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Abstract. We are concerned with relating derived categories of all modules

of two dual Koszul algebras. First, we give a complete account of Koszul

complexes, Koszul algebras and Koszul duals in terms of locally finite quivers

with relations. Then, we generalize the well-known Acyclic Assembly Lemma

and formalize an old method of extending a functor from an additive category

into a complex category to its complex category. Applying these techniques to

a Koszul algebra defined by a gradable quiver, we extend Beilinson, Ginzburg

and Soergel’s Koszul duality to dualities between a 2-real-parameter family of

pairs of categories derived from subcategories of the complex categories of all

modules of the Koszul algebra and its Koszul dual. In case the Koszul algebra

is locally bounded on one side and its Koszul dual is locally bounded on the

other side, our Koszul duality restricts to an equivalence of the bounded derived

categories of finitely supported modules, and an equivalence of the bounded

derived categories of finite dimensional modules.

Introduction

The history of Koszul theory traces back to Cartan and Eilenberg’s computing

the cohomology groups of a Lie algebra using the Koszul resolution; see [8, Chapter

8, Section 7]. Later, various Koszul resolutions were used to compute the homology

and the cohomology of Hopf algebras, restricted Lie algebras and Steenrod alge-

bra; see [7, 24]. In dealing with graded algebras arising from algebraic topology,

Priddy formalized the Koszul theory of Koszul complexes and Koszul algebras and

discovered a duality among homology algebras of certain Koszul algebras; see [27].

This beautiful theory has applications in many branches of mathematics such as

algebraic topology; see [14, 28], algebraic geometry; see [4, 5], quantum group; see

[19], commutative algebra; see [9], the representation theory of Lie algebras; see

[5, 30] and that of associative algebras; see [11, 12, 20, 21].

Beilinson, Ginzburg and Soergel described in [5] the Koszul duality in terms

of graded derived categories of two dual Koszul algebras; see also [4, 10, 15, 23].

More precisely, they established an equivalence between the category derived from a

subcategory of the bounded-above complex category of the graded module category

of a left finite Koszul algebra and the category derived from a subcategory of the

bounded-below complex category of the graded module category of its Koszul dual.
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Their duality restricts to an equivalence of the bounded derived categories of finitely

generated graded modules if the Koszul algebra is of finite length and its Koszul dual

is left noetherian. Under the setting of positively graded categories, Mazorchuk,

Ovsienko and Stroppel generalized in [25] the Koszul duality to Koszul categories;

see, for a similar consideration, [22].

The classic Koszul duality deals with derived categories of graded module cate-

gories. However, it is also important to study derived categories of non-graded

modules of Koszul algebras, for instance, those arising from mixed geometry; see [5,

(1.4.2)]. This is even more interesting from the representation theoretic viewpoint;

see [1, 2]. Indeed, given an algebra with radical squared zero defined by a gradable

quiver, which turns out to be a Koszul algebra, Bautista and Liu established an

equivalence between its bounded derived category of finite dimensional modules and

the bounded derived category of finitely co-presented modules of the path algebra

of the opposite quiver, that is the Koszul dual; see [2, (3.9)].

The objective of this paper is to present a self-contained complete account of

the Koszul theory of Koszul complexes, Koszul algebras, Koszul duals and Koszul

duality from a combinatorial viewpoint. In particular, our Koszul algebra is an

algebra defined by a locally finite quiver with homogeneous relations such that every

principal simple module has a linear projective resolution; see (2.14) and compare

[20]. In case the quiver is gradable, we shall extend the classic Koszul duality, by

establishing equivalences between a 2-real-parameter family of pairs of categories

derived from subcategories of the complex categories of all modules of a Koszul

algebra and its Koszul dual. In contrast to the highly sophisticated technique of

spectral sequences used in [5], our technique is elementary with detailed arguments.

Let us outline the content of the paper section by section.

In Section 1, we shall lay down the foundation of the paper. Besides collec-

ting and proving some preliminary results, we shall introduce some new classes of

algebras defined by a locally finite quiver with relations, which include the locally

bounded categories; see [6, (2.1)] and path algebras of strongly locally finite quivers;

see [3, Page 100]. Their representation theory is worth future investigation.

In Section 2, we shall prepare for constructing linear projective resolutions and

linear injective co-resolutions. We shall start with projective covers in the most

general case; see (2.3, 2.4). Then, we shall obtain a class of principal injective modu-

les in the locally finite dimensional case; see (2.5), and study injective envelopes in

the strongly locally finite dimensional case; see (2.9, 2.10). Finally, we shall show

that a graded algebra is quadratic if and only if every principal simple module

admits a linear projective 2-presentation; see (2.13) and compare [5, (2.3.3)].

In Section 3, we shall present a description of Koszul complexes, Koszul algebras

and Koszul duals in terms of locally finite quivers with quadratic relations. Given a

quadratic algebra Λ, we shall define a local Koszul complex for each principal simple

Λ-module S; see (3.3) and compare [5, (2.6)], which is a projective resolution of S

if and only if S has a linear projective resolution; see (3.4). Next, we shall define

the quadratic dual Λ! of Λ by the opposite quiver with dual quadratic relations;

see (3.7) and compare [5, (2.8.1)], and show that Λ! is Koszul if and only if Λ is
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Koszul; see (3.10) and compare [5, (2.9.1)], [25, Theorem 30]. In case Λ is locally

finite dimensional, we show that Λ is Koszul if and only if its opposite algebra is

Koszul, or equivalently, every simple Λ-module admits a particular linear injective

co-resolution; see (3.13) and compare [5, (2.2.1)].

In Section 4, we shall provide tools for constructing Koszul duality. Let A
be an additive category with countable direct sums. First, we relate by taking

total complex the double complex category DC(A) to the complex category C(A);

see (4.1), and obtain a generalization of the Acyclic Assembly Lemma; see [31,

(2.7.1)], which ensures the acyclicity of the total complex of a substantially larger

family of double complexes; see (4.3). Next, we introduce a homotopy theory in

DC(A), which is compatible with taking total complex; see (4.4, 4.5). Finally,

we formalize an old method for extending a functor from an additive category B
into C(A) to the complex category C(B). Such extended an functor descends to

the homotopy category K(B); see (4.8), but only to categories derived from some

possible subcategories of C(B); see (4.9).

In Section 5, we shall describe our Koszul duality. Let Λ be a quadratic algebra Λ

defined by a locally finite gradable quiver. We first construct two Koszul functors

: each sends one of the module categories ModΛ and ModΛ! into the complex

category of the other; see (5.1). As explained above, they are extended to two

complex Koszul functors: each sends one of the complex categories C(ModΛ) and

C(ModΛ!) into the other one. Our generalized Acyclic Assembly Lemma ensures

that they descend to a 2-real-parameter family of pairs of derived Koszul functors:

each pair interchanges a pair of categories derived from subcategories of C(ModΛ)

and C(ModΛ!); see (5.3), all but the classical pair considered in [5, 25] contain

doubly infinite complexes.

In case Λ is Koszul, the Koszul functors send an indecomposable injective Λ!-

module to the minimal projective resolution of a simple Λ-module and an inde-

composable projective Λ-module to the minimal injective co-resolution of a simple

Λ!-module, respectively; see (5.4). Moreover, the composites of one Koszul functor

and the extension of the other one send respectively a bounded-above Λ!-module

to its minimal injective co-resolution and a Λ-module to its minimal projective res-

olution; see (5.5, 5.6). Using this fact, we show that each pair of derived Koszul

functors is a pair of mutually quasi-inverse triangle equivalences; see (5.7). If Λ

is locally bounded on one side and Λ! is locally bounded on the other side, then

our Koszul duality restricts to an equivalence of the bounded derived categories of

finitely supported modules, and an equivalence of the bounded derived categories

of finite dimensional modules; see (5.8) and compare [5, (2.12.6)]. This case occurs,

for instance, when the quiver has no right infinite path or no left infinite path.

1. Preliminaries

The objective of this section is to recall some background and collect and prove

some preliminary results. The terminology and notation introduced in this section

will be used throughout the paper.
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I. Linear algebra. Throughout, k denotes a commutative field. All tensor

products will be over k unless the otherwise is explicitly stated. The k-vector space

freely spanned by a set S will be written as kS. Let Modk stand for the category

of all k-spaces and modk for the category of finite dimensional k-spaces. We shall

make a frequent use of the exact functor D = Homk(−, k) : Modk → Modk. The

following result is well-known.

1.1. Lemma. Given U, V ∈ modk and M,N ∈ Modk, we obtain an isomorphism

ρ : Homk(U, V )⊗Homk(M,N)→ Homk(U ⊗M,V ⊗N) : f ⊗ g 7→ ρ(f ⊗ g),

natural in all variables, where ρ(f⊗g)(u⊗m) = f(u)⊗g(m) for u ∈ U and m ∈M .

Remark. In the sequel, we shall identify the map ϕ(f ⊗ g) with f ⊗ g.

As a consequence of Lemma 1.1, we obtain the following well-known result.

1.2. Corollary. Given U ∈ modk and M,N ∈ Modk, we obtain

(1) a natural isomorphism σ : DU ⊗N → Homk(U,N) : f ⊗ n 7→ σ(f ⊗ n), where

σ(f ⊗ n)(u) = f(u)n, for u ∈ U and n ∈ N ;

(2) a natural isomorphism ϕ : DU ⊗DM → D(M ⊗ U) : f ⊗ g 7→ ϕ(f ⊗ g), where

ϕ(f ⊗ g)(m⊗ u) = g(m)f(u), for u ∈ U and m ∈M .

We shall need the following statement later.

1.3. Lemma. Given morphisms f : U → M and g : N → V in modk, we obtain a

commutative diagram with vertical isomorphisms as follows:

U ⊗DV

θU,V

��

f⊗Dg // M ⊗DN

θM,N

��
D(V ⊗DU)

D(g⊗Df) // D(N ⊗DM).

Proof. Composing the isomorphism U ⊗ DV → D2U ⊗ DV, induced from the

canonical isomorphism U → D2U , with the isomorphism D2U⊗DV → D(V ⊗DU);

see (1.2), we obtain an isomorphism θU,V such that θU,V (u⊗ ζ)(v ⊗ ξ) = ζ(v)ξ(u),

for all u ∈ U , v ∈ V , ζ ∈ DV and ξ ∈ DU . Similarly, we obtain an isomorphism

θM,N , making the diagram stated in the lemma commute. Indeed, given u ∈ U ,

ζ ∈ DV , n ∈ N and ξ ∈ DM , we obtain

θM,N ((f ⊗Dg)(u⊗ ζ))(n⊗ ξ) = θM,N (f(u)⊗ ζg)(n⊗ ξ) = ζ(g(n)) ξ(f(u))

and

D(g ⊗Df)(θU,V (u⊗ ζ))(n⊗ ξ) = θU,V (u⊗ ζ)((g ⊗Df)(n⊗ ξ))
= θU,V (u⊗ ζ)(g(n)⊗ ξf)

= ζ(g(n)) ξ(f(u)).

The proof of the lemma is completed.

Let U ∈ Modk. Given a subspace V of U , we shall denote by V ⊥ the subspace

of DU of linear forms vanishing on V , called the perpendicular of V in DU .
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1.4. Lemma. Let U be a finite dimensional k-space.

(1) If V,W are subspaces of U , then (V + W )⊥ = V ⊥ ∩W⊥, and on the other

hand, (V ∩W )⊥ = V ⊥ +W⊥.

(2) If {u1, . . . , un} and {v1, . . . , vn} are bases of U with dual bases {u?1, . . . , u?n}
and {v?1 , . . . , v?n} respectively, then

∑n
i=1ui ⊗ u?i =

∑n
i=1vi ⊗ v?i in U ⊗DU.

Proof. Statement (1) is evident. By Corollary 1.2, we obtain an isomorphism

θ : U⊗Homk(U, k)→ Endk(U) : u⊗f → θ(u⊗f). Given a basis {u1, . . . , un} of U ,

it is easy to see that θ (
∑n
i=1ui ⊗ u?i ) = 1U . The proof of the lemma is completed.

II. Quivers. Let Q = (Q0, Q1) be a locally finite quiver, where Q0 is a set of

vertices and Q1 is a set of arrows. Given an arrow α : x→ y, we write x = s(α) and

y = e(α). Given x ∈ Q0, one has a trivial path εx of length 0 with s(εx) = e(εx) = x.

A path of length n > 0 is a sequence ρ = αn · · ·α1, with αi ∈ Q1, such that

s(αi+1) = e(αi), for i = 1, . . . , n − 1; and in this case, we write s(ρ) = s(α1) and

t(ρ) = t(αn), and call αn the terminal arrow of ρ. An infinite path in Q is called

right infinite if it has no ending point and left infinite if it has no starting point.

The opposite quiver of Q is a quiver Qo defined in such a way that (Qo)0 = Q0

and (Qo)1 = {αo : y → x | α : x → y ∈ Q1}. A non-trivial path ρ = αn · · ·α1

in Q(x, y), where αi ∈ Q1, corresponds to a non-trivial path ρo = αo
1 · · ·αo

n in

Qo(y, x). However, the trivial path in Q at a vertex x will be identified with the

trivial path in Qo at x.

Fix an integer n ≥ 0 and some vertices x, y of Q. We shall denote by Qn the

set of paths of length n and by Q(x, y) the set of paths from x to y. Moreover,

we shall write Qn(x, y), Q≤n(x, y), and Q≥n(x, y) for the subsets of Q(x, y) of

paths of length n, of length ≤ n, and of length ≥ n, respectively. Further, we

put Qn(x,−) = ∪z∈Q0Qn(x, z) and Qn(−, x) = ∪z∈Q0Qn(z, x). Finally, we define

Q≤n(x,−) = ∪z∈Q0 Q≤n(x, z) and Q≤n(−, x) = ∪z∈Q0 Q≤n(z, x), and similarly,

Q≥n(x,−) = ∪z∈Q0 Q≥n(x, z) and Q≥n(−, x) = ∪z∈Q0 Q≥n(z, x). For convenience,

we shall put Qs(x, y) = ∅ for an integer s < 0.

We say that Q is strongly locally finite if Q(x, y) is finite for all x, y ∈ Q0; see [3],

and gradable if Q0 = ∪n∈ZQn, a disjoint union called a grading, such that every

arrow is of the form x→ y, where x ∈ Qn, y ∈ Qn+1 and n ∈ Z; see [1, (7.1)].

III. Path algebras. An algebra in this paper does not necessarily have an iden-

tity, and an ideal in an algebra is always a two-sided ideal. Let Q = (Q0, Q1) be

a locally finite quiver. We denote by kQ the path algebra of Q over k, whose op-

posite algebra is kQo. Given γ =
∑s
i=1 λiρi ∈ kQ, where λi ∈ k and ρi are paths,

we shall write γo =
∑s
i=1 λiρ

o
i ∈ kQo. This yields an algebra anti-isomorphism

kQ→ kQo : γ 7→ γo.

Let R be an ideal in kQ. We shall say that R is weakly admissible if R ⊆ (kQ+)2,

where kQ+ is the ideal in kQ generated by the arrows. A weakly admissible ideal

R is called locally admissible if, for any x, y ∈ Q0, there exists nxy > 0 such that

kQn(x, y) ⊆ R for all n ≥ nxy; right (respectively, left) admissible if, for any x ∈ Q0,

there exists nx > 0 such that kQn(x,−) ⊆ R (respectively kQn(−, x) ⊆ R) for all

n ≥ nx; and admissible if it is right and left admissible; compare [6, (2.1)].
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Let R be a weakly admissible ideal in kQ. In this case, the pair (Q,R) a called

bound quiver. For n ≥ 0, we shall put Rn = R ∩ kQn; and for x, y ∈ Q0,

we write R(x, y) = R ∩ kQ(x, y) and Rn(x, y) = R ∩ kQn(x, y). An element

ρ ∈ R(x, y) is called a relation in R from x to y. Such a relation ρ is called

quadratic if ρ ∈ kQ2(x, y); homogeneous if ρ ∈ kQn(x, y) for some n ≥ 2; monomial

if ρ ∈ Q(x, y); and primitive if ρ =
∑s
i=1 λiρi, where λi ∈ k and ρi ∈ Q(x, y)

are such that
∑
i∈Σ λiρi 6∈ R for any Σ ⊂ {1, . . . , s}. We shall say that R is

quadratic (respectively, homogeneous, monomial) if it is generated by a set of qua-

dratic (respectively, homogeneous, monomial) relations. A minimal generating set

Ω of R is a set of primitive relations in R such that R is generated by Ω but not

by any proper subset of Ω ; and in this case, we put Ω(x, y) = Ω ∩ kQ(x, y) and

Ω(x,−) = ∪z∈Q0
Ω(x, z).

1.5. Lemma. Let Q be a locally finite quiver with R a homogenous ideal in kQ. If

Ω is a minimal generating set of R, the the classes of ρ modulo (kQ+)R+R(kQ+),

with ρ ∈ Ω, are k-linearly independent.

Proof. Let Ω be a minimal generating set of R. Assume that λ1ρ1+· · ·+λrρr lies in

(kQ+)R+R(kQ+), where λi ∈ k are non-zero and ρi ∈ Ω(x, y) are pairwise distinct,

for some x, y ∈ Q0. Then, ρ1 =
∑s
i=1γiρ1δi+

∑t
j=1ξjσjζj , where σj ∈ Ω\{ρ1}, and

γi, δi, ξj , ζj ∈ kQ are homogeneous such that γi or δi is of positive degree for every

1 ≤ i ≤ s. Since ρ1 and the σj are homogeneous, ρ1 =
∑
j∈Θ ξjσjζj , where Θ is

the set of indices j for which ξjσjζj is of the same degree as ρ1, a contradiction to

the minimality of Ω . The proof of the lemma is completed.

IV. Algebras and modules. In this subsection we fix Λ = kQ/R, where Q is a

locally finite quiver and R is a weakly admissible ideal in kQ. Write γ̄ = γ+R ∈ Λ,

for γ ∈ kQ. Then, {ex = ε̄x | x ∈ Q0} is a complete set of pairwise orthogonal

idempotents, that is Λ = ⊕x∈Q0Λex = ⊕x∈Q0exΛ. The opposite algebra of Λ is

Λo = kQo/Ro, where Ro = {ρo | ρ ∈ R}. We shall write γ̄ o = γo +Ro for γ ∈ kQ,

but ex = εx +Ro for x ∈ Q0. This yields an anti-isomorphism Λ→ Λo : γ̄ → γ̄ o.

We shall say that Λ is locally finite dimensional if eyΛex is finite dimensional for

all x, y ∈ Q0; compare [6, (2.1)]; strongly locally finite dimensional if R is locally

admissible; right (respectively, left) locally bounded if R is right (respectively, left)

admissible; and locally bounded if R is admissible; compare [6, (2.1)]. Clearly, a left

or right locally bounded algebra is strongly locally finite dimensional.

We shall write J for the ideal in Λ generated by ᾱ with α ∈ Q1, and say that J

is locally nilpotent if, for each pair (x, y) ∈ Q0×Q0, there exists an integer nxy > 0

such that eyJ
nxyex = 0. We shall need the following easy result.

1.6. Lemma. Let Λ = kQ/R, where Q is locally finite and R is weakly admissible.

(1) As a k-vector space, Λ = Λ0 ⊕ Λ1 ⊕ J2, where Λ0 has a k-basis {ex | x ∈ Q0}
and Λ1 has a k-basis {ᾱ | α ∈ Q1}.

(2) The ideal R is locally admissible if and only if J is locally nilpotent; and in this

case, J contains only nilpotent elements.

Proof. We shall prove only the second part of Statement (2). Given u ∈ J , write

u =
∑s
i=1 ui with ui ∈ eyiJexi , for some xi, yi ∈ Q0. If J is locally nilpotent, then
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eyjJ
nexi = 0 for some n > 0 and all 1 ≤ i, j ≤ s, and consequently, un = 0. The

proof of the lemma is completed.

Example. (1) If Q is a strongly locally finite quiver, then kQ is strongly locally

finite dimensional.

(2) Let Λ = kQ/R, where Q is a single loop α and R is generated by α2 − α3.

Then Λ is locally finite dimensional, but not strongly locally finite dimensional.

A left Λ-module M is called unitary if M =
∑
x∈Q0

exM . Such a unitary module

M is called finitely supported if exM = 0 for all but finitely many x ∈ Q0 and locally

finite dimensional if exM is finite dimensional for all x ∈ Q0. We shall denote by

ModΛ the category of all left unitary Λ-modules, and by ModbΛ, modΛ and modbΛ

its full subcategories of finitely supported modules, of locally finite dimensional

modules and of finite dimensional modules, respectively.

Let M ∈ ModΛ. We shall write radM for the Jacobson radical, and socM for

the socle, of M . We shall call SJ(M) = {u ∈ M | Ju = 0} the J-socle, JM the

J-radical, and TJ(M) = M/JM the J-top, of M . Recall that a submodule of M is

essential if it intersects non-trivially every non-zero submodule of M . Associated

with a ∈ Q0, we have a principal projective module Pa = Λea and a principal simple

module Sa = Pa/JPa in ModΛ.

1.7. Lemma. Let Λ = kQ/R be a strongly locally finite dimensional algebra.

(1) If a ∈ Q0, then JPa is the largest proper submodule of Pa.

(2) The non-isomorphic simple modules in ModΛ are Sa with a ∈ Q0; and conse-

quently, SJ(M) = socM , for all M ∈ ModΛ.

(3) If M ∈ ModΛ has a finitely supported essential socle, then every quotient mo-

dule of M has an essential socle.

Proof. (1) If N is a submodule of Pa not contained in JPa, then ea−u ∈ N for some

u ∈ JPa. Since u = uea, we see that (ea + eau+ · · ·+ eau
n−1)(ea − u) = ea ∈ N .

(2) Let S be a simple module in ModΛ. Being unitary, S is generated by an

element u in eaS, for some a ∈ Q0. By Statement (1), we have an epimorphism

f : Pa → S with J = Ker(f), and hence, S ∼= Sa.

(3) Let socM be essential in M and supported by a1, . . . , ar ∈ Q0. Consider a

submodule N of M such that M/N has a non-zero element w +N ∈M/N , where

w ∈ eb1M + · · · + ebsM . Since J is locally nilpotent, eajJ
tebi = 0 for some t > 0,

and for all i = 1, . . . , s; j = 1, . . . , r. Suppose that v(w +N) 6= 0, for some v ∈ J t.
Since socM is essential in M , there exists some u ∈ Λ such that 0 6= (uv)w ∈ socM .

In particular, eaj (uv)ebi 6= 0 for some 1 ≤ i ≤ s and 1 ≤ j ≤ r, a contradiction.

Thus, there exists some maximal 0 ≤ n < t such that Jn(w + N) 6= 0. Then,

0 6= Jn(w +N) ⊆ soc(M/N). The proof of the proposition is completed.

Remark. In case Λ is strongly locally finite dimensional, by Lemma 1.7(1), Pa is

indecomposable for every a ∈ Q0.

Example. Let Λ be the locally finite dimensional algebra defined by a loop α with

a relation α2 − α3. Then, the principal projective module Λ is decomposable. If α

acts identically on k, then k is a non-principal simple module with a zero J-socle.
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A representation M of the bound quiver (Q,R) consists of a family of k-spaces

M(x) with x ∈ Q0 and a family of k-linear maps M(α) : M(x) → M(y) with

α : x → y ∈ Q1, such that M(ρ) = 0 for all ρ ∈ R(x, y) with x, y ∈ Q0. Here,

M(γ) =
∑
i λiM(αi,mi) ◦ · · · ◦M(αi,1) for any γ =

∑
i λiαi,mi · · ·αi,1 ∈ kQ(x, y)

with λi ∈ k and αij ∈ Q1. In particular, we may write M(γ̄) = M(γ), for γ ∈ kQ.

A morphism f : M → N of representations consists of a family of k-linear maps fx
with x ∈ Q0 such that fy ◦M(α) = N(α) ◦ fx, for every α : x→ y in Q. We shall

denote by Rep(Q,R) the category of all representations of (Q,R).

It is well known that a module M ∈ ModΛ can be regarded as a representation

M ∈ Rep(Q,R) such that M(x) = exM for x ∈ Q0, and M(α) : M(x) → M(y)

is the left multiplication by ᾱ for α ∈ Q1(x, y). A morphism f : M → N in

ModΛ can be regarded as a morphism (fx)x∈Q0
: M → N in Rep(Q,R), where

fx : M(x) → N(x) is obtained by restricting f . Taking this point of view, we

shall define an exact functor D : ModΛ → ModΛo as follows. Given a module

M , we define a module DM by (DM)(x) = Homk(M(x), k) for x ∈ Q0, and

(DM)(αo) = Homk(M(α), k) for α ∈ Q1. Given a morphism f : M → N , we

define a morphism Df : DN → DM by (Df)x = Hom(fx, k), for every x ∈ Q0.

1.8. Lemma. Let Λ = kQ/R, where Q is locally finite and R is weakly admissible.

(1) The functor D : modΛ→ modΛo is an equivalence.

(2) If M ∈ ModΛ and V ∈ modk, then D(M ⊗ V ) ∼= DM ⊗DV.
Proof. Statement (1) is evident, and Statement (2) follows from Corollary 1.2. The

proof of the lemma is completed.

V. Graded algebras. Let Λ = kQ/R, where Q is a locally finite quiver and

R is a homogeneous ideal in kQ. Then, Λ is positively graded with a J-grading

Λ = ⊕n≥0Λn, where Λn = {γ̄ | γ ∈ kQn}. Observe that Λo is also positively graded

as Λo = ⊕n≥0Λo
n, where Λo

n = {γ̄ o | γ ∈ kQn}. One says that Λ is quadratic if R is

a quadratic ideal.

1.9. Proposition. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

homogeneous ideal in kQ. Then Λ is locally finite dimensional if and only if Λ is

strongly locally finite dimensional.

Proof. Assume that Λ is locally finite dimensional but R is not locally admissible.

Then Q(x, y), for some x, y ∈ Q0, has arbitrarily long paths not lying in R. Since

eyΛex is finite dimensional, λ1δ1 + · · · + λnδn ∈ R(x, y), where λi ∈ k are non-

zero and δi ∈ Q(x, y)\R are of pairwise different lengths. Since R is homogeneous,

λ1δ1 + · · · + λnδn = ρ1 + · · · + ρs, where ρ1, . . . , ρs ∈ R(x, y) are homogeneous of

pairwise different degrees. Then, each δi is a summand of a unique ρj , say ρi. Thus,∑n
i=1(ρi − λiδi) + (

∑
j>n ρj) = 0, and λiδi = ρi for i = 1, . . . , n, a contradiction.

The proof of the proposition is completed.

A module M ∈ ModΛ is said to be graded if M = ⊕i∈ZMi, where the Mi are

k-spaces such that ΛiMj ⊆ Mi+j for all i, j ∈ Z. Such a graded module M is said

to be generated in degree n if M = ΛMn. A morphism f : M → N between graded

modules is called homogeneous of degree n if f(Mi) ⊆ Ni+n for all i ∈ Z; and in

this case, we shall write fi,x : Mi(x) → Ni+n(x), where i ∈ Z and x ∈ Q0, for the
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map obtained by restricting f . A graded morphism is a homogeneous morphism of

degree 0. Observe that the shifts of a graded module are isomorphic to each other

by homogeneous isomorphisms. The following statement is evident.

1.10. Lemma. Let Λ = kQ/R, where Q is locally finite and R is homogeneous. A

sequence of homogeneous morphisms of degree n between graded modules

L
f // M

g // N

is exact if and only if the sequence

Li−n(x)
fi−n,x // Mi(x)

gi+n,x // Ni+n,x(x)

is an exact sequence, for all i ∈ Z and x ∈ Q0.

VI. Derived categories. Throughout the paper, we shall compose morphisms

in any category from the right to the left. All functors between additive categories

are additive. Let A be a full additive subcategory of an abelian category A. We

shall denote by C(A) and Cb(A) the complex category and the bounded complex

category of A respectively, whose shift functor is written as [1]. By identifying an

object M with the stalk complex M [0], we shall regard A as a full subcategory of

C(A). Moreover, K(A) and Kb(A) will stand for the homotopy category and the

bounded homotopy category of A, respectively. Let (X., d.X) be a complex in C()̧A.

The twist t(X.) of X. is the complex (M., d.M ) defined by Mn = Xn and d.M = −dnX ;

see [2, Section 4]. Clearly, t(M.) ∼= X.. One calls X. acyclic if all its cohomological

objects Hn(X.) with n ∈ Z, which are objects in A, vanish. Given a morphism

f. : X.→ Y . in C(A), its mapping cone Cf. is defined by Cnf. = Xn+1 ⊕ Y n and

dnCf. =

(
−dn+1

X 0

fn+1 dnY

)
.

A full additive subcategory A of C(A) is called derivable if it is closed under the

shifts and taking cones. In this case, the quotient category K(A ) of A modulo null-

homotopic morphisms is a triangulated subcategory of the triangulated category

K(A), and the localization D(A ) of K(A ) at quasi-isomorphisms is a triangulated

category; see [26, Chapter 2, Sections 1.6 and 1.7], which we call the category derived

from A . In particular, we shall write D(A) and Db(A) for the categories derived

from C(A) and Cb(A) and call them the derived category and the bounded derived

category of A, respectively.

2. Projective covers and injective envelopes

The objective of this section is to obtain some preparatory results for constructing

linear projective resolution and linear injective co-resolution, most of them are

generalizations of classical results for modules over a locally bounded category; see

[6, 13], or for representations of a strongly locally finite quiver; see [3].

Let Λ = kQ/R, where Q is a locally finite quiver and R is a weakly admissible

ideal in kQ. We shall denote by ProjΛ the full additive subcategory of ModΛ

generated by the modules isomorphic to Pa ⊗ V with a ∈ Q0 and V ∈ Modk, and

by proj Λ the one generated by the modules isomorphic to Pa with a ∈ Q0.
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We start with describing morphisms involving modules in ProjΛ. It is necessary

to fix some notation, which will be used for the rest of the paper. Let γ ∈ kQ(x, y)

and γ̄ = γ +R ∈ Λ, where x, y ∈ Q0. The left multiplication by γ̄ yields a k-linear

map Pa(γ̄ ) : Pa(x) → Pa(y) for every a ∈ Q0, while the right multiplication by

γ̄ yields a Λ-linear morphism P [γ̄ ] : Py → Px, which restricts to a k-linear map

P [γ̄ ]a : Py(a)→ Px(a) for every a ∈ Q0.

2.1. Proposition. Let Λ = kQ/R, where Q is locally finite and R is weakly ad-

missible. Let M ∈ ModΛ and V ∈ Modk. Given a, b ∈ Q0, we obtain

(1) a k-linear isomorphism Px,y : ebΛea → HomΛ(Pb, Pa) : u 7→ P [u];

(2) a k-linear isomorphism Ma : HomΛ(Pa,M)→ eaM : f 7→ f(ea);

(3) a k-linear isomorphism ψM : HomΛ(Pa ⊗ V,M)→ Homk(V, eaM);

(4) a k-linear map Ma,b : ebΛea → Homk(eaM, ebM) : u 7→ M(u), where M(u)

denotes the left multiplication by u.

Proof. Statements (1), (2) and (4) are evident. Observing that Pa is a Λ-k-

bimodule, we deduce Statement (3) from the adjoint isomorphism and Statement

(2). The proof of the proposition is completed.

In the locally finite dimensional case, the morphisms in ProjΛ are completely

described in the following statement; compare [1, (7.6)].

2.2. Lemma. Let Λ = kQ/R be a locally finite dimensional algebra. Given a, b ∈ Q0

and V,W ∈ Modk, every Λ-linear morphism f : Pa⊗V → Pb⊗W is uniquely writ-

ten as f =
∑

P [u]⊗fu, where u runs over a basis of eaΛeb and fu ∈ Homk(V,W ).

Proof. Let f : Pa ⊗ V → Pb ⊗W be Λ-linear. Then, f(ea ⊗ V ) ⊂ eaΛeb ⊗W . Let

{u1, . . . , un} be a finite basis of eaΛeb. If v ∈ V , then f(ea⊗ v) =
∑n
i=1 ui⊗wi, for

some unique w1, . . . , wn ∈ W . This yields k-linear maps fi : V → W : v 7→ wi, for

i = 1, . . . , n. We see easily that f =
∑n
i=1P [ui]⊗ fi, and this expression is unique.

The proof of the lemma is completed.

Let M ∈ ModΛ. An epimorphism d : P → M with P ∈ projΛ will be called a

J-minimal projective cover over projΛ if Ker(d) ⊆ JP . For instance, the canonical

projection da : Pa → Sa is a J-minimal projective cover of Sa, for every a ∈ Q0. A

generating set {u1, . . . , us} of M is called a J-top basis if {u1 +JM, . . . , us+JM} is

a k-basis of TJ(M). The following statement is well-known in the finite dimensional

case; see [17, (1.1)], and its proof is left to the reader.

2.3. Lemma. Let Λ = kQ/R, where Q is locally finite and R is weakly admissible.

A module M ∈ ModΛ has a J-top basis {u1, . . . , us} with ui ∈ eaiM if and only if

it has a J-minimal projective cover d : Pa1 ⊕· · ·⊕Pas →M with d(eai) = ui, where

a1, . . . , as ∈ Q0.

Let M be a module in ModΛ. Given an integer n ≥ 1, a projective n-presentation

over projΛ of M is an exact sequence

P−n
d−n // P−n+1 // · · · // P−1 d−1

// P 0 d0 // M // 0
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with P−i ∈ projΛ, for i = 0, . . . , n. Such a projective n-presentation is called

J-minimal if Ker(d−i) ⊆ JP−i, for i = 0, . . . , n. The following statement is well

known in case Q is finite; compare [11, (2.5)].

2.4. Corollary. Let Λ = kQ/R, where Q is locally finite and R is weakly admis-

sible. If a ∈ Q0 with Q1(a,−) = {αi : a → bi | i = 1, . . . , r}, then Sa admits a

J-minimal projective presentation

Pb1 ⊕ · · · ⊕ Pbr
(P [ᾱ1],··· ,P [ᾱr]) // Pa

da // Sa // 0.

Proof. Let a ∈ Q0 with Q1(a,−) = {αi : a → bi | i = 1, . . . , r}. It is evident that

Ker(da) = JPa with a J-top basis {ᾱ1, · · · , ᾱr}. Let j : JPa → Pa be the inclusion

map. By Lemma 2.3, we obtain a J-minial projective cover d : Pb1⊕· · ·⊕Pbr → JPa
such that (P [ᾱ1], · · · , P [ᾱr]) = j ◦ d. The proof of the corollary is completed.

Next, we shall study injective envelopes. Let us fix some notation. Given a ∈ Q0,

we shall write P o
a = Λoea ∈ ModΛo and Ia = DP o

a ∈ ModΛ. As a representation,

Ia(x) = Homk(exΛoea, k) for all x ∈ Q0; and Ia(α), with α ∈ Q1, sends f ∈ Ia(x)

to Ia(α)(f) ∈ Ia(y) so that Ia(α)(f)(vo) = f(ᾱovo), for all v ∈ eaΛey.

2.5. Proposition. Let Λ = kQ/R be a locally finite dimensional algebra. Let

M ∈ ModΛ and V ∈ Modk. Given a ∈ Q0, we obtain a k-linear isomorphism

φ
M

: HomΛ(M, Ia ⊗ V )→ Homk(eaM,V ).

Proof. Fix a ∈ Q0. We have a k-linear map ψa : Homk(eaΛoea, V )→ V : g 7→ g(ea).

For x ∈ Q0, we deduce from Corollary 1.2(1) a k-linear isomorphism

σx : Ia(x)⊗ V = Homk(exΛoea, k)⊗ V → Homk(exΛoea, V )

such that σx(h ⊗ v)(uo) = h(uo)v, for h ∈ Ia(x), v ∈ V and u ∈ eaΛex. Recall

that a Λ-linear morphism f : M → Ia ⊗ V consists of a family of k-linear maps

fx : exM → Ia(x)⊗ V with x ∈ Q0. In particular, we obtain a k-linear map

φ
M

: HomΛ(M, Ia ⊗ V )→ Homk(eaM,V ) : f → ψa ◦ σa ◦ fa.

Suppose that φ
M

(f) = 0. We claim that f = 0, that is, fx = 0, for all x ∈ Q0.

Indeed, for any m ∈ exM , write fx(m) =
∑s
i=1 hi⊗vi, where hi ∈ Homk(exΛoea, k)

and vi ∈ V such that v1, . . . , vs are k-linearly independent. Given any u ∈ eaΛex,

we obtain um ∈ eaM such that fa(um) = ufx(m) =
∑s
i=1(uhi)⊗ vi. Thus,

0 = φ
M

(f)(um) =
∑s
i=1σa(uhi ⊗ vi)(ea) =

∑s
i=1(uhi)(ea)vi =

∑s
i=1hi(u

o)vi.

Since the vi are k-linearly independent, hi(u
o) = 0, for i = 1, . . . , s. Hence, hi = 0,

for i = 1, . . . , s. Thus, fx(m) = 0, and hence, fx = 0. This establishes our claim.

Next, consider a k-linear map ga : eaM → V . Given x ∈ Q0 and m ∈ exM , we

have a k-linear map gx(m) : exΛoea → V : uo → ga(um), and then, a k-linear map

fx : exM → Ia(x) ⊗ V : m 7→ σ−1
x (gx(m)). Let w ∈ eyΛex with y ∈ Q0. For any

u ∈ eaΛey, we have σy(fy(wm))(uo) = gy(wm)(uo) = ga((uw)m). On the other

hand, writing gx(m) =
∑s
i=1 σx(hi ⊗ vi) with hi ∈ Ia(x) and vi ∈ V , we obtain

wfx(m) = wσ−1
x (gx(m)) =

∑s
i=1(whi)⊗ vi. Then,

σy(wfx(m))(uo) =
∑s
i=1 hi(w

ouo)vi =
∑s
i=1 σx(hi ⊗ vi)((uw)o) = ga((uw)m),
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which is σy(fy(wm))(uo). Since σy is bijective, wfx(m) = fy(wm)). This shows

that the fx with x ∈ Q0 form a Λ-linear morphism f : M → Ia ⊗ V such that

φ
M

(f) = ga. The proof of the proposition is completed.

Remark. In case Λ is locally finite dimensional, by Proposition 2.5, Ia ⊗ V is

injective in ModΛ, for a ∈ Q0 and V ∈ Modk ; compare [3, (1.3)]. We shall call

Ia the principal injective module associated with a. In case Λ is strongly finite

dimensional, by Lemmas 1.7 and 1.8, Ia indecomposable.

In general, Ia is probably not injective. By abuse of notation, however, we shall

denote by InjΛ the full additive subcategory of ModΛ generated by the modules

isomorphic to Ia⊗V , where a ∈ Q0 and V ∈ Modk, and by injΛ the one generated

by the modules isomorphic to Ia with a ∈ Q0. To describe the morphisms in

InjΛ, we shall fix some notation. Given u ∈ ebΛea with a, b ∈ Q0, the right

multiplication by uoyields a Λo-linear morphism P [uo] : P o
a → P o

b . Applying

D : Mod Λo → Mod Λ, we obtain a Λ-linear morphism I[u] = DP [uo] : Ib → Ia
such that I[u](f)(vo) = f(vouo), for all f ∈ Ia(x) with x ∈ Q0 and v ∈ eaΛex.

2.6. Lemma. Let Λ = kQ/R be a locally finite dimensional algebra. Given a, b ∈ Q0

and V,W ∈ Modk, every Λ-linear morphism f : Ia⊗V → Ib⊗W is uniquely written

as f =
∑

I[u]⊗ fu, where u runs over a k-basis of eaΛeb and fu ∈ Homk(V,W ).

Proof. Fix a, b ∈ Q0. Since eaΛeb is finite dimensional, we have a k-isomorphism

θa,b : eaΛeb → Homk(Homk(ebΛ
oea, k), k) : u 7→ θa,b(u)

such that θa,b(u)(f) = f(uo), for f ∈ Homk(ebΛ
oea, k) = Ia(b) Let V,W ∈ Modk.

Consider the following k-linear isomorphisms

eaΛeb ⊗Homk(V,W )
θa,b⊗1 // Homk(Ia(b), k)⊗Homk(V,W )

ρ
��

HomΛ(Ia ⊗ V, Ib ⊗W )
φ // Homk(Ia(b)⊗ V,W ),

where ρ and φ are as defined in Lemma 1.1 and Proposition 2.5, respectively. For

u ∈ eaΛeb and h ∈ Homk(V,W ), we claim that φ(I[u]⊗h) = (ρ ◦ (θa,b⊗ 1))(u⊗h).

Indeed, φ(I[u]⊗ h) is the composite of the maps in the sequence

Ia(b)⊗ V
I[u]⊗h // Ib(b)⊗W

σb // Homk(ebΛ
oeb,W )

ψb // W,

where σb and ψb are as defined in the proof of Proposition 2.5. Given g ∈ Ia(b) and

v ∈ V , we obtain (ϕ(θa,b(u)⊗ h)) (g ⊗ v) = θa,b(u)(g)h(v) = g(uo)h(v) and

φ(I[u]⊗ h)(g ⊗ v) = σb(I[u](g)⊗ h(v))(eb) = I[u](g)(eb)h(v) = g(uo)h(v).

This establishes our claim. As a consequence, we obtain a k-linear isomorphism

φ−1◦ρ◦(θa,b⊗1) : eaΛeb⊗Homk(V,W )→ HomΛ(Ia⊗V, Ib⊗W ) : u⊗h→ I[u]⊗h.

The proof of the lemma is completed.

We shall calculate explicitly the J-socle for Ia and Ia/SJ(Ia).

2.7. Lemma. Let Λ = kQ/R, where Q is a locally finite quiver and R is a weakly

admissible ideal. If a ∈ Q0, then
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(1) SJ(Ia) has a k-basis {e?a}, where e?a ∈ Ia(a) with e?a (ea) = 1 and e?a (eaJ
oea) = 0;

(2) SJ(Ia/SJ(Ia)) has a k-basis {α? + SJ(Ia) | α : x → a ∈ Q1(−, a)}, where

α? ∈ Ia(x) such that α?(ᾱo) = 1 and α?(γ̄o) = 0 for all γ ∈ Q(x, a)\{α}.
Proof. Fix a ∈ Q0. Clearly, e?a ∈ SJ(Ia). If f ∈ Ia(x) for some x ∈ Q0, which

is neither zero nor a multiple of e?a, then f(uo) 6= 0 for some u ∈ eaJex, that is,

(u · f)(ea) 6= 0. Hence, f /∈ SJ(Ia). Thus, SJ(Ia) = ke?a.

Fix some vertex x ∈ Q0. Consider first α ∈ Q1(x, a). The existence of α? follows

from Proposition 1.6(1). Observe that ᾱ · α? = e?a. Let β ∈ Q1(x, y) with β 6= α.

For δ ∈ Q(y, a), since δβ 6= α, we obtain (β̄ · α?)(δ̄o) = α?(β̄oδ̄o) = 0. Therefore,

α? + SJ(Ia) ∈ SJ(Ia/SJ(Ia)). Now, assume that Q1(x, a) = {α1, . . . , αr}. If∑r
i=1 λiα

?
i ∈ SJ(Ia) for some λi ∈ k, then

λj =
∑r
i=1 λi · α?i (ᾱo

j ) =
∑r
i=1 λi · (ᾱjα?i )(ea) = (ᾱj · (

∑r
i=1 λiα

?
i )) (ea) = 0,

for j = 1, . . . , r. As a consequence, the classes α? + SJ(Ia) with α ∈ Q1(−, a) are

k-linearly independent in SJ(Ia/SJ(Ia)).

Finally, consider g + SJ(Ia) ∈ SJ(Ia/SJ(Ia)), where g ∈ Ia(x) for some x ∈ Q0.

Let ρ ∈ Q≥2(x, a). Write ρ = δα, where α : x → y is an arrow and δ : y  a is

non-trivial. Since ᾱg ∈ SJ(Ia) and δ is non-trivial, g(ρ̄o) = (ᾱg)(δ̄o) = 0. Hence,

g(ex(Jo)2ea) = 0. By Lemma 1.6(1), g =
∑
γ∈Q≤1(−,a) λγγ

?, where λγ ∈ k. Thus,

g + SJ(Ia) =
∑
α∈Q1(−,a) λα(α? + SJ(Ia)). The proof of the lemma is completed.

The following statement is well-known in the finite dimensional case.

2.8. Corollary. Let Λ = kQ/R be strongly locally finite dimensional. If a ∈ Q0,

then SJ(Ia) and SJ(Ia/SJ(Ia)) are essential socles of Ia and Ia/SJ(Ia).

Proof. By Lemma 1.7(2), the J-socle of a module is its socle. Let h ∈ Ia(x)\SJ(Ia),

for some x ∈ Q0. Then, h(exJ
oea) 6= 0. Since Jo is locally nilpotent, there exists

a maximal positive integer s such that h(ex(Jo)sea) 6= 0. Then, h(ζ̄ o) = λ 6= 0

for some ζ ∈ Qs(x, a). Note that ζ̄h ∈ Ia(a) with (ζ̄h)(ea) = h(ζ̄o) = λ. By the

maximality of s, we see that (ζ̄h)(eaJ
oea) = 0. Hence, ζ̄h = λe?a ∈ SJ(Ia). Thus,

SJ(Ia) is essential in Ia.

Write ζ = βξ, where β ∈ Q1(b, a) and ξ ∈ Qs−1(x, b) with b ∈ Q0. Then,

ξ̄h ∈ Ia(b) with (ξ̄h)(β̄o) = h(ζ̄ o) 6= 0. Therefore, ξ̄(h+SJ(Ia)) = ξ̄h+SJ(Ia) 6= 0.

By the maximality of s, we see that (ξ̄h)(eb(J
o)2ea) = 0. By Lemma 1.6(1),

ξ̄h+SJ(Ia) =
∑
α∈Q1(−,a) λα · (α? +SJ(Ia)) ∈ SJ(Ia/SJ(Ia)), where λα ∈ k. That

is, SJ(Ia/SJ(Ia)) is essential in Ia/SJ(Ia). The proof of the corollary is completed.

Example. Let Λ be a locally finite dimensional algebra given by a loop α with a

relation α2 − α3. Then SJ(D(Λ)) = 0, which is not essential in D(Λ).

Let M ∈ ModΛ. A subset {u1, . . . , us} of M is called an essential socle basis if

M has an essential socle, of which {u1, . . . , us} is a k-basis. The following result is

well-known in case Λ is finite dimensional, and its proof is left to the reader.

2.9. Lemma. Let Λ = kQ/R be a strongly locally finite dimensional algebra. A

module M ∈ ModΛ has an essential socle basis {u1, . . . , us} with ui ∈ eaiM if and

only if M has an injective envelope j : M → Ia1 ⊕ · · · ⊕ Ias with j(ui) = e?ai , where

a1, . . . , as ∈ Q0.
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The following statement is well-known in case Q is finite.

2.10. Corollary. Let Λ = kQ/R be a strongly locally finite dimensional algebra.

If a ∈ Q0 with Q1(−, a) = {βi : bi → a | i = 1, . . . , s}, then

0 // Sa
ja // Ia

(I[β̄1],...,I[β̄s])
t

// Ib1 ⊕ · · · ⊕ Ibs ,
is a minimal injective co-presentation of Sa, where ja sends ea + Jea to e?a.

Proof. Let a ∈ Q0 with Q1(−, a) = {βi : bi → a | i = 1, . . . , s}. By Corollary 2.8

and Lemma 2.9, ja is an injective envelope of Sa with Im(ja) = SJ(Ia). By Lemma

2.7 and Corollary 2.8, {β?1 +SJ(Ia), . . . , β?s+SJ(Ia)} is an essential socle basis for Ia.

By Lemma 2.9, we obtain an injective envelope j : Ia/S(Ia)→ Ib1⊕· · ·⊕Ibs , sending

β?i +SJ(Ia) to (0, . . . , e?bi , . . . , 0), for i = 1, . . . , s. Since I[β̄i](β
?
i ) = e?bi , we see that(

I[β̄1], . . . , I[β̄s]
)t

is the composite of the canonical projection Ia → Ia/SJ(Ia) and

the injective envelope j. The proof of the corollary is completed.

For the rest of this section, assume that Λ = kQ/R, where R is homogeneous.

Given a ∈ Q0, in view of the J-grading Λ = ⊕n≥0Λn, we see that Pa and Sa are

graded and generated in degree one. In case Λ is locally finite dimensional, then

Ia is negatively graded as Ia = ⊕n≥0(Ia)−n, where (Ia)−n = Homk(Λo
nea, k), for

all n ≥ 0. However, Ia is not graded in general. For instance, if Λ is the path

algebra of a single loop α, then DΛ = Homk(⊕n≥0kα
n, k) 6∼= ⊕n≥0Homk(Λn, k).

The following statement is a variation of a classical result on graded projective

covers; see, for example, [11, (2.4)], and its proof is left to the reader.

2.11. Lemma. Let Λ = kQ/R, where Q is locally finite and R is homogeneous. Let

M be a finitely generated graded module in ModΛ. If f : P →M and f ′ : P ′ →M

are homogeneous J-minimal projective covers, then f ′ = f ◦ g, where g : JP ′ → P

is a graded isomorphism.

The following result describes a J-minimal projective 2-presentation of a princi-

pal simple module in the graded case; compare [13, (2.4)].

2.12. Lemma. Let Λ = kQ/R, where Q is locally finite and R is homogeneous with

a minimal generating set Ω. Let a ∈ Q0 with Q1(a,−) = {αi : a→ bi | i = 1, . . . , r}
and Ω(a,−) = {ρ1, . . . , ρs}. If ρj =

∑r
j=1 γijαi with γij ∈ kQ(bi, cj), then Sa has

a J-minimal projective 2-presentation

Pc1 ⊕ · · · ⊕ Pcs
(P [γ̄ij ])r×s // Pb1 ⊕ · · · ⊕ Pbr

(P [ᾱ1],··· ,P [ᾱr])// Pa
da // Sa // 0.

Proof. Let ρj =
∑r
j=1 γijαi, where γij ∈ kQ(bi, cj). Write d1 = (P [ᾱ1], · · · , P [ᾱr])

and d2 = (P [γ̄ij ])r×s. By Corollary 2.4, it suffices to show that d2 co-restricts to

a J-minimal projective cover of Ker(d1). Since uj = (γ̄1j , . . . , γ̄rj) ∈ Ker(d1), by

Lemma 2.3, it amounts to show that {u1, . . . , us} is a J-top basis of Ker(d1).

Let v = (δ̄1, . . . , δ̄r) ∈ Ker(d1), where δi ∈ kQ(bi,−). We may assume that

δi ∈ kQ(bi, c), for some c ∈ Q0. Since d1(v) = 0, we obtain
∑r
i=1 δiαi ∈ R(a, c),

and hence,
∑r
i=1δiαi =

∑s
j=1ωjρj +

∑r
i=1ηiαi =

∑r
i=1(

∑s
j=1ωjγij + ηi)αi, where

ωj ∈ kQ(cj , c) and ηi ∈ R(bi, c). This yields δi =
∑s
j=1ωjγij + ηi, and hence,
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δ̄i =
∑s
j=1ω̄j γ̄ ij , for i = 1, . . . , r. As a consequence, v =

∑s
j=1ω̄juj . This shows

that Ker(d1) =
∑n
i=1 Λui.

Assume next that
∑s
j=1 λjuj ∈ JKer(d1) =

∑n
i=1 Jui, where λj ∈ k. Write∑s

j=1 λjuj =
∑s
j=1 ν̄juj , with νj ∈ kQ+. Then,

∑s
j=1 λjγij =

∑s
j=1(νjγij + ηij),

where ηij ∈ R(bi, cj), for i = 1, . . . , r. Calculating
∑r
i=1

∑s
j=1 λjγijαi, we obtain∑s

j=1 λjρj =
∑s
j=1 νj(ρj + ζj), where ζj ∈ R(a, cj). By Lemma 1.5, λj = 0, for

i = 1, . . . , s. The proof of the lemma is completed.

A projective n-presentation over proj Λ of a module is called linear if the mor-

phisms between the projective modules are homogenous of degree one. The follow-

ing statement extends a well-known result, saying that a classical Koszul algebra is

quadratic; see [5, (2.3.3)].

2.13. Theorem. Let Λ = kQ/R, where Q is locally finite and R is homogeneous.

Then, Λ is quadratic if and only if every principal simple Λ-module admits a J-

minimal linear projective 2-presentation over projΛ.

Proof. Let Ω be a minimal generating set of R. Fix a ∈ Q0. Since Ω(a,−)

contains only finitely many quadratic relations, the necessity follows immediately

from Lemma 2.12. Assume that Sa admits a linear projective 2-presentation over

projΛ. Letting Q1(a,−) = {αi : a → bi | i = 1, . . . , r}, we deduce from Lemmas

2.6, 2.11 and 2.12 a commutative diagram with exact rows

P2
d2 // P1

d1 //

f1
��

Pa
d0 //

f0
��

Sa // 0

Pc1 ⊕ · · · ⊕ Pcs
(P [γ̄ij ])r×s // Pb1 ⊕ · · · ⊕ Pbr

(P [ᾱ1],··· ,P [ᾱr])// Pa
da // Sa // 0,

where the upper row is a linear projective 2-presentation, f0, f1 are graded iso-

morphisms, and γij ∈ kQ(bi, cj). Since f1 ◦ d2 is homogeneous of degree one,

γij ∈ kQ1(bi, cj) and ηj =
∑r
i=1 γijαi ∈ R2(a, cj), for j = 1, . . . , s. By Lemma 2.3,

{uj = (γ̄1j , . . . , γ̄rj) | j = 1, . . . , s} is a J-top basis of Ker(P [ᾱ1], · · · , P [ᾱr]).

Let ρ ∈ Ω(a, c) be a relation of degree n > 2. Write ρ =
∑r
i=1 γiαi, for

some γi ∈ kQn−1(bi, c). Since (γ̄1, . . . , γ̄r) ∈ Ker(P [ᾱ1], · · · , P [ᾱr]), we see that

(γ̄1, . . . , γ̄r) =
∑s
j=1 δ̄j uj , for some δj ∈ kQn−2(cj , c). Then, γi = σi +

∑s
j=1 δjγij ,

where σi ∈ R(bi, c), for i = 1, . . . , r. This yields ρ =
∑r
i=1 σiαi +

∑s
j=1 δjηj . Since

n > 2, we see that ρ ∈ R(kQ+) + (kQ+)R, a contradiction to Lemma 1.5. The

proof of the theorem is completed.

A complex P . over projΛ is called a projective resolution over projΛ of a module

M if P i = 0 for all i > 0, and H0(P .) ∼= M and Hi(P .) = 0 for i < 0. The following

definition is a variation of the classical one; see, for example, [5].

2.14. Definition. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

homogeneous ideal in kQ.

(1) A complex over ModΛ is called linear if the differentials are homogeneous mor-

phisms of degree one between indecomposable modules.

(2) The algebra Λ is called Koszul if Sa admits a linear projective resolution over

projΛ, for every a ∈ Q0.
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Remark. By Theorem 2.13, a Koszul algebra is quadratic; compare [5, (2.3.3)].

Example. Given any locally finite quiver Q, it is evident that Λ = kQ/(kQ+)2 is

a Koszul algebra.

3. Koszul complexes and Koszul duals

The objective of this section is to present a combinatorial account of Koszul com-

plexes, Koszul algebras and Koszul duals. Although our main results will be similar

to those stated in [5], we shall take an elementary approach with a local viewpoint

and provide detailed arguments.

Let Λ = kQ/R, where Q is a locally finite quiver and R is a quadratic ideal

in kQ. In order to define the local Koszul complexes, we need to introduce some

notation. Given α ∈ Q1, we obtain a derivation ∂α : kQ → kQ, that is a k-linear

map, sending a path ρ to δ if ρ = αδ; and to 0 if α is not a terminal arrow of ρ.

In particular, ∂α vanishes on kQ0 and sends kQp to kQp−1 for all p > 0. Fix some

a, x ∈ Q0 and n ≥ 0. Recall that Rn = R∩kQn and Rn(a, x) = R(a, x)∩kQn(a, x).

We shall define a subspace R(n)(a, x) of kQn(a, x) by R(n)(a, x) = kQn(a, x), for

n = 0, 1, and R(n)(a, x) = ∩0≤j≤n−jkQn−j−2(−, x) · R2 · kQj(a,−), for n ≥ 2.

Observe that R(2)(a, x) = R2(a, x). We shall write R(n)(a,−) = ⊕x∈Q0
R(n)(a, x).

As shown below, these subspaces are stable under the derivations.

3.1. Lemma. Let Q be a locally finite quiver with R a quadratic ideal in kQ. Con-

sider an element γ ∈ R(n)(a, x) for some n > 0 and a, x ∈ Q0.

(1) If α ∈ Q1(y, x), then ∂α(γ) ∈ R(n−1)(a, y).

(2) If γ = α1γ1 + · · · + αmγm, where γi ∈ kQn−1(a, yi) and αi ∈ Q1(yi, x), then

γi ∈ R(n−1)(a, yi), for i = 1, . . . ,m.

Proof. Let α ∈ Q1(y, x). Clearly, ∂α(βδ) = ∂α(β) δ, for β ∈ Q1 and δ ∈ kQ. Since

∂α(kQn(a, x)) ⊆ kQn−1(a, x), we may assume that n ≥ 3. Given 0 ≤ j ≤ n − 3,

write γ =
∑r
i=1αiζiρiδi, where αi ∈ Q1(yi, x); ζi ∈ kQn−3−j(−, yi); ρi ∈ R2;

δi ∈ kQj(a,−). Thus, ∂α(γ) =
∑r
i=1∂α(αi)ζiρiδi. Suppose that ∂α(γ) 6= 0. We

may assume that αi = α if and only if 1 ≤ i ≤ s, for some 1 ≤ s ≤ r. Then,

∂α(γ) =
∑s
i=1 ζiρiδi ∈ kQn−3−j(−, y) ·R2 · kQj(a,−).

Thus, ∂α(γ) ∈ R(n−1)(a, y). This establishes Statement (1), from which Statement

(2) follows immediately. The proof of the lemma is completed.

As a consequence, we obtain the following statement.

3.2. Lemma. Let Λ = kQ/R, where Q is locally finite and R is quadratic. Given

a, x, y ∈ Q0 and n > 0, we obtain a Λ-linear morphism

∂−na (y, x) =
∑
α∈Q1(y,x)P [ᾱ]⊗ ∂α : Px ⊗R(n)(a, x)→ Py ⊗R(n−1)(a, y).

Moreover, if ρ =
∑m
i=1 ζiδi ∈ R(n)(a, x), where δi ∈ kQn−1(a, yi) and ζi ∈ kQ1(yi, x),

then ∂−na (y, x)(u⊗ ρ) =
∑m
i=1 uζ̄i ⊗ δi, for all u ∈ Px.

Proof. Fix a, x, y ∈ Q0 and n > 0. By Lemma 3.1(1), we do have a Λ-linear

morphism ∂−na (y, x) as defined in the lemma. Consider ρ =
∑m
i=1 ζiδi ∈ R(n)(a, x),
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where δi ∈ kQn−1(a, yi) and ζi ∈ kQ1(yi, x). Write ζi =
∑s
j=1 λijαj , where λij ∈ k

and α1, . . . , αs are the arrows in Q1(y, x). For any u ∈ Px, we obtain

∂−na (y, x)(u⊗ ρ) =
∑s
l=1(P [ᾱl]⊗ ∂αl)(u⊗ ρ)

=
∑s
l,j=1

∑m
i=1 uλijᾱl ⊗ ∂αl(αj)δi

=
∑m
i=1 u(

∑s
j=1 λijᾱj)⊗ δi.

The proof of the lemma is completed.

Fix a ∈ Q0. Since R(n)(a, x) is finite dimensional and vanishes for almost all

x ∈ Q0, by Lemma 3.2, we obtain a sequence K.a over projΛ as follows:

· · · // K−na
∂−na // K−n+1

a
// · · · // K−1

a

∂−1
a // K0

a
// 0 // · · · ,

where K−na = ⊕x∈Q0
Px ⊗R(n)(a, x) for every n ≥ 0, and

∂−na = (∂−na (y, x))(y,x)∈Q0×Q0
: ⊕x∈Q0

Px ⊗R(n)(a, x)→ ⊕y∈Q0
Py ⊗R(n−1)(a, y),

which is homogeneous of degree one, for every n > 0. Observing thatK0
a = Pa⊗kεa,

we obtain an augmented Λ-linear morphism ∂0
a : K0

a → Sa : ea ⊗ εa 7→ ea + JPa.

3.3. Lemma. Let Λ = kQ/R with Q locally finite and R quadratic. If a ∈ Q0, then

(1) Ker(∂−na ) ⊆ JK−na for n ≥ 0;

(2) K.a is a linear complex over projΛ;

(3) Sa has as a linear projective 2-presentation the sequence

K−2
a

∂−2
a // K−1

a

∂−1
a // K0

a

∂0
a // Sa // 0.

Proof. Fix a ∈ Q0. We have Ker(∂0
a) = JK0

a . Let w ∈ Ker(∂−na ), for some n > 0.

Then, exw ∈ Ker(∂−na ) for every x ∈ Q0. Since exw ∈ Px⊗R(n)(a, x), by definition,

∂−na (exw) =
∑
y∈Q0

∂−na (y, x)(exw) = 0, where ∂−na (y, x)(exw) ∈ Py⊗R(n−1)(a, y).

Thus, ∂−na (y, x)(exw) = 0, for every y ∈ Q0.

Write exw =
∑s
i=0 wi, where wi ∈ J iPx ⊗ R(n)(a, x). Since ∂−na (y, x) is homo-

geneous of degree one, ∂−na (y, x)(w0) = 0. Now, w0 = ex⊗ γ, where γ ∈ R(n)(a, x).

Write γ =
∑
z∈Q0

(
∑
βz∈Q1(z,x) βzξβz ), where ξβy ∈ kQn−1(a, y). By definition,

∂−na (y, x)(ex⊗γ) =
∑
α∈Q1(y,x);z∈Q0;βz∈Q1(z,x) ᾱ⊗∂α(βzξβz ) =

∑
βz∈Q1(z,x) β̄y⊗ξβy .

Since the β̄y are k-linearly independent, ξβy = 0, for all y ∈ Q0. This implies

that w0 = 0. That is, exw ∈ JPx ⊗ R(n)(a, x) for all x ∈ Q0. As a consequence,

w ∈ JK−na . This establishes Statement (1).

Next, we shall show that ∂1−n
a ◦ ∂−na = 0, for n > 1. Indeed, let v ∈ Px and

γ ∈ R(n)(a, x), where x ∈ Q0. By the definition of R(n)(a, x), we may assume

that γ = ρδ, for some ρ ∈ R2(z, x) and δ ∈ kQn−2(a, z) with z ∈ Q0. Write

ρ =
∑s
i=1 λiβiαi, where λi ∈ k, αi ∈ Q1(z, yi) and βi ∈ Q1(yi, x) with yi ∈ Q0. By

Lemma 3.2, we obtain

(∂1−n
a ◦ ∂−na )(v ⊗ γ) =

∑s
i=1(∂1−n

a ◦ ∂−na ) (v ⊗ λiβiαiδ) = v
(∑s

i=1λiβ̄iᾱi
)
⊗ δ = 0.

This establishes Statement (2).

Finally, assume that αi : a→ bi, i = 1, . . . , r are the arrows in Q1(a,−). Then,

K−1
a = ⊗ri=1Pbi ⊗ kαi. Let Ω be a minimal generating set for R with ρj : a  cj ,

j = 1, . . . , s, the relations in Ω(a,−). Then, K−2
a = ⊕sj=1Pcj ⊗ kρj . Writing
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ρj =
∑r
j=1 γijαi for some γij ∈ kQ1(bi, cj), in view of Lemma 3.2, we obtain a

commutative diagram

Pc1 ⊕ · · · ⊕ Pcs
(P [γ̄ij ])r×s//

f2
��

Pb1 ⊕ · · · ⊕ Pbr
(P [ᾱ1],··· ,P [ᾱr]) //

f1
��

Pa
da //

fa
��

Sa // 0

K−2
a

∂−2
a // K−1

a

∂−1
a // K0

a

∂0
a // Sa // 0

with fa, f1 and f2 graded isomorphisms such that fa(ea) = ea⊗εa; f1(ebi) = ebi⊗αi
and f2(ecj ) = ecj ⊗ρj , for i = 1, . . . , r; j = 1, . . . , s. By Lemma 2.12, the lower row

is a linear projective 2-presentation of Sa. The proof of the lemma is completed.

In the sequel, the linear complex K.a will be called the local Koszul complex of

Λ at a. The following statement is a local version under the combinatorial setting

of a well-known result in [5, (2.6.1)].

3.4. Theorem. Let Λ = kQ/R, where Q is locally finite and R is quadratic. If

a ∈ Q0, then Sa has a linear projective resolution over projΛ if and only if K.a is

a projective resolution of Sa.

Proof. By Lemma 3.3, it suffices to show the necessity. Suppose that Sa has a

linear projective resolution over projΛ. By Lemmas 2.11 and 3.3, there exists a

commutative diagram

· · · // P−p−1 d−p−1
// P−p

d−p //

f−p
��

P 1−p //

f1−p

��

· · · // P−1 d−1
//

f−1

��

P 0 //

f0

��

0

· · · // K−p−1
a

//∂−p−1
a // K−pa

∂−pa // K1−p
a

// · · · // K−1
a

∂−1
a // K0

a
// 0,

where p ≥ 2, the upper row is a linear projective resolution of Sa, and f−p, · · · , f0

are graded isomorphisms. In particular, ∂−ia co-restricts to a J-minimal projective

cover of Ker(∂1−i
a ), for i = 1, . . . , p.

We claim that ∂−p−1
a co-restricts to J-minimal projective cover of Ker(∂−pa ). By

Lemma 3.3(1), it suffices to show that it is surjective. We may assume that K−pa is

non-zero. Then, K−pa = ⊕nj=1Pyj ⊗ kρj , where ρj ∈ R(p)(a, yj), j = 1, . . . , n, form

a basis of R(p)(a,−); while K1−p
a = ⊕mi=1Pxi ⊗ kζi, where ζi ∈ R(p−1)(a, xi), i = 1,

. . . , m, form a basis of R(p−1)(a,−). Observe that f−p ◦ d−p−1 is a J-minimal

projective cover of Ker(∂−pa ). By Lemma 2.3, Ker(∂−pa ) admits a normalized J-

top basis T p. Since f−p ◦ d−p−1 is homogeneous of degree one, T p consists of

homogeneous elements of degree one.

Consider u = (u1, . . . , un) ∈ T p ∩ ezK−pa , where z ∈ Q0 and uj ∈ Pyj ⊗ kρj .
Then uj = γ̄ j ⊗ ρj , where γj ∈ kQ1(yj , z); j = 1, . . . , n. Since ρj ∈ R(p)(a, yj),

by Lemma 3.1(2), we may write ρj =
∑m
i=1δij ζi, where δij ∈ kQ1(xi, yj). Since

∂−pa (u) = 0, by Lemma 3.2, we obtain∑m
i=1(

∑n
j=1γ̄j δ̄ij)⊗ ζi =

∑n
j=1

∑m
i=1∂

−p
a (γ̄j ⊗ δijζi) = 0.

Since the ζi are k-linearly independent, we deduce that
∑n
j=1γ̄j δ̄ij = 0. That is,

ηi =
∑n
j=1γjδij ∈ R(xi, z). Since R is quadratic, ηi ∈ R2(xi, z), for i = 1, . . . ,m.

Setting ω =
∑n
j=1γj , we see that ω ∈ R(p+1)(a, z). Indeed, ω =

∑m
i=1 ηiζi with

ηi ∈ R2(xi, z) and ζi ∈ kQp−1(a, xi); and for 0 ≤ s < p−1, since ρj ∈ R(p)(a, yj), we
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may write ω =
∑
µlξlδl, where µl ∈ kQp−2−s(−, yj), ξl ∈ R2 and δl ∈ kQs(a,−).

In particular, ez ⊗ ω ∈ K−p−1
a .

Let fi be the composite of ∂−p−1(yi, z) : Pz ⊗ R(p+1)(a, z) → Pyi ⊗ R(p)(a, yi)

and the canonical projection pi : Pyi ⊗ R(p)(a, yi) → Pyi ⊗ kρi, for i = 1, . . . , n.

Since γj ∈ kQ1(yj , z), we deduce from Lemma 3.2 that

fi(ez ⊗ ω)=pi(
∑n
j=1∂

−p−1
a (yi, z)(ez ⊗ γjρj))=pi(

∑
yj=yi

γ̄j ⊗ ρj)=γ̄i ⊗ ρi = ui,

and hence, ∂−p−1
a (ez ⊗ ω) = (f1(ez ⊗ ω), . . . , fn(ez ⊗ ω)) = (u1, . . . , un) = u.

This is establishes our claim. By Lemma 2.11, we obtain a graded isomorphism

f−p−1 : P−p−1 → K−p−1
a such that f−p ◦ d−p−1 = ∂−p−1

a ◦ f−p−1. By induction,

K.a is a projective resolution of Sa. The proof of the theorem is completed.

The classical quadratic dual of a quadratic algebra is defined by the tensor al-

gebra of the dual space of the generating space under the left finiteness condition;

see [5, (2.8.1)]. We shall define the quadratic dual of Λ by the opposite quiver Qo.

For this, we need some preparation. Given n ≥ 0, the finite basis Qn of kQn has a

dual basis {ξ∗ | ξ ∈ Qn} in D(kQn). Given γ =
∑
λiξi, where λi ∈ k and ξi ∈ Qn,

we shall write γ∗ =
∑
λiξ
∗
i ∈ D(kQn). This yields a k-linear isomorphism

ψn : kQo
n → D(kQn) : γo → γ∗.

Given ξ ∈ kQn(x, y) with x, y ∈ Q0, by abuse of notation, we shall identify ξ∗

with its restriction to kQn(x, y). In this way, {ξ∗ | ξ ∈ Qn(x, y)} is the dual basis

of Qn(x, y) in D(kQn(x, y)). We collect some basic properties as follows.

3.5. Lemma. Let Q be a locally finite quiver with ζ ∈ kQs(x, y) and γ ∈ kQt(y, z),
for some x, y, z ∈ Q0 and s, t ≥ 0.

(1) If δ ∈ kQs and ξ ∈ kQt, then (γζ)∗(ξδ) = γ∗(ξ)ζ∗(δ).

(2) If γ ∈ Q1(y, z), then (γζ)∗(η) = ζ∗(∂γ(η)) for all η∈ kQs+1.

Proof. We may assume that ζ ∈ Qs(x, y) and γ ∈ Qt(y, z). To prove Statement (1),

we may assume δ ∈ Qs and ξ ∈ Qt. If (γζ)∗(ξδ) = 1, then ξδ = γζ. Since ξ and γ

are of the same length, ξ = γ and δ = ζ. Thus, γ∗(ξ)ζ∗(δ) = 1. If (γζ)∗(ξδ) = 0,

then ξδ 6= γζ. In particular, ξ 6= γ or δ 6= ζ, and hence, γ∗(ξ)ζ∗(δ) = 0.

Next, assume that γ ∈ Q1(y, z). To prove Statement (2), we may assume that

η ∈ Qs+1. Write η = αδ, for some α ∈ Q1 and δ ∈ Qs. By Statement (1), we see

that (γζ)∗(η) = γ∗(α)ζ∗(δ). If α 6= γ, then (γζ)∗(η) = 0 = ζ∗(∂γ(η)). Otherwise,

δ = ∂γ(η), and hence, (γζ)∗(η) = ζ∗(∂γ(η)). The proof of the lemma is completed.

Let R be a quadratic ideal in kQ. For x, y ∈ Q0, let R!
2(y, x) be the subspace

of kQo
2(y, x) of elements ρo, where ρ ∈ kQ2(x, y) such that ρ∗ vanishes on R2(x, y).

The ideal in kQo generated by the R!
2(y, x) with x, y ∈ Q0 is denoted by R! and

called the quadratic dual of R. The following statement describes explicitly R!.

3.6. Lemma. Let Q be a locally finite quiver and R be a quadratic ideal in kQ.

If σ ∈ kQn(x, y) with x, y ∈ Q0 and n ≥ 0, then σo ∈ R!
n(y, x) if and only if

σ∗ ∈ R(n)(x, y)⊥, the perpendicular of R(n)(x, y) in D(kQn(x, y)).

Proof. Let σ ∈ kQn(x, y), with x, y ∈ Q0 and n ≥ 0. If n = 0, 1, then R!
n(y, x) = 0,

and since R(n)(x, y) = kQn(x, y), we have R(n)(x, y)⊥ = 0. In case n = 2, since

R2(x, y) = R(2)(x, y), the lemma is the definition of R!
2(y, x). Let n ≥ 3. Consider
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the k-isomorphism ψn(x, y) : kQo
n(y, x) → D(kQn(x, y)) : ρo → ρ∗. By definition,

R!
n(y, x) =

∑n−2
j=0R

!
n,j(y, x), where

R!
n,j(y, x) =

∑
a,b∈Q0

kQo
j (a, x) ·R!

2(b, a) · kQo
n−j−2(y, b),

and R(n)(x, y) = ∩n−2
j=0 R

(n,j)(x, y), where

R(n,j)(x, y) =
∑
a,b∈Q0

kQn−j−2(b, y) ·R2(a, b) · kQj(x, a).

First, assume that σo ∈ R!
n(y, x). To show that σ∗ ∈ R(n)(x, y)⊥, we may assume

that σo ∈ kQo
j (a, x) ·R!

2(b, a) · kQo
n−j−2(y, b), for some a, b ∈ Q0 and 0 ≤ j ≤ n− 2.

Furthermore, we may assume that σo = (δηγ)o, where γ ∈ kQj(x, a), η ∈ kQ2(a, b)

with ηo ∈ R!
2(b, a), and δ ∈ kQn−2−j(b, y). Given any w ∈ R(n)(x, y), we may write

w =
∑t
i=1 δiηiγi,

where γi ∈ kQj(x, ai), ηi ∈ R2(ai, bi), δi ∈ kn−j−2Q(bi, y), and ai, bi ∈ Q0. Since

η∗ ∈ R2(a, b)⊥, we see that η∗(ηi) = 0 for all 1 ≤ i ≤ t. By Lemma 3.5(1),

σ∗(w) = (δηγ)∗(w) =
∑t
i=1 δ

∗(δi) η
∗(ηi) γ

∗(γi) = 0. Therefore, σ∗ ∈ R(n)(x, y)⊥.

Next, assume that σ∗ ∈ R(n)(x, y)⊥. By Lemma 1.4(1), σ∗ ∈
∑n−2
j=0 R

(n,j)(x, y)⊥.

Since D(kQn(x, y)) = {ρ∗ | ρ ∈ kQn(x, y)}, we may assume that σ∗ ∈ R(n,p)(x, y)⊥,

for some 0 ≤ p ≤ n− 2. Write σ =
∑m
i=1 σi, with σi ∈ kQn−p−2(bi, y) · kQ2(ai, bi) ·

kQp(x, ai), where ai, bi ∈ Q0 such that (ai, bi) 6= (aj , bj) for i 6= j. By Lemma

3.5(1), we see that σ∗i vanishes on

kQn−p−2(bj , y) · kQ2(aj , bj) · kQp(x, aj),

for any i 6= j. Therefore, σ∗i ∈ R(n,p)(x, y)⊥, for i = 1, . . . ,m. Thus, we may

assume that σ = δζγ, where δ ∈ kQn−p−2(b, y), ζ ∈ kQ2(a, b), γ ∈ kQp(x, a), for

some a, b ∈ Q0, such that σ∗ is non-zero. Then, δ∗ and γ∗ are non-zero, and hence,

δ∗i (ν) = γ∗i (µ) = 1, for some ν ∈ kQn−p−2(b, y) and µ ∈ kQp(x, a).

Choose a basis {ρ1, . . . , ρr; ρr+1, . . . , ρs} of kQ2(a, b), where {ρ1, . . . , ρr} is a

basis of R2(a, b). Then, kQ2(a, b) has a basis {η1, . . . , ηr; ηr+1, . . . , ηs} such that

{η∗1 , . . . , η∗r ; η∗r+1, . . . , η
∗
s} is the dual basis of {ρ1, . . . , ρr; ρr+1, . . . , ρs}. Observe

that {ηo
r+1, . . . , η

o
s} is a basis of R!

2(b, a). Write ζ =
∑s
i=1 λiηi, where λi ∈ k. Then,

σ∗ =
∑s
i=1 λi(δηiγ)∗. By Lemma 1.4, σ∗ ∈ (kQn−p−2(b, y) ·R2(a, b) · kQp(x, a))

⊥
.

Given any 1 ≤ i ≤ r, applying Lemma 3.5(1), we obtain

0 = σ∗(νρiµ) =
∑s
j=1 λj(δηjγ)∗(νρiµ) =

∑s
j=1 λjδ

∗(ν)η∗j (ρi)γ
∗(µ) = λi.

Thus, σ∗ =
∑s
i=r+1 λi(δηiγ)∗, and consequently, σ =

∑s
i=r+1 λi(γηiδ). This im-

plies that σo =
∑s
i=r+1 λiγ

oηo
i δ

o ∈ R!
n(y, x). The proof of the lemma is completed.

We are ready to define the quadratic dual of a quadratic algebra; compare [20,

page 69] and [5, (2.8.1)]

3.7. Definition. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

quadratic ideal in kQ. The quadratic dual of Λ is defined to be Λ! = kQo/R!, where

Qo is the opposite quiver of Q and R! is the quadratic dual of R.

3.8. Proposition. Let Λ = kQ/R, where Q is locally finite and R is quadratic.

Then Λ! and Λo are quadratic algebras with (Λ!)! = Λ and (Λo)! = (Λ!)o.
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Proof. By definition, Λo and Λ! are quadratic algebras such that (Λ!)! = kQ/(R!)!

and (Λo)! = kQ/(Ro)!. Fix x, y ∈ Q0, and consider the k-linear isomorphism

ψo
2(y, x) : kQ2(x, y)→ D(kQo

2(y, x)) : γ → (γo)∗.

Given γ, ρ ∈ kQ2(x, y), it is easy to see that (γo)∗(ρo) = ρ∗(γ) = γ∗(ρ). By

definition, γ ∈ (R!)!
2(x, y) if and only if (γo)∗(ρo) = 0, for all ρo ∈ R!

2(y, x). That

is, ρ∗(γ) = 0, for all ρ∗ ∈ R2(x, y)⊥. Since R2(x, y) is finite dimensional, the latter

condition is equivalent to γ ∈ R2(x, y). Thus, (R!)! = R, and hence, (Λ!)! = Λ.

Next, γ ∈ (Ro)!
2(x, y) if and only if (γo)∗(ρo) = 0, for all ρo ∈ Ro

2(y, x). That

is, γ∗(ρ) = 0, for all ρ ∈ R2(x, y). This is equivalent to γo ∈ R!
2(y, x), that is,

γ ∈ (R!)o
2(x, y). Hence, (Ro)! = (R!)o, and thus, (Λo)! = k(Qo)o/(R!)o = (Λ!)o.

The proof of the proposition is completed.

Remark. It is known that a left finite quadratic algebra is the right quadratic dual

of its left quadratic dual; see [5, (2.8.1)].

We shall give an alternative description of the local Koszul complexes of Λ in

terms of Λ!. We need some notation for Λ!. Write ex = εx +R! and P !
x = Λ!ex, for

x ∈ Q0; and γ! = γo +R!, for γ ∈ kQ. Then, Λ! is graded as Λ! = ⊕n≥0Λ!
n, where

Λ!
n = {γ! | γ ∈ kQn}. Fix a ∈ Q0. Given α ∈ Q1(y, x), the right multiplication by

ᾱ yields a Λ-linear map P [ᾱ] : Px → Py; and the right multiplication by α! yields

a k-linear map P [α!]a : eaΛ!
n−1ey → eaΛ!

nex. We define a sequence L.a as follows :

· · · // L−na
d−na // L1−n

a
// · · · // L−1

a

d−1
a // L0

a
// 0 // · · ·

with L−na = ⊕x∈Q0Px ⊗ D(eaΛ!
nex) for n ≥ 0; and d−na = (d−na (y, x))(y,x)∈Q0×Q0

for n > 0, where

d−na (y, x) =
∑
α∈Q1(y,x)P [ᾱ]⊗DP [α!]a : Px ⊗D(eaΛ!

nex)→ Py ⊗D(eaΛ!
n−1ey).

3.9. Lemma. Let Λ = kQ/R, where Q is a locally finite quiver and R is a quadratic

ideal. If a ∈ Q0, then L.a is isomorphic to the local Koszul complex of Λ at a.

Proof. Fix a, x ∈ Q0 and n ≥ 0. Recall that D(kQn(a, x)) = {γ∗ | γ ∈ kQn(a, x)}
and eaΛ!

nex = {γ! = γo + R! | γ ∈ kQn(a, x)}. By Lemma 3.6, γ∗ ∈ R(n)(a, x)⊥ if

and only if γo ∈ R!
n(x, a). Thus, we obtain a k-bilinear form

<−,−>: R(n)(a, x)× eaΛ!
nex → k : (δ, γ!) 7→ γ∗(δ),

which is non-degenerate on the right. If δ ∈ R(n)(a, x) is non-zero, then γ∗(δ) 6= 0,

that is, <δ, γ!> 6= 0, for some γ ∈ kQn(a, x). Hence, <−,−> is non-degenerate.

This yields a k-linear isomorphism

φn(a, x) : R(n)(a, x)→ D(eaΛ!
nex) : δ →<δ,−>.

We claim, for x, y ∈ Q0 and n > 0, that

R(n)(a, x)

∑
α∈Q1(y,x) ∂α //

φn(a,x)
��

R(n−1)(a, y)

φn−1(a,y)
��

D(eaΛ!
nex)

∑
α∈Q1(y,x)DP [α!]a

// D(eaΛ!
n−1ey)

commutes. Given δ ∈ R(n)(a, x) and ζ ∈ kQn−1(a, y), by Lemma 3.5(2), we obtain
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α∈Q1(y,x)DP [α!]a(φn(a, x)(δ))(ζ !) =

∑
α∈Q1(y,x) φn(a, x)(δ)(ζ !α!)

=
∑
α∈Q1(y,x)(αζ)∗(δ)

=
∑
α∈Q1(y,x) ζ

∗(∂α(δ))

= [φn−1(a, y)
∑
α∈Q1(x,y)∂α(δ)](ζ !).

Thus, we obtain a commutative diagram with vertical isomorphisms

⊕x∈Q0
Px ⊗R(n)(a, x)

∂−na //

⊕(1⊗φn(a,x)) ��

⊕y∈Q0
Py ⊗R(n−1)(a, y)

⊕(1⊗φn−1(a,y))��
⊕x∈Q0

Px ⊗D(eaΛ!
nex)

d−na // ⊕y∈Q0
Py ⊗D(eaΛ!

n−1ey),

for every n > 0. The proof of the lemma is completed.

The following result is a generalization of Proposition 2.9.1 in [5], where Λ is

assumed to be left finite; see also [25, Theorem 30].

3.10. Theorem. Let Λ = kQ/R, where Q is a locally finite quiver and R is a

quadratic ideal. Then Λ is Koszul if and only if Λ! is Koszul.

Proof. By Proposition 3.8, (Λ!)! = Λ. Thus, it suffices to prove the necessity.

Suppose that Λ is Koszul. Fix a ∈ Q0. By Lemma 3.9, the local Koszul complex

of Λ! at a is isomorphic to the sequence

L. : · · · // L−n
d−n // L1−n // · · · // L−1 d−1

// L0 // 0 // · · ·
with L−n = ⊕x∈Q0P

!
x ⊗D(eaΛnex) and d−n=(d−n(y, x))(y,x)∈Q0×Q0

, where

d−n(y, x) =
∑
α∈Q1(x,y)P [α!]⊗DP [ᾱ]a : P !

x ⊗D(eaΛnex)→ P !
y ⊗D(eaΛn−1ey).

We claim, for n > 0, that L. is exact at the degree −n. Since d−n−1 and d−n are

homogeneous of degree one, by Lemma 1.10, it amounts to establish, for all b ∈ Q0

and s ∈ Z, the exactness of the sequence

(∗) ⊕x∈Q0
ebΛ

!
s−1ex ⊗D(eaΛn+1ex)

d−n−1
s−1,b // ⊕y∈Q0

ebΛ
!
sey ⊗D(eaΛney)

d−ns,b // ⊕z∈Q0
ebΛ

!
s+1ez ⊗D(eaΛn−1ez)

with d−ns,b = (d−nb (z, y))(z,y)∈Q0⊗Q0
, where d−ns,b (z, y) =

∑
α∈Q1(y,z)P [α!]b ⊗DP [ᾱ]a.

If s < 0, then ebΛ
!
sey = 0, and hence, (∗) is exact. In case s = 0, it becomes

0 // ebΛ
!
0eb ⊗D(eaΛneb)

d−ns,b // ⊕z∈Q0ebΛ
!
1ez ⊗D(eaΛn−1ez)

with d−ns,b = (d−ns,b (z, b))z∈Q0
, where d−ns,b (z, b) =

∑
α∈Q1(b,z) P [α!]b ⊗DP [ᾱ]a.

Let f ∈ D(eaΛneb) be a non-zero function. In particular, f(uβ̄) 6= 0, for some

β ∈ Q1(b, z), u ∈ eaΛn−1ez and z ∈ Q0. That is, (DP [β̄]a)(f)(u) 6= 0, and hence,

(DP [β̄]a)(f) 6= 0. Now, d−ns,b (z, b)(eb ⊗ f) =
∑
α∈Q1(b,z) α

! ⊗ (DP [ᾱ]a)(f), which

is non-zero since the α! with α ∈ Q1(b, z) are k-linearly independent. Thus, the

sequence (∗) is exact.

It remains to consider the case s > 0. Since Λ is Koszul, by Theorem 3.4, the

complex L.b as stated in Lemma 3.9 is exact at degree −s. By Lemma 1.10, we

obtain an exact sequence
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(∗∗) ⊕z∈Q0 eaΛn−1ez ⊗D(ebΛ
!
s+1ez)

d−s−1
b,n−1,a// ⊕y∈Q0eaΛney ⊗D(ebΛ

!
sey)

d−sb,n,a // ⊕x∈Q0
eaΛn+1ex ⊗D(ebΛ

!
s−1ex),

where d−s−1
b,n−1,a = (

∑
α∈Q1(y,z)P [ᾱ]a⊗DP [α!]b)(y,z)∈Q0×Q0

. Applying the duality D

to the exact sequence (∗∗), we obtain an exact sequence which, by Lemma 1.3, is

isomorphic to (∗). The proof of the theorem is completed.

Remark. In case Λ is Koszul, one calls Λ! the Koszul dual of Λ.

We conclude this section by studying when the opposite algebra of a Koszul

algebra is Koszul. By Proposition 3.8, (Λo)! = (Λ!)o = kQ/(R!)o. We fix some

notation for (Λ!)o. Write γ̂ = γ+(R!)o for γ ∈ kQ; but ex = εx+(R!)o for x ∈ Q0.

Then (Λ!)o = ⊕n≥0(Λ!)o
n, where (Λ!)o

n = {γ̂ | γ ∈ kQn}. Fix a ∈ Q0. Given

α ∈ Q1(y, x), taking the dual of the right multiplication by ᾱo yields a Λ-linear

map I[ᾱ] = DP [ᾱo] : Ix → Iy, and the left multiplication by α! yields a k-linear

map P !
a(α!) : exΛ!

nea → eyΛ!
n+1ea. We define a sequence T .a over injΛ as follows:

· · · // 0 // T 0
a

d0a // T 1
a

// · · · // Tna
dna // Tn+1

a
// · · ·

with Tna = ⊕x∈Q0Ix ⊗ exΛ!
nea and dna = (dna(y, x))(y,x)∈Q0×Q0

for n ≥ 0, where

dna(y, x) =
∑
α∈Q1(y,x) I[ᾱ]⊗ P !

a(α!) : Ix ⊗ exΛ!
nea → Iy ⊗ eyΛ!

n+1ea.

3.11. Lemma. Let Λ = kQ/R, where Q is locally finite and R is quadratic. If

a ∈ Q0, then T .a is isomorphic to the dual of the local Koszul complex of Λo at a.

Proof. Fix a ∈ Q0. By Proposition 3.8 and Lemma 3.9, the local Koszul complex

of Λo at a is isomorphic to the complex L. as follows:

· · · // L−n
d−n // L1−n // · · · // L−1 d−1

// L0 // 0,

with L−n = ⊕y∈Q0
P o
y ⊗D(ea(Λ!)o

ney) and d−n = (d−n(x, y))(x,y)∈Q0×Q0
, where

d−n(x, y) =
∑
α∈Q1(y,x) P [ᾱo]⊗DP [α̂]a : P o

y⊗D(ea(Λ!)o
n+1ey)→ P o

x⊗D(ea(Λ!)o
nex).

Since ea(Λ!)o
nex is finite dimensional, we may compose the canonical k-isomorphism

D2(ea(Λ!)o
nex)→ ea(Λ!)o

nex with the k-isomorphism ea(Λ!)o
nex → exΛ!

nea, sending

γ̂ to γ!. This yields a k-isomorphism θn(a, x) : D2(ea(Λ!)o
nex)→ exΛ!

nea such that

Ix ⊗D2(ea(Λ!)o
nex)

1⊗θn(a,x) ��

I[ᾱ]⊗DP [α̂]a // Iy ⊗D2(ea(Λ!)o
n+1ey)

1⊗θn+1(a,y)��
Ix ⊗ exΛ!

nea
I[ᾱ]⊗P !

a(α!) // Iy ⊗ eyΛ!
n+1ea

commutes, for every α ∈ Q1(y, x). Since the L−n are finite direct sums, by Lemma

1.8(1), we see that D(L.) ∼= T .a. The proof of the lemma is completed.

As another preparation, we need to consider the Yoneda Ext-groups in ModΛ

which are defined in a canonical way; see, for example, [18, Section III.5].

3.12. Lemma. Let Λ = kQ/R be a Koszul algebra. Then Extn
Λ

(Sb, Sa) = ebΛ
!
nea,

for all a, b ∈ Q0 and n ≥ 0.
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Proof. Let a, b ∈ Q0. By Theorem 3.4 and Lemma 3.9, L.b is a J-minimal projective

resolution of Sb. Thus, Extn
Λ

(Sb, Sa) ∼= Hom
Λ
(L−nb , Sa) for n ≥ 0; see [18, (III.6.4)].

Since ebΛ
!
nea is finite dimensional, we deduce from Proposition 2.1(3) that

Extn
Λ

(Sb, Sa) ∼= Hom
Λ
(Pa ⊗D(ebΛ

!
nea), Sa) ∼= Homk(D(ebΛ

!
nea), k) ∼= ebΛ

!
nea.

The proof of the lemma is completed.

In case Λ is locally finite dimensional, we obtain the following generalization of

Proposition 2.2.1 stated in [5].

3.13. Theorem. Let Λ = kQ/R be a locally finite dimensional qudratic algebra.

The following statements are equivalent.

(1) The algebra Λ is Koszul.

(2) The opposite algebra Λo is Koszul.

(3) The complex T.a is an injective co-resolution of Sa, for every a ∈ Q0.

Proof. By Proposition 1.6(3), Λ is strongly locally finite dimensional, and by Propo-

sition 2.5, T .a is a complex of injective modules. First, assume that T .a is an injective

co-resolution of Sa for every a ∈ Q0. Since Λo is locally finite dimensional, by Lem-

mas 1.8 and 3.11, every local Koszul complex of Λo is exact at all non-zero degrees.

By Theorem 3.4, Λo is Koszul. Thus, Statement (3) implies Statement (2).

It suffices to show that Statement (1) implies Statement (3). Assume that Λ is

Koszul. Fix a ∈ Q0. Recall that (T .a, d
.) is defined by T ia = ⊕x∈Q0

Ix ⊗ exΛ!
iea and

di = (di(y, x))(y,x)∈Q0×Q0
for i ≥ 0, where

di(y, x) =
∑
α∈Q1(y,x) I[ᾱ]⊗ P !

a(α!) : Ix ⊗ exΛ!
iea → Iy ⊗ eyΛ!

i+1ea.

In particular, T 0
a = Ia⊗kea and T 1

a = ⊕sj=1Ibj⊗kβ!
j , where βj : bj → a, j = 1, . . . , s,

are the arrows in Q1(−, a). Consider the Λ-linear morphism d−1 : Sa → T 0, sending

ea + Jea to e?a ⊗ ea. By Corollary 2.10, we have an exact sequence

0 // Sa
d−1
// T 0
a

d0 // T 1
a

// · · · // Tn−1
a

dn−1
// Tna

pn // Cn+1 // 0,

for some n ≥ 1, such that di = ji+1pi, where pi : T ia → Ci+1 is the cokernel of di−1,

and ji+1 : Ci+1 → T i+1
a is an injective envelope, for i = 0, 1, . . . , n− 1. Let y ∈ Q0.

It is well-known; see the proof of [18, (III.6.4)], and also [18, (III.8.2)], that

Extn+1
Λ

(Sy, Sa) ∼= Hom
Λ
(Sy, C

n+1)/Im(Hom
Λ
(Sy, p

n)).

On the other hand, applying Hom
Λ
(Sy,−) to the short exact sequence

0 // Cn
jn // Tna

pn // Cn+1 // 0,

we obtain an exact sequence

Hom
Λ
(Sy, C

n)
jn∗ // Hom

Λ
(Sy, T

n
a )

pn∗ // Hom
Λ
(Sy, C

n+1) // Extn+1
Λ

(Sy, Sa) // 0.

Since Sy is simple, jn∗ is surjective. Thus, HomΛ(Sy, C
n+1) ∼= Extn+1

Λ
(Sy, Sa). By

Lemma 3.12, we obtain dimkHom
Λ
(Sy, C

n+1) = dimk eyΛ!
n+1ea, and consequently,

SJ(Cn+1) ∼= ⊕y∈Q0
Sy ⊗ eyΛ!

n+1ea. Since eyΛ!
n+1ea is finite dimensional, so is

SJ(Cn+1). By Corollary 2.8 and Lemma 1.7(3), SJ(Cn+1) is essential in Cn+1.

Thus, we obtain an injective envelope jn+1 : Cn+1 → ⊕y∈Q0
Iy⊗eyΛ!

n+1ea = Tn+1
a ;

see 2.9. We claim that the sequence
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0 // Sa
d−1
// T 0
a

d0 // · · · d
n−2
// Tn−1
a

dn−1
// Tna

dn // Tn+1
a

is exact with SJ(Tn+1
a ) ⊆ Im(dn). It suffices to show that Ker(dn) = Im(dn−1).

Indeed, set g = jn+1pn : Tna → Tn+1
a . Since dndn−1 = 0 and jn+1 is an injective

envelope, dn = hg for some Λ-linear morphism h : Tn+1
a → Tn+1

a . Write

g = (g(z, x))(z,x)∈Q0×Q0
: ⊕x∈Q0 Ix ⊗ exΛ!

nea → ⊕z∈Q0 Iz ⊗ ezΛ!
n+1ea,

where g(z, x) : Ix ⊗ exΛ!
nea → Iz ⊗ ezΛ!

n+1ea is Λ-linear, and

h = (h(y, z))(y,z)∈Q0×Q0
: ⊕z∈Q0

Iz ⊗ ezΛ!
n+1ea → ⊕y∈Q0

Iy ⊗ eyΛ!
n+1ea,

where h(y, z) : Iz ⊗ ezΛ!
n+1ea → Iy ⊗ eyΛ!

n+1ea is Λ-linear.

Given x, y, z ∈ Q0, choose a basis {ᾱ | α ∈ Q1(z, x)} ∪ Uz,x of exJez, where Uz,x
consists of homogeneous elements of degrees > 1, and a basis Vy,z of homogeneous

elements of ezJey. By Lemma 2.6, h(y, y) = 1Iy ⊗ hey +
∑
v∈Vy,y I[v] ⊗ hv, where

hey , hv are k-linear maps, and h(y, z) =
∑
v∈Vy,z I[v] ⊗ hv in case z 6= y. Since g

vanishes on SJ(Ta), we obtain

g(z, x) =
∑
α∈Q1(z,x) I[ᾱ]⊗ gα +

∑
u∈Uz,x I[u]⊗ gu,

where gα, gu are k-linear maps. In view of Lemma 2.6, we can write dn(y, x) as

dn(y, x) =
∑
α∈Q1(y,x) I[ᾱ]⊗ (hey ◦ gα). By the uniqueness, (hey ◦ gα) = P !

a(α!), for

every α ∈ Q1(y, x). Thus, we may assume that h(y, y) = 1Iy ⊗ hey , and h(y, z) = 0

for z 6= y. Fix some y ∈ Q0. Let w ∈ eyΛ!
n+1ea, say w = ξ! for some ξ ∈ Qn+1(y, a).

Writing ξ = ζα, where α ∈ Q1(y, x) and ζ ∈ Qn(x, a) for some x ∈ Q0, we see that

w = α!ζ ! = P !
a(α!)(ζ !) = hey (gα(ζ !)).

Thus, hey is surjective. Since eyΛ!
n+1ea is finite dimensional, hey is bijective. Thus,

h is a Λ-linear isomorphism. Then, Ker(dn) = Ker(g) = Ker(pn) = Im(dn−1). Our

claim is established. By induction, T .a is a minimal injective co-resolution of Sa.

The proof of the theorem is completed.

4. Double complexes and extension of functors

The objective of this section is to provide tools for us to construct the Koszul duality.

An additive category is called concrete if the objects are abelian groups and the

morphisms are abelian group morphisms. Throughout this section, A,B, C stand

for concrete additive categories, which are assumed to be full additive subcategories

of concrete abelian categories.

Let (M.., v..
M
, h..
M

) be a double complex over A, where v..
M

is the vertical differ-

ential and h..
M

is the horizontal one. We shall call (M i,., vi, .
M

) the i-th column, and

(M.,j , h.,j
M

) the j-th row, of M... A double complex morphism f.. : M.. → N..

consists of morphisms f i,j : M i,j → N i,j in A making the diagram

N i,j+1

M i,j+1

fi,j+1 66

N i,j
hi,j
N //

vi,j
N

OO

N i+1,j

M i,j

vi,j
M

OO

fi,j 66
hi,j
M // M i+1,j fi+1,j

66
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commute, for i, j ∈ Z, that is, f i,. : M i,.→ N i,. and f.,j : M.,j → N.,j are complex

morphisms, for i, j ∈ Z. Thus, the double complexes over A form an additive

category, written as DC(A). Assume that A has countable direct sums. Given

M.. ∈ DC(A), its total complex T(M..) is defined by T(M..)n = ⊕i∈ZM i,n−i and

dnT(M..) = (dnT(M..)(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZM j,n+1−j ,

where

dnT(M..)(j, i) =


vi,n−i
M

, j = i;

hi,n−i
M

, j = i+ 1;

0, j 6= i, i+ 1.

Given a morphism f .. : M..→ N.. in DC(A), we put

T(f..)n = (T (f..)n(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZN j,n−j ,

where

T(f..)n(j, i) =

{
f i,n−i, j = i

0, j 6= i,

One verifies easily that T(f..)n+1◦dnT(M..) = dnT(N..)◦T(f..)n. This yields a morphism

T(f..) = (T(f..)n)n∈Z : T(M..)→ T(N..) in C(A), called the total morphism of f...

4.1. Lemma. Let A be a concrete additive category with countable direct sums. The

above construction yields a functor T : DC(A)→ C(A).

It is important to know when the total complex of a double complex is acyclic.

We need some terminology. Let M .. ∈ DC(A). Given n ∈ Z, the n-diagonal of M ..

consists of the objects M i,n−i, i ∈ Z. We shall say that M .. is n-diagonally bounded

(respectively, bounded-above, bounded-below) if M i,n−i = 0 for all but finitely many

(respectively, positive, negative) integers i. Moreover, M .. is called diagonally

bounded (respectively, bounded-above, bounded-below) if it is n-diagonally bounded

(respectively, bounded-above, bounded-below) for every n ∈ Z. Finally, we say that

M .. is bounded if there exists some n > 0 such that M i,j 6= 0 only if −n ≤ i, j ≤ n.

4.2. Lemma. Let A be a concrete additive category with countable direct sums.

Given M..∈ DC(A) and n ∈ Z, we obtain Hn(T(M..)) = 0 in case

(1) M.. is n-diagonally bounded-below with Hn−j(M.,j) = 0 for all j ∈ Z; or

(2) M.. is n-diagonally bounded-above with Hn−i(M i,.) = 0 for all i ∈ Z.
Proof. Let (M.., v.., h..) ∈ DC(A). We shall only consider the case where Statement

(1) holds for some n. Then, there exists some t < 0 such that M i,n−i = 0 for all

i < t. Write (X., d.) for T(M..). Consider c = (ci,n−i)i∈Z ∈ Ker(dn), where

ci,n−i ∈M i,n−i. Then, vi,n−i(ci,n−i) + hi−1,n−i+1(ci−1,n−i+1) = 0, for i ∈ Z. Since

c has at most finitely many non-zero components, we may assume that ci,n−i = 0

for all i > 0. Then, h0,n(c0,n) = −v1,n−1(c1,n−1) = 0. Since H0(M.,n) = 0, there

exists some x−1,n ∈M−1,n such that c0,n = h−1,n(x−1,n). This yields

h−1,n+1(c−1,n+1 − v−1,n(x−1,n)) = h−1,n+1(c−1,n+1) + v0,n(c0,n) = 0.

Since H−1(M.,n+1) = 0, we see that c−1,n+1−v−1,n(x−1,n) = h−2,n+1(x−2,n+1),

with x−2,n+1 ∈ M−2,n+1. Continuing this process, we obtain xi,n−1−i ∈ M i,n−1−i

such that ci,n−i = vi,n−1−i(xi,n−1−i) + hi−1,n−i(xi−1,n−i), for i = −1,−2, . . . , t.
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Since M t−1,n−t+1 = 0, we see that vt−1,n−t(xt−1,n−t) = 0 = ct−1,n−1+1. Setting

x = (xi,n−1−i)i∈Z, where xi,n−1−i = 0 for i ≥ 0 or i < t−1, we obtain c = dn−1(x).

The proof of the lemma is completed.

As an immediate consequence of Lemma 4.2, we obtain the promised generaliza-

tion of the Acyclic Assembly Lemma stated, for example, in [31, (2.7.1)].

4.3. Proposition. Let A be a concrete additive category with countable direct sums.

If M.. ∈ DC(A), then T(M..) is acyclic in case M.. is diagonally bounded-below

with acyclic rows or diagonally bounded-above with acyclic columns.

Now, we shall introduce a homotopy theory in DC(A). Given a double com-

plex (M.., v..
M
, h..
M

), we define its horizontal shift M..[1] to be the double complex

(X.., v..
X
, h..
X

) such that Xi,j = M i+1,j , vi,j
X

= −vi+1,j
M

and hi,j
X

= −hi+1,j
M

. We shall

say that a morphism f.. : M..→ N.. is horizontally null-homotopic if there exist

ui,j : M i,j → N i−1,j , with i, j ∈ Z, such that ui+1,jhi,j
M

+ hi−1,j
N

ui,j = f i,j and

vi−1,j
N

ui,j + ui,j+1vi,j
M

= 0.

4.4. Lemma. Let A be a concrete additive category with countable direct sums.

(1) If M..∈ DC(A), then T(M..[1]) = T(M..)[1].

(2) If f.. : M..→ N.. is horizontally null-homotopic, then T(f..) is null-homotopic.

Proof. We shall prove only Statement (2). Let f .. : M..→ N.. be a horizontally

null-homotopic morphism DC(A). Let ui,j : M i,j → N i−1,j ; i, j ∈ Z be morphisms

such that f i,j = ui+1,j ◦ hi,j
M

+ hi−1,j
N

◦ ui,j and vi−1,j
N

ui,j + ui,j+1vi,j
M

= 0. Define a

morphism hn = (hn(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZN j,n−j , where

hn(j, i) =

{
ui,n−i, if j = n− i;
0, if j = n− i.

Given any n, i, j ∈ Z, we obtain∑
p∈Z h

n+1(j, p) ◦ dnT(M..)(p, i) = hn+1(j, j + 1) ◦ dnT(M..)(j + 1, i)

=


ui+1,n−i ◦ hi,n−i

M
, j = i;

ui,n+1−i ◦ vi,n−i
M

, j = i− 1;

0, j 6= i, i− 1,
and ∑

q∈Z d
n−1
T(N..)(j, q) ◦ h

n(q, i) = dn−1
T(N..)(j, i− 1) ◦ hn(i− 1, i)

=


hi−1,n−i
N

◦ ui,n−i, j = i;

vi−1,n−i
N

◦ ui,n−i, j = i− 1;

0, j 6= i, i− 1.

This yields T(f..)n = hn+1 ◦dnT(M..) +dn−1
T(N..) ◦h

n. That is, T(f..) is null-homotopic.

The proof of the lemma is completed.

Let f.. : M..→ N.. be a morphism in DC(A). We define its horizontal cone Hf..

to be the double complex (H.., v.., h..) such that Hi,j = M i+1,j ⊕N i,j and

vi,j =

(
−vi+1,j

M
0

0 vi,j
N

)
, hi,j =

(
−hi+1,j

M
0

f i+1,j hi,j
N

)
.

This double complex is visualized as follows:
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...
...

· · · // M i+1,j+1 ⊕N i,j+1

OO −hi+1,j+1
M

0

f i+1,j+1 hi,j+1
N


// M i+2,j+1 ⊕N i+1,j+1

OO

// · · ·

· · · // M i+1,j ⊕N i,j

−hi+1,j
M

0

f i+1,j hi,j
N


//

−vi+1,j
M

0

0 vi,j
N


OO

M i+2,j ⊕N i+1,j

−vi+2,j
M

0

0 vi+1,j
N


OO

// · · ·

...

OO

...

OO

whose j-th row is the mapping cone of f.,j : M.,j → N.,j , for every j ∈ Z. In a

similar fashion, we may define the vertical cone Vf.. of f.. so that its i-th column is

the mapping cone of f i,. : M i,.→ N i,., for every i ∈ Z.

4.5. Lemma. Let A be a concrete additive category with countable direct sums. If

f.. : M..→ N.. is a morphism in DC(A), then

T(Hf..) = CT(f..) = T(Vf..).

Proof. Let f.. : M..→ N.. be a morphism in DC(A). Given any n ∈ Z, we obtain

T(Hf..)n = ⊕i∈Z(M i+1,n−i ⊕N i,n−i) and dnT(Hf..) = (dnT(Hf..)(j, i))(j,i)∈Z×Z,

where dnT(Hf..)(j, i) : M i+1,n−i ⊕N i,n−i →M j+1,n+1−j ⊕N j,n+1−j is defined by

dnT(Hf..)(j, i) =



(
−vi+1,n−i

M
0

0 vi,n−i
N

)
, j = i;

(
−hi+1,n−i

M
0

f i+1,n−i hi,n−i
N

)
, j = i+ 1;

0, j 6= i, i+ 1.

On the other hand, T(f..) : T(M..) → T(N..) is a morphism in C(A), whose

mapping cone CT(f..) is defined by

CnT(f..) = T(M..)n+1 ⊕ T(N..)n = ⊕i∈Z(M i+1,n−i ⊕N i,n−i) = T(Hf..)n,

and

dnC
T(f..)

=

(
−dn+1

T(M..) 0

T(f..)n+1 dnT(N..)

)
= (dn

CT(f..)
(j, i))(j,i)∈Z×Z,

where dn
CT(f..)

(j, i) : M i+1,n−i ⊕N i,n−i →M j+1,n+1−j ⊕N j,n+1−j is defined to be

(
−dn+1

T(M..)(j, i) 0

T(f..)n+1(j, i) dnT(N..)(j, i)

)
=



(
−vi+1,n−i

M
0

0 vi,n−i
N

)
, j = i;(

−hi+1,n−i
M

0

f i+1,n−i hi,n−i
N

)
, j = i+ 1;

0, j 6= i, i+ 1.
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Thus, dn
CT(f..)

(j, i) = dnT(Hf..)(j, i), for i, j ∈ Z. This establishes the first part of the

lemma, and the second part follows similarly. The proof of the lemma is completed.

As an application, we obtain a condition for the total morphism of double com-

plex morphism is a quasi-isomorphism.

4.6. Lemma. Let A be a concrete additive category with countable direct sums.

Consider a morphism f.. : M.. → N.. in DC(A) such that f i,. : M i,.→N i,. is a

quasi-isomorphism, for every i ∈ Z. If M.. and N.. are diagonally bounded-above,

then T(f..) is a quasi-isomorphism.

Proof. Assume that M.. and N.. are diagonally bounded-above. Then, the vertical

cone Vf.. of f.. is also diagonally bounded-above. Given i ∈ Z, since f i,. :M i,.→N i,.

is a quasi-isomorphism, its cone, that is the i-th column of Vf.., is acyclic. By

Proposition 4.3, T(Vf..), that is CT(f..); see (4.5), is acyclic. Thus, T(f..) is a

quasi-isomorphism. The proof of the lemma is completed.

Let B have countable direct sums. Consider a functor

F : A → C(B) : M → F(M).; f 7→ F(f)..

We shall extend it to to C(A). First, we construct a functor FDC : C(A)→ DC(B).

Given a complex M. ∈ C(A), applying F to its components yields a double complex

F(M .). over B as follows:
...

...

· · · // F(M i)j+1

OO

F(diM )j+1

// F(M i+1)j+1

OO

// · · ·

· · · // F(M i)j
F(diM )j //

(−1)idj
F(Mi)

OO

F(M i+1)j

(−1)i+1dj
F(Mi+1)

OO

// · · ·

...

OO

...

OO

whose i-th column is ti(F(M i).), the i-th twist of F(M i).. Given a morphism

f. : M.→ N. in C(A), we obtain a commutative diagram

F(N i)j+1

F(M i)j+1

F(fi)j+1 77

F(N i)j
F(diN )j //

(−1)idj
F(Ni)

OO

F(N i+1)j ,

F(M i)j

(−1)idj
F(Mi)

OO

F(fi)j 77

F(diM )j // F(M i+1)j
F(fi+1)j

77

for all i, j ∈ Z. Thus, F(f.).= (F(f i)j)i,j∈Z : F(M.).→ F(N.). is a morphism.

4.7. Proposition. Let A,B be concrete additive categories with B having countable

direct sums. Then every functor F : A → C(B) induces a functor
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FDC : C(A)→ DC(B) : M. 7→ F(M.).; f. 7→ F(f.)..

(1) If M. is an object in C(A), then FDC(M.[1]) = FDC(M.)[1].

(2) If f. is a morphism in C(A), then FDC(Cf.) = HFDC(f.). Moreover, FDC(f.)
is horizontally null-homotopic whenever f. is null-homotopic.

Proof. Statement (1) is evident. Let f. : M.→ N. be a morphism in C(A). Write

its mapping cone as (C., d.
C

). Then, F(Cn). = F(Mn+1). ⊕ F(Nn)., and

d.F(Cn) =

(
d.F(Mn+1) 0

0 d.F(Nn)

)
and

F(dn
C

). =

(
−F(dn+1

M
). 0

F(fn+1). F(dn
N

).

)
.

Let (H .., v..
H
, h..
H

) be the horizontal cone of FDC(f .) : FDC(M .)→ FDC(N .). Then,

Hi,j = F(M i+1)j ⊕ F(N i)j = F(Ci)j = FDC(C.)i,j

with horizontal differentials

hi,j
H

=

(
−F(dMi+1)j 0

F(f i+1)j F(dNi)
j

)
= F(diC)j = hi,j

FDC (C
.
)

and vertical differentials

vi,j
H

=

(−1)idjF(Mi+1) 0

0 (−1)idjF(Ni)

 = (−1)idjF(Ci) = vi,j
FDC (C

.
)
.

This shows that C. = H., and the first part of Statement (2) is established.

Suppose now that f. is null-homotopic. Let ui : M i → N i−1 be morphisms such

that f i = ui+1 ◦di
M

+di−1
N
◦ui, for all i ∈ Z. In particular, for any j ∈ Z, we obtain

F(f i)j = F(ui+1)j ◦ F(di
M

)j + F(di−1
N

)j ◦ F(ui)j .

Since F(ui). : F(M i)→ F(N i−1). is a complex morphism, we obtain

(−1)iF(ui)j+1 ◦ djF(Mi) + (−1)idjF(Ni−1) ◦ F(ui)j = 0,

for all j ∈ Z. Considering F(ui)j : F(M i)j → F(N i−1)j with i, j ∈ Z, we see that

FDC(f.) is horizontally null-homotopic. The proof of the proposition is completed.

The following statement, which is a general version of Lemma 3.7 stated in [2],

follows immediately from Lemma 4.5, Lemma 4.7 and Propositions 4.4.

4.8. Proposition. Let A,B be concrete additive categories with B having countable

direct sums. Then, every functor F : A → C(B) extends to a functor

FC = T ◦ FDC : C(A)→ C(B).

(1) If M is an object in A, then FC(M) = F(M)..
(2) If M. is a complex in C(A), then FC(M.[1]) = FC(M.)[1].

(3) If f. is a morphism in C(A), then FC(Cf.) = CFC(f.) and FC(f.) is null-

homotopic whenever f. is null-homotopic.
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Remark. The method of extending a functor stated in Proposition 4.8 has benn

already used by many authors under some special circumstances; see [2, 5, 16, 29],

The following result is essential for our construction of the Koszul duality.

4.9. Theorem. Let A,B be concrete additive categories with B having countable

direct sums. Let F : A → C(B) be a functor such that FC sends a derivable

subcategory A of C(A) into a derivable subcategory B of C(B).

(1) If F is exact such that FDC sends complexes in A to diagonally bounded-below

double complexes, then FC sends acyclic complexes in A to acyclic ones.

(2) If FC sends acyclic complexes in A to acyclic ones, then it induces a diagram

A //

FC ��

K(A ) //

FK��

D(A )

FD��
B // K(B) // D(B),

which is commutative with FK and FD being triangle-exact.

Proof. (1) Let F be exact such that, for every complex M. ∈ A , the double complex

F(M.). is diagonally bounded-below. If M. is acyclic, then F(M.). has acyclic rows,

and by Proposition 4.3, its total complex, that is FC(M.), is acyclic.

(2) By Proposition 4.8, there exists a triangle-exact functor FK : K(A )→ K(B)

making the left square commute. If FC sends acyclic complexes in A to acyclic

ones in B, then FK sends quasi-isomorphisms in K(A ) to quasi-isomorphisms in

K(B). Thus, there exists a triangle-exact functor FD : D(A )→ D(B) making the

right square commute. The proof of the theorem is completed.

We shall also need the following fact that the extension of functors is compatible

with the composition of functors.

4.10. Lemma. Let F : A → C(B) and G : B → C(C) be functors, where A,B, C are

concrete additive categories. If B, C have countable direct sums, then

(GC ◦ F)C = GC ◦ FC .

Proof. Assume that B, C have countable direct sums. Fix M. ∈ C(A). Given

n ∈ Z, by definition, we obtain (GC ◦ F)C(M .)n = ⊕i∈Z GC(F(M i).)n−i and

dn(GC◦F)C(M.) = (dn(GC◦F)C(M.)(j, i))(j,i)∈Z×Z, where

dn(GC◦F)C(M.)(j, i) : GC(F(M i).)n−i → GC(F(M j).)n+1−j

is given by

dn(GC◦F)C(M.)(j, i) =


(−1)idn−i

GC(F(Mi).), j = i;

GC(F(diM ).)n−i, j = i+ 1

0, j 6= i, i+ 1.

Furthermore, by definition, we obtain a diagram

GC(F(M i).)n−i
GC(F(diM )

.
)n−i // GC(F(M i+1).)n−i

⊕p∈ZG(F(M i)p)n−i−p
(GC(F(diM )

.
)n−i(q,p))

(q,p)∈Z×Z // ⊕q∈ZG(F(M i+1)q)n−i−q,
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where

GC(F(diM ).)n−i(q, p) =

{
G(F(diM )p)n−i−p, q = p;

0, q 6= p,

and a diagram

GC(F(M i).)n−i
dn−i
GC(F(Mi)

.
) // GC(F(M i).)n+1−i

⊕p∈ZG(F(M i)p)n−i−p

(
dn−i
GC(F(Mi)

.
)
(q,p)

)
(q,p)∈Z×Z // ⊕q∈ZG(F(M i)q)n+1−i−q,

where

dn−i
GC(F(Mi).)(q, p) =


(−1)pdn−i−pG(F(Mi)p), q = p;

G(dpF(Mi))
n−i−p, q = p+ 1;

0, q 6= p, p+ 1.

Therefore, (GC ◦ F)C(M.) is the complex described by the diagram

(GC ◦ F)C(M.)n
dn
(GC◦F)C(M

.
) // (GC ◦ F)C(M.)n+1

⊕(i,p)∈Z2G(F(M i)p)n−i−p
(dn

(GC◦F)C(M
.
)
(j,q;i,p))(j,q;i,p)∈Z4// ⊕(j,q)∈Z2G(F(M j)q)n+1−j−q

where

dn(GC◦F)C(M.)(j, q; i, p) =


(−1)i+pdn−i−pG(F(Mi)p), j = i; q = p;

(−1)iG(dpF(Mi))
n−i−p, j = i; q = p+ 1;

G(F(diM )p)n−i−p j = i+ 1, q = p;

0, otherwise.

Next, given any integer n, we obtain GC(FC(M.))n = ⊕s∈ZG(FC(M.)s)n−s and

dnGC(FC(M.)) = (dnGC(FC(M.))(t, s))(t,s)∈Z×Z, where

dnGC(FC(M.))(t, s) : G(FC(M.)s)n−s → G(FC(M.)t)n+1−t

is given by

dnGC(FC(M.))(t, s) =


(−1)sdn−s

G(FC(M.)s), t = s;

G(dsFC(M.))
n−s, t = s+ 1;

0, t 6= s, s+ 1.

Furthermore, by definition, we obtain diagrams

G(FC(M.)s)n−s
dn−s
G(FC (M

.
)s) // G(FC(M.)s)n−s+1

⊕i∈Z G(F(M i)s−i)n−s
(dn−s

G(FC (M
.
)s)

(j,i))(j,i)∈Z×Z
// ⊕j∈Z G(F(M j)s−j)n−s+1,

where

dn−s
G(FC(M.)s)(j, i) =

{
dn−sG(F(Mi)s−i), j = i;

0, j 6= i,

and
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G
(
FC(M.)s

)n−s G(ds
FC (M

.
)
)n−s

// G
(
FC(M.)s+1

)n−s
⊕i∈ZG(F(M i)s−i)n−s

(G(ds
FC (M

.
)
)n−s(j,i))(j,i)∈Z×Z

// ⊕j∈ZG(F(M j)s+1−j)n−s,

where

G(dsFC(M.))
n−s(j, i) =


(−1)iG(ds−iF(Mi))

n−s, j = i;

G(F(diM )s−i)n−s, j = i+ 1;

0, j 6= i, i+ 1.

Thus, GC(FC(M.)) is the complex described by the following diagram

GC(FC(M.))n
dn
GC(FC(M

.
)) // GC(FC(M.))n+1

⊕(i,s)∈Z2 G(F(M i)s−i)n−s
(dn

GC(FC(M
.
))

(j,t;i,s))(j,t;i,s)∈Z4// ⊕(j,t)∈Z2 G(F(M j)t−j)n+1−t

where

dnGC(FC(M.))(j, t; i, s) =


(−1)sdn−sG(F(Mi)s−i), t = s, j = i;

(−1)iG(ds−iF(Mi))
n−s, t = s+ 1, j = i;

G(F(diM )s−i)n−s, t = s+ 1, j = i+ 1;

0, otherwise.

Setting p = s− i and q = t− j, we see that GC(FC(M.)) is also described by

GC(FC(M.))n
dn
GC(FC(M

.
)) // GC(FC(M.))n+1

⊕(i,p)∈Z2G(F(M i)p)n−i−p
(dn(j,q;i,p))(j,q;i,p)∈Z4 // ⊕(j,q)∈Z2G(F(M j)q)n+1−j−q

where

dn(j, q; i, p) = dnGC(FC(M.))(j, q + j; i, p+ i)

=



(−1)p+idn−i−pG(F(Mi)p), q = p, j = i;

(−1)iG(ds−iF(Mi))
n−i−p, q = p+ 1, j = i;

G(F(diM )p)n−i−p, q = p, j = i+ 1;

0, otherwise.

Thus, we see that (GC ◦ F)C(M .) = (GC ◦ FC)(M .). Similarly, we can verify that

(GC ◦ F)C(f.) = (GC ◦ FC)(f.), for every morphism f. : M.→ N. in C(A). The

proof of the proposition is completed.

To conclude this section, we shall study how to extend functorial morphisms.

4.11. Lemma. Let F,G : A → C(B) be functors, where A,B are concrete additive

categories with B having countable direct sums. Then, every functorial morphism

η : F→ G induces functorial morphisms ηDC : FDC → GDC and ηC : FC → GC .

Proof. Let η = (η.
M

)M∈A : F → G be a functorial morphism. Fix M. ∈ C(A).

Given i, j ∈ Z, since η.
M

is natural in M , we obtain a commutative diagram
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G(M i)j+1

F(M i)j+1

ηj+1

Mi 66

G(M i)j
G(diM )j //

(−1)idj
G(Mi)

OO

G(M i+1)j .

F(M i)j

(−1)idj
F(Mi)

OO

ηj
Mi 66

F(diM )j // F(M i+1)j
ηj
Mi+1

66

This yields a morphism η.
M
. = (ηj

Mi
)i,j∈Z : FDC(M.) → GDC(M.) in DC(B) and

a morphism η
M
. = T(η.

M
.) : FC(M.) → GC(M.) in C(B). Let f. : M.→ N. be a

morphism in C(A). Given i, j ∈ Z, we obtain a commutative diagram

F(M i)j
ηj
Mi //

F(fi)j

��

G(M i)j

G(fi)j

��
F(N i)j

ηj
Ni // G(N i)j .

Hence, GDC(f.) ◦ η.
M
. = η.

N
. ◦ FDC(f.). Applying T to this equation, we obtain

GC(f.) ◦ η.
M
. = η.

N
. ◦ FC(f.). Thus, η.

M
. and η

M
. are natural in M.. Therefore,

ηDC = (η.
M
.)M.∈C(A) and ηC = (η

M
.)M.∈C(A) are desired functorial morphisms.

The proof of the lemma is complete.

5. Koszul duality

The objective of this section is to describe the Koszul duality for a Koszul alge-

bra defined by gradable quiver, which relates derived categories of modules over a

Koszul algebra and those of modules over its Koszul dual.

Throughout this section, Λ = kQ/R, where Q is a locally finite gradable quiver

and R is a quadratic ideal in kQ. We fix a grading Q0 = ∪n∈ZQn, which will

be used later without an explicit mention. Recall that Q(x, y) = Qn−m(x, y), for

x ∈ Qn and y ∈ Qm with m,n ∈ Z; see [1, (7.2)]. Here Qs(x, y) = ∅ for s < 0.

In particular, Λ is strongly locally finite dimensional. We shall regard modules in

ModΛ as representations in Rep(Q,R). Thus, every module M in ModΛ is graded

as M = ⊕n∈ZMn, where Mn = ⊕x∈QnM(x). Note that this grading for Pa with

a ∈ Qn is the grading-shift by n of its J-grading. We say that M is bounded-above

if Mn = 0 for n � 0, and bounded-below if Mn = 0 for n � 0. These notions are

independent of the grading for Q0; see [1, (7.1)]. The full subcategories of ModΛ

of bounded-above modules and of bounded-below modules are written as Mod−Λ

and Mod+Λ, respectively.

Let (M., d.) be a complex over ModΛ. Given x ∈ Q0, we obtain a complex

M.(x) over Modk, whose n-th component is Mn(x) and whose n-th differential is

dnx : Mn(x) → Mn+1(x). Clearly, M. is acyclic if and only if M.(x) is acyclic, for

every x ∈ Q0. Let f. : M. → N. be a morphism in C(ModΛ). Given x ∈ Q0,

we obtain a morphism f.(x) : M.(x) → N.(x) in C(Modk), which is defined by

fn(x) = fnx : Mn(x) → Nn(x). Clearly, f. is a quasi-isomorphism if and only
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if f.(x) is a quasi-isomorphism, for every x ∈ Q0. A similar consideration will

be given to objects M.. and morphisms f.. in DC(ModΛ) in such a way that

T(M..)(x) = T(M..)(x) and T(f..)(x) = T(f..)(x), for every x ∈ Q0.

Observe thatQo admits a grading (Qo)0 = ∪n∈Z (Qo)n with (Qo)n = Q−n. Thus,

the quadratic dual Λ! is defined by the gradable quiver Qo. Given a ∈ Q0, we denote

by S!
a, P !

a and I !
a the simple module, the indecomposable projective module and the

indecomposable injective module in ModΛ! associated with a, respectively. Now, we

define two Koszul functors F : ModΛ! → C(ModΛ) and G : ModΛ → C(ModΛ!).

Indeed, given a module M in ModΛ!, as shown below, we shall obtain a complex

F (M). in C(ModΛ) if, for n ∈ Z, we put

F (M)n = ⊕x∈(Qo)n Px ⊗M(x) = ⊕x∈Q−n Px ⊗M(x)

and dnF (M) = (dnF (M)(y, x))(y,x)∈Q−n−1×Q−n : F (M)n → F (M)n+1, where

dnF (M)(y, x) =
∑
α∈Q1(y,x) P [ᾱ]⊗M(αo) : Px ⊗M(x)→ Py ⊗M(y).

And given a morphism f : M → N in ModΛ!, we shall obtain a complex morphism

F (f). : F (M). → F (N). if, for any n ∈ Z, we set

F (f)n = ⊕x∈Q−n 1⊗ f(x) : ⊕x∈Q−n Px ⊗M(x)→ ⊕x∈Q−n Px ⊗N(x).

On the other hand, given a module N in ModΛ, we shall obtain a complex G(N).

in C(Mod Λ!) provided that, for any integer n, we put

G(N)n = ⊕x∈Qn I !
x ⊗N(x)

and dnG(N) = (dnG(N)(y, x))(y,x)∈Qn+1×Qn , where

dnG(N)(y, x) =
∑
α:x→y I[α!]⊗N(α) : I !

x ⊗M(x)→ I !
y ⊗N(y).

And given a morphism g : M → N in ModΛ, we shall obtain a complex morphism

G(g). : G(M). → G(N). if, for any n ∈ Z, we put

G(g)n = ⊕x∈Qn 1⊗ g(x) : ⊕x∈Qn I !
x ⊗M(x)→ ⊕x∈Qn I !

x ⊗N(x).

5.1. Proposition. Let Λ = kQ/R, where Q is a locally finite gradable quiver and

R is a quadratic ideal. The above construction yields two exact functors

(1) F : ModΛ! → C(ModΛ) : M → F (M).; f 7→ F (f).;
(2) G : ModΛ→ C(ModΛ!) : N → G(N).; g 7→ G(g)..

Proof. We shall only prove Statement (1). Consider a module M ∈ ModΛ!. We

shall show that F (M). is a complex. Indeed, fix an integer n. Given z ∈ Q−n−2

and x ∈ Q−n, we write Q(z, x) = {α1β1, . . . , αsβs}, where αi, βi ∈ Q1. Recall that

Λ! = {γ! | γ ∈ kQ}, where γ! = γo +R!. By definition, we obtain

(dn+1
F (M) ◦ d

n
F (M))(z, x) =

∑s
i=1P [ᾱiβ̄i]⊗M(β!

iα
!
i) : Px ⊗M(x)→ Pz ⊗M(z).

As seen in the proof of Lemma 3.6, we may find bases {ρ1, . . . , ρr, ρr+1, . . . , ρs}
and {η1, . . . , ηr, ηr+1, . . . , ηs} of kQ(z, x) such that {ρ1, . . . , ρr} is a basis of R2(z, x)

and {ηo
r+1, . . . , η

o
s} is a basis of R!

2(x, z), while {η∗1 , . . . , η∗r , η∗r+1, . . . , η
∗
s} is the dual

basis of {ρ1, . . . , ρr, ρr+1, . . . , ρs}. In particular, ρ̄i = 0 for 1 ≤ i ≤ r and η! = 0 for

r < i ≤ s. By Lemma 1.4(2), we obtain∑s
i=1(αiβi)⊗ (αiβi)

∗ =
∑s
i=1ρi ⊗ η∗i ∈ kQ(z, x)⊗D(kQ(z, x)).
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In view of the canonical projections kQ(z, x)→ exΛez and kQo(x, z)→ ezΛ!ex and

the isomorphism D(kQ2(z, x))→ kQo
2(x, z), we see from the above equation that∑s

i=1 ᾱiβ̄i ⊗ β!
iα

!
i =

∑s
i=1 ρ̄i ⊗ η!

i.

Applying to this equation the k-linear map

exΛez ⊗ ezΛ!ex → HomΛ(Px, Pz)⊗Homk(M(x),M(z))

obtained from Proposition 2.1, we conclude that∑s
i=1P [ᾱiβ̄i]⊗M(β!

iα
!
i) =

∑s
i=1P [ρ̄i]⊗M(η!

i) = 0.

That is, dn+1
F (M)◦d

n
F (M) = 0. Now, it is easy to see that F is a functor, which is exact

because the tensor product is over k. The proof of the proposition is completed.

Remark. In case Q is finite, our Koszul functor F coincides with the one for Λ!

defined in [5, page 489]. Indeed, Λ = (Λ!)!. Let M = ⊕n∈ZMn be a module in

ModΛ, where Mn = ⊕x∈QnM(x). Since eyMn = 0 for all y 6∈ Qn, we see that

⊕x∈Qn Px ⊗M(x) = Λ⊗Λ/JΛ Mn,.

As has been seen in Section 4, the Koszul functors are extended to functors

FC : C(ModΛ!) → C(ModΛ) and GC : C(ModΛ) → C(ModΛ!), call the complex

Koszul functors, which descend to the homotopy categories; see (4.8). Since FC

does not send all acyclic complexes to acyclic ones, it does not descend to the full

derived category of ModΛ!. This forces us to consider subcategories of complex

categories. For this purpose, we shall view a complex M. over ModΛ as a bigraded

k-space M i
j = ⊕x∈Qj M i(x), i, j ∈ Z.

5.2. Definition. Let Λ = kQ/R, where Q is a locally finite gradable quiver and

R is a quadratic ideal in kQ. Given p, q ∈ R with p ≥ 1 and q ≥ 0, we denote by

(1) C ↓p,q(ModΛ) the full abelian subcategory of C(ModΛ) of complexes M. with

M i
j = 0 for i + pj � 0 or i − qj � 0 ; in other words, M. concentrates in a

lower triangle formed by two lines of slopes − 1
p and 1

q respectively;

(2) C ↑p,q(ModΛ) the full abelian subcategory of C(ModΛ) of complexes M. with

M i
j = 0 for i + pj � 0 or i − qj � 0; in other words, M. concentrates in a

upper triangle formed by two lines of slopes − 1
p and 1

q respectively.

Remark. (1) Taking p = 1 and q = 0, we recover the categories C↓(Λ) and C↑(Λ)

considered in [5, (2.12)], and also, [25, (2.4)].

(2) The C ↓p,q(ModΛ) are pairwise distinct derivable subcategories of C(Mod−Λ),

while the C ↑p,q(ModΛ) are pairwise distinct derivable subcategories of C(Mod+Λ).

In the sequel, we shall write K ↓p,q(ModΛ) and K ↑p,q(ModΛ) for the quotients

of C ↓p,q(ModΛ) and C ↑p,q(ModΛ) modulo null-homotopic morphisms respectively,

and write D ↓p,q(ModΛ) and D ↑p,q(ModΛ) for the localizations of K ↓p,q(ModΛ) and

K ↑p,q(ModΛ) at quasi-isomorphisms, respectively.

5.3. Theorem. Let Λ = kQ/R, where Q is a locally finite gradable quiver and R

is a quadratic ideal in kQ. Consider p, q ∈ R with p ≥ 1 and q ≥ 0. Then
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(1) the Koszul functor F : ModΛ! → C(ModΛ) induces a commutative diagram

C ↓p,q(ModΛ!)

FCp,q ��

P
Λ! // K ↓p,q(ModΛ!)

FKp,q��

L
Λ! // D ↓p,q(ModΛ!)

FDp,q��
C ↑q+1,p−1(ModΛ)

PΛ // K ↑q+1,p−1(ModΛ)
LΛ // D ↑q+1,p−1(ModΛ);

(2) the Koszul functor G : ModΛ→ C(ModΛ!) induces a commutative diagram

C ↑q+1,p−1(ModΛ)
PΛ //

GCp,q ��

K ↑q+1,p−1(ModΛ)
LΛ //

GKp,q��

D ↑q+1,p−1(ModΛ)

GDp,q��
C ↓p,q(ModΛ!)

P
Λ! // K ↓p,q(ModΛ!)

L
Λ! // D ↓p,q(ModΛ!),

where FD and GD are triangle-exact, called the derived Koszul functors.

Proof. Consider the two complex Koszul functors FCC(ModΛ!) → C(ModΛ) and

GC : C(ModΛ) → C(ModΛ!). First, let M. ∈ C ↓p,q(ModΛ!). We claim that

FC(M.) belongs to C ↑q+1,p−1(ModΛ). Indeed, by definition, there exist s, t such

that M i(x) = 0, for x ∈ (Qo)j with i + pj > s or i − qj < t. Fix n,m ∈ Z. Given

any y ∈ Qm, we obtain

FC(M.)n(y) = ⊕i∈Z; x∈(Qo)n−i Px(y)⊗M i(x) = ⊕i≤n+m; x∈Qi−n Px(y)⊗M i(x).

Let i ≤ n+m. If n+ (q + 1)m < s, then i− q(n− i) < s; and if n− (p− 1)m > t,

then i + p(n − i) > t. In either case, M i(x) = 0 for all x ∈ (Qo)n−i. Therefore,

FC(M.)nm(y) = 0 if n + (q + 1)m < s or n − (p − 1)m > t. This establishes our

claim. Hence, FC restricts to a functor FCp,q : C ↓p,q(ModΛ!)→ C ↑q+1,p−1(ModΛ).

Fix again n ∈ Z. Then, F (M i)n−i = ⊕x∈(Qo)n−i Px ⊗M i(x) with i ∈ Z form

the n-diagonal of F (M.).. By the assumption, M i(x) = 0 for x ∈ (Qo)n−i with

i < (nq + t)(1 + q)−1. Hence, F (M.). is diagonally bounded-below. By Theorem

4.9, we see that FCp,q induces a commutative diagram as stated in Statement (1).

Next, using a similar argument, we can verify that GC restricts to a functor

GCp,q : C ↑q+1,p−1(ModΛ) → C ↓p,q(ModΛ!). Let N. ∈ C(ModΛ) be acyclic. We shall

show that GC(N.) is acyclic, or equivalently, GC(N.)(x) is acyclic for all x ∈ Q0.

Indeed, fix x ∈ Qs for some s ∈ Z. By definition, GC(N.) = T(G(N.).), and

hence, GC(N.)(x) = T(G(N.).(x)). Since G is exact, G(N.). has acyclic rows,

and so does G(N.).(x). Given any n ∈ Z, the n-diagonal of G(N.).(x) consists

of G(N i)n−i(x) = ⊕y∈Qn−i I !
y(x) ⊗ N i(y), i ∈ Z. If i < n − s and y ∈ Qn−i,

since Q contains no path from y to x, we have I !
y(x) = D(ex(Λ!)oey) = 0, and

consequently, G(N i)n−i(x) = 0. Thus, G(N.).(x) is diagonally bounded-below, and

by Proposition 4.3, GC(N.)(x) is indeed acyclic. Now, we deduce from Theorem

4.9(2) that GCp,q induces a commutative diagram as stated in Statement (2). The

proof of the theorem is completed.

Remark. The case p = 1 and q = 0 of Theorem 5.3 has been established for

quadratic positively graded categories; see [25, Proposition 20].

In case Λ is Koszul, we shall show that the derived Koszul functors FD and GD

are mutually quasi-inverse. For this purpose, given a simple module S, we shall
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denote by P .S its minimal projective resolution and by I.S its minimal injective

co-resolution. They can be explicitly described as below; compare [5, (1.2.6)]

5.4. Lemma. Let Λ = kQ/R be a Koszul algebra, where Q is locally finite with a

grading Q0 = ∪n∈ZQn. If a ∈ Qs, then F (I !
a). ∼= P.Sa[s] and G(Pa). ∼= I.S!

a
[−s].

Proof. Fix a ∈ Qs. By Theorem 3.4 and Lemma 3.9, P.Sa is isomorphic to

L. : · · · // L−i
d−i // L−i+1 // · · · // L−1 d−1

// L0 // 0 // · · · ,
where L−i = ⊕x∈Q0

Px ⊗D(eaΛ!
iex) and d−i = (d−i(y, x))(y,x)∈Q0×Q0

with

d−i(y, x) =
∑
α∈Q1(y,x)P [ᾱ]⊗DP [α!] : Px ⊗D(eaΛ!

iex)→ Py ⊗D(eaΛ!
i−1ey).

Fix an integer n ≥ 0. Observe that eaΛ!
nex = 0 in case x 6∈ Qn+s, and

otherwise, eaΛ!
nex = eaΛ!ex. Therefore, L−n = ⊕x∈Qn+sPx ⊗ D(eaΛ!ex). More-

over, the k-linear isomorphism ex(Λ!)oea → eaΛ!ex induces a k-linear isomorphism

θa,x : D(eaΛ!ex)→ D(ex(Λ!)oea) = I !
a(x) such that the diagram

⊕x∈Qn+sPx ⊗D(eaΛ!ex)

⊕ (1⊗θa,x)
��

∑
α∈Q1(y,x) P [ᾱ]⊗DP [α!]

// ⊕y∈Qn+s−1Py ⊗D(eaΛ!ey)

⊕ (1⊗θa,y)
��

⊕x∈Qn+sPx ⊗ I !
a(x)

∑
α∈Q1(y,x) P [ᾱ]⊗I !

a(αo)
// ⊕y∈Qn+s−1Py ⊗ I !

a(y)

commutates with vertical isomorphisms. Since F (I !
a)−n−s = 0 for n < 0, we see

that L. ∼= ts(F (I !
a)[−s]) ∼= F (I !

a)[−s]. This establishes the first part of the lemma.

Next, by Theorem 3.10 and Proposition 3.8, Λ! is Koszul with (Λ!)! = Λ. In

view of Theorem 3.13(3), we see that I.S!
a

is isomorphic to

T . : 0 // T 0 d0 // T 1 // · · · // Tn
dn // Tn+1 // · · ·

where Tn = ⊕x∈Q0 I
!
x ⊗ exΛnea and dn = (dn(y, x))(y,x)∈Q0×Q0

: Tn → Tn+1 with

dn(y, x) =
∑
α∈Q1(x,y) I[α!] ⊗ Pa(α) : I !

x ⊗ exΛnea → I !
y ⊗ eyΛn+1ea, for n ≥ 0.

Fix an integer n ≥ 0. Note that exΛnea = 0 in case x 6∈ Qn+s; and otherwise,

exΛnea = exΛea. Thus, Tn = ⊕x∈Qn+s I !
x⊗exΛea = G(Pa)n+s and dn = dn+s

G(Pa), for

n ≥ 0. Since G(Pa)n+s = 0 for n < 0, we see that I.S!
a

∼= ts(G(Pa).[s]) ∼= G(Pa).[s].
The proof of the lemma is completed.

The following statement describes in particular a projective resolution for every

module over a Koszul algebra.

5.5. Proposition. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

gradable quiver. If M ∈ ModΛ, then there exists a natural quasi-isomorphism

η.
M

: (FC ◦G)(M).→M .

Proof. Fix M ∈ ModΛ. By definition, (FC ◦G)(M). = T(F (G(M).).). For n ∈ Z,

we obtain (FC◦G)(M)n = ⊕i∈ZF (G(M)i)n−i = ⊕i∈Z;a∈Qi−nPa⊗G(M)i(a), where

G(M)i = ⊕x∈Qi I !
x ⊗M(x). Therefore,

(FC◦G)(M)n = ⊕i∈Z;a∈Qi−n;x∈QiPa ⊗ I !
x(a)⊗M(x).

Suppose that n > 0. For any a ∈ Qi−n and x ∈ Qi, since Q has no path from x

to a, we see that I !
x(a) = 0. Thus, (FC◦G)(M)n = 0.
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Suppose that n < 0. We claim that Hn((FC ◦G)(M).) = 0, or equivalently,

Hn((FC◦G)(M).(y)) = 0, for y ∈ Qp with p ∈ Z. Indeed, (FC ◦G)(M).(y) is the

total complex of the double complex F (G(M).).(y), whose n-diagonal consists of

F (G(M)i)n−i(y) = ⊕a∈Qi−n;x∈QiPa(y)⊗ I !
x(a)⊗M(x), i ∈ Z.

If i > n + p, then Pa(y) = 0 for all a ∈ Qi−n. Hence, F (G(M)i)n−i(y) = 0. That

is, F (G(M).).(y) is n-diagonally bounded-above. Given i ∈ Z, the i-th column

of F (G(M).). is the complex ti(F (G(M)i).) = ⊕x∈Qi ti(F (I !
x).) ⊗ M(x), where

F (I !
x).∼= P.Sx [i]; see (5.4). Thus,

Hn−i(ti(F (G(M)i).)) ∼= ⊕x∈QiHn−i(P.Sx [i])⊗M(x) = ⊕x∈QiHn(P.Sx)⊗M(x) = 0.

Hence, Hn−i(ti(F (G(M)i).)(y)) = 0, for all i ∈ Z. In view of Lemma 4.2(2), we

conclude that Hn((FC◦G)(M).(y)) = 0.

It remains to show that H0((FC◦G)(M).) is naturally isomorphic to M . For this

purpose, observing that the 1-diagonal of the double complex F (G(M).). is zero,

we illustrate its (−1)-diagonal and 0-diagonal as follows:

⊕b∈Qi Pb ⊗ I !
b(b)⊗M(b)

⊕(a,x)∈Qi+1×Qi Pa ⊗ I !
x(a)⊗M(x)

vi,−i−1

OO

hi,−i−1
// ⊕c∈Qi+1Pc ⊗ I !

c(c)⊗M(c),

where vi,−i−1 = (vi,−i−1(b, a, x))(b,a,x)∈Qi×Qi+1×Qi , with

vi,−i−1(b, a, x) =

{ ∑
α∈Q1(x,a)(−1)iP [ᾱ]⊗ I !

x(αo)⊗ 1M(x), if b = x;

0, if b 6= x,

and hi,−i−1 = (hi,−i−1(c, a, x))(c,a,x)∈Qi+1×Qi+1×Qi , with

hi,−i−1(c, a, x) =

{ ∑
α∈Q1(x,a)1Pa ⊗ I[α!]a ⊗M(α), if c = a;

0, if c 6= a.

We recall that (Λ!)o = kQ/(R!)o = {γ̂ | γ ∈ kQ}, where γ̂ = γ + (R!)o. Given

(x, y) ∈ Qi × Qi+1 with i ∈ Z, in view of Lemma 2.7, I !
x(x) has a k-basis {ê?x},

while I !
x(y) has a k-basis {α̂? | α ∈ Q1(x, y)}.

Sublemma. Let d−1 be the differential of degree −1 of (FC◦G)(M).. Consider

(x, a) ∈ Qi ×Qi+1 for some i ∈ Z. If γ̄ ∈ Pa, β ∈ Q1(x, a) and u ∈M(x), then

d−1(γ̄ ⊗ β̂? ⊗ u) = (−1)i γ̄ β̄ ⊗ ê?x ⊗ u+ γ̄ ⊗ ê?a ⊗ β̄u.

Proof. Given α ∈ Q1(x, a), we see that I !
x(αo)(β̂?) = 0 if α 6= β, and otherwise,

I !
x(αo)(β̂?) = ê?x. On the other hand, I[α!]a(β̂?) = 0 if α 6= β, and otherwise,

I[α!]a(β̂∗) = ê?a. This yields

d−1(γ̄ ⊗ β̂? ⊗ u) = (−1)i
∑
α∈Q1(x,a)(P [ᾱ]⊗ I !

x(αo)⊗ 1M(x))(γ̄ ⊗ β̂? ⊗ u)

+
∑
α∈Q1(x,a) (1Pa ⊗ I[α!]a ⊗M(α))(γ̄ ⊗ β̂? ⊗ u)

= (−1)i γ̄ β̄ ⊗ ê?x ⊗ u+ γ ⊗ ê?a ⊗ β̄u.
This establishes the sublemma. Next, we clearly have a natural Λ-linear map

η0
M

: (FC◦G)(M)0 →M :
∑

(i,x)∈Z×Qi γ̄x ⊗ ê?x ⊗ ux 7→
∑

(i,x)∈Z×Qi (−1)
i(i+1)

2 γ̄xux,
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where γ̄x ∈ Px and ux ∈ M(x). We claim that η0
M
◦d−1 = 0. Indeed, consider

an element ω ∈ (FC◦G)(M)−1. We may assume that ω ∈ Pa ⊗ I !
x(a) ⊗M(x), for

some (a, x) ∈ Qi+1 × Qi with i ∈ Z. In this case, we may assume further that

ω = γ̄ ⊗ β̂? ⊗ u, where γ̄ ∈ Pa, β ∈ Q1(x, a), and u ∈ M(x). In view of the

sublemma, we obtain

(η0
M
◦d−1)(ω) = η0

M

(
(−1)i γ̄ β̄ ⊗ ê?x ⊗ u+ γ̄ ⊗ ê?a ⊗ β̄u

)
= (−1)

i(i+1)
2 +i(γ̄ β̄u) + (−1)

(i+1)(i+2)
2 (γ̄ β̄u)

= 0.

Given ω ∈ Ker(η0
M

), we shall define an integer nω as follows. If ω = 0, set

nω = 0; and in this case, ω ∈ Im(d−1). Otherwise, let nω be minimal for which

ω =
∑s
i=1 γ̄ i ⊗ ê?xi ⊗ ui, where xi ∈ Q0 ; γi ∈ kQ≤nω (xi,−); the ui are linearly

independent in M(xi). For 1 ≤ i ≤ s, write γi = λiεxi + σi1αi1 + · · · + σi,tiαi,ti ,

where λi ∈ k ; αij ∈ Q1(xi, aij); σij ∈ kQ≤nω−1(aij ,−). Setting |x| = i for x ∈ Qi,
we obtain

∑s
i=1 (−1)

|xi|(|xi|+1)

2 γ̄ iui = 0. Then,
∑s
i=1 λiui = 0, and hence, λi = 0,

that is, γi = σi1αi1 + · · ·+ σi,tiαi,ti , for i = 1, . . . , s. Setting

σ =
∑s
i=1

∑ti
j=1 (−1)|xi| σ̄i,j ⊗ α̂?ij ⊗ ui ∈ (FC◦G)(M)−1,

we deduce from the sublemma that

d−1(σ) =
∑s
i=1

∑ti
j=1 (σ̄ij ᾱij ⊗ ê?xi ⊗ ui + (−1)|xi| σ̄ij ⊗ ê?aij ⊗ ᾱij ui)

=
∑s
i=1(γ̄ i ⊗ ê?xi ⊗ ui +

∑ti
j=1(−1)|xi| σ̄ij ⊗ ê?aij ⊗ ᾱij ui)

= ω + ω′,

where ω′ =
∑s
i=1

∑ti
j=1(−1)|xi| σ̄ij ⊗ ê?aij ⊗ ᾱij ui. By definition, nω′ < nω, and

η0
M

(ω′) =
∑s
i=1

∑ti
j=1(−1)|xi|+

|xi|(xi|+1)

2 σ̄ijᾱij ui = −
∑s
i=1(−1)

|xi|(xi|+1)

2 γ̄ i ui = 0.

By induction, ω ∈ Im(d−1). Thus, Im(d−1) = Ker(η0
M

). This yields a natural quasi-

isomorphism η.
M

: (F ◦G)(M). →M. The proof of the proposition is completed.

The following statement describes in particular an injective co-resolution for

every bounded-above module over the Koszul dual.

5.6. Proposition. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

gradable quiver. If N ∈ Mod−Λ!, then there exists a natural quasi-isomorphism

θ.
N

: N → (GC ◦ F )(N)..

Proof. Fix N ∈ Mod−Λ!. Let r be such that N(a) = 0 for a ∈ Q−i with i > r. By

definition, (GC◦F )(N).= T(G(F (N).).). We split our proof into several statements.

Statement 1. Given i ∈ Z, the i-th column of G(F (N).). is

ti(G(F (N)i).) = ⊕a∈Q−i ti(G(Pa).)⊗N(a) ∼= ⊕a∈Q−i ti(I.S!
a
[i])⊗N(a).

Indeed, F (N)i = ⊕a∈Q−i Pa⊗N(a). By Lemma 5.4, G(Pa). ∼= I.S!
a
[i] for a ∈ Q−i.

Statement 2. Given n ∈ Z, we obtain (GC◦F )(N)n = 0 in case n < 0; and

Hn((GC◦F )(N).) = 0 in case n > 0.

Indeed, given any n ∈ Z, we obtain (GC◦F )(N)n = ⊕i∈ZG(F (N)i)n−i, where

G(F (N)i)n−i = ⊕x∈Qn−iI !
x ⊗ F (N)i(x) = ⊕x∈Qn−i;a∈Q−i I !

x ⊗ Pa(x)⊗N(a).
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If n < 0, then Pa(x) = 0 for (x, a) ∈ Qn−i × Q−i with i ∈ Z, and therefore,

(GC◦F )(N)n = 0. Suppose that n > 0. Since N(a) = 0 for a ∈ Q−i with i > r,

we see that G(F (N).). is n-diagonally bounded-above. And by Statement 1, the

(n− i)-th cohomology of the i-th column of G(F (N).). is given by

Hn−i(ti(G(F (N)i).))∼=⊕a∈Q−iHn−i(I.S!
a
[i])⊗N(a) =⊕a∈Q−iHn(I.S!

a
)⊗N(a) = 0.

In view of Lemma 4.2(2), we see that Hn((GC◦F )(N).) = 0.

It remains to construct a natural isomorphism N → H0((GC◦F )(N).). Indeed,

the 0-diagonal of G(F (N).). consists of

G(F (N)i)−i = ⊕x∈Qn−i;a∈Q−i I !
x ⊗ Pa(x)⊗N(a), i ∈ Z.

We recall that Λ! = kQo/R! = {γ! | γ ∈ kQ}, where γ! = γo + R!, while

(Λ!)o = kQ/(R!)o = {γ̂ | γ ∈ kQ}, where γ̂ = γ + (R!)o. Given a, y ∈ Q0, there

exists a k-linear map

Na,y : N(y)→ Homk(ey(Λ!)oea, Pa(a)⊗N(a)) : u 7→ Na,y(u),

where Na,y(u) maps γ̂ to ea ⊗ γ!u, for all γ ∈ kQ(a, y). By Corollary 1.2, there

exists a k-linear isomorphism

θa,y : Homk(ey(Λ!)oea, k)⊗ Pa(a)⊗N(a)→ Homk(ey(Λ!)oea, Pa(a)⊗N(a)).

This yields a k-linear map fay = θ−1
a,y ◦Na,y : N(y)→ I !

a(y)⊗ Pa(a)⊗N(a).

Statement 3. If {γ̂1, · · · , γ̂s} is a basis of ey(Λ!)oea with dual basis {γ̂?1, · · · , γ̂?s},
then fay (u) =

∑s
i=1 γ̂

?
i ⊗ ea ⊗ γ!

iu, for all u ∈ N(y).

Indeed, every γ̂ ∈ ez(Λ
!)oea is written as γ̂ =

∑s
j=1 λj γ̂ j , for some λj ∈ k.

Given u ∈ N(z), by the definition of θa,y, we obtain

θa,y(
∑s
i=1 γ̂

?
i ⊗ ea ⊗ γ!

iu)(γ̂) =
∑

1≤i,j≤s(λj γ̂
?
i (γ̂ j))(ea ⊗ γ!

iu)

= ea ⊗ γ!u

= Na,y(u)(γ̂).

Thus, θa,z(
∑s
i=1 γ̂

?
i ⊗ ea⊗ γ!

iu) = Na,y(u), and hence, fay (u) =
∑s
i=1 γ̂

?
i ⊗ ea⊗ γ!

iu.

Statement 4. Given any a ∈ Q0, there exists a natural Λ!-linear morphism

fa = (fay )y∈Q0 : N → I !
a ⊗ Pa(a)⊗N(a).

Indeed, for any α : z → y in Q1, it is easy to verify that commutativity of

N(y)
Na,y //

N(αo)
��

Homk(P !,o
a (y), Pa(a)⊗N(a))

Hom(P !,o
a (α),Pa(a)⊗N(a))

��

I !
a(y)⊗ Pa(a)⊗N(a)

θa,yoo

I!a(αo)⊗1⊗1
��

N(z)
Na,z // Homk(P !,o

a (z), Pa(a)⊗N(a)) I !
a(z)⊗ Pa(a)⊗N(a).

θa,zoo

Thus, fa is Λ!-linear. Given a Λ!-linear morphism g : N →M , we have a diagram

N(y)
Na,y //

gy
��

Homk(P !,o
a (y), Pa(a)⊗N(a))

Hom(P !,o
a (y),1⊗ga)

��

I !
a(y)⊗ Pa(a)⊗N(a)

θa,yoo

1⊗1⊗ga
��

M(y)
Ma,y // Homk(P !,o

a (y), Pa(a)⊗M(a)) I !
a(y)⊗ Pa(a)⊗M(a),

θa,yoo

where the left square is easily verified to be commutative, while the commutativity

of the right square follows from the naturality stated in Lemma 1.2(1).
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Given a ∈ Q−i, in view of Statement (4), we obtain a natural Λ!-linear morphism

ga = (gay)y∈Q0 : N → I !
a ⊗ Pa(a)⊗N(a), where gay = (−1)

(i−1)i
2 fay .

Statement 5. Setting g = (ga)a∈Q0
, we obtain a natural Λ!-linear monomor-

phism g : N → (GC◦F )(N)0.

Indeed, g is a Λ!-linear monomorphism if and only if, for any y ∈ Q0, the linear

morphism gy = (gay) : N(y) → (GC◦F )(N)0 = ⊕a∈Q0
I !
a(y) ⊗ Pa(a) ⊗ N(a) is

injective. Assume that gy(u) = 0, for some u ∈ N(y). Then gay(u) = 0, for every

a ∈ Q0. In particular, gyy(u) = 0, and hence, fyy (u) = 0. Since {ey} is a basis

of ey(Λ)oey, by Statement 3, we have e?y ⊗ ey ⊗ u = 0, and hence, u = 0. This

establishes Statement 5.

For the rest of the proof, observing that the (−1)-diagonal of G(F (M).). contains

only zero objects, we illustrate its 0-diagonal and 1-diagonal as follows:

⊕b∈Q−i I !
b ⊗ Pb(b)⊗N(b)

hi,−i // ⊕(a,x)∈Q−i−1×Q−i I
!
x ⊗ Pa(x)⊗N(a)

⊕c∈Q−i−1I !
c ⊗ Pc(c)⊗N(c),

vi+1,−i−1

OO

where hi,−i = (hi,−i(a, x, b))(a,x,b)∈Q−i×Q−i−1×Q−i , with

hi,−i(a, x, b) =

{ ∑
α∈Q1(a,x)1I!x ⊗ P [ᾱ]⊗N(αo), if b = x;

0, if b 6= x,

and vi+1,−i−1 =(vi+1,−i−1(a,x,c))(a,x,c)∈Q−i×Q−i−1×Q−i−1 with

vi+1,−i−1(a, x, c) =

{ ∑
α∈Q1(a,x)(−1)i+1I[α!]⊗ Pa(α)⊗ 1N(a), if c = a;

0, if c 6= a.

Statement 6. If d0 is the 0-degree differential of (GC ◦F )(N)., then d0◦ g = 0.

Indeed, it amounts to show, for any p ∈ Z, that the diagram

⊕x∈Q−p I !
x ⊗ Px(x)⊗N(x)

⊕hp,−p(a,x,x) // ⊕a∈Q−p−1;x∈Q−pI
!
x ⊗ Pa(x)⊗N(a)

N
(ga)a∈Q−p−1

//

(gx)x∈Q−p

OO

⊕a∈Q−p−1I !
a ⊗ Pa(a)⊗N(a),

⊕vp+1,−p−1(a,x,a)

OO

is anti-commutative, or equivalently, we have an anti-commutative diagram

⊕x∈Q−pI !
x(y)⊗Px(x)⊗N(x)

⊕hp,−p(a,x,x)(y)// ⊕a∈Q−p−1;x∈Q−pI
!
x(y)⊗Pa(x)⊗N(a)

N(y)
(gay )a∈Q−p−1

//

(gxy )x∈Q−p

OO

⊕a∈Q−p−1I !
a(y)⊗ Pa(a)⊗N(a),

⊕vp+1,−p−1(a,x,a)(y)

OO

for all y ∈ Q0. Fix u ∈ N(y) for some y ∈ Q0. Consider α ∈ Q1(a, x) with

(a, x) ∈ Q−p−1×Q−p. Choosing a k-basis {δ̂1, . . . , δ̂s} of ey(Λ!)oex, since x ∈ Q−p,
we deduce from Statement 3 that

(1⊗ P [ᾱ]⊗N(αo))
(
gxy (u)

)
= (−1)

(p−1)p
2

∑s
i=1 δ̂

?
i ⊗ ᾱ⊗ α!δ!

iu.

For any k-basis {γ̂1, . . . , γ̂ t} of ey(Λ!)oea, since a ∈ Q−p−1, we obtain
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(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
= (−1)

p(p+1)
2

∑t
i=1 I[α!](γ̂?i )⊗ ᾱ⊗ γ!

iu.

Let θ : I !
x(y) ⊗ Pa(x) ⊗ N(a) → Homk(ey(Λ!)oex, Pa(x) ⊗ N(a)) be a k-linear

isomorphism stated in Corollary 1.2. Given any 1 ≤ j ≤ s, it is easy to see that

θ[(1⊗ P [ᾱ]⊗N(αo))
(
gxy (u)

)
](δ̂j) = (−1)

(p−1)p
2 (ᾱ⊗ α!δ!

ju),

and

θ[(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
](δ̂j) = (−1)

p(p+1)
2

∑t
i=1 γ̂

?
i (δ̂jα̂)

(
ᾱ⊗ γ!

iu
)
.

Fix some 1 ≤ j ≤ s. If δ̂j α̂ = 0, then α!δ!
j = 0, and hence,

θ[(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
](δ̂j) = 0 = (−1)pθ[(1⊗ P [ᾱ]⊗N(αo))

(
gxy (u)

)
](δ̂j).

If δ̂j α̂ 6= 0, then it extends to a k-basis {γ̂1, . . . , γ̂ t} with γ̂1 = δ̂j α̂ of ey(Λ!)oea.

Under this assumption, we obtain

θ[(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
](δ̂j) = (−1)

p(p+1)
2

∑t
i=1 γ̂

?
i (γ̂1)(ᾱ⊗ γ!

iu)

= (−1)
p(p+1)

2 (ᾱ⊗ γ!
1u)

= (−1)
p(p+1)

2 (ᾱ⊗ δ̂jα̂ u)

= (−1)pθ[(1⊗ P [ᾱ]⊗N(αo))
(
gxy (u)

)
](δ̂j).

Thus, θ[(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
] = (−1)pθ[(1⊗ P [ᾱ]⊗N(αo))

(
gxy (u)

)
]. Then,

(I[α!]⊗ Pa(α)⊗ 1)
(
gay(u)

)
= (−1)p(1⊗ P [ᾱ]⊗N(αo))

(
gxy (u)

)
.

Therefore,

(hp,−p(a, x, x)(y) ◦ gxy )(u) + (vp+1,−p−1(a, x, a)(y) ◦ gay)(u) = 0,

and hence,

hp,−p(a, x, x)(y) ◦ gxy + vp+1,−p−1(a, x, a)(y) ◦ gay = 0.

This in turn implies the required anti-commutativity.

We are ready to conclude our proof by claiming that Ker(d0) ⊆ Im(g). Indeed,

given any element ω = (ωi)i∈Z ∈ Ker(d0), where

ωi ∈ G(F (N)i)−i = ⊕a∈Q−i I !
a ⊗ Pa(a)⊗N(a),

observing that G(F (N)i)−i = 0 for i > r, we define an integer nω (≤ r) as follows:

if ω = 0, then nω = r; and otherwise, nω is minimal such that wnω 6= 0.

If nω = r, then ω ∈ Im(g). Assume that nω < r. Since ω ∈ Ker(d0), we see that

vnω,−nω (ωnω ) = −hnω−1,1−nω (ωnω−1) = 0.

By Statement 1, the nω-th column of the double complex G(F (N).). is, up

to a twist, the shift by nω of the minimal injective co-resolution of the module

⊕a∈Q−nω S!
a⊗Pa(a)⊗N(a). Thus, wnω ∈ SJ(⊕a∈Q−nω I !

a⊗Pa(a)⊗N(a)), and by

Lemma 2.7, ωnω =
∑
a∈Q−nω ê

?
a⊗ ea⊗ua, where ua ∈ N(a). Now, by Statement 3,

g(
∑
a∈Q−nω ua) =

∑
a∈Q−nω ê

?
a ⊗ ea ⊗ ua = ωnω ,

and by Statement 6, ν = ω − g(
∑
a∈Q−nω ua) ∈ Ker(d0). Writing ν = (νi)i∈Z with

νi ∈ G(F (N)i)−i, we see that νnω = ωnω − g(
∑
a∈Q−nω ua) = 0, and νi = ωi = 0

for all i < nω. Therefore, nν < nω. Assuming inductively that ν ∈ Im(g), we

obtain ω ∈ Im(g). Therefore, Ker(d0) = Im(g). Setting θ0
N = g, and θiN = 0 for all
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i 6= 0, we obtain a quasi-isomorphism θ.N : N → (GC ◦F )(N). which, by Statement

4, is natural in N . The proof of the proposition is completed.

We are ready to obtain our promised Koszul duality as follows.

5.7. Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

gradable quiver. If p, q ∈ R with p ≥ 1 and q ≥ 0, then we obtain two mutual

quasi-inverse triangle equivalences

FDp,q : D ↓p,q(ModΛ!)→ D ↑q+1,p−1(ModΛ)

and

GDp,q : D ↑q+1,p−1(ModΛ)→ D ↓p,q(ModΛ!).

Proof. We shall make use of the Koszul functors F : ModΛ! → C(ModΛ) and

G : ModΛ→C(ModΛ!), the complex Koszul functors FC :C(ModΛ!)→C(ModΛ)

and GC :C(ModΛ)→C(ModΛ!) and two commutative diagrams in Theorem 5.3.

Let p, q ∈ R with p ≥ 1 and q ≥ 0. We first claim that the identity func-

tor of D ↓p,q(ModΛ!) is isomorphic to GDp,q ◦ FDp,q. Consider the embedding functor

κ : Mod−Λ! → C(ModΛ!) and the functor GC ◦ F : Mod−Λ! → C(ModΛ!). By

Proposition 5.6, we obtain a functorial morphism θ = (θ.
N

)N∈Mod−Λ! : κ→ GC◦ F,
and by Lemma 4.11, it induces a functorial morphism θC : 1ModΛ = κC → (GC◦F )C .

Let N. ∈ C ↓p,q(ModΛ!). Since N. ∈ C(Mod−Λ!), we obtain θC
N
. = T(θ.

N
.), where

θ.
N
. = (θj

Ni
)i,j∈Z : κ(N.).→ (GC◦F )(N.).. We claim that θC

N
. is a quasi-isomorphism.

Indeed, by Lemma 5.6, η.
Ni

: κ(N i).→ (GC ◦ F )(N i). is a quasi-isomorphism, and

so is θ.
Mi

: ti(κ(N i).) → ti((GC ◦ F )(N i).), for every i ∈ Z. Moreover, given any

n ∈ Z, the n-diagonal of (GC ◦ F )(N.). consists of

(GC ◦ F )(N i)n−i = ⊕j∈Z;x∈Q−j;y∈Qn−i−j I
!
y ⊗ Px(y)⊗N i(x); i ∈ Z.

If i > n, then Px(y) = eyΛex = 0, for any x ∈ Q−j and y ∈ Qn−i−j with j ∈ Z,

and therefore, (GC ◦F )(N i)n−i = 0. That is, (GC ◦F )(N.). is diagonally bounded-

above. Since κ(N.). clearly is diagonally bounded-above, by Lemma 4.6, T(θ.
N
.),

that is θC
N
. : N.→ (GC◦F )C(N.), is a quasi-isomorphism. Since (GC◦F )C = GC◦FC ;

see (4.10), we obtain a natural quasi-isomorphism θC
N
. : N.→ (GCp,q◦ FCp,q)(N

.), for

N. ∈ C ↓p,q(ModΛ!). As a consequence, θD
N
. = LΛ!(PΛ!(θC

N
.)) : N.→ (GDp,q ◦FDp,q)(N

.)

is a natural isomorphism, for N. ∈ D ↓p,q(ModΛ!). This establishes our first claim.

To show that FDp,q◦GDp,q is isomorphic to the identity functor of D ↑q+1,p−1(ModΛ!),

we consider the functor FC ◦ G : ModΛ → C(ModΛ) and the embedding functor

κ : ModΛ → C(ModΛ). In view of Lemma 5.5, we obtain a functorial morphism

η = (η.
M

)M∈ModΛ : FC ◦ G → κ, and by Lemma 4.11, it induces a functorial

morphism ηC : (FC ◦G)C → κC = 1C(ModΛ).

Let M. ∈ C ↑q+1,p−1(ModΛ). We claim that ηC
M
. : (FC ◦G)C(M.)→M. is a quasi-

isomorphism, that is, ηC
M
.(z) : (FC ◦G)C(M.)(z)→M.(z) is a quasi-isomorphism,

for all z ∈ Q0. Let z ∈ Qs for some s ∈ Z. By definition, ηC
M
.(z) = T(η.

M
.(z)), where

η.
M
.(z) = (ηj

Mi
(z))i,j∈Z : (FC ◦G)(M.).(z)→ κ(M.).(z).

Given i ∈ Z, by Lemma 5.5, η.
Mi

: ti((FC ◦ G)(M i).) → ti(κ(M i).) is a quasi-
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isomorphism, and so is η.
Mi

(z) : ti((FC ◦ G)(M i).)(z) → ti(κ(M i).)(z). On the

other hand, given any n ∈ Z, the n-diagonal of (FC ◦G)(M.).(z) consists of

(FC ◦G)(M i)n−i(z) = ⊕j∈Z; x∈Qj ; y∈Qi+j−n Py(z)⊗ I !
x(y)⊗M i(x)

= ⊕j≤n+s−i; x∈Qj ; y∈Qi+j−n Py(z)⊗ I !
x(y)⊗M i(x), i ∈ Z.

Since M. ∈ C ↑q+1,p−1(ModΛ), there exists t such that M i(x) = 0 for x ∈ Qj with

i − (p − 1)j > t. Let x ∈ Qj with j ≤ n + s − i. If pi > (p − 1)(n + s) + t, then

i − (p − 1)j ≥ i − (p − 1)(n + s − i) = pi − (p − 1)(n + s) > t, and consequently,

M i(x) = 0. That is, (FC ◦G)(M.).(z) is diagonally bounded-above. By Lemma 4.6,

T(η.
M
.(z)), that is ηC

M
.(z), is a quasi-isomorphism. Our second claim is established.

Now, since (FC◦G)C = FC◦GC ; see (4.10), we obtain a natural quasi-isomorphism

ηC
M
. : (FCp,q ◦ GCp,q)(M

.) → M., for M. ∈ C ↑q+1,p−1(ModΛ). This induces, as has

been seen above, a functorial isomorphism from FDp,q ◦GDp,q to the identity functor

of D ↑q+1,p−1(ModΛ!). The proof of the theorem is completed.

Remark. The case p = 1 and q = 0 of Theorem 5.7 has been established for a left

finite Koszul algebra; see [5, (2.12.1)] and for a positively graded Koszul category;

see [25, Theorem 30].

Specializing to the locally bounded case, we get the following result; see [2, (3.9)].

5.8. Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite

gradable quiver. If Λ is right (or left) locally bounded and Λ! is left (or right)

locally bounded, then Db(ModbΛ!) ∼= Db(ModbΛ) and Db(modbΛ!) ∼= Db(modbΛ).

Proof. First, assume that Λ is right locally bounded and Λ! is left locally bounded.

Then, Pa ∈ modbΛ and I !
a ∈ modbΛ!, for every a ∈ Q0. Therefore, the Koszul func-

tors restrict to functors F : ModbΛ! → Cb(ModbΛ) and G : ModbΛ→ Cb(ModbΛ!).

GivenM. ∈ Cb(ModbΛ!) andN. ∈ Cb(ModbΛ), the double complexes F (M.). and

G(N.). are bounded. Therefore, the complex Koszul functors restrict to functors

FC : Cb(ModbΛ!)→ Cb(ModbΛ) and GC : Cb(ModbΛ)→ Cb(ModbΛ!).

Consider FC ◦ G : ModbΛ → Cb(ModbΛ) and GC ◦ F : ModbΛ! → Cb(ModbΛ!).

In view of Propositions 5.5 and 5.6, we obtain two natural quasi-isomorphisms

θC
N
. : N.→ (FC ◦G)(N.) and ηC

M
. : M.→ (FC ◦G)(M.), for N. ∈ Cb(ModbΛ) and

M. ∈ Cb(ModbΛ!). As have argued in the proof of Theorem 5.7, we see that the

functors FC and GC descend to two mutually quasi-inverse triangle equivalences

FD : Db(ModbΛ!)→ Db(ModbΛ) and GD : Db(ModbΛ)→ Db(ModbΛ!).

Next we can show, in the same way, that Db(modbΛ) ∼= Db(modbΛ!). Finally,

suppose that Λ is left locally bounded and Λ! is right locally bounded. Since Λ! is

a Koszul algebra with (Λ!)! = Λ, as has been seen, Db(ModbΛ) ∼= Db(ModbΛ!) and

Db(modbΛ) ∼= Db(modbΛ!). The proof of the theorem is completed.

Remark. In case Λ is of finite length and Λ! is left noetherian, Beilinson, Ginzburg

and Soergel proved the graded version of the second part of Theorem 5.8 with a

rather sophisticated proof; see [5, (2.12.6)], and also, [25, Theorem 35].

Example. (1) Theorem 5.8 holds in case Q has no right infinite path or no left

infinite path. Indeed, if this is the case, then Qo has no left infinite path or no right
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infinite path, and consequently, Λ is right or left locally bounded and Λ! is left or

right locally bounded, respectively.

(2) Let Λ = kQ/(kQ+)2, where Q is a locally finitely gradable having some right

infinite paths. Then Λ is locally bounded, but Λ! = kQo is not left locally bounded.

In this case, Db(ModbΛ) ∼= Db(Rep−(Qo)); see [2, (3.9)], where Rep−(Qo) denotes

the category of almost finitely co-presented representations, which is substantially

larger than the category of finitely supported representations; [3, (1.12)].

(3) Let Λ be the k-algebra defined by the gradable quiver

· · ·
γ−4 // −3

α−3 //
β−3

// −2
γ−2 // −1

γ−1 // 0
α0 //
β0

// 1
γ1 // 2

γ2 // 3
α3 //
β3

// 4
γ4 // · · ·

with relations α3nγ3n−1, β3nγ3n−1, n ∈ Z. Then Λ is Koszul and Λ! is defined by

· · · −3
γ′−4oo −2

β′−3

oo
α′−3oo −1

γ′−2oo 0
γ′−1oo 1

β′0

oo
α′0oo 2

γ′1oo 3
γ′2oo 4

β′3

oo
α′3oo · · ·

γ′4oo

with relations α′3nγ
′
3n+1, β

′
3nγ
′
3n+1, α′3n+2γ

′
3n+1, n ∈ Z. By Theorem 5.8, we obtain

Db(ModΛ) ∼= Db(ModΛ!) and Db(modbΛ) ∼= Db(modbΛ!). Note that none of the

results stated in [2], [5] or [25] applies in this situation.
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