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Introduction

In this paper, we are mainly concerned with the Cartan determinant con-
jecture and the no loop conjecture. If A is an artin algebra of finite global
dimension, the first conjecture claims that the Cartan determinant of A is equal
to 1, while the second one states that every simple A-module admits only the
trivial self-extension. Among numerous partial solutions to these conjectures
such as those in [6, 14, 15, 22, 24], we observe particularly that both of them
have been established for standardly stratified algebras; see [4, 21]. This class
of algebras serves as a generalization of quasi-hereditary algebras introduced
by Cline, Parshall and Scott; see, for example, [8]. The key idea for studying
standardly stratified algebras is to relate the homological properties of an alge-
bra A to those of A/I with I an idempotent projective ideal. We shall pursue
further in this line by relaxing the condition that I be idempotent. This en-
ables us to generalize many results found in [4, 11, 21, 24]. More importantly, it
leads us to the introduction of two new classes of algebras, called quasi-stratified
and ultimate-hereditary algebras, which include standardly stratified and quasi-
hereditary algebras, respectively. We shall show that the finiteness of the global
dimension of a quasi-stratified algebra is equivalent to the Cartan determinant
equal to one, as well as to the algebra being ultimate-hereditary. Moreover,
in this case, we prove that every simple module admits only the trivial self-
extension.

Remarkably, the no loop conjecture has been verified for finite dimensional
algebras over a field given by quivers with relations; see [18, 19]. A stronger
version, called the strong no loop conjecture, states that every simple module
of finite projective dimension over an artin algebra admits only the trivial self-
extension. This remains open except for algebras which are monomial [18] or
special biserial [20]. We refer to [7, 16] for more special cases. The last result
of this paper is to confirm the strong no loop conjecture for algebras which are
quasi-stratified on one side, and in particular, for standardly stratified algebras.

1. Projective ideals and quasi-stratifications

Throughout this paper, A stands for an artin algebra. The radical and the
global dimension of A will be written as radA and gdim(A), respectively. The
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category of finitely generated right A-modules and that of finitely generated left
A-modules will be denoted by mod-A and A-mod, respectively. Moreover, D
stands for the usual duality between these categories.

Let I be an ideal (that is, a two-sided ideal) of A. We say that I is right
(respectively, left) projective if the right A-module IA (respectively, the left A-
module AI) is projective. For brevity, we say that I is projective if it is either
right or left projective. Furthermore, let t be the smallest positive integer such
that It = It+1. Then It is the maximal idempotent ideal of A contained in I. We
shall call t and It the idempotency and the idempotent part of I, respectively.
In this case, it is well known that It is generated by an idempotent; see, for
example, [11, Statement 6]. The main objective of this section is to relate the
homological properties of A to those of A/I with I being projective. Let us
start with an easy observation.

1.1. Lemma. Let I be an ideal of A with idempotent part J . If I is right
projective, then J is an idempotent right projective ideal of A, while I/J is a
nilpotent right projective ideal of A/J .

Proof. Assume that IA is projective of idempotency t. Then J = It is
projective as a right A-module. Since IJ = It+1 = It = J , I/J = I/IJ is
projective as a right A/J-module. This completes the proof of the lemma.

For a module M in mod-A, we write pdimA(M) for the projective dimension
of M over A. The following result is essential for our investigation.

1.2. Lemma. Let I be a right projective ideal of A of idempotency t. For
every module M in mod-A/I, we have

(1) pdimA(M) ≤ pdimA/I(M) + 1, and
(2) pdimA/I(M) ≤ pdimA(M) + 2(t− 1).
Proof. The statement (1) is well-known; see, for example, [11, Statement 1].

In order to prove (2), write B = A/I and let M be a module in mod-B. Clearly,
we need only to consider the case where pdimA(M) = r <∞. If r = 0, then M
is a projective A-module annihilated by I. Hence M = M/MI is projective over
B. This proves (2) for r = 0. If r = 1, then mod-A has a short exact sequence

0 //Q
j //P //M //0

with j an inclusion map between projective modules. Since MI = 0, we get
PI ⊆ Q, and hence a chain

PIt+1 ⊆ QIt ⊆ PIt ⊆ QIt−1 ⊆ PIt−1 ⊆ · · · ⊆ QI ⊆ PI ⊆ Q ⊆ P

of submodules of P . This gives rise to an exact sequence

(∗) PIt/QIt → QIt−1/QIt → PIt−1/PIt → · · · → Q/QI → P/PI →M → 0
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in mod-B. Since IA is a projective A-module, so are the PIi and the QIi. As
a consequence, the PIi/PIi+1 and the QIi/QIi+1 are projective modules in
mod-B. Moreover, PIt/QIt = 0 since PIt = PIt+1 ⊆ QIt ⊆ PIt. Thus (∗) is
a projective resolution of M over B. In particular, pdimB(M) ≤ 2(t − 1) + 1.
This proves that (2) holds for r = 1. Assume now that pdimA(M) = r > 1 and
that (2) holds for modules N in mod-B with pdimA(N) ≤ r − 1. Consider a
short exact sequence

0 //Ω
j //P

ε //M //0

in mod-A with P projective and j an inclusion map. Then pdimA(Ω) = r − 1,
and there exists a short exact sequence

0 //Ω/PI //P/PI //M //0

in mod-B with P/PI projective. In particular, pdimB(M) ≤ pdimB(Ω/PI)+1.
Now the projectivity of PI implies that pdimA(Ω/PI) ≤ pdimA(Ω) = r−1. By
the induction hypothesis, pdimB(Ω/PI) ≤ r − 1 + 2(t− 1). Therefore,

pdimB(M) ≤ pdimB(Ω/PI) + 1 ≤ r− 1 + 2(t− 1) + 1 = pdimA(M) + 2(t− 1).

This completes the proof of the lemma.

For convenience, we define gdim(0) = −1. The following result generalizes
Statement 4 in [11].

1.3. Proposition. Let I be a projective ideal of A of idempotency t, and
let e be an idempotent which generates the idempotent part of I. Then

(1) gdim(A/I) ≤ gdim(A) + 2(t− 1).
(2) gdim(eAe) ≤ gdim(A) ≤ gdim(eAe) + gdim(A/I) + 2.
Proof. Assume that I is right projective. The statement (1) follows imme-

diately from Lemma 1.2(2). We shall now prove the first inequality in (2). For
this purpose, we may assume that e 6= 0. By Lemma 1.1, AeAA is projective,
and consequently, AeAA lies in add(eA), the full subcategory of mod-A gener-
ated by the direct sums of the direct summands of eA. Thus HomA(eA,AeA)
is a projective right module over EndA(eA); see, for example [2, (II.2.1)], that
is, Ae is projective in mod-eAe. It then follows easily that Pe is projective in
mod-eAe whenever P is a projective module in mod-A. Let S be a simple right
A-module such that Se 6= 0. If

0→ Pn → Pn−1 → · · · → P1 → P0 → S → 0

is a finite projective resolution of S over A, then

0→ Pne→ Pn−1e→ · · · → P1e→ P0e→ Se→ 0

is a finite projective resolution of Se over eAe. Thus gdim(eAe) ≤ gdim(A).
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In order to show the second inequality in (2), we need only to consider the
case where gdim(eAe) = r < ∞ and gdim(A/I) = s < ∞. We begin with
the following claim: if N is in mod-A such that NIm = 0 for some m > 0,
then pdimA(N) ≤ s + 1. Indeed, if m = 1, then N is a module over A/I.
Hence by Lemma 1.2(1), pdimA(N) ≤ pdimA/I(N) + 1 ≤ s + 1. In particular,
pdimA(M/MI) ≤ s + 1 for all M ∈ mod-A. Suppose now that m > 1. Since
(NI)Im−1 = 0, by the induction hypothesis, pdimA(NI) ≤ s + 1. This gives
rise to pdimA(N) ≤ max{pdimA(NI), pdimA(N/NI)} ≤ s + 1. Our claim is
proved.

If e = 0, then It = 0 and gdim(eAe) = −1. It then follows from our claim
that gdim(A) ≤ gdim(A/I) + 1 = gdim(eAe) + gdim(A/I) + 2. Assume now
that e 6= 0. Let M be a module in mod-A, and let Ωr be the r-th syzygy of M .
Then mod-A admits an exact sequence

0→ Ωr → Qr−1 → · · · → Q1 → Q0 →M → 0

with the Qi projective, which induces an exact sequence

0→ Ωre→ Qr−1e→ · · · → Q1e→ Q0e→Me→ 0

in mod-eAe with the Qie projective. Since pdimeAe(Me) ≤ r, we see that Ωre
is eAe-projective. Consider now a short exact sequence

0 //L
j //P

ε //ΩreA //0

in mod-A with j an inclusion and ε a projective cover of ΩreA. It induces a
short exact sequence

0 //Le //Pe
ε̄ //Ωre //0

in mod-eAe with Pe projective. Noting that P lies in add(eA), we see that
(radP )e is contained in the radical of the eAe-module Pe. Thus ε̄ is a projective
cover of Ωre in mod-eAe. Now the projectivity of Ωre implies that Le = 0, that
is, LIt = 0. It follows from the above claim that pdimA(L) ≤ s+ 1, and hence
pdimA(ΩreA) ≤ s+ 2. For the same reason, we have pdimA(Ωr/ΩreA) ≤ s+ 1.
Therefore, pdimA(Ωr) ≤ max{pdimA(ΩreA), pdimA(Ωr/ΩreA)} ≤ s+ 2. This
gives rise to pdimA(M) ≤ r+pdimA(Ωr) ≤ r+s+2. The proof of the proposition
is completed.

As an immediate consequence, we have the following interesting result.

1.4. Corollary. Let I be a projective ideal of A, and let e be an idempotent
which generates the idempotent part of I. Then A is of finite global dimension
if and only if eAe and A/I are of finite global dimension.

Before proceeding further, we need some terminology on idempotents. Let
e be an idempotent of A. We say that e is simple if e is primitive such that
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e radAe = 0, or equivalently, eAe is a simple artin algebra. For convenience, we
say that e is pseudo-primitive if e is zero or primitive, and pseudo-simple if e is
zero or simple.

1.5. Definition. (1) An ideal of A is called right (respectively, left) quasi-
stratifying if it is right (respectively, left) projective and its idempotent part is
generated by a pseudo-primitive idempotent.

(2) A right (respectively, left) quasi-stratifying ideal of A is called right
(respectively, left) quasi-heredity if its idempotent part is generated by a pseudo-
simple idempotent.

If I is a right quasi-stratifying ideal of A and e is a pseudo-primitive idem-
potent which generates the idempotent part of I, then it is easy to see that I
is right quasi-heredity if and only if e radAe = 0. For brevity, we say that an
ideal of A is quasi-stratifying (respectively, quasi-heredity) if it is right or left
quasi-stratifying (respectively, right or left quasi-heredity).

Recall that A is right standardly stratified (respectively, quasi-hereditary) if
A admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ In−1 ⊂ In = A

such that Ii+1/Ii is a right projective ideal of A/Ii generated by a primitive
(respectively, simple) idempotent, for all 0 ≤ i < n; see [10] for more equivalent
conditions. Note that a right standardly stratified algebra is called a QH-1
algebra in [21].

1.6. Definition. We call A quasi-stratified if A admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

such that Ii+1/Ii is a quasi-stratifying ideal of A/Ii, for all 0 ≤ i < r. Such a
chain is called a quasi-stratification.

Note that the notion of a quasi-stratified algebra is left-right symmetric.
Moreover, standardly stratified algebras are clearly quasi-stratified.

1.7. Example. Let A be the algebra over a field given by the quiver

2
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with relations σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.
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It is easy to see that A is neither right nor left standardly stratified. However,
one can verify that the chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ >A ⊂ < ε, α, δ, e2 > ⊂ < ε, α, δ, e2, e3 > ⊂ A

is quasi-stratification of A, where the projectivity for the first non-zero ideal is
on the left, while that for other ideals is on the right. Thus A is quasi-stratified.

1.8. Definition. We call A ultimate-hereditary if A admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

such that Ii+1/Ii is a quasi-heredity ideal of A/Ii, for all 0 ≤ i < r. Such a
chain is called quasi-heredity.

It is clear that a quasi-hereditary algebra is ultimate-hereditary. Moreover,
if I is a quasi-heredity ideal of A such that A/I is ultimate-hereditary, then A
is ultimate-hereditary.

The Cartant determinant conjecture has been verified by Wilson for posi-
tively gradable algebras; see [22]. The referee has drawn our attention to the
existence of a quasi-hereditary algebra which is not positively gradable. Based
on this example, we shall construct an ultimate-hereditary algebra which is
neither positively gradable nor quasi-hereditary.

1.9. Example. Let k be a field, and consider the k-algebra

C = k < X, Y > / < X3, XY, Y X2, X2 − Y 3, Y X − Y 3 > .

Setting
MC = C ⊕ C/rad(C)⊕ C/rad2(C)⊕ C/rad3(C),

one gets a quasi-hereditary algebra B = EndC(M), which is not positively
gradable; see [3]. Since B is elementary, we may assume that B = kQB/IB with
(QB , IB) a bound quiver. Let a, b, c, d be the vertices of QB which correspond
to the summands

C, C/rad(C), C/rad2(C), C/rad3(C)

of M respectively. Note that b is neither a sink nor a source of QB . Moreover,
among the canonical primitive idempotents of B, the one associated to b is the
only simple idempotent. We now construct a new quiver Q from QB by adding
a new vertex x and two new arrows α : b→ x and β : x→ b. Choose an arrow
γ of QB which ends at b. We claim that A = kQ/I with I =< IB , αβ, γα > is
an ultimate-hereditary algebra which is neither positively gradable nor quasi-
hereditary. Indeed, denote by ea, eb, ec, ed, ex the primitive idempotent of A
associated to a, b, c, d, x, respectively. Since αβ ∈ I, we have B ∼= eAe with
e = ea + eb + ec + ed. If A admits a positive grading A = ⊕i≥0Ai, then
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eAe = ⊕i≥0 eAie with rad(eAe) = e rad(A) e = ⊕i≥1 eAie is a positive grading
of eAe, which is contrary to the non-gradablity of B. Moreover, eb is the only
simple idempotent in {ea, eb, ec, ed, ex}. In particular, AebAex = Aᾱ, where
ᾱ = α+ I. Since γα ∈ I, the left A-module Aᾱ is not projective. Thus AebA is
not heredity. This shows that A is not quasi-hereditary. Finally, since αβ ∈ I,
we have Aβ̄A = β̄A. Since there exists no relation on Q starting with β, we
have β̄AA ∼= AA. Thus Aβ̄A is right projective, and hence right quasi-heredity
in A. Further, it is clear that < β̄, ex > / < β̄ > is left projective, and hence
left quasi-stratifying in A/ < β̄ >. Since A/ < β̄, ex >∼= B, we conclude that A
is ultimate-hereditary.

For a module M in mod-A, ``(MA) denotes the Loewy length of M over A.

1.10. Lemma. If A admits a quasi-stratification of length one, then A is
Morita equivalent to eAe for every primitive idempotent e of A. Moreover, in
this case, A is ultimate-hereditary if and only if A is hereditary.

Proof. Assume that A is a quasi-stratifying ideal of itself. Being idempo-
tent, A = Ae0A with e0 a primitive idempotent. If e is an arbitrary primitive
idempotent of A, it is easy to see that eA ∼= e0A and A = AeA. This shows the
first part of the lemma.

For the second part of the lemma. it suffices to show the necessity. For doing
so, suppose that A = Ae0A with e0 a primitive idempotent and A is ultimate-
hereditary. Let I be a non-zero quasi-heredity ideal of A, and let e1 be a pseudo-
simple idempotent which generates the idempotent part of I. We consider only
the case where IA is projective. Then IA ∼= (e0A)s for some s > 0, and hence
``(IA) = ``A(e0AA) = ``(AA). In particular, I is not nilpotent. Hence e1 6= 0,
that is, e1 is simple. Since A is Morita equivalent to e1Ae1, which is a simple
algebra, A is hereditary. This completes the proof of the lemma.

We now give a bound on the global dimension of an ultimate-hereditary
algebra in terms of the number of the non-isomorphic simple modules and the
length of a quasi-heredity chain.

1.11. Proposition. Let A be an ultimate-hereditary algebra with n non-
isomorphic simple modules and a quasi-heredity chain of length r. Then

gdim(A) ≤ min{2(r − 1), n+ r − 2}.

Proof. Let 0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A be a quasi-heredity chain of
A, and let e be a pseudo-simple idempotent which generates the idempotent part
of I1. We shall proceed by induction on r. If r = 1 then, by Lemma 1.10, n = 1
and gdim(A) = 0. Assume now that r > 1. Then A/I1 is ultimate-hereditary
with a quasi-heredity chain

0 = I1/I1 ⊂ · · · ⊂ Ir−1/I1 ⊂ Ir/I1 = A/I1.

7



If e = 0, then A/I1 has n non-isomorphic simple modules. By the induction
hypothesis, gdim(A/I1) ≤ min{2(r−2), n+r−3}. In view of Proposition 1.3(2),
we see that gdim(A) ≤ gdim(A/I1)+1 ≤ min{2(r−1), n+r−2}. Suppose now
that e 6= 0. Then e is primitive such that gdim(eAe) = 0. Note that the number
of non-isomorphic simple A/I1-modules is n− 1. By the induction hypothesis,
gdim(A/I1) ≤ min{2(r− 2), (n−1) + (r− 1)−2}. Applying Proposition 1.3(2),
we get gdim(A) ≤ gdim(A/I1) + 2 ≤ min{2(r− 1), n+ r− 2}. The proof of the
proposition is completed.

Note that the length of a heredity chain of an artin algebra is bound by
the number of the non-isomorphic simple modules. In this way, we recover a
result of Dlab and Ringel saying that the global dimension of a quasi-hereditary
algebra of n non-isomorphic simple modules is at most 2(n− 1); see [11].

2. The Cartan determinant

The objective of this section is to study the Cartan determinant of a quasi-
stratified algebra. We begin with a brief recall. Let {e1, . . . , en} be a basic
set of primitive idempotents of A, that is, e1A, . . . , enA are the non-isomorphic
indecomposable projective modules in mod-A. For 1 ≤ i, j ≤ n, let cij be the
multiplicity of the simple module eiA/ei radA as a composition factor of ejA.
Then (cij)n×n is called a right Cartan matrix of A. Similarly, {e1, . . . , en} de-
termines a left Cartan matrix of A. Since A is an artin algebra, the right Cartan
matrices and the left Cartan matrices of A all have the same determinant; see,
for example, [13, (1.2)], which is called the Cartan determinant of A and de-
noted by cd(A). A well-known result of Eilenberg’s, which is the origin of the
Cartan determinant conjecture, says that cd(A) = ±1 if A is of finite global
dimension; see [12].

We first relate cd(A) and cd(A/I) with I a projective ideal. The following
proposition generalizes the results stated in [21, (1.4)] and [4, (1.3)]. We refer
to [5, 17, 23] for more similar matrix reductions. For convenience, we define
cd(0) = 1.

2.1. Proposition. Let I be a projective ideal of A, and let e be an idem-
potent which generates the idempotent part of I. Then

cd(A) = cd(eAe) cd(A/I).

Proof. Since the right Cartan matrices and the left Cartan matrices of A
have the same determinant, we need only to consider the case where I is right
projective such that B = A/I is nonzero. For x ∈ A, we write x̄ = x + I ∈ B.
Let {e1, . . . , en} be a basic set of primitive idempotents of A. For a module M
in mod-A, we denote by ci(M) the multiplicity of eiA/ei radA as a composition
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factor of M . Then C(A) = (ci(ejA))n×n is a right Cartan matrix of A. For every
ei 6∈ I, we have eiA/ei radA ∼= ēiB/ēi radB as A-modules. As a consequence,
for every B-module N , the multiplicity di(N) of ēiB/ēi radB as a composition
factor of N coincides with ci(N). Moreover, the nonzero classes of ē1, . . . , ēn
form a basic set of primitive idempotents of B.

(1) Suppose first that e = 0, that is, I ⊆ radA. Then {ē1, . . . , ēn} is a basic
set of primitive idempotents of B and C(B) = (di(ējB))n×n is a right Cartan
matrix of B. We may assume, without loss of generality, that

``(e1AA) ≤ ``(e2AA) ≤ · · · ≤ ``(enAA).

Since ejI is projective with ``(ejIA) < ``(ejAA), we have e1I = 0 and

ejI ∼= (e1A)rj1 ⊕ · · · ⊕ (ej−1A)rj,j−1 , rji ≥ 0, j = 2, . . . , n.

Since ējB ∼= ejA/ejI as right A-modules, we deduce that di(ē1B) = ci(e1A) for
i = 1, . . . , n, and

di(ējB) = ci(ejA)−
j−1∑
s=1

rjsci(esA), i = 1, . . . , n; j = 2, . . . , n.

This shows that the first column of C(B) coincides with that of C(A). More
importantly, C(B) can be obtained from C(A) by some elementary column oper-
ations. As a consequence, detC(A) = detC(B), that is, cd(A) = cd(eAe) cd(B)
since cd(eAe) = 1 in this case.

(2) Suppose now that I = AeA is nonzero. We may assume, without loss
of generality, that {e1, . . . , em} with 1 ≤ m < n is a basic set of primitive
idempotents of eAe. It is easy to see that I = A(e1 + · · · + em)A and that
C(eAe) = (ci(ejA))m×m is a right Cartan matrix of eAe. Now {ēm+1, . . . , ēn}
is a basic set of primitive idempotents of B, and C(B) = (di(ējB))m<i,j≤n
is a right Cartan matrix of B. Fix an integer j with m < j ≤ n. Since
ejI = ejA(e1 + · · ·+ em)A, we have ejI ∼= (e1A)tj1 ⊕ · · · ⊕ (emA)tjm , tji ≥ 0.
Therefore,

ci(ejA/ejI) = ci(ejA)−
m∑
s=1

tjsci(esA), i = 1, . . . , n.

Since ci(ejA/ejI) = 0 for 1 ≤ i ≤ m, we get

ci(ejA)−
m∑
s=1

tjsci(esA) = 0, i = 1, . . . ,m,

and

ci(ejA)−
m∑
s=1

tjsci(esA) = di(ējB), i = m+ 1, . . . , n.
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This shows that C(A) can be reduced by some elementary column operations
to a matrix of the form (

C(eAe) 0
∗ C(B)

)
.

As a consequence, detC(A) = detC(eAe) detC(B).
(3) In general, by Lemma 1.1, AeA is a right projective ideal of A and I/AeA

is a nilpotent right projective ideal of A/AeA such that (A/AeA)/(I/AeA) ∼= B.
Thus cd(A/AeA) = cd(B) as shown in (1), and cd(A) = cd(eAe) cd(A/AeA) as
seen in (2). This completes the proof of the proposition.

We shall now give two consequences of the above result. The first one gen-
eralizes some key results stated in [24].

2.2. Corollary. Let e be an idempotent of A. If e radA or radAe is
projective, then

(1) cd(A) = cd((1− e)A(1− e)), and
(2) gdim((1− e)A(1− e)) ≤ gdim(A) ≤ gdim((1− e)A(1− e)) + 3.
Proof. We need only to consider the case where e and 1−e are nonzero such

that e radA is projective. Write e = e1 + · · ·+ er, 1− e = er+1 + · · ·+ en, where
e1, . . . , en are pairwise orthogonal primitive idempotents. If erA is isomorphic
to a direct summand of (1 − e)A, then f = e1 + · · · + er−1 is such that fradA
is projective and (1− e)A(1− e) is Morita equivalent to (1− f)A(1− f). Thus
we may assume that none of the eiA with 1 ≤ i ≤ r is isomorphic to a direct
summand of (1−e)A. Then eA(1−e)A = e(radA) (1−e)A. We first claim that
the ideal A(1 − e)A is right projective. That is, eiA(1 − e)A is projective for
all 1 ≤ i ≤ n. This is evident for r < i ≤ n. It remains to show, for 1 ≤ i ≤ r,
that eiA(1− e)A, or equivalently, ei(radA)(1− e)A is projective. For doing so,
assume that

``(e1AA) ≥ · · · ≥ ``(er−1AA) ≥ ``(erAA).

Since er radA is projective with ``(er radAA) < ``(erAA), it follows from
the above inequalities that none of the eiA with 1 ≤ i ≤ r is isomorphic to
a direct summand of er radA. Thus er radA ∼= ⊕n

i=r+1 (eiA)nri with nri ≥ 0.
This gives rise to er(radA)(1−e)A = erradA, which is a projective module. Let
s be an integer with 1 ≤ s < r such that the ei(radA)(1− e)A is projective for
all s < i ≤ r. As we argued above, esradA ∼= ⊕n

i=s+1 (eiA)nsi with nsi ≥ 0.
Therefore,

es(radA)(1− e)A ∼=
n⊕

i=s+1

(eiA(1− e)A)nsi ,

which is projective by the induction hypothesis. This proves our claim. Fur-
thermore, we have e radA ∩ A(1 − e)A ⊆ eA(1 − e)A ⊆ e(radA)(1 − e)A, and
hence e radA ∩ A(1− e)A = e radA ·A(1− e)A. Therefore,

rad (A/A(1− e)A) = (e radA+A(1− e)A)/A(1− e)A
∼= e radA/(e radA ∩ A(1− e)A)
∼= e radA/(e radA ·A(1− e)A),
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where the last module is projective over A/A(1 − e)A, since e radA is projec-
tive over A. This implies that A/A(1 − e)A is hereditary, and consequently,
gdim(A/A(1 − e)A) ≤ 1 and cd(A/A(1 − e)A) = 1. Now the result follows
immediately from Propositions 1.3(2) and 2.1. The proof of the corollary is
completed.

We observe that the second inequality in Corollary 2.2(2) appears already
in [6, Lemma 4] with the hypothesis that A be left serial and e be primitive. As
another consequence of Proposition 2.1, the following result establishes imme-
diately the Cartan determinant conjecture for quasi-stratified algebras.

2.3. Corollary. If A is quasi-stratified, then cd(A) is positive.
Proof. Assume that

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

is a quasi-stratification of A. Let e be a pseudo-primitive idempotent which
generates the idempotent part of I1. Note that cd(eAe) > 0. If r = 1 then,
by Lemma 1.10, e is primitive such that A is Morita equivalent to eAe. Thus
cd(A) = cd(eAe) > 0. Assume now that r > 1. Then A/I1 admits a quasi-
stratification of length r − 1, and by the induction hypothesis, cd(A/I1) > 0.
By Proposition 2.1, we have cd(A) = cd(eAe) cd(A/I1) > 0. This completes the
proof of the corollary.

2.4. Lemma. Let I be a quasi-stratifying ideal of A. Then A is of finite
global dimension if and only if I is quasi-heredity and A/I is of finite global
dimension.

Proof. We may assume that IA is projective. Let e be a pseudo-primitive
idempotent which generates the idempotent part of I. By Corollary 1.4, A is of
finite global dimension if and only if eAe and A/I are of finite global dimension.
Being null or local, eAe is of finite global dimension if and only if e radAe = 0,
that is, I is quasi-heredity. This completes the proof of the lemma.

We are now ready to get the main result of this section, which includes
Wick’s result on standardly stratified algebras; see [21, (1.7)].

2.5. Theorem. Let A be a quasi-stratified artin algebra. The following
conditions are equivalent :

(1) cd(A) = 1.
(2) A is of finite global dimension.
(3) A is ultimate-hereditary.
Proof. Let

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

be a quasi-stratification of length r. We shall proceed by induction on r. Let
e be a pseudo-primitive idempotent which generates the idempotent part of
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I1. If r = 1, then e is primitive. By Lemma 1.10, A is Morita equivalent
to eAe and each of the three conditions stated in the theorem is equivalent
to A being hereditary. Assume now that r > 1. Then A/I1 admits a quasi-
stratification of length r − 1. Moreover, it follows from Proposition 2.1 that
cd(A) = cd(eAe) cd(A/I1).Note that cd(eAe) = 1+c, where c is the composition
length of e radAe as a right module over eAe.

Now cd(A) = 1 if and only if e radAe = 0 and cd(A/I1) = 1. Since e is
pseudo-primitive, e radAe = 0 if and only if gdim(eAe) <∞. Moreover, by the
induction hypothesis, cd(A/I1) = 1 if and only if gdim(A/I1) < ∞. According
to Corollary 1.4, we have the equivalence of (1) and (2).

If gdim(A) <∞, then by Lemma 2.4, I1 is quasi-heredity and A/I1 is finite
global dimension. Applying the induction hypothesis, we infer that A/I1 is
ultimate-hereditary. Hence A is ultimate-hereditary by definition. This shows
that (2) implies (3). Moreover, it follows from Proposition 1.11 that (3) implies
(2). The proof of the theorem is now completed.

3. Self-extensions of simple modules

The objective of this section is to establish the no loop conjecture for quasi-
stratified algebras, and the strong no loop conjecture for algebras which are
quasi-stratified on one side. It is well known that if I is an idempotent projective
ideal, then the extension groups of modules annihilated by I are preserved when
one passes from A to A/I; see, for example, [11, Statement 4]. Unfortunately,
this is no longer the case if I is not idempotent. Nevertheless, we have the
following result.

3.1. Lemma. Let I be a right projective ideal of A. If S is a simple right
A/I-module, then

Ext1
A(S, S) ∼= Ext1

A/I(S, S).

Proof. Let S be a simple right A-module with SI = 0. First, we consider
the case where I is nilpotent. Let

η : 0 //S //E //S //0

be in Ext1
A(S, S). We shall show that EI = 0. Indeed, let {e1, . . . , en} be a

complete set of pairwise orthogonal primitive idempotents of A. We may assume
that there exists some 1 ≤ r ≤ n such that Sei = S if and only if 1 ≤ i ≤ r.
Then eiA ∼= e1A if and only if 1 ≤ i ≤ r. In particular, Eej = 0 for all
r < j ≤ n. Let s be an integer with 1 ≤ s ≤ r. Note that esI is a projective
right A-module since IA is projective. Moreover, ``(esIA) < ``(esAA) since
I ⊆ radA. Thus eiA is not isomorphic to a direct summand of esI, for all
1 ≤ i ≤ r. As a consequence, esI ⊆

∑
r<j≤nAejA, and hence EesI = 0. This
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shows that EI = 0, that is, η ∈ Ext1
A/I(S, S). Hence the result is established in

case I is nilpotent.
In general, let t be the idempotency of I. By Lemma 1.1, J = It is an

idempotent right projective ideal of A. Note that S is a simple A/J-module
since SJ ⊆ SI = 0. Therefore, Ext1

A(S, S) ∼= Ext1
A/J(S, S). Moreover, I/J is a

nilpotent right projective ideal of A/J such that (A/J)/(I/J) ∼= A/I. It follows
from our previous consideration that Ext1

A/J(S, S) ∼= Ext1
A/I(S, S). The proof

of the lemma is completed.

The next lemma follows easily from [1, (2.4)]. However, we present a different
argument here.

3.2. Lemma. Let S be a simple right A-module of finite projective dimen-
sion, supported by a primitive idempotent e. If AeA is right projective, then
Ext1

A(S, S) = 0.
Proof. Let {e1, . . . , en} with e1 = e be a basic set of primitive idempotents

of A. For all 1 ≤ j ≤ n, let cj be the multiplicity of S as a composition factor
of ejA, which is equal to the composition length of ejAe as a right module over
eAe. Let

0→ Pm → · · · → P1 → P0 → S → 0

be a finite projective resolution of S. Write Pi = (e1A)ri1 ⊕ · · · ⊕ (enA)rin with
rij ≥ 0, for i = 0, 1, . . . ,m. It is well known that

1 =
m∑

i=0

(−1)i(ri1 c1 + · · ·+ rin cn).

Assume that AeA is right projective. Then, for all 1 ≤ j ≤ n, we have
ejAeA ∼= (eA)sj with sj ≥ 0. Hence ejAe ∼= (eAe)sj as right eAe-modules, and
consequently, cj = sj c1 for all 1 ≤ j ≤ n. This gives rise to

c1

m∑

i=1

(−1)i(ri1 s1 + · · ·+ rin sn) = 1.

Thus c1 = 1, and hence e radAe = 0. In particular, Ext1
A(S, S) = 0. The proof

of the lemma is completed.

The following result can be considered as a weaker version of the strong no
loop conjecture for quasi-stratified algebras.

3.3. Proposition. Let A be a quasi-stratified algebra. If S is a simple
(left or right) A-module with projective and injective dimensions finite, then
Ext1

A(S, S) = 0.
Proof. Let S be a simple right A-module with projective and injective di-

mensions finite. Then DS is a simple left A-module with projective and injective
dimensions finite. Let

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A
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be a quasi-stratification of A, and let e be a pseudo-primitive idempotent which
generates the idempotent part of I1. We shall proceed by induction on r. If
r = 1, then e is primitive. By Lemma 1.10, A is Morita equivalent to eAe. With
the simple module having finite projective dimension, eAe is hereditary, and so
is A. Thus Ext1

A(S, S) = 0.
Assume now that r > 1. Then A/I1 admits a quasi-stratification of length

r − 1. Let us consider the case where I1 is left projective. If SI1 = 0, then
DS is a simple left module over A/I1. It follows from Lemma 3.1 and the
induction hypothesis that Ext1

A(DS,DS) ∼= Ext1
A/I1(DS,DS) = 0. If SI1 6= 0,

then S = SI1 = SeA, and hence DS is the simple left A-module supported by
e. Since AeA is left projective by Lemma 1.1, Ext1

A(DS,DS) = 0 by Lemma
3.2. Therefore, Ext1

A(S, S) = 0 in both cases. The proof of the proposition is
completed.

As an immediate consequence, we have the following result which excludes
loops in the ordinary quiver of an ultimate-hereditary algebra.

3.4. Theorem. Let A be a quasi-stratified algebra. If A is of finite global
dimension, then Ext1

A(S, S) = 0 for all simple (left or right) A-modules S.
Proof. If A is of finite global dimension, then every simple A-module has

finite projective and injective dimensions. By Proposition 3.3, Ext1
A(S, S) = 0

for every simple A-module S. This completes the proof of the theorem.

Unfortunately, we need to put some restriction on a quasi-stratification in
order to establish the strong no loop conjecture.

3.5. Definition. We say that A is quasi-stratified on the right (respectively,
left) if A admits a quasi-stratification

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

such that Ii+1/Ii is a right (respectively, left) quasi-stratifying ideal of A/Ii,
for all 0 ≤ i < r. Such a quasi-stratification is called a right (respectively, left)
quasi-stratification of A.

It follows from the definition that a right standardly stratified algebra is
quasi-stratified on the right.

3.6. Theorem. Let A be an artin algebra which is quasi-stratified on
the right. If S is a simple right A-module of finite projective dimension, then
Ext1

A(S, S) = 0.
Proof. Let S be a simple right A-module of finite projective dimension.

Assume that
0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A

is a right quasi-stratification of A. If r = 1 then, as we have seen in the
proof of Proposition 3.3, A is hereditary. Thus Ext1

A(S, S) = 0. Suppose now
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that r > 1. If SI1 = 0, then S is a simple right A/I1-module, which is of finite
projective dimension by Lemma 1.2(2). It follows from the induction hypothesis
that Ext1

A/I1(S, S) = 0. Thus Ext1
A(S, S) = 0, by Proposition 3.1. Otherwise,

the idempotent part of I1 is generated by a primitive idempotent e. Note that
S = SI1 = SeA. Since AeA is right projective by Lemma 1.1, it follows from
Lemma 3.2 that Ext1

A(S, S) = 0. This completes the proof of the theorem.
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