LEMMA. Let A = kQ/R be a Koszul algebra. Then Ext'(Sy, Sq) = eyl eq,
for all a,b € Qp and n > 0.
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Proof. Let a,b € Qo. By Theorem 3.4 and Lemma 3.9, L is a J-minimal projective
resolution of Sy. Thus, Ext!" (S, Sq) = Hom, (L, ™, S,) for n > 0; see [18, (I11.6.4)].
Since e, A, e, is finite dimensional, we deduce from Proposition 2.1(3) that

Ext"(Sp, S¢) = Hom, (P, ® D(eyA eq), Sq) = Homy (D (ep Al ey), k) = ey Al eq,.

The proof of the lemma is completed.

In case A is locally finite dimensional, we obtain the following generalization of
Proposition 2.2.1 stated in [5].

3.13. THEOREM. Let A = kQ/R be a locally finite dimensional qudratic algebra.
The following statements are equivalent.

(1) The algebra A is Koszul.
(2) The opposite algebra A° is Koszul.
(3) The complex T is an injective co-resolution of Sy, for every a € Q.

Proof. By Proposition 1.6(3), A is strongly locally finite dimensional, and by Propo-
sition 2.5, T is a complex of injective modules. First, assume that 7, is an injective
co-resolution of S, for every a € Q. Since A° is locally finite dimensional, by Lem-
mas 1.8 and 3.11, every local Koszul complex of A° is exact at all non-zero degrees.
By Theorem 3.4, A° is Koszul. Thus, Statement (3) implies Statement (2).

It suffices to show that Statement (1) implies Statement (3). Assume that A is
Koszul. Fix a € Qo. Recall that (T, d") is defined by T! = DreQolz ® ez/liea and
d' = (di(%x))(y,x)EQoXQo for i > 0, where

di(y,x) = Zate(yw) Ila)® P () : I, ® ez/liea - I,® ey/l;_i_lea.

In particular, TY = I,®ke, and T} = @jzlfbj®kﬁ}7 where 8 :b; = a,j=1,...,s,
are the arrows in Q1 (—, a). Consider the A-linear morphism d=* : S, — T°, sending
ea + Jeq to e ® e,. By Corollary 2.10, we have an exact sequence

-1 0 n—1 n

0—= S, Ls10 4o 71 Y U e s —
for some n > 1, such that d* = j*"!p’, where p’ : T — C"*1 is the cokernel of d*~!,
and j*t!: C*t1 — T+ is an injective envelope, for i = 0,1,...,n—1. Let y € Qo.

It is well-known; see the proof of [18, (I11.6.4)], and also [18, (II1.8.2)], that
Extf"'l(Sy, S.) = Hom,(S,, C" 1) /Im(Hom, (S, p")).
On the other hand, applying Hom,(S,, —) to the short exact sequence
0 cn

we obtain an exact sequence

j?L pn
T;L Cn-i—l 0,

Hom, (S, C™) —=> Hom,(S,, TT") —> Hom,(S,, C"*) —= Ext"*1(S,, S,) —= 0.

Since S, is simple, j7 is surjective. Thus, Hom,(S,,C"*!) = EXt;Hrl(Sy,Sa). By
Lemma 3.12, we obtain dim;Hom,(S,, C" ") = dimy, ey/l!nJrlea, and consequently,
S (CMY) =2 Byeg,Sy ® ey/l!nﬂea. Since ey/liﬂrlea is finite dimensional, so is
S;(C™*t1). By Corollary 2.8 and Lemma 1.7(3), S;(C™*1) is essential in C™+1.
Thus, we obtain an injective envelope j"*1 : C"1 — @y cq, I, @ey AL, e, =TI
see 2.9. We claim that the sequence
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d—l dan

0 Sa g3 A

Tn—l d"—! ™ T’Vl+1
is exact with S;(T7*!) C Im(d™). It suffices to show that Ker(d") = Im(d"1).
Indeed, set g = j"*p, : T — T**L. Since d"d"~! = 0 and j7*! is an injective
envelope, d" = hg for some A-linear morphism h : 77! — TP+ Write
g= (g(zvx))(z,m)erxQo : Breqo I, ® erAizea — Dzeqo I.® ezA!n+1ea»
where g(z,2) : [, ® ex/l!nea —1,® ezAiH_lea is A-linear, and
h = (h(y, Z))(y,Z)EQOXQo i Breqo - ® ez/lanrlea = Dyeo Iy ® eyA!nJrleav
where h(y,z): I, ® ez/lln_H% —-I,® ey/l!n+lea is A-linear.

Given z,y, z € Qo, choose a basis {a | & € Q1(z,2)} UU, , of ey Je,, where U, ,,
consists of homogeneous elements of degrees > 1, and a basis V, . of homogeneous
clements of e.Jey. By Lemma 2.6, h(y,y) = 1z, ® he, + 3 ,cy, , L[v] @ hy, where
he,, hy are k-linear maps, and h(y,z) = Zvevy _I[v] ® hy in case z # y. Since g
vanishes on S;(7,), we obtain

9(2,2) = Y 0eo, (o) 1A ® 9o + X e, 1lu] ® gu,
where ¢, g, are k-linear maps. In view of Lemma 2.6, we can write d"(y,z) as
d"(Y, ) = X neq () 11 @ (he, ©ga). By the uniqueness, (he, ©ga) = P! (a'), for
every a € Q1(y, ). Thus, we may assume that h(y,y) = 15, ® he,, and h(y,z) =0
for z # y. Fix some y € Qp. Let w € ey/l!n+1ea, say w = &' for some € € Qny1(y,a).
Writing € = («, where a € Q1(y, z) and ¢ € Q,(x, a) for some x € Qq, we see that

w=a'¢ = Py(a’)(¢') = he, (9a(¢))-
Thus, he, is surjective. Since ey/l!nﬂea is finite dimensional, h., is bijective. Thus,
h is a A-linear isomorphism. Then, Ker(d") = Ker(g) = Ker(p™) = Im(d"~!). Our
claim is established. By induction, T, is a minimal injective co-resolution of S,.
The proof of the theorem is completed.

4. DOUBLE COMPLEXES AND EXTENSION OF FUNCTORS

The objective of this section is to provide tools for us to construct the Koszul duality.
An additive category is called concrete if the objects are abelian groups and the
morphisms are abelian group morphisms. Throughout this section, A, B,C stand
for concrete additive categories, which are assumed to be full additive subcategories
of concrete abelian categories.

Let (M*,v;,h") be a double complex over A, where v’ is the vertical differ-
ential and " is the horizontal one. We shall call (M**,v%") the i-th column, and
(M"j,hl’\;j) the j-th row, of M*. A double complex morphism f* : M* — N*

consists of morphisms f*7 : M*»J — N%J in A making the diagram

o NG+
f’h]+1
i,5+1 i,
M* vy
Rt
Y Niv N NitLi
M fi,J
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commute, for i, j € Z, that is, f>*: M%* — N®" and f* : M*J — N*J are complex
morphisms, for 4,5 € Z. Thus, the double complexes over A form an additive
category, written as DC(A). Assume that A has countable direct sums. Given
M € DC(A), its total complex T(M™) is defined by T(M*)" = ®;cz M~ and

dparey = (dparen (3,9) (Giyezxz : Biez MO — @ jeq MIHLTT

where
vl =
B gy (3, 1) = REMTT =i
0, Jj#Fii+ 1

Given a morphism f*: M — N* in DC(A), we put

T(f*)" = (T (f.')n(jvi))(j,i)ez;xz : Diez M — Djez Nj’nij»
where o
oo J T g=
G ={ 5 10t
One verifies easily that ']I‘(f")"“odj}‘(M..) = dp = oT(f™)". This yields a morphism
T(f*) = (T(f*)")nez : T(M™) — T(N*) in C(A), called the total morphism of f*.

4.1. LEMMA. Let A be a concrete additive category with countable direct sums. The
above construction yields a functor T : DC(A) — C(A).

It is important to know when the total complex of a double complex is acyclic.
We need some terminology. Let M € DC(A). Given n € Z, the n-diagonal of M**
consists of the objects M*"~% i € Z. We shall say that M is n-diagonally bounded
(respectively, bounded-above, bounded-below) if M*"~% = 0 for all but finitely many
(respectively, positive, negative) integers i. Moreover, M is called diagonally
bounded (respectively, bounded-above, bounded-below) if it is n-diagonally bounded
(respectively, bounded-above, bounded-below) for every n € Z. Finally, we say that
M is bounded if there exists some n > 0 such that M%7 # 0 only if —n < 4,j < n.

4.2. LEMMA. Let A be a concrete additive category with countable direct sums.
Given M € DC(A) and n € Z, we obtain H"(T(M*)) =0 in case
(1) M is n-diagonally bounded-below with H*=3(M*7) = 0 for all j € Z; or
(2) M* is n-diagonally bounded-above with H*~*(M**) =0 for all i € Z.
Proof. Let (M*,v",h™) € DC(A). We shall only consider the case where Statement
(1) holds for some n. Then, there exists some ¢ < 0 such that M*"~% = 0 for all
i < t. Write (X*,d") for T(M™). Consider ¢ = (¢;n—i)icz € Ker(d™), where
Cin—i € MB"~ Then, v (¢; i) + B4~ (¢; 4 ,,_;11) =0, for i € Z. Since
¢ has at most finitely many non-zero components, we may assume that ¢; ,—; = 0
for all i > 0. Then, h%"(cpn) = —v'" (c1 n—1) = 0. Since HO(M"") = 0, there
exists some z_1,, € M 1" such that cg,, = h~1"(x_1,,). This yields
bt ey — v (@) = A (et ) + 00 (con) = 0.

Since H™1(M " 1) = 0, we see that c_1 11 —v V" (x1,,) = A 2" (29 n41),
with _2,41 € M—27+1 Continuing this process, we obtain Tim—1—i € Mim—1=i
such that ¢; i = v 1@y 1) + RV @y g 5 y), for i = —1,-2,... L.
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Since M*=bn=t1 = 0, we see that v V" (241 —¢) = 0 = ¢4—1 —141. Setting
= (Tipn-1-i)iez, where z; ,_1_; = 0 for i > 0 or i < t — 1, we obtain ¢ = d"~!(z).
The proof of the lemma is completed.

As an immediate consequence of Lemma 4.2, we obtain the promised generaliza-
tion of the Acyclic Assembly Lemma stated, for example, in [31, (2.7.1)].

4.3. PROPOSITION. Let A be a concrete additive category with countable direct sums.
If M € DC(A), then T(M™) is acyclic in case M is diagonally bounded-below
with acyclic rows or diagonally bounded-above with acyclic columns.

Now, we shall introduce a homotopy theory in DC(A). Given a double com-
plex (M, v, h*), we define its horizontal shift M*[1] to be the double complex
(X, v, hY) such that X*7 = M**+hI | ybi = —pithi and bl = —hit13. We shall
say that a morphism f*: M** — N**is horizontally null-homotopic if there exist
ubl o MBI — NN with 4,5 € Z, such that w'THIh5I 4 himbiyhd = f59 and
vimbIyhT bt yhd = (),

4.4. LEMMA. Let A be a concrete additive category with countable direct sums.

(1) If M € DC(A), then T(M*[1]) = T(M*)[1].

(2) If f*: M — N-*is horizontally null-homotopic, then T(f*) is null-homotopic.
Proof. We shall prove only Statement (2). Let f**: M* — N be a horizontally
null-homotopic morphism DC(A). Let u* : M — N*=13; i j € Z be morphisms
such that [ = w1 o 17 4 hi~1J o7 and v/ 1 IubI + w1y = 0. Define a

morphism h" = (h™(j,1))(jiezxz BiczMP" ™" = B e NI where

neo Ut i =n -
h(“)_{(x if j =n—i.
Given any n,t,j € Z, we obtain
ZpEZ h" (4, p) o d%(M--) (i) = h"(Gj+1)o d%(M--) (J+1,4)
ui-‘rl,n—i o hlz\'/}n—i7 ] — ’i;
— ui,nJrlfi o vjiv}nfi’ ] = — 17
07 ] 7é 277/ - 17
and
ZqEZd;TL(_]\}")(j7Q)Ohn(Q7i) = d%(]\}")(ﬁazil)ohn(li 137’)
— ,U;]fl,nfz o uz,nfz’ ] =i — 1’
0, j#Fi,i— 1.
This yields T(f*)"* = A+t o di ppen —|—d%(_1\}..) oh™. That is, T(f*) is null-homotopic.

The proof of the lemma is completed.

Let f*: M — N be a morphism in DC(A). We define its horizontal cone Hy-
to be the double complex (H**,v"*, h**) such that H* = Mt @ NI and

_pitlg _hitlg
,Ui,j _ ( UM 0 > hi,j _ < hM 0 )
- ,J ’ - i+1,5 (%) ’
0 vy f hy

This double complex is visualized as follows:
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A
. MiFLi+L g N+l Mit2i+1 ¢ Nitlg+1l o ..
(_vgjl»f‘ 0) - (—vif“ 0)
(I (i 0 o
fH‘l,] hJZVJ

e ML g N Mi+2d @ Nit+Li

f !

whose j-th row is the mapping cone of f*/ : M*/ — N*J, for every j € Z. In a
similar fashion, we may define the vertical cone V¢ of f* so that its i-th column is
the mapping cone of f©*: M»* — N®*, for every i € Z.

4.5. LEMMA. Let A be a concrete additive category with countable direct sums. If
f: M — N is a morphism in DC(A), then
T(Hy) = Cr(py = T(Vy-).
Proof. Let f*: M* — N be a morphism in DC(A). Given any n € Z, we obtain
T(Hpe)" = ®iez (M1 N»"~%) and dﬁl-(Hf..) = (dﬁ'l(Hf..)(jvi))(j,i)er%
where d{lf(Hf")(j,i) s M=l Nin=t oy VpitLntl=i g NInt1=d s defined by

( _Uz/[—&-l,n—i 0 ' .
o j =1
0 phn—i ’
N

gy (1) = (hffl’“ 0 j=itl;
fi-i—l,n—i h]zv,n—z ’ ’

0, jAii+1
On the other hand, T(f*) : T(M") — T(N") is a morphism in C(A), whose
mapping cone Crp(s+) is defined by

O gy = T & TN = Buca(M04 & N'v—i) = T(H,)",
and

7dn+1 0
T(M**) o
dn = — dn ; . ,
Fro (T(f")"“ By )~ rim D02

where d” (j,i) : MThnTt g Nonmt 5 MITLntL=d g N3 g defined to be
)

_,U;'J+1,n—i 0 . )
0 ,Ui,nfi ) J=1
<—d%+1 (J, %) 0 ) N

(M) — _hi+1,n,—i 0

T(f)" 1, 0) e (3:9) < fz‘lszi B ) SR
N

0, j#i,i+1.
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Thus, d  (j,i) = d%(Hf“)(j, i), for i,j € Z. This establishes the first part of the
)
lemma, and the second part follows similarly. The proof of the lemma is completed.
As an application, we obtain a condition for the total morphism of double com-
plex morphism is a quasi-isomorphism.

4.6. LEMMA. Let A be a concrete additive category with countable direct sums.
Consider a morphism f* : M — N** in DC(A) such that o : M% — N® is a
quasi-isomorphism, for every i € Z. If M and N** are diagonally bounded-above,
then T(f™) is a quasi-isomorphism.

Proof. Assume that M* and N** are diagonally bounded-above. Then, the vertical
cone V- of f* is also diagonally bounded-above. Given i € Z, since f*": M — N**
is a quasi-isomorphism, its cone, that is the i-th column of V-, is acyclic. By
Proposition 4.3, T(Vy~), that is Cp(s); see (4.5), is acyclic. Thus, T(f") is a
quasi-isomorphism. The proof of the lemma is completed.

Let B have countable direct sums. Consider a functor
F:A=CB): M — F(M); f—F(f)
We shall extend it to to C(.A). First, we construct a functor ¢ : C(A) — DC(B).

Given a complex M* € C(A), applying § to its components yields a double complex
F(M*)" over B as follows:

g1 ST i+1\j+1
0 g | B et Tt
HS(MQJ S(dyr) S(MiJrl)j o

f f

whose i-th column is t!(F(M?)"), the i-th twist of F(M?). Given a morphism
fr: M — N*in C(A), we obtain a commutative diagram

Ni)j+1
S(fy
F(Mriyi+t (=1 i
o L di)? ) )
N N IR {0 Sty FNHY,
S
S(Mz)j /{g(d}w)J S(M’L-‘,—l)%l)‘]

for all 4, j € Z. Thus, F(f) = (F(f)?)ijez : (M) — F(N*)" is a morphism.

4.7. PROPOSITION. Let A, B be concrete additive categories with B having countable
direct sums. Then every functor § : A — C(B) induces a functor
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FPC:C(A) = DC(B) : M*+ F(M); £ F(f)"

(1) If M is an object in C(A), then FPC(M1]) = FPC(M)[1].
(2) If f* is a morphism in C(A), then P (Cs-) = Hgpe(yv). Moreover, FPO(f7)
18 horizontally null-homotopic whenever f* is null-homotopic.

Proof. Statement (1) is evident. Let f*: M* — N° be a morphism in C'(A4). Write
its mapping cone as (C",d.,). Then, F(C")" = F(M"')" & F(N")", and

b dgantry 0
e 0 d

F(Nm)

~F(drHy 0
dn) = .
8lde) ( Y F() )

Let (H*", v, h") be the horizontal cone of FPC(f") : FP¢(M*) — FPC(N*). Then,
Hi“j — g(Mi—&-l)j e S(Nl)j — S(Ci)] — S;DC(C.)i,j
with horizontal differentials
_ Ry
S F(dwi)

and

j) B S(déj)j - h‘;gc(c')
and vertical differentials

—1)idL 0
vid = (1 s = (—1)'d} ooy = V', .-
H i i i sDC(c*
0 (-1) d%(Ni) §EEED
This shows that C* = H", and the first part of Statement (2) is established.
Suppose now that f* is null-homotopic. Let u’ : M? — N*~! be morphisms such

that f* = u"ttod!, +d "' ou’, for all i € Z. In particular, for any j € Z, we obtain
S =T oF(d;, ) +F(d ) o F(u').
Since F(u®)" : F(M?) — F(N*~1)" is a complex morphism, we obtain
(1) (u’) o djé(Mi) + (*l)idé(zvi—l) oF(u') =0,
for all j € Z. Considering F(u’) : F(M?)7 — F(N~1)J with 4, € Z, we see that
FPC(f) is horizontally null-homotopic. The proof of the proposition is completed.

The following statement, which is a general version of Lemma 3.7 stated in [2],
follows immediately from Lemma 4.5, Lemma 4.7 and Propositions 4.4.

4.8. PROPOSITION. Let A, B be concrete additive categories with B having countable
direct sums. Then, every functor §: A — C(B) extends to a functor

F¢ =ToFPY: C(A) — C(B).
(1) If M is an object in A, then F¢ (M) = F(M)".
(2) If M* is a complex in C(A), then FE(M[1]) = FC(M")[1].
(3) If f* is a morphism in C(A), then F(Cs-) = Cgzo(pny and FE(f7) is null-
homotopic whenever f* is null-homotopic.
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REMARK. The method of extending a functor stated in Proposition 4.8 has benn
already used by many authors under some special circumstances; see [2, 5, 16, 29],

The following result is essential for our construction of the Koszul duality.

4.9. THEOREM. Let A,B be concrete additive categories with B having countable
direct sums. Let § : A — C(B) be a functor such that € sends a derivable
subcategory of of C(A) into a derivable subcategory % of C(B).

(1) If § is exvact such that FPC sends complexes in < to diagonally bounded-below
double complezes, then F€ sends acyclic complexes in </ to acyclic ones.
(2) If §¢ sends acyclic complexes in < to acyclic ones, then it induces a diagram

A —— K(l) —> D(F)

SCJ/ J/SK i&D

# — K(#) — D(#),
which is commutative with I and FP being triangle-exact.

Proof. (1) Let § be exact such that, for every complex M* € &7, the double complex
F(M") is diagonally bounded-below. If M* is acyclic, then F(M*)* has acyclic rows,
and by Proposition 4.3, its total complex, that is §¢(M"), is acyclic.

(2) By Proposition 4.8, there exists a triangle-exact functor X : K(o) — K(%8)
making the left square commute. If F¢ sends acyclic complexes in &7 to acyclic
ones in %, then FX sends quasi-isomorphisms in k(%) to quasi-isomorphisms in
K(2). Thus, there exists a triangle-exact functor 2 : D(&/) — D(%) making the
right square commute. The proof of the theorem is completed.

We shall also need the following fact that the extension of functors is compatible
with the composition of functors.

4.10. LEMMA. Let§: A — C(B) and & : B — C(C) be functors, where A, B,C are
concrete additive categories. If B,C have countable direct sums, then

(Qjc O%’)C’ — 60 OSC.

Proof. Assume that B,C have countable direct sums. Fix M" € C(A). Given
n € Z, by definition, we obtain (&% o F)C(M")" = Dz & (F(M?))"~* and

dEL@Cog)C(M') = (d?(’_‘)cog)c(M‘)(jv i))(j,i)er% where

fgcoz)c (e (1) 2 BAF(M) ) = SF(MI))n
is given by
(=D'deczanyy I=0
Aocogyonm (0D = &“(F(djy) )", j=i+1
0, j#i, 1+ 1
Furthermore, by definition, we obtain a diagram

BC(F(dy) )"t . .
( ( M)) 6C(S<Ml+1)-)n—l

GY(F(M))"

(BB )" @) (e H 4
(a,p)ELXZ @qezﬁ(g(MH_l)q)n_l_q’

Dpez B(F(M)P)" 7P
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where

i \eyn—i _ B@(d )R g =
o3, = { T v

and a diagram

m—1

&C(F(M1)*)

SO FM))

an=t ) , H
( GC(S(Ml)')(q p)> (q,p)ELXTL

@peZ@(S(Mi)p)n—i—p @qu®<g(Mi)q>n+l—i—q,

where o
(_1>pdq5(g(]\;;i)p)’ q=D;
dge(zaryy(@P) =\ Sldgu)" P a=p+1;
0, q#p,p+1L
Therefore, (&% o §)“(M") is the complex described by the diagram
deComC )

(& oF)“(M)"

@(i’p)622®(8(Mi)P)n—i_p

(8 0 )C (M)

D(j.yezz O(F(MI )2y +i=i=a

(d?ﬁco&')c(l\l') (jv%ivp))(j,q;i,p) cz4

where
(1) Pdg sy, I =10=Dp;
—1)'S(dy )" P, j=ig=p+ 1
dgcozicnm (0> €4 p) = 1) .( ‘?(M,.),) J . o
&(S(dy)P)" " F j=i+1l,q=p;
0, otherwise.

Next, given any integer n, we obtain &(F°(M*))" = @26 (FC(M*)*)"~* and
d%C(C?C(M')) = (d%C(SC(M'))(tv $))(t.s)ezxz, Where
diye e qary) (8)  BFC (M) — &(FC (M)

is given by
(D dg oy, t=5
d%c(SC(M'))<t7S) = ®(d%C(M-))n78, t:8+1,
0, t#s,s+ 1.

Furthermore, by definition, we obtain diagrams

n—s

dQ‘(SC(M')S)

®(SC(M-)S)717$ 6(%C(M.)s)n75+1

H (G (4,9)) (5,9)ezxz H

. . C DY ) )
Bicg B(F(M1)s—h)n—s L0 ez B(F(MI)s—Tyn=st1,
where
dr—s L j -
n—s LN &(F(Mi)s—i) ;
dqj(&C(M.)s)(j,Z) = { 0, (F(Mi)s=i) i

and
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s n—s
6(dsc(M'))

6 (SC(M.)S)R_S 6 (SC( .)5+1)n—s

H ) ) (6(dac(M))" #(4:9) G,iyezxz H -
Dicz®(F(MY)s—)n—* Bjen®(F(MI)sHiiyn—

where

’

(-1 &(dg )" =1

G(d5c )" *0h8) = § S@F(dy)* )", =i+
0, jA4 i+ 1.
Thus, & (F°(M)) is the complex described by the following diagram
ar ! .
®C(SC(M'))”’ sC(5C (M%) ®C(SC(M'))n+1
H . . (dgc zc -)>(jvt?i>s))(j,t;i,s)ez4 H . .
Daspezz OF(M) )= = Dgayez O(F(MI) 7)1t
where
(=1)° dg(§(M s=iy t=s,]=1
V)i&(dS i )", t=s+1,j=1i
e ge @y Uhtiis) = U .( sar) !
! B(F(dy,)s~Hn—s, t=s+1,7=1i+1;
0, otherwise.
Setting p = s —i and ¢ =t — j, we see that &% (F°(M")) is also described by
d” o .
SCFC()" = BC(FC (M)
H . . (d™(4,93%,p)) jyqii,p)EZA H . .
D(ipyez2 G(F(M)P) 7P CEEES B ez O(F(MI) )i
where
d"(j,q;1,p) = dgogonry U a+ i p+1)
(= 1) ey 3 iy q=pJ=1
_ ) (G T g =p 1=
B(§(dh,)")" ™", g=pj=i+l
0, otherwise.

Thus, we see that (&€ o F)¢(M*) = (8 o F)(M*). Similarly, we can verify that
(B o F)C(f) = (8% o FO)(f), for every morphism f*: M* — N*in C(A). The
proof of the proposition is completed.

To conclude this section, we shall study how to extend functorial morphisms.

4.11. LEMMA. Let §,6 : A — C(B) be functors, where A,B are concrete additive
categories with B having countable direct sums. Then, every functorial morphism
n:§ — & induces functorial morphisms nP¢ : FPC — &P and n© : FC€ — &C.
Proof. Let n = (0, )meca : § — & be a functorial morphism. Fix M* € C(A).
Given i, j € 7Z, since 7, is natural in M, we obtain a commutative diagram
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s (M
S(Mi)j—H (_1)id€5(lvli)
o o &(dy,)?
(71)1d?‘¥(M77) i @(Mz)y (das)

s

@(Mi-&-l)j.

S’(dg\/])j S(MiJrl)j 711/“4-1

F(M*)

This yields a morphism 7 . = (1’ )i ez : FPC(M*) — &PC(M*) in DC(B) and
a morphism 7, . = T(y’ ) : FE(M*) — &Y (M*) in C(B). Let f*: M* — N* be a

morphism in C(A). Given i, j € Z, we obtain a commutative diagram
M o
(M) —— &(M")’

ce(fivl J{@(W
N 77ji L

F(N) —= B(NP),
Hence, &PC(f) o n. =10 FPY(f7). Applying T to this equation, we obtain
BY(f) o 0. =10 FC(f). Thus, n:,. and 7,,. are natural in M". Therefore,
nPC = (n° Jarec(a) and n® = (n,,.)aec(a) are desired functorial morphisms.
The proof of the lemma is complete.

5. KOSzZUL DUALITY

The objective of this section is to describe the Koszul duality for a Koszul alge-
bra defined by gradable quiver, which relates derived categories of modules over a
Koszul algebra and those of modules over its Koszul dual.

Throughout this section, 4 = kQ/R, where @ is a locally finite gradable quiver
and R is a quadratic ideal in kQ. We fix a grading Q¢ = Upez @™, which will
be used later without an explicit mention. Recall that Q(z,y) = Qn-m(z,y), for
x € Q" and y € Q™ with m,n € Z; see [1, (7.2)]. Here Qs(z,y) = 0 for s < 0.
In particular, A is strongly locally finite dimensional. We shall regard modules in
Mod A as representations in Rep(Q, R). Thus, every module M in Mod A is graded
as M = ®pez M, where M,, = @yeorn M (x). Note that this grading for P, with
a € Q" is the grading-shift by n of its J-grading. We say that M is bounded-above
if M, =0 for n > 0, and bounded-below if M,, = 0 for n < 0. These notions are
independent of the grading for Qo; see [1, (7.1)]. The full subcategories of Mod A
of bounded-above modules and of bounded-below modules are written as Mod ™A
and Mod ™A, respectively.

Let (M°,d") be a complex over ModA. Given z € @Qg, we obtain a complex
M*(z) over Modk, whose n-th component is M™(z) and whose n-th differential is
d? s M"(z) — M™ Y (z). Clearly, M" is acyclic if and only if M*(z) is acyclic, for
every * € Qp. Let f*: M — N* be a morphism in C(ModA). Given z € Qo,
we obtain a morphism f*(z) : M'(z) — N*(z) in C(Modk), which is defined by
fM(x) = f2 : M™(x) - N™(z). Clearly, f* is a quasi-isomorphism if and only
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if f*(x) is a quasi-isomorphism, for every x € (. A similar consideration will
be given to objects M and morphisms f*° in DC(ModA) in such a way that
T(M*)(x) =T(M*)(z) and T(f*)(x) = T(f*)(x), for every x € Qo.

Observe that Q° admits a grading (Q°)o = Upez (Q°)™ with (Q°)" = @~". Thus,
the quadratic dual A' is defined by the gradable quiver Q°. Given a € @y, we denote
by S., P! and I the simple module, the indecomposable projective module and the
indecomposable injective module in Mod A" associated with a, respectively. Now, we
define two Koszul functors F : ModA' — C(ModA) and G : Mod4 — C(ModA'").
Indeed, given a module M in ModA', as shown below, we shall obtain a complex
F(M) in C(ModA4) if, for n € Z, we put

F(M)" = ©pe(goyn Pe @ M(x) = ®peq-n Pe ® M(x)
and d = (di () (¥, 2) (y,0)e@-n-1x@—n + F(M)" — F(M)"*+1, where
d%(M)(y,x) = aecqr () Pla] @ M(a®) : P @ M(z) — Py ® M(y).
And given a morphism f : M — N in Mod/l!, we shall obtain a complex morphism
F(f) : F(M) — F(N) if, for any n € Z, we set
F(f)n = EBzGQ*” 1® f(JU) : @zGQ*" P ® M(x) — GamGQ*" P ® N(J?)

On the other hand, given a module N in Mod A4, we shall obtain a complex G(N )
in C(Mod /1!) provided that, for any integer n, we put

G(N)" = Byeqn IL & N(a)

and dg, ny = (dg 3 (Y, 7)) (y,2)e@n+1x@n, Where

Ay (Y 7) = Fgiosy 0] @ N(@) : I, @ M(z) — I, @ N(y).

And given a morphism g : M — N in Mod A, we shall obtain a complex morphism
G(9) : G(M)" — G(N) if, for any n € Z, we put

5.1. PROPOSITION. Let A = kQ/R, where Q is a locally finite gradable quiver and
R is a quadratic ideal. The above construction yields two exact functors
(1) F:ModA' — C(ModA) : M — F(M)'; f — F(f);
(2) G :ModA — C(ModA") : N — G(N);g — G(g)".
Proof. We shall only prove Statement (1). Consider a module M € ModA'. We
shall show that F(M)" is a complex. Indeed, fix an integer n. Given z € Q"2
and xz € Q™ ™, we write Q(z,z) = {a1f1,...,as0s}, where a;, 5; € Q1. Recall that
A'={4' | v € kQ}, where ' = 4° + R'. By definition, we obtain
(@) 0 A (2,2) = S5 Plasfi] © M(Blad) : Po® M(z) — P, @ M(2).
As seen in the proof of Lemma 3.6, we may find bases {p1,...,pr, Pro1y---,Ps}
and {N1,...,0r, Pra1,---,Ms} of kQ(z,x) such that {p1,..., p,} is a basis of Ra(z, x)
and {n%,4,...,n°} is a basis of Rb(z, z), while {n},..., 05 1,....n:} is the dual
basis of {p1,...,Pr Pri1,---,pPs}. In particular, p; =0 for 1 <i <7 and n' = 0 for
r < i < s. By Lemma 1.4(2), we obtain

S (06fs) @ (i)' = Y i_1pi @0 € kQ(z,2) @ D(kQ(z,x)).
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In view of the canonical projections kQ(z, z) — ey Ae, and kQ°(z,2) — e, M'e, and
the isomorphism D(kQ2(z,x)) = kQ3(z, z), we see from the above equation that

Y1 Qi ® Biog = 300 pi @1
Applying to this equation the k-linear map
exle, e, Ney — Hom 4 (P, P,) ® Homy (M (x), M(z))
obtained from Proposition 2.1, we conclude that
Y Plaifi] ® M(Bia;) = 327, Plpi] @ M(n;) = 0.

That is, d}ff{]\% odppy = 0. Now, it is easy to see that I is a functor, which is exact
because the tensor product is over k. The proof of the proposition is completed.

REMARK. In case Q is finite, our Koszul functor F coincides with the one for A'
defined in [5, page 489]. Indeed, A = (A!)!. Let M = @®,eczM,, be a module in
ModA, where M, = @zeqnM(z). Since e, M, = 0 for all y ¢ Q", we see that
Dreqn Pb@M(z) = A @754 My,

As has been seen in Section 4, the Koszul functors are extended to functors
FC . C(ModA') — C(ModA) and G€ : C(ModA) — C(ModA'), call the complex
Koszul functors, which descend to the homotopy categories; see (4.8). Since F¢
does not send all acyclic complexes to acyclic ones, it does not descend to the full
derived category of ModA'. This forces us to consider subcategories of complex
categories. For this purpose, we shall view a complex M* over Mod A as a bigraded
k-space M} = ®yeqi M'(x), i,j € Z.

5.2. DEFINITION. Let A = kQ/R, where @ is a locally finite gradable quiver and

R is a quadratic ideal in kQ. Given p,q € R with p > 1 and ¢ > 0, we denote by

(1) CJ,(ModA) the full abelian subcategory of C'(ModA) of complexes M with
MJZ =0fori+pj > 0ori—qj < 0;in other words, M" concentrates in a
lower triangle formed by two lines of slopes —% and % respectively;

(2) CJ,(ModA) the full abelian subcategory of C'(ModA) of complexes M* with
sz =0fori+pj < 0ori—gqj > 0;in other words, M" concentrates in a
upper triangle formed by two lines of slopes —% and % respectively.

REMARK. (1) Taking p = 1 and q = 0, we recover the categories C*(A) and CT(A)
considered in [5, (2.12)], and also, [25, (2.4)].

(2) The C},(ModA) are pairwise distinct derivable subcategories of C'(Mod™4),
while the C’ZI ¢(Mod A) are pairwise distinct derivable subcategories of C (Mod ™).

In the sequel, we shall write Kp%q(Mod/l) and K, (ModA) for the quotients
of C’]},q(Mod/l) and C’ptq(Mod/l) modulo null-homotopic morphisms respectively,
and write D} (ModA) and D (ModA) for the localizations of K}, (ModA) and
KpT’q(Mod/l) at quasi-isomorphisms, respectively.

5.3. THEOREM. Let A = kQ/R, where Q is a locally finite gradable quiver and R
is a quadratic ideal in kQ. Consider p,q € R with p > 1 and ¢ > 0. Then
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(1) the Koszul functor F: Mod A' — C(Mod A) induces a commutative diagram

A

O (ModA)) — ™~ K1 (ModA") — "~ DI (Mod !
q(Mod A") pq(ModA') 5q(ModA")

C K D
vaq\L J/FP:Q in‘q

P, L
cl,_i(Modd) —> K],  _ (Modd)—">D[ _(ModA);

(2) the Koszul functor G : Mod A — C(Mod A") induces a commutative diagram

P, L
Cly, 1(Modd) —> K[ (Modd)—>D[,  (ModA)

&) s, ez,

Py !
C},(ModA') —— K} (ModA') ———= D} (ModA'),

where FP and GP are triangle-exact, called the derived Koszul functors.

Proof. Consider the two complex Koszul functors F€C(ModA') — C(ModA) and
G : C(ModA) — C(ModA'). First, let M € C} (ModA'). We claim that
FC(M") belongs to CqT+17p_1(ModA). Indeed, by definition, there exist s,¢ such
that M*(z) = 0, for z € (Q°)? with i +pj > s or i — qj < t. Fix n,m € Z. Given
any y € Q", we obtain
FO(M)"(y) = Biez; ve(@oyn—: Po(y) ® M'(2) = @i<nim;veqi-n Po(y) @ M*(2).
Let i <n+m. In+(¢g+1)m < s, theni—q(n—1i) <s;and if n — (p—1)m > ¢,
then i + p(n — i) > t. In either case, M'(z) = 0 for all z € (Q°)"~*. Therefore,
FO(M)"(y) =0if n+ (¢ +1)m < sorn— (p—1)m > t. This establishes our
claim. Hence, F restricts to a fqnctqr FC: C’p%q(Mod/l!) - CqT+17p_1(ModA).
Fix again n € Z. Then, F(M*)"™" = @g¢(goyn—i Pr ® M*(z) with i € Z form
the n-diagonal of F'(M*)'. By the assumption, M*(x) = 0 for z € (Q°)"* with
i < (nqg+1t)(1+q)~t. Hence, F(M*)" is diagonally bounded-below. By Theorem
4.9, we see that F}fq induces a commutative diagram as stated in Statement (1).
Next, using a similar argument, we can verify that G restricts to a functor
GG, Cly,_1(ModA) — C} (ModA'). Let N* € C(ModA) be acyclic. We shall
show that GY(N*) is acyclic, or equivalently, G (N*)(z) is acyclic for all x € Q.
Indeed, fix z € Q°® for some s € Z. By definition, G°(N*) = T(G(N")"), and
hence, G¢(N*)(z) = T(G(N*)'(x)). Since G is exact, G(N*)" has acyclic rows,
and so does G(N°)'(z). Given any n € Z, the n-diagonal of G(N")'(x) consists
of GIN)"(z) = Byeqn-i I;J(:c) ® Ni(y),i € Z. If i <n—sand y € Q"
since ) contains no path from y to z, we have I;J(a:) = D(e,(A"°e,) = 0, and
consequently, G(N*)"~¢(z) = 0. Thus, G(N")'(z) is diagonally bounded-below, and
by Proposition 4.3, GE(N*)(z) is indeed acyclic. Now, we deduce from Theorem
4.9(2) that GS, induces a commutative diagram as stated in Statement (2). The
proof of the theorem is completed.

REMARK. The case p = 1 and ¢ = 0 of Theorem 5.3 has been established for
quadratic positively graded categories; see [25, Proposition 20].

In case A is Koszul, we shall show that the derived Koszul functors FP and GP
are mutually quasi-inverse. For this purpose, given a simple module S, we shall
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denote by P¢ its minimal projective resolution and by Zg its minimal injective
co-resolution. They can be explicitly described as below; compare [5, (1.2.6)]

5.4. LEMMA. Let A = kQ/R be a Koszul algebra, where Q is locally finite with a
grading Qo = UnezQ". If a € Q*, then F(I})" = Pg [s] and G(P,)" = I, [—s).
Proof. Fix a € Q°. By Theorem 3.4 and Lemma 3.9, Pg is isomorphic to

d—? _q d7*t

L' — i 4 it L Lo 0

where L™t = PreoPr ® D(ea/li»em) and d—¢ = (d’i(y,x))(y,x)erxQo with

A7 (y,2) = Y 0eo, (v Pla] © DP[0'] : P, @ D(eadjes) = Py ® D(ea ;).

Fix an integer n > 0. Observe that ea/l!nex = 0in case z € Q"T°, and
otherwise, ea/l!nex = e e, Therefore, L™" = @yeqn+s Pp ® D(ea/l!ex). More-
over, the k-linear isomorphism e:c(/l!)oea — e, A'e, induces a k-linear isomorphism

Ouz : D(ead'es) = D(ey(A")°e,) = I' () such that the diagram

Y oequ(ya) Plal ® DP[o]
@wEQ""’SPZE & D(ea/l!ex) €Q1lu.2)

52} (1®0a,z)l/

Dyeqnts—1Fy ® D(eaA!ey)

_ 1o i/éB (1®04,y)
e PEI90) |
@ZEQ"'+SP$ ® Ia(‘r) @yeQn#»sfle X Ia(y)

commutates with vertical isomorphisms. Since F(I})™"* = 0 for n < 0, we see
that L' = t*(F(I})[—s]) & F(I')[~s]. This establishes the first part of the lemma.

Next, by Theorem 3.10 and Proposition 3.8, A' is Koszul with (4')' = A. In
view of Theorem 3.13(3), we see that Zg, is isomorphic to

dO Fid

T: 0 T° T! I Tl oL
where T = @,cq, I, ® exAneq and d™ = (d"(y, ) (y.0)eoxo : T — T™ ! with
d"(y,z) = Zae@l(m,y)l[al} ® Py(e) : I, ® exAneq — I, @ eyApiieq, for n > 0.
Fix an integer n > 0. Note that e,A,e, = 0 in case z ¢ Q™*; and otherwise,

exdneq = exdeq. Thus, T" = @ cqnts IL®eyAe, = G(P,)"+* and d" = ng(rf,a), for

n > 0. Since G(P,)"** =0 for n < 0, we see that Z;, = t5(G(P,)’[s]) = G(P,)[s].
The proof of the lemma is completed.

The following statement describes in particular a projective resolution for every
module over a Koszul algebra.

5.5. PROPOSITION. Let A = kQ/R be a Koszul algebra, where @ is a locally finite
gradable quiver. If M € ModA, then there ezists a natural quasi-isomorphism
n,: (FCoG) (M) — M.

Proof. Fix M € ModA. By definition, (F¢ o G)(M)* = T(F(G(M)")"). For n € Z,
we obtain (FYG)(M)" = @;ezF(G(M))"™" = @cz.0eqi-n Pa ® G(M)'(a), where
G(M)" = ®,eqi I, @ M(x). Therefore,

(FCOG)(M)n = Diezsacqi—m;zeQi P ® Ia!c(a) ® M ().

Suppose that n > 0. For any a € Q*~" and = € @, since @ has no path from z
to a, we see that I'(a) = 0. Thus, (FoG)(M)" = 0.
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Suppose that n < 0. We claim that H*((F€oG)(M)*) = 0, or equivalently,
H*((FCoG)(M)(y)) = 0, for y € QP with p € Z. Indeed, (F° o G)(M)"(y) is the
total complex of the double complex F(G(M)")'(y), whose n-diagonal consists of

F(GM))" " (y) = Bacqi-n:zeqi Paly) ® I)(a) ® M(x), i € Z.

Ifi > n + p, then P,(y) = 0 for all a € Q*~". Hence, F(G(M)*)" ¢(y) = 0. That
F(G(M))'(y) is n-diagonally bounded-above. Given i € Z, the i-th column
of F(G(M) )" is the complex t'(F(G(M)")") = @,eqi t'(F(IL)) ® M(z), where
F(1)) = Pg_[i]; see (5.4). Thus,
H'H(E(F(G(M)')) = @ueqH (P, [i]) ® M(x) = @reqH"(Py,) @ M(x) = 0.
Hence, H" (¢ (F(G(M)")")(y)) = 0, for all i € Z. In view of Lemma 4.2(2), we
conclude that H*((F€oG)(M)*(y)) = 0.
It remains to show that HO((F%G)(M)*) is naturally isomorphic to M. For this
purpose, observing that the 1-diagonal of the double complex F(G(M))" is zero,
we illustrate its (—1)-diagonal and 0-diagonal as follows:

Syeqi P @ I(b) @ M(b)

Ui,fiflT
hl —i—1

@(a,r) cQi+1xQi P, ® I;J(a) ® M( ) e @CGQH»IP (9 I ( ) & M(C),
where 0"t = (047 H(b, 4, 1)) (4,0,0)€Qi xQi+1 x @i, With

V=i (b, a, 7)) = Y aequ (@ ("D Pla] @ L(0°) @ Iy, if b=
’ 0, if b # x,

and 71 = (hi’_i_l(c, CL7,'E))(C,a7x)eQi+1XQi+l><Qi, with

! 3 — -
B (e a,z) = | e lr @ 1l0)a® Mla), - ife=a;
0, if ¢ # a.

We recall that (4')° = kQ/(R"Y° = {3 | v € kQ}, where 4 = v + (R')°. Given
(z,y) € Q' x Q! with i € Z, in view of Lemma 2.7, I'(z) has a k-basis {éX},
while I (y) has a k-basis {&* | @ € Q1(z,9)}.

SUBLEMMA. Let d=' be the differential of degree —1 of (F€oG)(M)*. Consider
(r,a) € Q° x Q' for some i € Z. If ¥ € Py, B € Q1(x,a) and u € M(z), then

A1y ou) = (-1)78®eQu+ 7 ® e ® Bu.
Proof. Given a € Q1 (x,a), we see that I (a®)(8*) = 0 if a # 8, and otherwise,
'(@®)(B*) = é-. On the other hand, I[a'],(8*) = 0 if a # S, and otherwise,

1[24!]@(5*) = é;.mThis yields
AT @B @u) = (1) Lo ma(Plal @ 1L(a°) @ Ly @) (T ® * @ u)
T e () (1P, @ Ia']e ® M())(7 ©@ B ®u)
= (-8R @u+y®eér® Bu.
This establishes the sublemma. Next, we clearly have a natural A-linear map

i(it1)

771(11 (FCG) (M) — M : Z(i,m)erQi Vo @ €; @ Uy Z(i,z)erQi (=) Yaua,
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where 7, € P, and u, € M(z). We claim that 7% 0d™' = 0. Indeed, consider
an element w € (FYG)(M)~!. We may assume that w € P, ® I'(a) ® M(z), for
some (a,r) € Q! x Q° with i € Z. In this case, we may assume further that
w =7 ® B* ® u, where ¥ € P, B € Qi(zx,a), and u € M(z). In view of the
sublemma, we obtain

Mod W) =l (F)'7B@ e ©utT @ e e bu)
0.

Given w € Ker(n&), we shall define an integer n,, as follows. If w = 0, set
n, = 0; and in this case, w € Im(d~!). Otherwise, let n, be minimal for which
w=3I17%® €y, ® ug, where z; € Qo; i € kQ<n, (i, —); the u; are linearly
independent in M (xz;). For 1 < i <s, write v; = A&y, + 01041 + -+ + 04,0,
where \; € k; a;j € Q1(i,a45); 0ij € kQ<n,—1(asj, —). Setting |x| =i for x € Q,

. [z [+1)
we obtain > 7, (1) S yiu; = 0. Then, Y 7_, Aju; = 0, and hence, \; = 0,
that iS, Vi = 051041 + 00+ O4t; Oty s for i = 1, Loy S, Setting
o=Y Y (~)lle @ ar @ € (FOG)(M)™,

we deduce from the sublemma that

d7Ho) = XX (03 @&, ©u+ ()" @& © agw)
= Yiiee, out X ()M ay; e, ©a;w)
= w+u,

where w’ = Zlez;?‘:l(fl)‘zi' 0ij @ €5, ® ayj ui. By definition, n,s < n,, and
s ti | Lzl + ) s
0 (W) = 3 Y (D) T G d w = =)0 (—1)
By induction, w € Im(d~"). Thus, Im(d~') = Ker(n° ). This yields a natural quasi-
isomorphism 7, : (F'o G)(M) — M. The proof of the proposition is completed.

lzil(zil+1)
2

The following statement describes in particular an injective co-resolution for
every bounded-above module over the Koszul dual.

5.6. PROPOSITION. Let A = kQ/R be a Koszul algebra, where Q is a locally finite
gradable quiver. If N € Modf/l!, then there exists a natural quasi-isomorphism

6: : N = (GCoF)(N)".
Proof. Fix N € ModA". Let r be such that N(a) = 0 for a € Q% with ¢ > r. By
definition, (G%F)(N)" = T(G(F(N)")"). We split our proof into several statements.

STATEMENT 1. Given i € Z, the i-th column of G(F(N)*)" is
t(G(F(N))) = @acq— t'(G(Pa)’) ® N(a) = Gacq- t'(T [i]) ® N(a).
Indeed, F(N)" = @®qeq-i Pa®N(a). By Lemma 5.4, G(P,)" = I, [i] fora € Q.
STATEMENT 2. Given n € Z, we obtain (G0 F)(N)"* = 0 in case n < 0; and
H*((GCoF)(N)") =0 in case n > 0.
Indeed, given any n € Z, we obtain (G0 F)(N)" = @;cz G(F(N)")"*, where
GF(NY)"™ = @eqnoiTl ® F(N) (1) = B cqrsaca— b ® Palz) ® N(a).
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If n < 0, then P,(z) = 0 for (z,a) € Q"% x Q=% with i € Z, and therefore,
(G€oF)(N)™ = 0. Suppose that n > 0. Since N(a) = 0 for a € Q™% with i > r,
we see that G(F(N)*)" is n-diagonally bounded-above. And by Statement 1, the
(n — i)-th cohomology of the i-th column of G(F(N)*)" is given by

H'H(E(G(F(N)')) = @aeq-H"(Zg, i) @N(a) = Beeq-H" (T
In view of Lemma 4.2(2), we see that H"((GYoF)(N)*) = 0.

It remains to construct a natural isomorphism N — H°((G¢ F)(N)*). Indeed,
the 0-diagonal of G(F(N)*)" consists of

G(F(N)) ™" = @eqn-iacq-i I, ® Pu(z) ® N(a),i € Z.

We recall that 4' = kQ°/R' = {v' | v € kQ}, where 4' = 4° + R', while
(AY° = kQ/(RY° = {3 | v € kQ}, where § =~ + (R")°. Given a,y € Qo, there
exists a k-linear map

Nay : N(y) — Homy(ey(4')°€q, Pa(a) ® N(a)) : u— Ny y(u),
where N, ,(u) maps 9 to e, ® v'u, for all ¥ € kQ(a,y). By Corollary 1.2, there
exists a k-linear isomorphism

0oy : Homk(ey(/l!)oea, k) ® Py(a) ® N(a) — Homk(ey(/l!)oea, P,(a) ® N(a)).
This yields a k-linear map fg = 6,1 0 Noy : N(y) = I,(y) @ Po(a) ® N(a).

YJ®N (a) = 0.

!
a

STATEMENT 3. If {41, ,4s} is a basis of e,(A')°e, with dual basis {33, , 5},
then f(u) =>7_1 97 @ €a @ yju, for allu € N(y).
Indeed, every 4 € e.(A')%, is written as § = Z;Zl Aj7;j, for some \; € k.
Given u € N(z), by the definition of 6, ,, we obtain
Oay(Xio1 97 ® ea @ yu)(§) = Doi<ij<s(NiTi(75))(€a ® yiu)
= €, ’y!u
= Nay(u)(9).
Thus, 0,39 ®eq ® yiu) = Ny (u), and hence, fo(u) = ST ®e,® Y.
STATEMENT 4. Given any a € Qq, there exists a natural A -linear morphism
f*=(f§)yeqo : N = I ® Pa(a) © N(a).
Indeed, for any « : z — y in @1, it is easy to verify that commutativity of
N, O,
N(y) — Homy(P;°(y), Pu(a) © N(a)) <—— I, (y) @ Pa(a) ® N(a)
N(a")l iHom(P;‘o(a),Pa(a)QbN(a)) l/]jl(a(’)@l@l
Oa,=
N(z) Homy, (P°(2), Py(a) ® N(a)) = I'(2) ® P,(a) ® N(a).

a

a,z

Thus, f¢ is A'-linear. Given a A'-linear morphism g : N — M, we have a diagram

N(y) — o Homy (P-o(y), Pa(a) ® N(a) <2 I(y) ® Pa(a) @ N(a)

gyl \LHom(P(!l'O(y)J@ga) il@l@ga
Ma, ea,
M(y) —2> Homy, (P)°(y), Pu(a) ® M(a)) L I (y) ® Py(a) ® M(a),

where the left square is easily verified to be commutative, while the commutativity
of the right square follows from the naturality stated in Lemma 1.2(1).
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Given a € Q™ %, in view of Statement (4), we obtain a natural A'-linear morphism
g* = (g;)yer :N — I! ® P,(a) ® N(a), where gy = (71)%@‘

STATEMENT 5. Setting g = (9%)acq,, we obtain a natural A'-linear monomor-
phism g : N — (G€oF)(N)°.

Indeed, g is a A'-linear monomorphism if and only if, for any y € Qo, the linear
morphism g, = (g5) : N(y) = (G0 F)(N)® = @aeq, Lo(y) ® Pula) ® N(a) is
injective. Assume that g,(u) = 0, for some u € N(y). Then gg(u) = 0, for every
a € Qo. In particular, gJ(u) = 0, and hence, fY(u) = 0. Since {e,} is a basis
of e, (A)°ey, by Statement 3, we have ey ® ey ®u = 0, and hence, u = 0. This
establishes Statement 5.

For the rest of the proof, observing that the (—1)-diagonal of G(F(M)*)’ contains
only zero objects, we illustrate its 0-diagonal and 1-diagonal as follows:

Breq-i 1} ® Po(b) @ N(b) " (a0 eq-i-1xq-i It ® Palz) ® N(a)
Tvi+1,—i—1
Beeq-i-11e ® Pe(c) ® N(c),
where h% % = (hi’ii(a, zyb))(a,z,b)eQ*iXQ*i*1 xQ~i» with

i D el ® Plal® N(a®), ifb=ux;
h® (amb):{o €Qi(a,x) g £ o

and vt = (0BT 0, 2,0)) (000 e-ixQ-i-1x@-i—1 With

vi+1,fi71(a 2 C) _ ZaEQl(a7x)(_1)i+1I[a!] & Pa(a) ® 1N(a)7 if ¢ = a;
Y 0, if ¢ # a.

STATEMENT 6. If d° is the 0-degree differential of (G€ o F)(N)*, then d’og = 0.

Indeed, it amounts to show, for any p € Z, that the diagram
G (a,7,2)
reqs 1L ® Polz) ® N(z) 277

(gz)zEQ—pT
(gu)aeQ—p—l |
N By eq-r-11; ® Py(a) ® N(a),

is anti-commutative, or equivalently, we have an anti-commutative diagram

@alepfl;er*pI!w ® Pa(.’E) (9 N(a)

T@vl’“*‘p‘l(a,z,a)

®hP " P(a,z,x
BoeqrIh(y) ® Po(z) @ N(2) 0D gy s veqr I (y) @ Pa(x) © N(a)

<9;”>wewT T@zf*l’*f’*l(a,x,a)(y)
(O J—
N(y) = D cq-r-115(y) ® Py(a) ® N(a),

for all y € Qo. Fix u € N(y) for some y € Q. Consider a € @Q1(a,z) with
(a,z) € Q7P x Q~P. Choosing a k-basis {01,...,0s} of ey(/l!)oex, since ¢ € Q7 P,
we deduce from Statement 3 that

(1® Pla] ® N(a®) (g5 (w) = (1) "= Y1, 6 @ aw a'du.

For any k-basis {§1,...,79:} of e,(4')%,, since a € Q=1 we obtain
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p(p+1)
2

(I[o'] @ Pu(a) ®1) (g2(w)) = (-1)*2 i, I[a')(77) @ & ® u.

Let 0 : I (y) ® Pu(z) ® N(a) — Homy(e,(A')%€y, Po(x) @ N(a)) be a k-linear
isomorphism stated in Corollary 1.2. Given any 1 < j < s, it is easy to see that

0l(1 Pla] @ N(a®)) (g5 ())](6;) = (-1) "= (a @ a'du),

and
1 a a p(;v+1) PN _ |
0[(Ile'] ® Pua) ®1) (g5 (u))](95) = (=1) Yiey 71 (0;0) (@@ yju) .
Fix some 1 < j < s. If Sj & = 0, then 0115;- =0, and hence,

0[(I[o'] @ Pu(er) @ 1) (g5(w)](8;) = 0 = (=1)P0[(1® Pla] @ N(a®)) (g5 (u))](5)-
If Sj & # 0, then it extends to a k-basis {§1,...,9+} with 31 = 5 & of ey(/l')
Under this assumption, we obtain

0[(I[e'] ® Palc) @ 1) (92(u))](5;)

P )

1) S () (@ @ i)

(_ (
= (-1)" (a®%u)
(,
(—

ya

p+1
2
p+1)
2
p(p+1)
2

1) (a®d;au)
1)PO[(1® Pla] ® N(a®)) (g2 (u))](5;)-
Thus, 0[(I[a'] ® Pu(e) ® 1) (g2 (w))] = (-1)P0[(1® Pla] ® N(a®)) (g% (w))]. Then,

(Ila') @ Paa) 2 1) (g2(w) = (~1P(18 Pla] ® N(a®) (g5 (w))
Therefore,

(hP=P(a, z,x)(y) 0 gi)(u) + (vPTH7P"(a,z,a)(y) 0 g3)(u) = 0,
and hence,

hP=P(a, 2, 2)(y) o gy +vP*H 7P Ha,2,a)(y) o g = 0.
This in turn implies the required anti-commutativity.
We are ready to conclude our proof by claiming that Ker(d®) C Im(g). Indeed,
given any element w = (w');cz € Ker(d?), where
W' € GIE(NY)™ = Bueq I & Pala) @ N(a),

observing that G(F(N)*)~* = 0 for i > r, we define an integer n,, (< r) as follows:
if w = 0, then n,, = r; and otherwise, n,, is minimal such that w™« # 0.
If n, = r, then w € Im(g). Assume that n, < r. Since w € Ker(d’), we see that

,Unw,fnw (wnw) — _hnwfl,lfnw (wnwfl) — O

By Statement 1, the n,-th column of the double complex G(F(N)')" is, up
to a twist, the shift by n, of the minimal injective co-resolution of the module
Bacg-nw Sy @ Pa(a) @ N(a). Thus, w™ € Sy(Baeq-nw I, ® Pa(a) ® N(a)), and by
Lemma 2.7, w™ = Zalew €r ®eq ®ug, where u, € N(a). Now, by Statement 3,

Q(Zalew Ug) = ZaEQ*"w €, ®eq ®ug =W

apd by Statemegt 6, v=w—90 ,cq-n Ua) € Ker(d%). Writing v = (l{i)iez ‘With
vt € G(F(N)')™", we see that v = w"™ — g(3 ,cg-n. Ua) = 0, and V' = w' =0
for all ¢ < ny. Therefore, n, < n,. Assuming inductively that v € Im(g), we
obtain w € Im(g). Therefore, Ker(d®) = Im(g). Setting 6%, = g, and 6% = 0 for all
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i # 0, we obtain a quasi-isomorphism 5 : N — (G o F)(N)" which, by Statement
4, is natural in N. The proof of the proposition is completed.

We are ready to obtain our promised Koszul duality as follows.

5.7. THEOREM. Let A = kQ/R be a Koszul algebra, where Q is a locally finite
gradable quiver. If p,q € R with p > 1 and q > 0, then we obtain two mutual
quasi-inverse triangle equivalences

. ! 1
EP . D} (ModA') — D

ot lp1 (Mod A)

and
GP . DT

P,q q+1,p—1

Proof. We shall make use of the Koszul functors F : ModA' — C(ModA) and
G :Mod A — C(ModA'), the complex Koszul functors F€ : C(ModA') — C(Mod A)
and G :C(ModA)—C(ModA') and two commutative diagrams in Theorem 5.3.

Let p,g € R with p > 1 and ¢ > 0. We first claim that the identity func-
tor of D} (ModA') is isomorphic to G, o F,2 . Consider the embedding functor
K : ModA' = C(ModA') and the functor G¢ o F : Mod ™A' — C(Mod4'). By
Proposition 5.6, we obtain a functorial morphism 6 = (67 ) yenoa—a' : £ — GZ0 F,
and by Lemma 4.11, it induces a functorial morphism € : lyjoqa = k¢ — (GCoF)C.

Let N* € Cpl’q(Mod/l!). Since N* € C(Mod™A"), we obtain GNC, = T(6;.), where
0. = (9; Vijez : K(N®)" = (GoF)(N")". We claim that GNC, is a quasi-isomorphism.
Indeed, by Lemma 5.6, 7" : £(N')" — (G€ o F)(N?)" is a quasi-isomorphism, and
so is ¢ t(k(ND)) = t((GC o F)(N?)"), for every i € Z. Moreover, given any
n € Z, the n-diagonal of (G o F)(N")* consists of

(GC o F)(N)"™' = ®jcz.rcq-sycqn—i—i Ié ® Py(y) @ N(z); i € Z.

If i > n, then P,(y) = eyde, =0, for any z € Q77 and y € Q"7 with j € Z,
and therefore, (G€ o F)(N*)"~% = 0. That is, (G o F)(N*)" is diagonally bounded-
above. Since r(N*)" clearly is diagonally bounded-above, by Lemma 4.6, T(6:.),
that is 95_ : N* = (G%F)Y(N*), is a quasi-isomorphism. Since (G%F)¢ = G%F;
see (4.10), we obtain a natural quasi-isomorphism 05, :N* — (Ggqo Flgq)(N'), for
N* € C},(ModA'). As a consequence, 00, = Ly (Py(0S.)) : N* = (GL 0 F2)(N)
is a natural isomorphism, for N* € Dp{ q(Mod/l!). This establishes our first claim.

To show that FﬁqOGgq is isomorphic to the identity functor of D;H’pfl (Mod/l!),
we consider the functor F¢ o G : ModA — C(Mod/) and the embedding functor

k : ModA — C(Mod4). In view of Lemma 5.5, we obtain a functorial morphism
n = (., )MeModn : FC oG — k, and by Lemma 4.11, it induces a functorial

!
(ModA) — D}, (Mod A').

morphism n¢ : (F€ o G)¢ — k¢ = 1oModa)-

Let M* € C’qll’pfl(Mod/l). We claim that 7715, (F€oG)Y(M*) — M"is a quasi-
isomorphism, that is, 7715(2) :(FC€ o GYY(M*)(2) — M*(z) is a quasi-isomorphism,
for all z € Qp. Let z € QQ° for some s € Z. By definition, 775(2) =T(n’ .(2)), where
m,.(2) = (0 (2))igez « (FC 0 G)(M)(2) = w(M")(2).

Given i € Z, by Lemma 5.5, n° - t((FC o G)(MY)) — t(k(M?)") is a quasi-
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isomorphism, and so is 7°  (2) : ¢((F o G)(M")")(2) — ¢ (x(M’)’)(2). On the
other hand, given any n € Z, the n-diagonal of (F¢ o G)(M")*(z) consists of

(FCoG) M) (2) = @jeziweqiyeqiti—n Py(2) ® L(y) ® M'(z)
= @j<nts—iioeQiiyeqiti-n Py(2) © I(y) © M'(x), i € Z.

Since M"* € C'(ZTJFI)]Fl(l\/Iod/l)7 there exists ¢ such that M*(z) = 0 for € Q7 with
i—(p—1)j>t Letx € @ with j <n+s—i Ifpi>(p—1)(n+s)+t, then
i—(p—1j>i—(p—1D(n+s—1i) =pi—(p—1)(n+s) >t, and consequently,
M¥(z) = 0. That is, (F© oG)(M")*(z) is diagonally bounded-above. By Lemma 4.6,
T(n’,.(2)), that is 7715,(2), is a quasi-isomorphism. Our second claim is established.

Now, since (F%G)¢ = FGC; see (4.10), we obtain a natural quasi-isomorphism
nﬁ, : (ng o Ggq)(M') — M*, for M" € C’qll’pfl(ModA). This induces, as has
been seen above, a functorial isomorphism from qu o Gz? o to the identity functor

of DqT_H’p_l(Mod/l!). The proof of the theorem is completed.

REMARK. The case p =1 and ¢ = 0 of Theorem 5.7 has been established for a left

finite Koszul algebra; see [5, (2.12.1)] and for a positively graded Koszul category;
see [25, Theorem 30].

Specializing to the locally bounded case, we get the following result; see [2, (3.9)].

5.8. THEOREM. Let A = kQ/R be a Koszul algebra, where Q is a locally finite
gradable quiver. 1If A is right (or left) locally bounded and A s left (or right)
locally bounded, then D*(Mod®A') = D?(Mod®4) and D®(mod®A') = D?(mod™).

Proof. First, assume that A is right locally bounded and A' is left locally bounded.
Then, P, € mod®4 and I e mod®', for every a € Q9. Therefore, the Koszul func-
tors restrict to functors F : Mod®A' — C*(Mod®4) and G : Mod®4 — C*(Mod®A").

Given M* € C*(Mod®4") and N* € C*(Mod®/), the double complexes F(M*)" and
G(N°)* are bounded. Therefore, the complex Koszul functors restrict to functors
FC . C*(Mod®A') — C*(Mod®4) and G€ : C*(Mod®4) — C*(Mod®A").

Consider F€ o G : Mod®4 — C*(Mod®4) and G€ o F : Mod®A' — C*(Mod®4").
In view of Propositions 5.5 and 5.6, we obtain two natural quasi-isomorphisms
0C. : N* = (F¢ o G)(N*) and 1), : M* — (FC 0 G)(M"), for N* € C*(Mod"A) and
M* € C*(Mod®A"). As have argued in the proof of Theorem 5.7, we see that the
functors F¢ and G¢ descend to two mutually quasi-inverse triangle equivalences
FP : D*(Mod®A') — D?(Mod®4) and GP : D*(Mod®4) — D?(Mod®A").

Next we can show, in the same way, that D®(mod®4) = D’(mod’4"). Finally,
suppose that A is left locally bounded and A s right locally bounded. Since A s
a Koszul algebra with (4')' = A, as has been seen, D?(Mod®4) = D?(Mod®4') and
D¥(mod™) = D?(mod®"). The proof of the theorem is completed.

REMARK. In case / is of finite length and A" is left noetherian, Beilinson, Ginzburg
and Soergel proved the graded version of the second part of Theorem 5.8 with a
rather sophisticated proof; see [5, (2.12.6)], and also, [25, Theorem 35].

EXAMPLE. (1) Theorem 5.8 holds in case @ has no right infinite path or no left
infinite path. Indeed, if this is the case, then Q° has no left infinite path or no right



46 M. BOUHADA, M. HUANG, AND S. LIU

infinite path, and consequently, A is right or left locally bounded and A' is left or
right locally bounded, respectively.

(2) Let 4 = kQ/(kQT)?, where Q is a locally finitely gradable having some right
infinite paths. Then 4 is locally bounded, but A" = kQ° is not left locally bounded.
In this case, D*(Mod®1) = Db(Rep™ (Q°)); see [2, (3.9)], where Rep™ (Q°) denotes
the category of almost finitely co-presented representations, which is substantially
larger than the category of finitely supported representations; [3, (1.12)].

(3) Let A be the k-algebra defined by the gradable quiver

Y—a «-3 V-2 Y-1 @0 71 V2 3 V4
— 3= 2— 11— 01— 2—3—=4—— -
B-3 Bo Bs

with relations as,v3n—1, B3nV3n—1, m € Z. Then A is Koszul and A" is defined by

’

! ’
Y4 Y3 Yoo v, Ao " 4 Qg 4
<~ 3===— 2<~— - 1=—-0=Z2Z——1l=—"2<—"3=——4~<~—---
B3 By Bs

with relations a3, Y3,41> 350 Van41> @3ni2¥sn41> 7 € Z. By Theorem 5.8, we obtain
D¥(ModA) =2 D*(ModA') and D¥(mod®4) = D?(mod®4'). Note that none of the
results stated in [2], [5] or [25] applies in this situation.
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