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INTRODUCTION

In this paper, we are mainly concerned with the Cartan determinant con-
jecture and the no loop conjecture. If A is an artin algebra of finite global
dimension, the first conjecture claims that the Cartan determinant of A is equal
to 1, while the second one states that every simple A-module admits only the
trivial self-extension. Among numerous partial solutions to these conjectures
such as those in [6, 14, 15, 22, 24], we observe particularly that both of them
have been established for standardly stratified algebras; see [4, 21]. This class
of algebras serves as a generalization of quasi-hereditary algebras introduced
by Cline, Parshall and Scott; see, for example, [8]. The key idea for studying
standardly stratified algebras is to relate the homological properties of an alge-
bra A to those of A/I with I an idempotent projective ideal. We shall pursue
further in this line by relaxing the condition that I be idempotent. This en-
ables us to generalize many results found in [4, 11, 21, 24]. More importantly, it
leads us to the introduction of two new classes of algebras, called quasi-stratified
and ultimate-hereditary algebras, which include standardly stratified and quasi-
hereditary algebras, respectively. We shall show that the finiteness of the global
dimension of a quasi-stratified algebra is equivalent to the Cartan determinant
equal to one, as well as to the algebra being ultimate-hereditary. Moreover,
in this case, we prove that every simple module admits only the trivial self-
extension.

Remarkably, the no loop conjecture has been verified for finite dimensional
algebras over a field given by quivers with relations; see [18, 19]. A stronger
version, called the strong mo loop conjecture, states that every simple module
of finite projective dimension over an artin algebra admits only the trivial self-
extension. This remains open except for algebras which are monomial [18] or
special biserial [20]. We refer to [7, 16] for more special cases. The last result
of this paper is to confirm the strong no loop conjecture for algebras which are
quasi-stratified on one side, and in particular, for standardly stratified algebras.

1. PROJECTIVE IDEALS AND QUASI-STRATIFICATIONS

Throughout this paper, A stands for an artin algebra. The radical and the
global dimension of A will be written as radA and gdim(A), respectively. The



category of finitely generated right A-modules and that of finitely generated left
A-modules will be denoted by mod-A and A-mod, respectively. Moreover, D
stands for the usual duality between these categories.

Let I be an ideal (that is, a two-sided ideal) of A. We say that I is right
(respectively, left) projective if the right A-module I4 (respectively, the left A-
module 47) is projective. For brevity, we say that I is projective if it is either
right or left projective. Furthermore, let ¢ be the smallest positive integer such
that I* = I**1. Then I is the maximal idempotent ideal of A contained in I. We
shall call ¢t and I* the idempotency and the idempotent part of I, respectively.
In this case, it is well known that I' is generated by an idempotent; see, for
example, [11, Statement 6]. The main objective of this section is to relate the
homological properties of A to those of A/I with I being projective. Let us
start with an easy observation.

1.1. LEMMA. Let I be an ideal of A with idempotent part J. If I is right
projective, then J is an idempotent right projective ideal of A, while I/J is a
nilpotent right projective ideal of A/J.

Proof. Assume that I, is projective of idempotency t. Then J = I! is
projective as a right A-module. Since I.J = I'*! = It = J I/J = I/1J is
projective as a right A/J-module. This completes the proof of the lemma.

For a module M in mod-A, we write pdim 4 (M) for the projective dimension
of M over A. The following result is essential for our investigation.

1.2. LEMMA. Let I be a right projective ideal of A of idempotency t. For
every module M in mod-A/I, we have

(1) pdim 4 (M) < pdimA/I(M) +1, and

(2) pdim /(M) < pdim 4 (M) +2(t — 1).

Proof. The statement (1) is well-known; see, for example, [11, Statement 1].
In order to prove (2), write B = A/I and let M be a module in mod-B. Clearly,
we need only to consider the case where pdim (M) =r < co. If r =0, then M
is a projective A-module annihilated by I. Hence M = M /M1 is projective over
B. This proves (2) for r = 0. If r = 1, then mod-A has a short exact sequence

I.p M 0

0 Q

with j an inclusion map between projective modules. Since MT = 0, we get
PI C @, and hence a chain

pPrittcQricprtcQri-tcpr-!c...cQICrPICQcCep
of submodules of P. This gives rise to an exact sequence

(x) PI'/QI' — QI'"™'/QI' — PI*"'/PI' — ... - Q/QI — P/PI — M — 0



in mod-B. Since I4 is a projective A-module, so are the PI? and the QI?. As
a consequence, the PI‘/PI‘T! and the QI/QI'™! are projective modules in
mod-B. Moreover, PI'/QI* = 0 since PI* = PI**t C QI' C PI'. Thus (x) is
a projective resolution of M over B. In particular, pdimg(M) < 2(¢t — 1) + 1.
This proves that (2) holds for r = 1. Assume now that pdim (M) =r > 1 and
that (2) holds for modules N in mod-B with pdim4(N) < r — 1. Consider a
short exact sequence

J

0 9] P—=sM 0

in mod-A with P projective and j an inclusion map. Then pdim4(Q) =r — 1,
and there exists a short exact sequence

0 Q/PI P/PI M 0

in mod-B with P/PI projective. In particular, pdimg (M) < pdimg(2/PI)+1.
Now the projectivity of PI implies that pdim 4(Q2/PI) < pdim4(Q2) = r—1. By
the induction hypothesis, pdimg(2/PI) < r — 1+ 2(t — 1). Therefore,

pdimp(M) < pdimg(Q/PI)+1<r—1+2(t—1)+1=pdim, (M) +2(t — 1).
This completes the proof of the lemma.

For convenience, we define gdim(0) = —1. The following result generalizes
Statement 4 in [11].

1.3. PROPOSITION. Let I be a projective ideal of A of idempotency t, and
let e be an idempotent which generates the idempotent part of I. Then

(1) gdim(A/I) < gdim(A) 4+ 2(¢t — 1).

(2) gdim(eAe) < gdim(A) < gdim(eAe) + gdim(A/T) + 2.

Proof. Assume that [ is right projective. The statement (1) follows imme-
diately from Lemma 1.2(2). We shall now prove the first inequality in (2). For
this purpose, we may assume that e # 0. By Lemma 1.1, AeA 4 is projective,
and consequently, AeA 4 lies in add(eA), the full subcategory of mod-A gener-
ated by the direct sums of the direct summands of eA. Thus Homa(eA, AeA)
is a projective right module over End 4(eA); see, for example [2, (I1.2.1)], that
is, Ae is projective in mod-eAe. It then follows easily that Pe is projective in

mod-eAe whenever P is a projective module in mod-A. Let S be a simple right
A-module such that Se # 0. If

0—-P,—-P1— - —P—>P—->5—-0
is a finite projective resolution of S over A, then
0— P,e— P,_1e — -+ — Pie > Ppe —» Se -0

is a finite projective resolution of Se over eAe. Thus gdim(ede) < gdim(A).



In order to show the second inequality in (2), we need only to consider the
case where gdim(eAde) = r < oo and gdim(A/I) = s < co. We begin with
the following claim: if N is in mod-A such that NI™ = 0 for some m > 0,
then pdim4(N) < s+ 1. Indeed, if m = 1, then N is a module over A/I.
Hence by Lemma 1.2(1), pdim 4 (N) < pdimy,;(N) +1 < s+ 1. In particular,
pdim 4 (M/MI) < s+ 1 for all M € mod-A. Suppose now that m > 1. Since
(NI)I"™~! = 0, by the induction hypothesis, pdim 4(NI) < s + 1. This gives
rise to pdim 4 (N) < max{pdim 4 (NI), pdim,4(N/NI)} < s+ 1. Our claim is
proved.

If e = 0, then I* = 0 and gdim(eAe) = —1. It then follows from our claim
that gdim(A) < gdim(A/I) + 1 = gdim(eAe) + gdim(A/I) 4+ 2. Assume now
that e # 0. Let M be a module in mod-A, and let €, be the r-th syzygy of M.
Then mod-A admits an exact sequence

0= Q= Qry = = Q1= Qo — M —0
with the Q; projective, which induces an exact sequence
0—Qe—Qr1e— - — Qre— Qope — Me —0

in mod-eAe with the @Q;e projective. Since pdim, 4,(Me) < r, we see that Qe
is eAe-projective. Consider now a short exact sequence
J

0 L P—5>0,¢cA 0

in mod-A with j an inclusion and e a projective cover of Q,.eA. It induces a
short exact sequence

0 Le Pe—=>Q,¢ 0

in mod-eAe with Pe projective. Noting that P lies in add(eA), we see that
(radP)e is contained in the radical of the eAe-module Pe. Thus € is a projective
cover of {,.e in mod-eAe. Now the projectivity of €),.e implies that Le = 0, that
is, LI* = 0. It follows from the above claim that pdim 4(L) < s + 1, and hence
pdim 4 (2,eA4) < s+ 2. For the same reason, we have pdim 4(£2,/Q,eA) < s+ 1.
Therefore, pdim 4(92,) < max{pdim 4(Q.eA), pdim 4(,/Q.eA)} < s+ 2. This
gives rise to pdim 4 (M) < r+pdim 4 (2.) < r4+s42. The proof of the proposition
is completed.

As an immediate consequence, we have the following interesting result.

1.4. COROLLARY. Let I be a projective ideal of A, and let e be an idempotent
which generates the idempotent part of I. Then A is of finite global dimension
if and only if eAe and A/I are of finite global dimension.

Before proceeding further, we need some terminology on idempotents. Let
e be an idempotent of A. We say that e is simple if e is primitive such that



eradA e = 0, or equivalently, eAe is a simple artin algebra. For convenience, we
say that e is pseudo-primitive if e is zero or primitive, and pseudo-simple if e is
zero or simple.

1.5. DEFINITION. (1) An ideal of A is called right (respectively, left) quasi-
stratifying if it is right (respectively, left) projective and its idempotent part is
generated by a pseudo-primitive idempotent.

(2) A right (respectively, left) quasi-stratifying ideal of A is called right
(respectively, left) quasi-heredity if its idempotent part is generated by a pseudo-
simple idempotent.

If I is a right quasi-stratifying ideal of A and e is a pseudo-primitive idem-
potent which generates the idempotent part of I, then it is easy to see that I
is right quasi-heredity if and only if eradAe = 0. For brevity, we say that an
ideal of A is quasi-stratifying (respectively, quasi-heredity) if it is right or left
quasi-stratifying (respectively, right or left quasi-heredity).

Recall that A is right standardly stratified (respectively, quasi-hereditary) if
A admits a chain of ideals

O=IlychLc---Ccl,1CIl,=A
such that I;;1/I; is a right projective ideal of A/I; generated by a primitive
(respectively, simple) idempotent, for all 0 < ¢ < n; see [10] for more equivalent

conditions. Note that a right standardly stratified algebra is called a QH-1
algebra in [21].

1.6. DEFINITION. We call A quasi-stratified if A admits a chain of ideals
O=LychLc---cl,_1CcIl.=A

such that I;11/I; is a quasi-stratifying ideal of A/I;, for all 0 < ¢ < r. Such a
chain is called a quasi-stratification.

Note that the notion of a quasi-stratified algebra is left-right symmetric.
Moreover, standardly stratified algebras are clearly quasi-stratified.

1.7. EXAMPLE. Let A be the algebra over a field given by the quiver

o

2N

with relations 02 = 03 = By =v) =eca =e0 = 8 = da — doa = 0.



It is easy to see that A is neither right nor left standardly stratified. However,
one can verify that the chain

0C<e>C<ega>C<ega,d>yC<eade>C<eaqde,e3>CA

is quasi-stratification of A, where the projectivity for the first non-zero ideal is
on the left, while that for other ideals is on the right. Thus A is quasi-stratified.

1.8. DEFINITION. We call A ultimate-hereditary if A admits a chain of ideals
O=Lychc---Ccl,_1CcIl.,=A

such that I;11/I; is a quasi-heredity ideal of A/I;, for all 0 < ¢ < r. Such a
chain is called quasi-heredity.

It is clear that a quasi-hereditary algebra is ultimate-hereditary. Moreover,
if I is a quasi-heredity ideal of A such that A/I is ultimate-hereditary, then A
is ultimate-hereditary.

The Cartant determinant conjecture has been verified by Wilson for posi-
tively gradable algebras; see [22]. The referee has drawn our attention to the
existence of a quasi-hereditary algebra which is not positively gradable. Based
on this example, we shall construct an ultimate-hereditary algebra which is
neither positively gradable nor quasi-hereditary.

1.9. EXAMPLE. Let k be a field, and consider the k-algebra
C=k<X)Y>/<X3 XY, YX?X?-Y3YX-Y3>.

Setting
Mg = C @ C/rad(C) ® C/rad?(C) @ C/rad®(C),

one gets a quasi-hereditary algebra B = End ¢(M), which is not positively
gradable; see [3]. Since B is elementary, we may assume that B = kQp/Ip with
(@B, Ip) a bound quiver. Let a,b,c,d be the vertices of Qp which correspond
to the summands

C, C/rad(C), C/rad?(C), C/rad®(C)

of M respectively. Note that b is neither a sink nor a source of Q. Moreover,
among the canonical primitive idempotents of B, the one associated to b is the
only simple idempotent. We now construct a new quiver @ from Qg by adding
a new vertex x and two new arrows « : b — z and 3 : x — b. Choose an arrow
v of @p which ends at b. We claim that A = kQ/I with I =< Ip,af,ya > is
an ultimate-hereditary algebra which is neither positively gradable nor quasi-
hereditary. Indeed, denote by eg,ep,ec, €4, €, the primitive idempotent of A
associated to a,b,c,d, x, respectively. Since aff € I, we have B = eAe with
e = ¢eq+ep+e+eq If Aadmits a positive grading A = @;>04;, then



eAe = ®;>¢ eA;e with rad(ede) = erad(A) e = ®;>1 e4;e is a positive grading
of eAe, which is contrary to the non-gradablity of B. Moreover, ¢, is the only
simple idempotent in {eg,ep, €c, €4, e, . In particular, AeyAe, = A&, where
@ = a—+ 1. Since ya € I, the left A-module A@ is not projective. Thus Aep A is
not heredity. This shows that A is not quasi-hereditary. Finally, since af € I,
we have ABA = BA. Since there exists no relation on Q starting with 3, we
have A4 = A4. Thus ABA is right projective, and hence right quasi-heredity
in A. Further, it is clear that < (,e, > / < 3 > is left projective, and hence
left quasi-stratifying in A/ < 3 >. Since A/ < 3, e, >= B, we conclude that A
is ultimate-hereditary.

For a module M in mod-A, £¢(M4) denotes the Loewy length of M over A.

1.10. LEMMA. If A admits a quasi-stratification of length one, then A is
Morita equivalent to eAe for every primitive idempotent e of A. Moreover, in
this case, A is ultimate-hereditary if and only if A is hereditary.

Proof. Assume that A is a quasi-stratifying ideal of itself. Being idempo-
tent, A = AegA with ey a primitive idempotent. If e is an arbitrary primitive
idempotent of A, it is easy to see that eA = ey A and A = AeA. This shows the
first part of the lemma.

For the second part of the lemma. it suffices to show the necessity. For doing
so, suppose that A = AegA with ey a primitive idempotent and A is ultimate-
hereditary. Let I be a non-zero quasi-heredity ideal of A, and let e; be a pseudo-
simple idempotent which generates the idempotent part of I. We consider only
the case where I4 is projective. Then I4 = (egA)*® for some s > 0, and hence
(I4) = tla(egAa) = LL(A4). In particular, I is not nilpotent. Hence ey # 0,
that is, e; is simple. Since A is Morita equivalent to e; Aej, which is a simple
algebra, A is hereditary. This completes the proof of the lemma.

We now give a bound on the global dimension of an ultimate-hereditary
algebra in terms of the number of the non-isomorphic simple modules and the
length of a quasi-heredity chain.

1.11. PROPOSITION. Let A be an ultimate-hereditary algebra with n non-
isomorphic simple modules and a quasi-heredity chain of length r. Then

gdim(A) < min{2(r — 1), n+r — 2}.

Proof. Let 0=IyCc I, C--- C I,_1 C I, = A be a quasi-heredity chain of
A, and let e be a pseudo-simple idempotent which generates the idempotent part
of I;. We shall proceed by induction on 7. If r = 1 then, by Lemma 1.10, n = 1
and gdim(A) = 0. Assume now that » > 1. Then A/I; is ultimate-hereditary
with a quasi-heredity chain

0211/11 c---C Ir—l/Il C Ir/ll :A/Il



If e = 0, then A/I; has n non-isomorphic simple modules. By the induction
hypothesis, gdim(A/I1) < min{2(r—2), n+r—3}. In view of Proposition 1.3(2),
we see that gdim(A) < gdim(A/I1)+1 < min{2(r—1), n+r—2}. Suppose now
that e # 0. Then e is primitive such that gdim(eAe) = 0. Note that the number
of non-isomorphic simple A/I;-modules is n — 1. By the induction hypothesis,
gdim(A/@) < min{2(r —2),(n—1)+ (r — 1) — 2}. Applying Proposition 1.3(2),
we get gdim(A) < gdim(A/I;) + 2 < min{2(r — 1),n 4+ r — 2}. The proof of the
proposition is completed.

Note that the length of a heredity chain of an artin algebra is bound by
the number of the non-isomorphic simple modules. In this way, we recover a
result of Dlab and Ringel saying that the global dimension of a quasi-hereditary
algebra of n non-isomorphic simple modules is at most 2(n — 1); see [11].

2. THE CARTAN DETERMINANT

The objective of this section is to study the Cartan determinant of a quasi-
stratified algebra. We begin with a brief recall. Let {e;,...,e,} be a basic
set of primitive idempotents of A, that is, e1 A4, ..., e, A are the non-isomorphic
indecomposable projective modules in mod-A. For 1 < 4,5 < n, let ¢;; be the
multiplicity of the simple module e;A/e; radA as a composition factor of e;A.
Then (c¢;j)nxn is called a right Cartan matric of A. Similarly, {eq,...,e,} de-
termines a left Cartan matriz of A. Since A is an artin algebra, the right Cartan
matrices and the left Cartan matrices of A all have the same determinant; see,
for example, [13, (1.2)], which is called the Cartan determinant of A and de-
noted by cd(A). A well-known result of Eilenberg’s, which is the origin of the
Cartan determinant conjecture, says that cd(A) = +1 if A is of finite global
dimension; see [12].

We first relate cd(A) and c¢d(A/I) with I a projective ideal. The following
proposition generalizes the results stated in [21, (1.4)] and [4, (1.3)]. We refer
to [5, 17, 23] for more similar matrix reductions. For convenience, we define
cd(0) = 1.

2.1. PROPOSITION. Let I be a projective ideal of A, and let e be an idem-
potent which generates the idempotent part of I. Then

cd(A) = cd(ede) cd(A/I).

Proof. Since the right Cartan matrices and the left Cartan matrices of A
have the same determinant, we need only to consider the case where I is right
projective such that B = A/I is nonzero. For x € A, we write T = x + I € B.
Let {e1,...,e,} be a basic set of primitive idempotents of A. For a module M
in mod-A, we denote by ¢;(M) the multiplicity of e;A/e; rad A as a composition



factor of M. Then C(A) = (c;i(e;A))nxn is aright Cartan matrix of A. For every
e; ¢ I, we have ¢;A/e;radA = €;B/¢e;radB as A-modules. As a consequence,
for every B-module N, the multiplicity d;(N) of ;B/e; radB as a composition
factor of N coincides with ¢;(N). Moreover, the nonzero classes of é1,...,é,
form a basic set of primitive idempotents of B.

(1) Suppose first that e = 0, that is, I C radA. Then {é1,...,&,} is a basic
set of primitive idempotents of B and C(B) = (d;(€;B))nxn is a right Cartan
matrix of B. We may assume, without loss of generality, that

U(e1As) < ll(egAy) <--- < ll(e,Aa).
Since e;[I is projective with £¢(e;14) < £(e;A4), we have e;] =0 and
BjI = (elA)le D---D (Ej_lA)Tj’jfl, Tji Z 0, _] = 2, ey

Since ;B = ¢;A/e;I as right A-modules, we deduce that d;(é;B) = ¢;(e1A) for
t=1,...,n, and

d;(€;B) = c;(e;A E risci(esA), i=1,...,n; j=2,...,n.

This shows that the first column of C(B) coincides with that of C'(A). More
importantly, C(B) can be obtained from C'(A) by some elementary column oper-
ations. As a consequence, det C'(A) = det C(B), that is, cd(A4) = cd(ede) cd(B)
since cd(eAe) = 1 in this case.

(2) Suppose now that I = AeA is nonzero. We may assume, without loss
of generality, that {ej,...,e,} with 1 < m < n is a basic set of primitive
idempotents of ede. It is easy to see that I = A(e; + --- + e,,,)A and that
C(eAe) = (ci(e;A))mxm is a right Cartan matrix of eAe. Now {€mn41,...,6n}
is a basic set of primitive idempotents of B, and C(B) = (di(€;B))m<i,j<n
is a right Cartan matrix of B. Fix an integer j with m < j < m. Since
e; I =ejA(er +---+em)A, we have ;1 = (e1A)'' @ -+ & (e A)im, £, > 0.
Therefore,

ci(ejA/e;I) = ci(ejA thscl (esA), i=1,...,n.
Since ¢;(e;A/e;I) =0 for 1 < i < m, we get
m
=) tjsci(esA) =0, i=1,...,m,

and

=) tjsci(esA) =di(g;B), i=m+1,...,n.



This shows that C'(A) can be reduced by some elementary column operations

to a matrix of the form
C(eAe) 0
* c(B) )

As a consequence, det C(A) = det C(eAe) det C(B).

(3) In general, by Lemma 1.1, AeA is a right projective ideal of A and I/AeA
is a nilpotent right projective ideal of A/AeA such that (A/AeA)/(I/AcA) = B.
Thus cd(A/AeA) = cd(B) as shown in (1), and c¢d(A) = cd(eAe) cd(A/AecA) as
seen in (2). This completes the proof of the proposition.

We shall now give two consequences of the above result. The first one gen-
eralizes some key results stated in [24].

2.2. COROLLARY. Let e be an idempotent of A. If eradA or radAe is
projective, then

(1) cd(A) = cd((1 —e)A(1 —¢)), and

(2) gdim((1 —e)A(1 —e)) < gdim(A) < gdim((1 —e)A(1 —e)) + 3.

Proof. We need only to consider the case where e and 1 — e are nonzero such
that eradA is projective. Writee =e;+---+e,, 1 —e=e,41+ -+ ¢e,, where
e1,...,e, are pairwise orthogonal primitive idempotents. If e.A is isomorphic
to a direct summand of (1 — e)A, then f =e; +--- 4 e,_1 is such that fradA
is projective and (1 — e)A(1 — e) is Morita equivalent to (1 — f)A(1 — f). Thus
we may assume that none of the e; A with 1 < ¢ < r is isomorphic to a direct
summand of (1—e)A. Then eA(1—e)A = e(radA) (1 —e)A. We first claim that
the ideal A(1 — e)A is right projective. That is, e;A(1 — e)A is projective for
all 1 <4 < n. This is evident for r < ¢ < n. It remains to show, for 1 <i < r,
that e; A(1 — e) A, or equivalently, e;(radA)(1 — e)A is projective. For doing so,
assume that

UU(e1Ap) > - > U(er—1An) > U(e.Ay).

Since e,radA is projective with £f(e,.radAs) < €l(e,A4), it follows from
the above inequalities that none of the e;A with 1 < i < r is isomorphic to
a direct summand of e, radA. Thus e, radA = 69?:7‘4-1 (e;A)" with n,.; > 0.
This gives rise to e,(radA)(1—e)A = e,radA, which is a projective module. Let
s be an integer with 1 < s < r such that the e;(radA)(1 — e)A is projective for
all s < i < r. As we argued above, e;radA = P (e;A)™=i with ng; > 0.

1=s+1
Therefore,
n

es(radA)(1—e)A= P (e A(l —e)A)™,
1=s+1

which is projective by the induction hypothesis. This proves our claim. Fur-
thermore, we have eradA N A(1 —e)A C eA(1 —e)A C e(radA)(1 — e) A, and
hence eradA N A(1 —e)A =eradA - A(1 — e)A. Therefore,

rad (A/A(1 —e)A) (eradA + A(1 —e)A)/A(1 —e)A
eradA/(eradA N A(1 —e)A)
eradA/(eradA - A(1 —e)A),

111 1
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where the last module is projective over A/A(1 — e)A, since eradA is projec-
tive over A. This implies that A/A(1 — e)A is hereditary, and consequently,
gdim(A/A(1 — e)A) < 1 and c¢d(A/A(1 — e)A) = 1. Now the result follows
immediately from Propositions 1.3(2) and 2.1. The proof of the corollary is
completed.

We observe that the second inequality in Corollary 2.2(2) appears already
in [6, Lemma 4] with the hypothesis that A be left serial and e be primitive. As
another consequence of Proposition 2.1, the following result establishes imme-
diately the Cartan determinant conjecture for quasi-stratified algebras.

2.3. COROLLARY. If A is quasi-stratified, then cd(A) is positive.
Proof. Assume that

O=LhychLc---Ccl,_1CcIl.,=A

is a quasi-stratification of A. Let e be a pseudo-primitive idempotent which
generates the idempotent part of I;. Note that cd(ede) > 0. If » = 1 then,
by Lemma 1.10, e is primitive such that A is Morita equivalent to eAe. Thus
cd(A) = cd(ede) > 0. Assume now that » > 1. Then A/I; admits a quasi-
stratification of length r — 1, and by the induction hypothesis, cd(A4/I1) > 0.
By Proposition 2.1, we have cd(A) = cd(eAe) cd(A/I1) > 0. This completes the
proof of the corollary.

2.4. LEMMA. Let I be a quasi-stratifying ideal of A. Then A is of finite
global dimension if and only if I is quasi-heredity and A/I is of finite global
dimension.

Proof. We may assume that I4 is projective. Let e be a pseudo-primitive
idempotent which generates the idempotent part of I. By Corollary 1.4, A is of
finite global dimension if and only if eAe and A/I are of finite global dimension.
Being null or local, eAe is of finite global dimension if and only if eradA e = 0,
that is, I is quasi-heredity. This completes the proof of the lemma.

We are now ready to get the main result of this section, which includes
Wick’s result on standardly stratified algebras; see [21, (1.7)].

2.5. THEOREM. Let A be a quasi-stratified artin algebra. The following
conditions are equivalent:

(1) ed(A4) =1.
(2) A is of finite global dimension.
(3) A is ultimate-hereditary.
Proof. Let
0=Ihchc---cl,1Ccl, =4

be a quasi-stratification of length r. We shall proceed by induction on r. Let
e be a pseudo-primitive idempotent which generates the idempotent part of
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I;. If r = 1, then e is primitive. By Lemma 1.10, A is Morita equivalent
to eAe and each of the three conditions stated in the theorem is equivalent
to A being hereditary. Assume now that r > 1. Then A/I; admits a quasi-
stratification of length r — 1. Moreover, it follows from Proposition 2.1 that
cd(A) = cd(eAe) cd(A/I). Note that cd(eAe) = 1+¢, where ¢ is the composition
length of eradA e as a right module over eAe.

Now cd(A4) = 1 if and only if eradde = 0 and cd(A/I;) = 1. Since e is
pseudo-primitive, eradA e = 0 if and only if gdim(eAe) < co. Moreover, by the
induction hypothesis, cd(A/I;) = 1 if and only if gdim(A/I;) < co. According
to Corollary 1.4, we have the equivalence of (1) and (2).

If gdim(A) < oo, then by Lemma 2.4, I; is quasi-heredity and A/I; is finite
global dimension. Applying the induction hypothesis, we infer that A/I; is
ultimate-hereditary. Hence A is ultimate-hereditary by definition. This shows
that (2) implies (3). Moreover, it follows from Proposition 1.11 that (3) implies
(2). The proof of the theorem is now completed.

3. SELF-EXTENSIONS OF SIMPLE MODULES

The objective of this section is to establish the no loop conjecture for quasi-
stratified algebras, and the strong no loop conjecture for algebras which are
quasi-stratified on one side. It is well known that if I is an idempotent projective
ideal, then the extension groups of modules annihilated by I are preserved when
one passes from A to A/I; see, for example, [11, Statement 4]. Unfortunately,
this is no longer the case if I is not idempotent. Nevertheless, we have the
following result.

3.1. LEMMA. Let I be a right projective ideal of A. If S is a simple right
A/I-module, then
Ext} (S, 5) = Ext} (S5, 5).

Proof. Let S be a simple right A-module with ST = 0. First, we consider
the case where I is nilpotent. Let

n: 0 S E S 0

be in Ext!(S,S5). We shall show that EI = 0. Indeed, let {ei,...,e,} be a
complete set of pairwise orthogonal primitive idempotents of A. We may assume
that there exists some 1 < r < n such that Se; = S if and only if 1 < i < 7.
Then e;A = e; A if and only if 1 < ¢ < r. In particular, Fe; = 0 for all
r < j < n. Let s be an integer with 1 < s < r. Note that esI is a projective
right A-module since I4 is projective. Moreover, €l(esla) < €l(esAa) since
I C radA. Thus e;A is not isomorphic to a direct summand of e,I, for all

1 <i<r. As a consequence, e;I C ZK].Sn Ae; A, and hence Fe,l = 0. This
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shows that EI = 0, that is, n € Exth/I(S, S). Hence the result is established in
case I is nilpotent.

In general, let ¢ be the idempotency of I. By Lemma 1.1, J = I! is an
idempotent right projective ideal of A. Note that S is a simple A/J-module
since SJ C SI = 0. Therefore, Ext! (S, S) = Exti/(](& S). Moreover, I/J is a
nilpotent right projective ideal of A/.J such that (A/J)/(I/J) = A/I. Tt follows
from our previous consideration that Exth/J(S, S) = Exth/I(S, S). The proof
of the lemma is completed.

The next lemma follows easily from [1, (2.4)]. However, we present a different
argument here.

3.2. LEMMA. Let S be a simple right A-module of finite projective dimen-
sion, supported by a primitive idempotent e. If AeA is right projective, then
Ext}(S,8) = 0.

Proof. Let {e1,...,e,} with e; = e be a basic set of primitive idempotents
of A. For all 1 < j <n, let ¢; be the multiplicity of S as a composition factor
of e; A, which is equal to the composition length of e; Ae as a right module over
eAe. Let

0O0—-PFPp—--—P—-PFP—>5—0
be a finite projective resolution of S. Write P; = (e 4)" & --- @ (e, A)"» with
rij > 0, for i =0,1,...,m. It is well known that
m
1= Z(*l)z(ril C1 4+ 4 Tin Cn).
i=0

Assume that AeA is right projective. Then, for all 1 < j < n, we have
ejAeA = (eA)% with s; > 0. Hence e; Ae = (eAe)® as right eAe-modules, and
consequently, ¢; = s; ¢ for all 1 < j <n. This gives rise to

m .
C1 Z(—l)z(’l“il S14+ -+ Tin Sn) =1.
i=1
Thus ¢; = 1, and hence eradA e = 0. In particular, Ext! (S, S) = 0. The proof
of the lemma is completed.

The following result can be considered as a weaker version of the strong no
loop conjecture for quasi-stratified algebras.

3.3. PROPOSITION. Let A be a quasi-stratified algebra. If S is a simple
(left or right) A-module with projective and injective dimensions finite, then
Ext}(S,S) = 0.

Proof. Let S be a simple right A-module with projective and injective di-
mensions finite. Then D.S is a simple left A-module with projective and injective
dimensions finite. Let

OZI()C11C"‘CIT_1CIT:A
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be a quasi-stratification of A, and let e be a pseudo-primitive idempotent which
generates the idempotent part of I;. We shall proceed by induction on r. If
r =1, then e is primitive. By Lemma 1.10, A is Morita equivalent to eAe. With
the simple module having finite projective dimension, eAe is hereditary, and so
is A. Thus Ext!(S,S) = 0.

Assume now that r > 1. Then A/I; admits a quasi-stratification of length
r — 1. Let us consider the case where I is left projective. If SI; = 0, then
DS is a simple left module over A/I;. It follows from Lemma 3.1 and the
induction hypothesis that Ext} (DS, DS) = Exth/h (DS,DS)=0. If SI; #0,
then S = SI; = SeA, and hence DS is the simple left A-module supported by
e. Since AeA is left projective by Lemma 1.1, Ext (DS, DS) = 0 by Lemma
3.2. Therefore, EX‘C}L‘(S7 S) = 0 in both cases. The proof of the proposition is
completed.

As an immediate consequence, we have the following result which excludes
loops in the ordinary quiver of an ultimate-hereditary algebra.

3.4. THEOREM. Let A be a quasi-stratified algebra. If A is of finite global
dimension, then ExtY(S,S) =0 for all simple (left or right) A-modules S.

Proof. If A is of finite global dimension, then every simple A-module has
finite projective and injective dimensions. By Proposition 3.3, Ext!, (S, S) = 0
for every simple A-module S. This completes the proof of the theorem.

Unfortunately, we need to put some restriction on a quasi-stratification in
order to establish the strong no loop conjecture.

3.5. DEFINITION. We say that A is quasi-stratified on the right (respectively,
left) if A admits a quasi-stratification

0O=LhchLc---cl,.iCcIl,=A

such that I;11/I; is a right (respectively, left) quasi-stratifying ideal of A/I;,
for all 0 < ¢ < r. Such a quasi-stratification is called a right (respectively, left)
quasi-stratification of A.

It follows from the definition that a right standardly stratified algebra is
quasi-stratified on the right.

3.6. THEOREM. Let A be an artin algebra which is quasi-stratified on
the right. If S is a simple right A-module of finite projective dimension, then
Ext}(S,S) = 0.

Proof. Let S be a simple right A-module of finite projective dimension.
Assume that

0O=ychc---cl,_,cIl,=A

is a right quasi-stratification of A. If r = 1 then, as we have seen in the
proof of Proposition 3.3, A is hereditary. Thus Ext(S,S) = 0. Suppose now
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that » > 1. If ST; = 0, then S is a simple right A/I;-module, which is of finite
projective dimension by Lemma 1.2(2). It follows from the induction hypothesis
that Extly/;, (S,5) = 0. Thus Ext}4(S,5) = 0, by Proposition 3.1. Otherwise,
the idempotent part of I is generated by a primitive idempotent e. Note that

S:

SI; = SeA. Since AeA is right projective by Lemma 1.1, it follows from

Lemma 3.2 that Ext}(S,S) = 0. This completes the proof of the theorem.

ACKNOWLEDGEMENTS. Both authors gratefully acknowledge support from

the Natural Sciences and Engineering Research Council of Canada.

[1]

REFERENCES

I. AGOSTON, D. HAPPEL, E. LUKAcs, and L. UNGER, “Finitistic dimen-
sion of standardly stratified algebras”, Comm. Algebra 28 (2000) 2745 -
2752.

M. AUSLANDER, I. REITEN, and S. O. SMAL®, “Representation Theo-
ry of Artin Algebras”, Cambridge Studies in Advanced Mathematics 36
(Cambridge University Press, Cambridge, 1995).

TH. BELZNER, W. D. BURGESS, K. R. FULLER, and R. SCHULZ, “Ex-
amples of ungradable algebras”, Proc. Amer. Math. Soc. 114 (1992) 1 -
4.

W. D. Buragegss and K. R. FULLER, “On quasi-hereditary rings”, Proc.
Amer. Math. Soc. 106 (1989) 321 - 328.

W. D. Burcess and K. R. FULLER, “The Cartan determinant and gener-
alizations of quasihereditary rings”, Proc. Edinburgh Math. Soc. 41 (1998)
23 - 32.

W. D. Burcess, K.R. FULLER, E. R. Voss, and B. ZIMMERMANN-
HuisGeN, “The Cartan matrix as an indicator of finite global dimension

for Artinian rings”, Proc. Amer. Math. Soc. 95 (1985) 157 - 165.

W. D. BURGESS and M. SAORIN, “Homological aspects of semigroup grad-
ings on rings and algebras”, Canad. J. Math. 51 (1999) 488 - 505.

E. CLINE, B. PARSHALL, and L. ScoTT, “Finite-dimensional algebras and
highest weight categories”, J. Reine Angew. Math. 391 85- 99 (1988).

15



[9]

[10]

[11]

[12]

[13]

E. CLINE, B. PARSHALL, and L. ScoTT, “Stratifying endomorphism al-
gebras”, Memoirs Amer.Math. Soc. 124 (1996).

V. DLAB, “Quasi-hereditary algebras revisisted”, An. St. Univ. Ovidius
Constantza 4 (1996) 43 - 54.

V. DLAB and C. M. RINGEL, “Quasi-hereditary algebras”, I[llinois J.
Math. 33 (1989) 280 - 291.

S. EILENBERG, “Algebras of cohomologically finite dimension”, Comm.
Math. Helv. 28 (1954) 310 - 319.

K. R. FULLER, “The cartan determinant and global dimension of artinian
rings”, Contemp. Math. 124 (1992) 51 - 72.

K. R. FULLER and B. ZIMMERMANN-HUISGEN, “On the generalized

Nakayama conjecture and the Cartan determinant problem”, Trans. Amer.
Math. Soc. 294 (1986) 679 - 691.

E. L. GrReEN, W. H. GUSTAFSON, and D. ZACHARIA, “Artin rings of
global dimension two”, J. Algebra, 92 (1985) 375 - 379.

E. L. GREEN, ). SOLBERG and D. ZACHARIA, “Minimal projective res-
olutions”, Trans. Amer. Math. Soc. 353 (2001) 2915 - 2939.

M. HosHINO and Y. YUKIMOTO, “A generalization of heredity ideals”,
Tsukuba J. Math. 14 (1990) 423 - 433.

K. Iaqusa, “Notes on the no loop conjecture”, J. Pure Appl. Algebra, 69
(1990) 161 - 176.

H. Lenzing, “Nilpotente elemente in ringen von endlicher globaler dimen-
sion”, Math. Z. 108 (1969) 313 - 324.

S. Liu and J.-P. MORIN, “The strong no loop conjecture for special biserial
algebras”, Proc. Amer. Math. Soc. 132 (2004) 3513 - 3523.

D. D. WIck, “A generalization of quasi-hereditary rings”, Comm. Algebra
24 (1996) 1217 - 1227.

G. WILsON, “The Cartan map on categories of graded modules”, J. Algebra
85 (1983) 390 - 398.

K. YAMAGATA, “A reduction formula for the Cartan determinant problem
for algberas”, Arch. Math. 61 (1993) 27 - 34.

D. ZACHARIA, “On the Cartan matrix of an artin algebra of global dimen-
sion two”, J. Algebra 82 (1983) 353 - 357.

16



