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Introduction

Hochschild cohomology is a subtle invariant of associative algebras; see, for ex-
ample, [13], [16], [21]. The lower dimensional Hochschild cohomology groups have
well known interpretations. Indeed, the first, the second, and the third Hochschild
cohomology groups control the infinitesimal deformation theory; see, for example,
[16]. Recall that the first Hochschild cohomology group can be interpreted as the
group of classes of outer derivations, and here we are mainly concerned with this
group, in particular, we wish to understand when and why it may vanish. In more
concrete terms, the content of the paper is as follows.

We first approach the vanishing of Hochschild cohomology via semicontinuity.
As recently pointed out by Hartshorne, [20], Grothendieck’s classical semicontinu-
ity result [15] on the variation of cohomological functors in a flat family admits
a very simple and elegant extension to half-exact coherent functors, a framework
introduced by M. Auslander in his fundamental paper [3]. Using these tools we de-
rive two semicontinuĩty results: the first one applies to all Hochschild cohomology
groups of an algebra that is finitely generated projective over its base ring, whereas
the second one pertains to homogeneous components of the first Hochschild coho-
mology group of graded algebras and is tailored towards its application to mesh
algebras.

Indeed, we will show that a translation quiver is simply connected if and only if
its mesh algebra over a domain admits no outer derivation if and only if its mesh
algebra over every commutative ring admits no outer derivation.

We then move on to investigate how the Hochschild cohomology of an algebra
relates to that of the endomorphism algebra of a module over it. In the most general
context we obtain an exact sequence relating first Hochschild cohomology groups.
This enables us, in particular, to show that the first Hochschild cohomology group
of the Auslander algebra of a representation-finite artin algebra always embeds
into that of the algebra. In the more restrictive situation where both algebras
are projective over the base ring, we will deduce from a classical pair of spectral
sequences the invariance of Hochschild cohomology under pseudo-tilting, a notion
that includes tilting, co-tilting, and thus, Morita equivalence.

Finally we apply the results obtained so far to investigate the vanishing of the
first Hochschild cohomology group of a finite dimensional algebra. Our main result
in this direction establishes the equivalence of the following conditions for a finite
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dimensional algebra A of finite representation type over an algebraically closed field
and Λ its Auslander algebra:

(1) A admits no outer derivation;
(2) Λ admits no outer derivation;
(3) A is simply connected;
(4) Λ is strongly simply connected.

Note that the representation theory of a simply connected algebra is well under-
stood, and in most cases, for example, if the base field is of characteristic different
from two, one can use covering techniques to reduce the representation theory of
an algebra of finite representation type to that of a simply connected algebra [9].

To prove the equivalences just stated, we first reduce to standard algebras and
then apply our result on general mesh algebras. Some of the implications in question
were already known and some have at least been claimed to be true under varying
additional hypotheses. To be more specific, let us recall briefly some of the history.
First, Happel proved in [17, (5.5)] the equivalence of (1) and (3) for A of directed
representation type. Further, the equivalence of (3) and (4) is due to Assem-Brown
[1]. Moreover, as pointed out by Skowroński, in case A is standard, one deduces
that (1) implies (3) from [22, Theorem 1], [11, (1.2)], and [9, (4.7)]. Finally, the
equivalence of (2) and (3) is claimed in [18, Section 4] for a base field of characteristic
zero. However, in the proof given there, it is assumed implicitly that A is tilted.
Unfortunately, not only is the given argument thus incomplete, but it has also been
widely misquoted; see, for example, [1], [14].

To conclude this introduction, we draw attention to the long standing question
as to whether vanishing of the first Hochschild cohomology of an algebra precludes
the existence of an oriented cycle in its ordinary quiver. We showed earlier that the
answer is negative in general [12]. However, it would still be interesting to know for
which classes of algebras the answer is affirmative. Our results show that algebras
of finite representation type, Auslander algebras, and mesh algebras each form such
a class.

1. Coherent functors and semicontinuity

The main objective of this section is to derive two semicontinuity results on
Hochschild cohomology. The first one is a direct application of Grothendieck’s
semicontinuity theorem [15, (7.6.9)] for homological functors arising from complexes
of finitely generated projective modules, whereas the second one needs more care
and is crucial for our characterization of (strongly) simply connected (Auslander)
algebras. We use Hartshorne’s reworking of the semicontinuity theorem as it saves
some work and makes the proof more transparent.

All rings and algebras in this paper are associative with unit and all modules are
unital. Throughout, R denotes a commutative ring and unadorned tensor products
are taken over R. Let ModR denote the category of R-modules and modR its full
subcategory of finitely generated modules.
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Let F be an endofunctor on ModR, that is, an R-linear covariant functor from
ModR to itself. Recall that F is half-exact on modR if for any exact sequence
0 → M → N → Q → 0 in modR, the sequence F (M) → F (N) → F (Q) is exact.
Following Auslander [3], we say that F is coherent on modR if there exists an exact
sequence of functors

HomR(M, −)−→HomR(N, −) −→ F −→ 0 ,

with M,N in modR. Such an exact sequence is called a coherent presentation of F .
If F is coherent on modR, then F clearly commutes with inductive limits in modR.
In particular, for any field L that is an R-algebra, F (L) is a finite dimensional
vector space over L. We first reformulate a result of Hartshorne, [20, (4.6)], that
characterizes half-exact coherent functors. For convenience, we call a sequence

M : M0
f−→ M1

g−→ M2

of morphisms in an abelian category with gf = 0 a short complex and denote by
H(M) the unique homology group of M.

1.1. Proposition (Hartshorne). Let R be a noetherian commutative ring.
(1) An endofunctor F of ModR admits a coherent presentation

HomR(P, −) −→ HomR(N, −) −→ F −→ 0

with P projective if and only if there exists a short complex P of finitely generated
projective R-modules such that F ∼= H(P⊗R −).

(2) An endofunctor of ModR is half-exact coherent on modR if and only if it is
a direct summand of an endofunctor satisfying the conditions stated in (1).

In [15, Section 7], Grothendieck discusses the behaviour under base change of
cohomological functors that satisfy the conditions stated in Proposition 1.1.(1). As
Hartshorne observed, the key semicontinuity theorem [15, (7.6.9)] can be formulated
just as well for half-exact coherent functors. To do so, we denote as usual by k(p)
the residue field of the localization Rp of a commutative ring R at a prime ideal p.

1.2. Theorem (Grothendieck). Let R be a noetherian commutative ring
and F an endofunctor on ModR that is half-exact and coherent on modR. The
dimension function

p 7→ dimk(p) F (k(p))

is then upper semicontinuous on Spec(R) and takes on only finitely many values.

To apply this result to the Hochschild cohomology of algebras, let us briefly
recall the definition; see [13] or [21] for more details. From now on, A denotes an
R-algebra. Let Ao = {ao | a ∈ A} be the opposite algebra and Ae = Ao ⊗ A the
enveloping algebra of A over R. An A-bimodule X will always be assumed to be
symmetric as R-module, whence it becomes a right Ae-module via x·(ao⊗b) = axb.
This action does not interfere with the left R-module structure on X, whence for any
R-module M , the tensor product M⊗X over R inherits a right Ae-module structure
through that on X, as well as a compatible left R-module structure through that
on M .
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The bar resolution of A over R is given by the complex:

· · · → A⊗(i+2) bi−→ A⊗(i+1) → · · · → A⊗3 b1−→ A⊗2 µA−→ A → 0 ,

where µA is the multiplication map on A, and bi is the map given by

bi(a0 ⊗ a1 ⊗ · · · ⊗ ai+1) =
∑

i
j=0(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1 .

Each term in the bar resolution of A over R is naturally an A-bimodule and the
differentials respect that structure, whence the bar resolution can be viewed as a
complex of right Ae-modules. Let B denote the truncated bar resolution of A over
R. The i-th cohomology group of the complex HomAe(B, X) is called the i-th
Hochschild cohomology group of A over R with coefficients in X and is denoted by
HHi

R(A, X). In case X = A, we write HHi
R(A) = HHi

R(A,A). If R is understood,
we shall simply write HHi(A,X) for HHi

R(A,X) and HHi(A) for HHi
R(A).

The following semicontinuity result on Hochschild cohomology is a straightfor-
ward application of Theorem 1.2.

1.3. Proposition. Let R be a noetherian commutative ring. Let A be an R-
algebra and X an A-bimodule, and assume that both A and X are finitely generated
projective as R-modules. For each i ≥ 0, the dimension function

p 7→ dimk(p) HHi
k(p)(k(p)⊗R A, k(p)⊗R X)

is then upper semicontinuous on Spec(R) and takes on only finitely many values.
Proof. As A is finitely generated projective over R, so is A⊗i for each i ≥ 0.

There is thus an isomorphism of functors on ModR as follows:

−⊗X ⊗HomR(A⊗i, R) ∼= HomAe(A⊗(i+2), −⊗X) ,

where the right Ae-module structure on − ⊗ X is inherited from the one on X.
Consequently, for each R-module M , the complex HomAe(B, M⊗X) is isomorphic
to a complex P· of the following form:

0−→M ⊗X ⊗HomR(R, R)−→· · ·−→M ⊗X ⊗HomR(A⊗i, R)−→· · · ,

and so HHi
R(A, M ⊗ X) ∼= Hi(P·). As X is assumed to be finitely generated

projective over R, the same holds for X ⊗ HomR(A⊗i, R), whence the functor
HHi

R(A, −⊗X) satisfies the assumptions of (1.2) for each i ≥ 0.
To conclude, let S be a commutative R-algebra and consider the S-algebra AS =

S⊗A. With B the truncated bar resolution of A over R, the truncated bar resolution
of AS over S is isomorphic to BS = S ⊗B. Moreover, XS = S ⊗X is naturally an
AS-bimodule. Now adjunction gives rise to the following isomorphism of complexes:

Hom(AS)e(BS , XS) ∼= HomAe(B, XS) ,

whence HHi
S(AS , XS) ∼= HHi

R(A,XS) for each i ≥ 0. Applying this isomorphism
to S = k(p) for p ∈ Spec(R) completes the proof.

Now we turn our attention to the first Hochschild cohomology group. Note that
HH1

R(A, X) ∼= Ext1Ae(A, X) for any R-algebra A and any A-bimodule X. As usual,
it is useful to interpret this group through (classes of) outer derivations. To this
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end, recall that an R-derivation on A with values in X is an R-linear map δ : A → X
such that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A. For each x ∈ X, the map

ad(x) = [x,−] : A → X : a 7→ [x, a] = xa− ax

is an R-derivation. A derivation of this form is called inner , whereas the others are
called outer . Denoting by DerR(A,X) the R-module of R-derivations on A with val-
ues in X, and by InnR(A,X) its submodule of inner derivations, the first Hochschild
cohomology group can be identified as HH1

R(A, X) ∼= DerR(A,X)/InnR(A, X),
whence it can be defined through the exact sequence of R-modules

(1) X
ad−→ DerR(A, X)−→HH1

R(A,X) → 0 .

In case X = A, we shall simply write DerR(A) = DerR(A,A) and InnR(A) =
InnR(A,A).

Assume now that we are given a second R-algebra B and a homomorphism
B → A of R-algebras. For each A-bimodule X we have then an R-linear restriction
map DerR(A,X) → DerR(B, X) whose kernel we denote DerB

R(A,X) and call the
B-normalized derivations on A. Recall that an R-algebra B is separable if B is
projective as (right) Be-module. In particular, for every B-bimodule Y , any R-
derivation on B with values in Y is inner. One may exploit this as follows.

1.4. Lemma. Assume that the structure map of the R-algebra A factors through
a separable R-algebra B. For an A-bimodule X, set

XB = {x ∈ X|xb = bx for each b ∈ B} ,

the B invariants of X. The following sequence of R-modules is then exact :

(2) XB ad−→ DerB
R(A,X) −−→ HH1

R(A,X) → 0 ,

equivalently, every derivation on A is the sum of a B-normalized derivation and an
inner one. Moreover, XB is a direct summand of X as R-module.

Proof: For the first statement, just apply the Ker-Coker-Lemma to the maps
X

ad−→ DerR(A,X) → DerR(B, X) and observe that the composition is surjective
as B is separable. For the final statement, note that XB = Xe, where e ∈ Be is a
separating idempotent for the separable algebra B. The lemma is thus established.

We will use the following standard application of this result. Let U be a complete
set of pairwise orthogonal idempotents of the R-algebra A. Then B = ⊕e∈URe is an
R-subalgebra of A that is separable over R. An R-derivation δ : A → X vanishes on
B if and only if it vanishes on each idempotent in U , whence such a derivation is also
called U -normalized, or simply normalized in case U is understood. Let DerU

R(A,X)
denote the R-module of U -normalized derivations and InnU

R(A, X) its submodule of
U -normalized inner derivations. For each A-bimodule X, its B-invariants are easy
to describe:

(3) XB = ⊕e∈UeXe .

Let now A = ⊕i≥0Ai be a positively graded R-algebra and X = ⊕j∈ZZXj a
graded A-bimodule. An R-derivation δ : A → X is of degree d if δ(Ai) ⊆ Xi+d for
all i ≥ 0. Let DerU

R(A,X)d denote the R-module of U -normalized derivations of
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degree d and InnU
R(A,X)d that of U -normalized inner derivations of degree d. The

R-module HH1
R(A,X) contains then

HH1
R(A,X)d = DerU

R(A, X)d/InnU
R(A, X)d ,

the group of outer derivations of degree d, as a submodule. Repeating the arguments
above in the graded context yields the following result.

1.5. Lemma. Let A = ⊕i≥0Ai be a graded R-algebra and X = ⊕j∈ZZXj a
graded A-bimodule. Let U be a complete set of pairwise orthogonal idempotents of
A. There exists an exact sequence of R-modules as follows :

(4) ⊕e∈UeXde
ad−→ DerU

R(A, X)d−→HH1
R(A,X)d−→0 .

Proof. We need to show that any normalized inner derivation of degree d is of
the form [x,−] with x ∈ ⊕eeXde. Clearly [x,−] ∈ InnU

R(A, X)d if x ∈ ∑
e∈U eXde.

Conversely, let x =
∑

j xj with xj ∈ Xj be such that [x, −] is normalized of degree
d. For each i ≥ 0 and any j, one has [xj , Ai] ⊆ Xj+i. Hence [xj , Ai] = 0 for all
i ≥ 0 and each j 6= d, whence [x, −] = [xd, −]. As [xd,−] is then normalized, it
is an element of degree d in ⊕eeXe, that is, in ⊕eeXde as each idempotent is of
degree zero. The proof of the lemma is completed.

The graded R-algebra A is called finitely generated in degrees 0 and 1 if there
exists a naturally graded tensor algebra T = ⊕i≥0Ti, where T0 and T1 are finitely
presented over R and Ti with i ≥ 2 is the i-fold tensor product of T1 with itself
over T0, and a homogeneous ideal I contained in ⊕i≥2Ti such that A ∼= T/I. Note
that the homogeneous components of T are finitely presented over R and those of
A are finitely generated over R.

The following is the semicontinuity result on the first Hochschild cohomology
group that we alluded to before.

1.6. Theorem. Let R be a commutative ring, A a graded R-algebra finitely
generated in degrees 0 and 1, and X = ⊕j∈ZZXj a graded A-bimodule. Let A ∼= T/I
be a presentation as above such that I is finitely generated as ideal and T0 = ⊕e∈URe
with U a complete set of pairwise orthogonal idempotents of T . Denote by ∆(I) the
set of degrees of a finite set of homogeneous generators of I.

(1) For any commutative R-algebra S and any integer d, there is a natural iso-
morphism HH1

R(A, S ⊗R X)d
∼= HH1

S(S ⊗R A,S ⊗R X)d.
(2) If the R-algebra S is flat over R, then for any integer d there is an isomor-

phism, natural in X, as follows :

S ⊗R HH1
R(A,X)d

∼= HH1
S(S ⊗R A,S ⊗R X)d .

(3) Let R be noetherian. If d is an integer such that ⊕e∈U eXd e is a finitely
generated R-module and Xi+d is finitely generated projective over R for each i ∈
{1} ∪∆(I), then the dimension function

p 7→ dimk(p) HH1
k(p)(k(p)⊗R A, k(p)⊗R X)d

is upper semicontinuous on Spec(R).
Proof. The set U is finite, say U = {e1, . . . , en}. Then V = {ē = e + I | e ∈ U}

is a complete set of pairwise orthogonal idempotents of A.
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Since T is freely generated as an R-algebra by T0 and T1, every R-derivation
is uniquely determined by its values on these R-modules. Each δ ∈ DerU

R(T, X)d

vanishes on T0 and determines R-linear maps from eT1e
′ to eXd+1e

′ for each pair
e, e′ ∈ U . As T1 generates T freely over T0, each such family of maps determines
conversely such a derivation. Thus, DerU

R(T, X)d
∼= ⊕i,jHomR(eiT1ej , eiXd+1ej).

Moreover, a derivation δ in DerU
R(T, X)d induces a derivation in DerV

R(A, X)d if
and only if δ(I) = 0, equivalently, δ(Ii) = 0 for all i ∈ ∆(I). Write Tij = eiT1ej ,
Imij = eiImej and Xmij = eiXd+mej , for 1 ≤ i, j ≤ n and m ∈ ∆(I). Thus, we
obtain an exact sequence of R-modules

(∗) 0 → DerV
R(A,X)d → ⊕i,jHomR(Tij , X1ij) → ⊕m,i,j HomR(Imij , Xmij) ,

where i, j range over {1, . . . , n} and m over ∆(I).
Now let S be a commutative R-algebra and set TS = S ⊗ T , IS = S ⊗ I and

AS = S ⊗ A = TS/IS . Clearly, VS = {1S ⊗ (ei + I) | 1 ≤ i ≤ n} is a complete set
of pairwise orthogonal idempotents in AS and XS = S ⊗ X = ⊕j∈ZZ(S ⊗ Xi) is a
graded AS-bimodule. Repeating the above argument, we obtain the sequence (∗)
as well for the corresponding tensored objects.

(1) Apply the exact sequence (∗) twice to XS , first as A-bimodule and then as
AS-bimodule. Using adjunction in the Hom-terms, we conclude that

DerVS

S (AS , XS)d
∼= DerV

R(A,S ⊗X)d.

As furthermore S ⊗ (⊕eeXde) ∼= ⊕ee(S ⊗X)de, the exact sequence (4) yields

HH1
R(A, S ⊗X)d

∼= HH1
S(S ⊗A, S ⊗X)d.

(2) Assume that S is flat as R-module. We use again the exact sequence (∗)
twice: First, we tensor it with S and secondly apply it to XS . By assumption,
the module T1 is finitely presented over R and so are then the direct summands
Tij . Moreover, as I is a finitely generated ideal, the R-modules Imij are finitely
generated over R. This implies that the natural map

S ⊗⊕i,jHomR(Tij , X1ij) → ⊕i,jHomR(Tij , S ⊗X1ij)

is an isomorphism, whereas the natural map

S ⊗⊕m,i,j HomR(Imij , Xmij) → ⊕m,i,j HomR(Imij , S ⊗Xmij)

is at least injective. We infer that S ⊗ DerV
R(A,X)d

∼= DerV
R(A,S ⊗ X)d for any

d. Applying the same argument as in (1) to the exact sequence (4), we obtain
S ⊗ HH1

R(A,X)d
∼= HH1

R(A, S ⊗ X)d. Combining this isomorphism with the one
from part (1) yields the claim.

(3) By assumption now, Xd+m is finitely generated projective over R for each
m ∈ {1}∪∆(I). As direct R-summands of Xd+m, the Xmij are all finitely generated
projective R-modules too. Write (−)∗ = HomR(−, R) for the R-dual. If P is
finitely generated projective over R, then so are P ∗ and P ∗∗ ∼= P . Hence for
any R-modules M, N , we obtain first M ⊗ Xmij

∼= HomR(X∗
mij ,M), and then

HomR(N, M ⊗Xmij) ∼= HomR(X∗
mij ⊗N, M) by adjunction. Employing this last

isomorphism in the exact sequence (∗), we deduce that the functor DerV
R(A, −⊗X)d

is the kernel of a morphism of functors

HomR(⊕i,jX
∗
1ij ⊗ Tij ,−) → HomR(⊕m,i,jX

∗
mij ⊗ Imij ,−) .
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Therefore, DerV
R(A, − ⊗ X)d = HomR(C,−), where C is the cokernel of some R-

linear map from ⊕m,i,jX
∗
mij ⊗ Imij to ⊕i,jX

∗
1ij ⊗Tij . As ⊕i,jX

∗
1ij ⊗Tij is a finitely

generated R-module, so is C.
To conclude the argument, consider the functor G(M) = ⊕ee(M ⊗ X)de on

ModR. Applying ( )d and multiplying with
∑

e ē ⊗ ē ∈ Ae are exact functors.
Thus, G(−) is right exact and so isomorphic to −⊗G(R). Now G(R) = ⊕eeXde is
finitely generated over R and we may choose a surjection from a finitely generated
projective R-module Q onto it. But then −⊗Q → −⊗⊕eeXde is an epimorphism
of functors on ModR. Finally, we may identify − ⊗ Q ∼= HomR(Q∗,−), to obtain
from the above and the exact sequence (4) the coherent presentation

HomR(Q∗,−) → HomR(C,−) → HH1
R(A,−⊗X)d → 0 .

Thus, HH1(A,−⊗X)d is half-exact and coherent on modR by Hartshorne’s result.
Hence, dimk(p) HH1

R(A, k(p)⊗X)d, which equals dimk(p) HH1
k(p)(k(p)⊗A, k(p)⊗X)d

by part (1), varies upper semicontinuously with p on Spec(R). This finishes the
proof of the theorem.

2. Mesh algebras without outer derivations

The main objective of this section is to show that a finite translation quiver is
simply connected if and only if its mesh algebra over a domain admits no outer
derivation, and if this is the case, its mesh algebra over any commutative ring
admits no outer derivation.

We begin with some combinatorial considerations on quivers and their underlying
graphs. A sequence

a0
e1 a1 · · · ar−1

er ar

of edges of a graph such that ei 6= ei+1 for all 1 ≤ i < r is called a reduced walk, and
the sequence is a cycle if ar = a0 and er 6= e1. A vertex of a graph is considered as
a trivial reduced walk.

Let now Q be a quiver, that is an oriented graph. A reduced walk or a cycle of
Q is in fact a reduced walk or a cycle, respectively of its underlying graph of edges.
A sequence of arrows a0 → a1 → · · · → an with n ≥ 1 is called a path of length n
from a0 to an; and an oriented cycle if a0 = an. Such an oriented cycle is called
simple if the ai with 0 ≤ i < n are pairwise distinct. A vertex a is considered as
a path of length 0 from a to a. The set of paths of length n is denoted by Qn. In
particular, Q0 is the set of vertices and Q1 is that of arrows.

A vertex a of Q is called a source if no arrow ends in a, a sink if no arrow starts
from a. Let ∆ be a possibly empty subquiver of Q. We say that ∆ is convex in
Q if a path of Q lies entirely in ∆ as soon as its end-points lie in ∆. A convex
subquiver in our terminology is thus in particular a full subquiver. We say that Q
is a one-point extention of ∆ by a vertex a, if a is a source of Q and is the only
vertex of Q that is not in ∆. In the dual situation, we say that Q is a one-point
co-extension of ∆. Note that ∆ is convex in Q in either situation. The following
simple lemma is a reformulation of [2, (2.3)], see also [19, (7.6)].
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2.1. Lemma. Let Q be a finite connected quiver. If Q contains no oriented cycle,
then Q is a one-point extension or co-extension of one of its connected subquivers.

Now fix a commutative ring R and a finite quiver Q. For each i ≥ 0, let RQi

be the free R-module with basis Qi. Then RQ = ⊕i≥0RQi is a positively graded
R-algebra, called the path algebra of Q over R, with respect to the multiplication
that is induced from the composition of paths. Note that we use the convention
to compose paths from the left to the right. The set Q0 yields a complete set of
pairwise orthogonal idempotents of RQ and for a, b ∈ Q0, the Peirce component
a(RQ)b is the free R-module spanned by the paths from a to b.

Two or more paths of Q are parallel if they have the same start-point and the
same end-point. A relation on Q over R is an element ρ =

∑r
i=1 λipi ∈ RQ, where

the λi ∈ R are all non-zero and the pi are parallel paths of length at least two. In
this case, we say that p1, . . . , pr are the paths forming ρ and that a path appears
in ρ if it is a subpath of one of the pi. The relation ρ is called polynomial if r ≥ 2;
and homogeneous if the pi are of the same length. Moreover, a relation on Q over
ZZ with only coefficients 1 or −1 is called universal. The point is that an universal
relation on Q remains a relation involving the same paths over any commutative
ring.

Let Ω be a set of relations on Q over R. The pair (Q,Ω) is called a bound quiver,
while the quotient R(Q,Ω) of RQ modulo the ideal generated by Ω is called the
algebra of the bound quiver (Q,Ω). If Ω contains only homogeneous relations, then
R(Q,Ω) is a graded R-algebra with grading induced from that of RQ. Moreover,
R(Q,Ω) is called monomial if Ω contains no polynomial relation. The following
easy lemma generalizes slightly a result of Bardzell-Marcos, [5, (2.2)], which states
that Q is a tree if R(Q,Ω) is monomial without outer derivations.

2.2. Lemma. Let R be a commutative ring, and let Q be a finite quiver with Ω
a set of relations on Q over R. If there exists a cycle in Q containing an arrow
that appears in no polynomial relation in Ω, then HH1

R(R(Q,Ω)) does not vanish.

Proof. Let α be an arrow of Q. There exists a normalized derivation δ of RQ
such that δ(α) = α and δ(β) = 0 for any other arrow β. Assume that α appears in
no polynomial relation in Ω . Then δ preserves the ideal I generated by Ω . Thus
δ induces a derivation δ̄ of R(Q,Ω). Suppose that δ̄ is inner. Then there exists
u =

∑
a∈Q0

λaa+w ∈ RQ with λa ∈ R and w ∈ ⊕i≥1RQi such that δ(v)−[u, v] ∈ I,
for any v ∈ RQ. Suppose further that α is on a cycle

a0
α1 a1 · · · ar−1

αr ar = a0,

where αi : ai ai+1 denotes an arrow in either direction. We may assume that
α = α1 and αi 6= α for all 1 < i ≤ r. Since I ⊆ ⊕i≥2RQi, evaluting δ on the
αi yields λa0 = λa1 ± 1 and λai = λai+1 for all 1 ≤ i < r. This contradiction
establishes the lemma.

Applying our semicontinuity result obtained in the previous section for the first
Hochschild cohomology group of a graded algebra, we are able to exclude oriented
cycles from Q if R(Q,Ω) is well graded and admits no outer derivation.
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2.3. Proposition. Let Q be a finite quiver and n ≥ 2 an integer. Assume that
Ω is a set of universal relations formed by paths of Qn such that every path of Qn

appears in at most one relation. Let Σ be a subset of Qn obtained by removing, for
each relation ρ ∈ Ω, one path from those forming ρ.

(1) For any commutative ring R, the component of degree n of R(Q,Ω) is a free
R-module having as basis the set of the classes of the paths of Σ.

(2) If R is a domain such that HH1(R(Q,Ω)) vanishes, then Q contains no
oriented cycle and any two parallel paths have the same length.

Proof. Let R be a commutative ring. By assumption, the ideal I of RQ generated
by Ω is generated by elements of degree n. Write R(Q,Ω) = ⊕i≥0Ai with Ai =
(RQi + I)/I. Statement (1) is obvious.

(2) To simplify the notation, we write R(Q) = R(Q,Ω). For any commutative R-
algebra S, one has clearly S(Q) ∼= S⊗RR(Q). The general assumptions in Theorem
1.6 are thus satisfied for A = X = R(Q). Let now R be a domain and L its field
of fractions. Assume that HH1

R(R(Q)) = 0. In particular, HH1
R(R(Q), R(Q))0 = 0.

As L is flat over R, Theorem 1.6.(2) yields

0 = L⊗HH1
R(R(Q), R(Q))0 ∼= HH1

L(L(Q), L(Q))0 .

Suppose that L is of prime characteristic. Let χ : ZZ → L be the canonical ring
homomorphism and let p be its kernel so that ZZp = ZZ/p becomes a subfield of L.
Using Theorem 1.6.(2) again, we get

L⊗ZZp HH1
ZZp

(ZZp(Q), ZZp(Q))0 ∼= HH1
L(L(Q), L(Q))0 = 0.

As a consequence, HH1
ZZp

(ZZp(Q),ZZp(Q))0 = 0. Now we apply Theorem 1.6.(3)
with R = ZZ and d = 0. The conditions there are satisfied as A0, A1 are free of
finite rank by definition, and so is An by part (1). Semicontinuity then shows that
HH1

lQ ( lQ(Q), lQ(Q) )0 = 0. Thus we may assume that L is of characteristic zero. Note
that the Euler derivation E of L(Q) is normalized of degree 0, and hence is inner.
As already observed by Happel, [17], evaluating E on an oriented cycle of Q would
then give a contradiction. Evaluating it on two parallel paths shows that they are
of the same length. The proof of the proposition is completed.

We now turn our attention to translation quivers. Let Γ be a translation quiver
with translation τ , that is, Γ is a quiver containing neither loops nor multiple
arrows and τ is a bijection from a subset of Γ 0 to another one such that, for each
a ∈ Γ 0 with τ(a) defined, there exists at least one arrow α : b → a and any such
arrow determines a unique arrow σ(α) : τ(a) → b; see [9, (1.1)]. One defines the
orbit graph O(Γ ) of Γ as follows: the τ -orbit of a vertex a is the set o(a) of vertices
of the form τn(a) with n ∈ ZZ ; the vertices of O(Γ ) are the τ -orbits of Γ , and there
exists an edge o(a) o(b) in O(Γ ) if Γ contains an arrow x → y or y → x with
x ∈ o(a) and y ∈ o(b). Note that O(Γ ) contains no multiple edge by definition. If
Γ contains no oriented cycle, then O(Γ ) is the graph GΓ defined in [9, (4.2)]. Now
we say that Γ is simply connected if Γ contains no oriented cycle and O(Γ ) is a
tree; see [7, 8]. By [9, (1.6), (4.1), (4.2)], this definition is equivalent to that in [9,
(1.6)]. Finally, if ∆ is a convex subquiver of Γ , then ∆ is a translation quiver with
respect to the translation induced from that of Γ . In this case, O(∆) is clearly
a subgraph of O(Γ ). Thus, if Γ is simply connected, then so is every connected
convex translation subquiver of Γ .
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We shall study some properties of simply connected translation quivers. If a is
a vertex of quiver, we shall denote by a− the set of immediate predecessors and by
a+ that of immediate successors of a.

2.4. Lemma. Let Γ be a translation quiver, containing no oriented cycle.
(1) Let a be a vertex of Γ and a1, a2 ∈ a− or a1, a2 ∈ a+. Then o(a1) = o(a2) if

and only if a1 = a2.
(2) If Γ is simply connected, then an arrow α : a → b is the only path of Γ from

a to b.
Proof. (1) It suffices to consider the case where a1, a2 ∈ a−. Suppose that

o(a1) = o(a2). We may assume that a2 = τ ra1 for some r ≥ 0. If r > 0, then
a → τ r−1a1 → · · · → a1 → a would be an oriented cycle in Γ . Hence r = 0, that
is, a1 = a2.

(2) Let α : a → b be an arrow and

p : a
α1−→ a1 → · · · → ar−1 −→ as = b

a different path from a to b. Then b 6= a1 since Γ contains neither multiple ar-
rows nor oriented cycle. Therefore o(b) 6= o(a1) by (1). In particular, the edges
o(a) o(b) and o(a) o(b) of O(Γ ) are distinct. Now p induces a walk

w(p) : o(a) o(a1) · · · o(ar)

in O(Γ ) and w(p), in turn, determines a unique reduced walk wred(p) from o(a) to
o(b). We claim that wred(p) starts with the edge o(a) o(a1). This implies that
O(Γ ) is not a tree, that is, Γ is not simply connected.

To prove our claim, it suffices to show that o(a) 6= o(ai) for all 1 ≤ i ≤ s. If
this is not the case, then at = τ−ma for some 1 ≤ t ≤ s and m ∈ ZZ. Now m > 0
as Γ contains no oriented cycle, and consequently there exists a path from τ−a to
τ−ma. Further the arrow a → b gives rise to an arrow b → τ−a. Thus we obtain
an oriented cycle

b1 → τ−a → · · · → τ−ma = at → at+1 → · · · → as−1 → b

in Γ . This contradiction completes the proof of the lemma.

Recall that a vertex a of Γ is projective or injective if τ(a) or τ−(a) is not defined,
respectively. The following result demonstrates how to construct inductively simply
connected translation quivers.

2.5. Lemma. Let Γ be a connected translation quiver that is a one-point exten-
sion of a simply connected translation subquiver ∆ by a vertex a. Then Γ is not
simply connected if and only if a is injective and is the start-point of at least two
distinct arrows.

Proof. Suppose that Γ is not simply connected. Then O(Γ ) contains a cycle
o(a0) o(a1) · · · o(ar−1) o(a0). This cycle contains o(a), since O(∆) is a
tree by assumption. We may assume that o(a0) = o(a). If a is not injective, then
b = τ−(a) ∈ ∆, and hence o(a0) = o(b). Therefore the preceding cycle gives rise to
a cycle in O(∆). This contradiction shows that a is injective, and hence the only
vertex in o(a). Therefore, Γ contains arrows α : a → b and β : a → c with b ∈ o(a1)
and c ∈ o(ar−1). Since O(Γ ) contains no multiple edge, we have o(a1) 6= o(ar−1).
In particular, b 6= c. This shows that the conditions on a are necessary.
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Conversely suppose that a is injective and that there exist two distinct arrows α :
a → b and β : a → c. By Lemma 2.4.(1), o(b) 6= o(c). In particular, o(a) o(b) and
o(a) o(c) are two distinct edges of O(Γ ). Being connected, O(∆) contains a non-
trivial reduced walk o(b) o(c1) · · · o(cs−1) o(c), that can be considered as
a reduced walk in O(Γ ). This gives rise to a cycle

o(a) o(b) o(c1) · · · o(cs−1) o(c) o(a)

in O(Γ ), that is, Γ is not simply connected. The proof of the lemma is completed.

Let us now recall the definition of a mesh algebra. Let Γ be a finite translation
quiver. A non-projective vertex a of Γ determines a universal relation on Γ , called
a mesh relation, m(a) =

∑
σ(αi)αi, where the sum is taken over the arrows ending

in a. It is clear that every path of length two appears in at most one mesh relation
on Γ . Let R be a commutative ring. The ideal of the path algebra RΓ generated
by the mesh relations is called the mesh ideal , whereas the quotient R(Γ ) of RΓ
modulo the mesh ideal is called the mesh algebra of Γ over R.

2.6. Proposition. Let R be a commutative ring and Γ a finite translation
quiver. If Γ is simply connected, then R(Γ ) admits no outer derivation.

Proof. Assume that Γ is simply connected. Then an arrow α : x → y is the
only path of Γ from x to y by Lemma 2.4.(2). Hence every normalized derivation
of R(Γ ) is of degree zero. We shall use induction on the number n of vertices of Γ
to prove the result. If n = 1, then R(Γ ) ∼= R and the result holds trivially. Assume
that n > 1 and the result holds for n− 1. By Lemma 2.1, we may assume that Γ is
an one-point extension of a connected translation subquiver ∆ by a vertex a. Note
that a is projective and ∆ is simply connected.

Let δ be a normalized derivation of R(Γ ). For w ∈ RΓ , write w̄ = w + IΓ ,
where IΓ is the mesh ideal of RΓ . Since δ is of degree zero, for each arrow α ∈ Γ ,
δ(ᾱ) = λαᾱ for some λα ∈ R. In particular, δ(R(∆)) ⊆ R(∆). Thus the restriction
δ∆ of δ to R(∆) is a normalized derivation of R(∆). Now δ∆ is inner by the inductive
hypothesis and is of degree zero. Therefore there exists u =

∑
x∈∆0

µxx̄, µx ∈ R

such that δ∆ = [u, −]. Since Γ is connected, there exist arrows starting from a.
Let αi : a → bi with 1 ≤ i ≤ r be all such arrows. Set µa = µb1 + λα1 and
v = µaā + u. Then δ(ᾱ1) = [v, ᾱ1]. We claim that δ(ᾱi) = [v, ᾱi], for all 1 ≤ i ≤ r.
This is trivial if r = 1. Assume now that r > 1. Then a is not injective by
Lemma 2.5. Therefore, c = τ−(a) exists and lies in ∆. Hence ∆ admits arrows
βi : bi → c, i = 1, . . . , r. Evaluating δ on the equality

∑r
i=1 ᾱiβ̄i = 0 gives rise

to
∑r

i=2 (λαi + λβi − λα1 − λβ1)ᾱiβ̄i = 0. Note that ᾱ2β̄2, . . . , ᾱrβ̄r are linearly
independant over R by Proposition 2.3.(1). Hence λαi + λβi = λα1 + λβ1 for all
2 ≤ i ≤ r. Moreover, evaluating δ∆ = [u, −] on β̄i results in µc = µbi − λβi for all
1 ≤ i ≤ r, that is µbi −λβi = µb1 −λβ1 , for all 1 ≤ i ≤ r. Now one can deduce that
δ(ᾱi) = [v, ᾱi], for all 1 ≤ i ≤ r. This shows that δ(β̄) = [v, β̄] for any arrow of Γ ,
and consequently, δ = [v,−]. The proof of the proposition is completed.

We finally reach the main result of this section.

2.7. Theorem. Let R be a domain and Γ a finite connected translation quiver.
The following are equivalent :

(1) HH1(R(Γ )) = 0.
(2) Γ is simply connected.
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(3) HH1(R(∆)) = 0 for every connected convex translation subquiver ∆ of Γ .
Proof. It is trivial that (3) implies (1). Assume that Γ is simply connected.

Then every connected convex translation subquiver of Γ is simply connected, and
hence its mesh algebra admits no outer derivation by Proposition 2.6. This proves
that (2) implies (3).

We shall show by induction on the number n of vertices of Γ that (1) implies
(2). This is trivial if n = 1. Assume that n > 1 and this implication holds for n−1.
Suppose that HH1(R(Γ )) = 0. By Proposition 2.3.(2), Γ contains no oriented cycle
and any two parallel paths are of the same length. In particular, a normalized
derivation of R(Γ ) is of degree zero. By Lemma 2.1, we may assume that Γ is an
one-point extension of a connected translation subquiver ∆ by a vertex a.

Suppose on the contrary that Γ is not simply connected. First we consider the
case where ∆ is simply connected. By Lemma 2.5, a is injective and there exist two
distinct arrows α : a → b and β : a → c with b, c ∈ ∆0. Since ∆ is connected, b and
c are connected by a reduced walk in ∆. Therefore, α lies on a cycle of Γ and it
appears in no mesh relation on Γ since a is injective. This contradicts Lemma 2.2.

We now turn to the case where ∆ is not simply connected. By the inductive
hypothesis, there exists a normalized outer derivation δ̄ of R(∆) that is of degree
zero. Thus for each arrow α ∈ ∆, we have δ̄(ᾱ) = λα ᾱ with λα ∈ R, where
w̄ denotes the class of w ∈ R∆ modulo the mesh ideal I∆ of R∆. Let δ be the
normalized derivation of R∆ such that δ(α) = λαα for all α ∈ ∆. Then δ(I∆) ⊆ I∆.
Being connected, Γ contains arrows starting with a. Let αi : a → bi with 1 ≤ i ≤ s
be all such arrows. If a is injective, let ∂ be the normalized derivation of RΓ such
that ∂ coincides with δ on R∆ and ∂(αi) = 0 for all 1 ≤ i ≤ s. Then ∂ preserves
the mesh ideal IΓ of Γ , since IΓ is generated by the mesh relations on ∆ in this
case. Suppose now that a is not injective and let βi be the arrow from bi to τ−(a)
for 1 ≤ i ≤ s. Then m =

∑s
i=1 αiβi is the only mesh relation on Γ that is not

in I∆. Note that βi ∈ ∆, and in particular, λβi is defined for all 1 ≤ i ≤ s. Let
∂ be the normalized derivation of RΓ such that ∂ coincides with δ on R∆ and
∂(αi) = (1− λβi)αi for all 1 ≤ i ≤ s. It is easy to see that in this case ∂ preserves
IΓ as well. Now ∂ induces a normalized derivation ∂̄ of R(Γ ), that coincides with δ̄

on R(∆) and is of degree zero. However, ∂̄ is inner since HH1(R(Γ )) = 0. Hence its
restriction to R(∆), that is δ̄, is easily seen to be inner as well. This contradiction
shows that (1) implies (2). The proof of the theorem is now completed.

Remark. In case Γ contains no oriented cycle and R is an algebraically closed
field, Coelho and Vargas proved in [14] the equivalence of (2) and (3) in terms of
strongly simply connected algebras. They claimed as well the equivalence of (1)
and (2) when in addition the base field is of characteristic zero. However, the proof
for this equivalence given there misquoted the incomplete argument given in the
proof of the second theorem in [18, Section 4].

3. Hochschild cohomology of endomorphism algebras

The objective of this section is to compare Hochschild cohomology of an algebra
and that of the endomorphism algebra of a module. We shall first study the relation
between the first Hochschild cohomogy groups in the most general situation and
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then prove the invariance of Hochschild cohomology in case the algebras involved
are projective over the base ring and the module is pseudo-tilting.

As before, let A be an R-algebra and Ae its enveloping algebra. Recall that
all unadorned tensor products are taken over R. We fix the following extension of
A-bimodules :

ωA : 0 → ΩA
jA−→ A⊗A

µA−→ A → 0,

where µA is the multiplication map of A and jA is the inclusion map. Each map
f ∈ HomAe(ΩA, X) determines an R-derivation δf : A → X : a 7→ f(a⊗ 1− 1⊗ a).
The following well-known facts will be used extensively in our investigation below,
whence we state them explicitly for the convenience of the reader. We refer to [10,
(AIII.132)] for a proof of the first part.

3.1. Lemma. Let A be an R-algebra and X an A-bimodule.
(1) The following map is an isomorphism of R-modules :

D : HomAe(ΩA, X) → DerR(A,X) : f 7→ δf .

(2) There exists a commutative diagram of R-modules :

X
ad−−−−→ DerR(A,X)

∼=
y ∼=

yD−1

HomAe(A⊗A, X)
(jA, X)−−−−−→ HomAe(ΩA, X) .

Now let B be another R-algebra. Any B-A-bimodule X becomes a right Bo⊗A-
module through x · (bo ⊗ a) = bxa. Let M, N be B-A-bimodules. Forgetting the
right A-module structure or the left B-module structure on an extension of B-A-
bimodules yields respectively the following maps:

fA : Ext1Bo⊗A(M,N) → Ext1B(M, N) ,

fB : Ext1Bo⊗A(M,N) → Ext1A(M, N) .

The kernels of these maps are identified in the following result.

3.2. Proposition. Let M,N be B-A-bimodules. The forgetful maps introduced
above fit into the following exact sequences :

(1) 0 → HH1(A, HomB(M,N))
gA−→ Ext1Bo⊗A(M, N)

fA−→ Ext1B(M, N) ,

(2) 0 → HH1(B, HomA(M, N))
gB−→ Ext1Bo⊗A(M, N)

fB−→ Ext1A(M, N) .

Proof. It suffices to show the first part of the proposition. To this end, we
shall define explicitly the map gA. Applying first Lemma 3.1 to the A-bimodule
HomB(M,N) and then using adjunction, we get the following commutative dia-
gram:
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HomB(M, N) ad−−−−→ DerR(A, HomB(M,N))

∼=
y ∼=

y

HomAe(A⊗A, HomB(M, N))
(jA, (M,N))−−−−−−−−→ HomAe(ΩA, HomB(M, N))

∼=
y ∼=

y

HomBo⊗A(M ⊗A, N)
(M⊗jA, N)−−−−−−−→ HomBo⊗A(M ⊗A ΩA, N).

(∗)

Since ωA splits as an extension of left A-modules, the sequence

M ⊗A ωA : 0 −−−−→ M ⊗A ΩA
M⊗AjA−−−−−→ M ⊗A

M⊗AµA−−−−−→ M −−−−→ 0
is an extension of B-A-bimodules that splits as an extension of left B-modules. For
δ ∈ DerR(A, HomB(M,N)), let δ̃ ∈ HomBo⊗A(M⊗A ΩA, N) be the corresponding
map under the isomorphisms given in the above diagram (∗). Pushing out M⊗AωA

along the map δ̃, we get an exact commutative diagram:

M ⊗A ωA : 0 −−−−→ M ⊗A ΩA
M⊗AjA−−−−−→ M ⊗A

M⊗AµA−−−−−→ M −−−−→ 0

δ̃

y
y

∥∥∥
δ̃∗(M ⊗A ωA) : 0 −−−−→ N −−−−→ E −−−−→ M −−−−→ 0,

where the rows are extensions of B-A-bimodules that split as extensions of left B-
modules. Now the lower row splits as an extension of B-A-bimodules if and only if
δ̃ factors through M ⊗A jA if and only if δ ∈ InnR(A,HomB(M, N)). This shows
that associating to the class [δ] ∈ HH1(A, HomB(M,N)) of a derivation δ the class

gA([δ]) = [δ̃∗(M ⊗A ωA)] ∈ Ext1Bo⊗A(M, N)

yields a well-defined injective map gA with image contained in the kernel of fA.
It remains to show that the kernel of fA is contained in the image of gA. For

this purpose, let η : 0 → N → E
p−→ M → 0 be an extension of B-A-bimodules

that splits as an extension of left B-modules. Let q : M → E be a B-linear map
such that pq = 1IM , and let σ : M ⊗ A → E be the B-A-bilinear map such that
σ(m ⊗ a) = q(m)a. These data define an exact commutative diagram of B-A-
bimodules as follows:

M ⊗A ωA : 0 −−−−→ M ⊗A ΩA
M⊗AjA−−−−−→ M ⊗A

M⊗AµA−−−−−→ M −−−−→ 0

ζ

y σ

y
∥∥∥

η : 0 −−−−→ N −−−−→ E
p−−−−→ M −−−−→ 0,

where ζ is induced by σ. In view of the isomorphisms given in (∗), there exists a
derivation δ ∈ DerR(A, HomB(M,N)) whose image is ζ. Hence gA([δ]) = [η]. This
completes the proof of the proposition.

Now we specialize the preceding proposition to the case M = N . The canonical
algebra anti-homomorphism ρ : A → EndB(M) is a homomorphism of A-bimodules.
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Thus ρ induces an R-linear map

HH1(A, ρ) : HH1(A,A) → HH1(A, EndB(M)) ,

which in turn allows us to define a map χM : HH1(A) → Ext1A(M,M) through the
following commutative diagram:

HH1(A)
χM−−−−→ Ext1A(M, M)

HH1(A,ρ)

y fB

x
HH1(A, EndB(M))

gA−−−−→ Ext 1
Bo⊗A(M, M).

To give an explicit description of χM , consider the commutative diagram

DerR(A,A)
ρ◦−−−−−→ DerR(A, EndB(M))

∼=
y ∼=

y
HomAe(ΩA, A) M⊗A−−−−−−→ HomBo⊗A(M ⊗A ΩA, M),

where ρ◦ denotes composition with ρ, the isomorphism on the left comes from
Lemma 3.1.(2) while that on the right comes from the diagram (∗) in the proof of
Proposition 3.2. Let δ ∈ DerR(A,A) be a derivation and let f ∈ HomAe(ΩA, A) be
the corresponding map. Applying M ⊗A − to the extension ωA and pushing out
M ⊗A ωA along the map M ⊗A f yields a self-extension (M ⊗A f)∗(M ⊗A ωA) of
the right A-module M . Then

χM ([δ]) = [(M ⊗A f)∗(M ⊗A ωA)]

by our earlier definition of gA and fB .

To study the map χM further, we give an alternative and explicit description.
To this end, we define the differentiation of a morphism between projective modules
of the following form: let

φ : ⊕n
j=1 ujA → ⊕m

i=1 viA

be an A-linear map with uj , vi some idempotents of A. Let δ ∈ DerR(A) be such
that δ(viAuj) ⊆ viAuj for all i, j. If the matrix of φ with respect to the given
decomposition is (aij)m×n with aij ∈ viAuj , then we call the A-linear map

δ(φ) : ⊕n
j=1 ujA → ⊕m

i=1 viA

given by the matrix (δ(aij))m×n the derivative of φ along δ.

3.3. Lemma. Let M be a B-A-bimodule that is finitely presented as right A-
module. Let

P2
ψ−→ ⊕n

j=1 ujA
φ−→ ⊕m

i=1 viA
ε−→ M → 0

be an exact sequence of right A-modules with P2 projective and uj , vi idempotents
in A. Let δ ∈ DerR(A) be such that δ(viAuj) ⊆ viAuj for all i, j. Then the image
of [δ] ∈ DerR(A)/InnR(A) under χM is the class of the self-extention of M that
corresponds to the class [εδ(φ)] in Ext1A(M,M).

Proof. Let f ∈ HomAe(ΩA, A) be such that δ(a) = f(a⊗ 1− 1⊗a) for all a ∈ A;
see Lemma 3.1.(1). We have seen that χM ([δ]) = [(M⊗A f)∗(M⊗A ωA)]. We claim
that there exist A-linear maps α, β rendering the following diagram commutative:
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⊕n
i=1 ujA

φ //

β

&&MMMMMMMMMMM

δ(φ)

²²

⊕m
j=1 viA

ε //

α

&&LLLLLLLLLLL M //

HHHHHHHHHH

HHHHHHHHHH 0

⊕m
j=1 viA

ε

&&NNNNNNNNNNN
M ⊗A ΩA

M⊗jA //

M⊗Af

²²

M ⊗A
M⊗µA // M // 0

M.

In fact, since ε(vi)⊗vi = (ε(vi)⊗vi)vi ∈ (M⊗A)vi, there exists a unique A-linear
map α : ⊕m

i=1 viA → M⊗A such that α(vi) = ε(vi)⊗vi for all 1 ≤ i ≤ m. Moreover,
assume that the matrix of φ is (aij)m×n with aij ∈ viAuj . Then φ(uj) =

∑m
i=1 viaij

and δ(φ)(uj) =
∑m

i=1 viδ(aij) for all 1 ≤ j ≤ n. Let

xj =
∑

m
i=1 ε(vi)⊗A (aij ⊗ 1− 1⊗ aij) ∈ M ⊗A ΩA .

Note that aij = aijuj and
∑m

i=1 ε(vi)aij = ε(φ(uj)) = 0. This implies that xj =
xjuj ∈ (M ⊗A ΩA)uj . Therefore, there exists a unique A-linear map

β : ⊕n
j=1 ujA → M ⊗A ΩA

such that β(uj) = xj for all 1 ≤ j ≤ n. It is now easy to verify that the above
diagram is commutative. Consider now the following exact commutative diagram:

0 −−−−→ ΩM
j−−−−→ ⊕m

i=1 viA
ε−−−−→ M −−−−→ 0

γ

y α

y
∥∥∥

M ⊗A ωA : 0 −−−−→ M ⊗A ΩA
M⊗AjA−−−−−→ M ⊗A

M⊗AµA−−−−−→ M −−−−→ 0

M⊗Af

y
y

∥∥∥
η : 0 −−−−→ M −−−−→ E −−−−→ M −−−−→ 0,

where j is the inclusion map and γ is induced by α. Let φ̃ : ⊕n
j=1 ujA → ΩM be

such that φ = jφ̃. Then β = γφ̃, and hence εδ(φ) = (M ⊗A f)γφ̃. Note that
φ̃ψ = 0. This implies εδ(φ) ∈ Ker(ψ, M) and exhibits η as the self-extension of M
corresponding to εδ(φ). The proof of the lemma is completed.

Next, we look more carefully at the image of the map χM .

3.4. Lemma. Let M be a B-A-bimodule with M =
⊕n

i=1 Mi a decomposition of
right A-modules. Then χM factors as follows :

HH1(A)
χM - Ext1A(M, M)

@@@
∑

i χMi
R n⊕

i=1

Ext1A(Mi,Mi).

∪
6
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Proof. Let δ ∈ DerR(A) be a derivation and f ∈ HomAe(ΩA, A) the correspond-
ing map; see Lemma 3.1.(1). For each i, the map f defines an exact commutative
diagram:

Mi ⊗A ωA : 0 −−−−→ Mi ⊗A ΩA
Mi⊗AjA−−−−−−→ Mi ⊗A

Mi⊗AµA−−−−−−→ Mi −−−−→ 0

Mi⊗Af

y σi

y
∥∥∥

ηi : 0 −−−−→ Mi −−−−→ Ei −−−−→ Mi −−−−→ 0.

Summing up yields the following exact commutative diagram:

M ⊗A ωA : 0 −−−−→ M ⊗A ΩA
M⊗AjA−−−−−→ M ⊗A

M⊗AµA−−−−−→ M −−−−→ 0

M⊗Af

y ⊕iσi

y
∥∥∥

⊕iηi : 0 −−−−→ M −−−−→ ⊕
i Ei −−−−→ M −−−−→ 0.

Therefore, χM ([δ]) = [⊕iζi] ∈
⊕n

i=1 Ext1A(Mi, Mi). This completes the proof of the
lemma.

In our main application, we shall consider the case where M is a right A-module
and B = EndA(M), whence M is endowed with the canonical B-A-bimodule struc-
ture. Moreover, there exists a morphism of B-A-bimodules ρ : A → EndB(M),
where the map ρ(a) for a ∈ A is given by ρ(a)(x) = xa, for all x ∈ M . Recall that
M is a faithfully balanced B-A-bimodule if ρ is an isomorphism.

3.5. Theorem. Let A be an algebra over a commutative ring R. Let M be
a right A-module and set B = EndA(M). Assume that M is a faithfully balanced
B-A-bimodule with Ext1B(M,M) = 0. Then there exists an exact sequence

0 −→ HH1(B) −→ HH1(A)
χM−→ Ext1A(M, M)

of R-modules. Moreover, if M = ⊕n
i=1Mi is a decomposition of right A-modules,

then the image of χM lies in the diagonal part ⊕n
i=1Ext1A(Mi,Mi).

Proof. By hypothesis, HH1(A, ρ) : HH1(A) → HH1(A, EndB(M)) is an isomor-
phism. Furthermore, the map gA in Proposition 3.2.(1) is an isomorphism since
Ext1B(M, M) = 0. Thus γ = gA ◦ HH1(A, ρ) is an isomorphism. Set c = γ−1 ◦ gB .
It follows from the definition of χM that the diagram

0 −−−−→ HH1(B) c−−−−→ HH1(A)
χM−−−−→ Ext1A(M, M)∥∥∥ γ

y∼=
∥∥∥

0 −−−−→ HH1(B)
gB−−−−→ Ext1Bo⊗A(M, M)

fB−−−−→ Ext1A(M, M)

is commutative. By Proposition 3.2.(2), the lower row is exact, and hence the
upper row is an exact sequence as desired. The last part of the theorem follows
from Lemma 3.4. This completes the proof.

For a right A-module, denote by add(M) the full subcategory of the category of
right A-modules generated by the direct summands of direct sums of finitely many
copies of M . We call M an A-generator if A lies in add(M). We shall now study the
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behaviour of Hochschild cohomology under (r-)pseudo-tilting, a notion we define
as follows.

3.6. Definition. Let A be an algebra over a commutative ring R and let
r ≥ 0 be an integer. A right A-module M is called r-pseudo-tilting if it satisfies the
following conditions :

(1) Exti
A(M, M) = 0 for 1 ≤ i ≤ r;

(2) there exists an exact sequence

0 → A → M0 → M1 → · · · → Mr → 0

of right A-modules, where M0, . . . , Mr ∈ add(M).

Moreover, the module M is called pseudo-tilting if Exti
A(M, M) = 0 for all i ≥ 1

and (2) holds for some r ≥ 0; in other words, M is r-pseudo-tilting for all sufficiently
large r.

Note that a 0-pseudo-tilting A-module is nothing but an A-generator. More-
over, a tilting or co-tilting module of projective or injective dimension at most r,
respectively, in the sense of [23] is an r-pseudo-tilting module, and consequently, a
pseudo-tilting module. We recall now the following result from [23, (1.4)].

3.7. Lemma (Miyashita). Let A be an R-algebra and r ≥ 0 an integer. Let
M be an r-pseudo-tilting right A-module and set B = EndA(M). Then M is a
faithfully balanced B-A-bimodule and Exti

A(M, M) = 0 for all i ≥ 1.

As an immediately consequence of Lemma 3.7 and Theorem 3.5, we get the
following result.

3.8. Proposition. Let A be an algebra over a commutative ring R. Let M be
an r-pseudo-tilting right A-module and set B = EndA(M).

(1) There exists an exact sequence of R-modules

0 −→ HH1(B) −→ HH1(A)
χM−→ Ext1A(M, M) .

(2) If r ≥ 1, then HH1(A) ∼= HH1(B).

So far we have not put any restriction on the R-algebra structure. As usual in
Hochschild theory, much sharper results can be obtained if the algebras involved
are projective as R-modules, for example, when R is a field. First we recall the
following result from [13, p.346].

3.9. Proposition (Cartan-Eilenberg). Let A, B be algebras over a com-
mutative ring R, and let M,N be B-A-bimodules. If A and B are projective as
R-modules, then there exist spectral sequences

HHi(A, Extj
B(M,N)) =⇒ Exti+j

Bo⊗A(M, N)

and
HHi(B, Extj

A(M,N)) =⇒ Exti+j
Bo⊗A(M, N) .
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Remark. The first spectral sequence yields the following exact sequence of lower
terms that extends the exact sequence from Proposition 3.2.(1) :

0 → HH1(A, HomB(M, N))
g1

A−→ Ext1Bo⊗A(M, N)
f1

A−→ HH0(A, Ext1B(M,N))

→ HH2(A, HomB(M, N))
g2

A−→ Ext2Bo⊗A(M, N).

Applying the preceding proposition to the case where M = N is a (r-)pseudo-
tilting A-module and B =EndA(M), we obtain the following result.

3.10. Theorem. Let R be a commutative ring, and let A be an R-algebra that
is projective as R-module. Let M be a right A-module such that B = EndA(M) is
projective as R-module as well.

(1) If M is r-pseudo-tilting, then HHi(B) ∼= HHi(A) for 0 ≤ i ≤ r.
(2) If M is pseudo-tilting, then HHi(B) ∼= HHi(A) for all i ≥ 0.
Proof. First we note that the edge homomorphisms of the first spectral sequence

in Proposition 3.9 become gi
A : HHi(A) → Exti

Bo⊗A(M, M) and

f i
A : Exti

Bo⊗A(M, M) → HH0(A,Exti
B(M, M)), for all i ≥ 0,

whereas those of the second one become gi
B : HHi(B) → Exti

Bo⊗A(M,M) and

f i
B : Exti

Bo⊗A(M,M) → HH0(A, Exti
A(M, M)), for all i ≥ 0.

Assume now that M is r-pseudo-tilting. By Lemma 3.7, Exti
B(M, M) = 0 for all

i ≥ 1. So each gi
B with i ≥ 0 is an isomorphism. Moreover, since Exti

A(M, M) = 0
for 1 ≤ i ≤ r, the gi

A are isomorphisms for 0 ≤ i ≤ r. These give rise to the desired
isomorphisms

ci = (gi
A)−1gi

B : HHi(B) → HHi(A); i = 0, 1, . . . , r.

If M is pseudo-tilting, then the map ci is defined and an isomorphism for each
i ≥ 0. This completes the proof of the theorem.

Remark. In case A is a finite dimensional algebra over an algebraically closed
field and M is a finite dimensional tilting A-module, Happel showed that HHi(A) ∼=
HHi(B) for all i ≥ 0 in [17, (4.2)].

4. Representation-finite algebras without outer derivations

The objective of this section is to investigate when an algebra of finite represen-
tation type admits no outer derivation. To begin with, let A be an artin algebra.
Denote by mod A the category of finitely generated right A-modules and by ind A
its full subcategory generated by a chosen complete set of representatives of iso-
classes of the indecomposable modules. Let ΓA denote the Auslander-Reiten quiver
of A, which is a translation quiver with respect to the Auslander-Reiten translation
DTr. We refer to [4] for general results on almost split sequences and irreducible
maps as they pertain to the structure of Auslander-Reiten quivers.

Assume that A is of finite representation type, that is, ind A contains only finitely
many objects, say M1, . . . , Mn. Then M =

⊕n
i=1 Mi is an A-generator, called a

minimal representation generator for A. One calls Λ = EndA(M) the Auslander
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algebra of A. Applying Lemma 3.7 and Theorem 3.5, one obtains immediately the
following exact sequence:

0 → HH1(Λ) → HH1(A)
χ−→

⊕
n
i=1Ext1A(Mi,Mi) .

Thus, HH1(Λ) is always embedded into HH1(A). To investigate when this embed-
ding is an isomorphism, recall that a module in ind A is a brick if its endomorphism
algebra is a division ring. It is shown in [25, (4.6)] that if indA contains only bricks,
then A is of finite representation type. Conversely, it is well known that if A is of
finite representation type and ΓA contains no oriented cycle, then indA contains
only bricks.

4.1. Proposition. Let A be an artin algebra such that ind A contains only
bricks, and let Λ be the Auslander algebra of A. Then HH1(Λ) ∼= HH1(A).

Proof. In view of the exact sequence stated above, we need only to show that
Ext1A(N,N) = 0 for every module N in ind A. Assume on the contrary that this fails
for some module M in ind A. Then M is non-projective and HomA(M, DTrM) 6= 0;
see, for example, [4, p.131]. Let

0 → DTrM → E → M → 0

be an almost split sequence in modA. Using the fact that an irreducible map is
either a monomorphims or an epimorphism, one finds easily that either M or an
indecomposable direct summand of E is not a brick. This contradiction completes
the proof of the proposition.

From now on, let k be an algebraically closed field and A a finite dimensional
k-algebra. It is well known, see [9, (2.1)], that there exists a unique finite quiver QA

(called the ordinary quiver of A) and an admissible ideal IA in kQA such that the
basic algebra B of A is isomorphic to kQA/IA. Such an isomorphism B ∼= kQA/IA

is called a presentation of B. Moreover, one says that A is connected or triangular
if QA is connected or contains no oriented cycle, respectively. In case A is of finite
representation type, one says that A is standard , [9, (5.1)], if its Auslander algebra
is isomorphic to the mesh algebra k(ΓA) of ΓA over k. It follows from [11, (3.1)]
that this definition is equivalent to that given in [6, (1.11)].

4.2. Lemma. Let A be of finite representation type, and let Λ be its Auslander
algebra. If HH1(A) = 0 or HH1(Λ) = 0, then A is standard.

Proof. It is well known that HH1(A) is invariant under Morita equivalence; see
also Proposition 3.8. We may hence assume that A is basic. Suppose that A is not
standard. It follows from [6, (9.6)] that there exists a presentation A ∼= kQA/IA

such that the bound quiver (QA, IA) contains a Riedtmann contour C as a full
bound subquiver. This means that the ordinary quiver QC of C consists of a vertex
a, a loop ρ at a, and a simple oriented cycle

a = a0
α1−→ a1 → · · · → an−1

αn−→ an = a ,

bound by the following relations:

ρ2 − α1 · · ·αn = αnα1 − αnρα1 = αi+1 · · ·αnρα1 · · ·αf(i) = 0, i = 1, . . . , n− 1,

where f : {1, . . . , n− 1} → {1, . . . , n− 1, n} is a non-decreasing function that is not
constant with value 1. Furthermore, ρ3 6∈ IA since ρ2 is a non-deep path [6, (2.5),
(2.7), (6.4), (9.2)]. Using [6, (7.7)] and its dual, we have the following fact:
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(1) If p is a path of QA that does not lie completely in QC but contains ρ as a
subpath, then p ∈ IA.

Next, write x̄ = x + IA ∈ A for x ∈ kQA. For simplicity, we identify the vertex
set of QA with a complete set of orthogonal primitive idempotents of A. Since A is
finite dimensional, there exists an integer m ≥ 4 such that ρ̄m = 0 and ρ̄m−1 6= 0.
Now

ᾱnρ̄ 2 = ᾱnᾱ1 · · · ᾱn = ᾱnρ̄ᾱ1 · · · ᾱn = ᾱnρ̄ρ̄ 2 = ᾱnρ̄ 3 = · · · = ᾱnρ̄m = 0 .

Thus, αnρ2 ∈ IA and analogously ρ2α1 ∈ IA. We now show the following:
(2) If p is a non-trivial path of QA different from ρ, then ρm−2p, pρm−2 ∈ IA.

As a consequence, ρ̄m−1 lies in the socle of A.
In fact, write p = p1β with β an arrow. If β 6= ρ, using (1) together with

αnρ2 ∈ IA and m ≥ 4, we infer that βρm−2 ∈ IA. If β = ρ, then p1 is non-trivial
and we can write p1 = p2γ, with γ an arrow. Then γβρm−2 = γρm−1 ∈ IA, and
therefore pρm−2 ∈ IA. Similarly, ρm−2p ∈ IA, and we have established statement
(2).

Now let ∂ be the unique normalized derivation of kQA with ∂(ρ) = ρm−1 and
∂(α) = 0 for any arrow α 6= ρ. Our next claim is:

(3) If p is a path of QA that is different from ρ, then ∂(p) ∈ IA.
This is trivially true if p is of length at most one. Assume thus that p is non-

trivial and that (3) holds for paths shorter than p. If ρ does not appear in p,
then ∂(p) = 0. Otherwise p = uρv, where u, v are paths shorter than p with u
or v non-trivial. Now ∂(p) = ∂(u)ρv + uρm−1v + uρ∂(v). It follows from (2) that
uρm−1v ∈ IA. Moreover, if u 6= ρ, then ∂(u) ∈ IA by the inductive hypothesis.
Otherwise ∂(u)ρv = ρmv ∈ IA. Similarly, uρ∂(v) ∈ IA. Therefore, ∂(p) ∈ IA, which
proves statement (3).

Since IA is generated by linear combinations of paths of length at least two,
∂(IA) ⊆ IA by (3). Hence ∂ induces a normalized derivation δ of A with δ(ȳ) = ∂(y)
for all y ∈ kQA. We now wish to show that δ is an outer derivation of A. Assume
on the contrary that δ = [x, −] for some x ∈ A. Write x = x1 + x2, where
x1 ∈ Aa + aA and x2 ∈ a′Aa′, where a′ = 1− a. Then δ(ρ) = [x1, ρ̄] = ρ̄m−1 6= 0.
Thus x1 6∈ aAa since ρ̄ lies in the center of aAa. Therefore x1 = z1 + z2 + z, where
z1 ∈ a′Aa, z2 ∈ aAa′, z ∈ aAa and z1 + z2 6= 0. However, this would imply that
δ(a) = z1− z2 6= 0, contrary to δ being normalized. Hence [δ] is a non-zero element
of HH1(A).

Let M be a minimal representation generator of A such that Λ = EndA(M). By
Proposition 3.8, there exists an exact sequence

0 → HH1(Λ) → HH1(A)
χM−→ Ext1A(M, M) .

We want to show that [δ] ∈ Ker(χM ). Let P1
φ−→ P0

ε−→ M → 0 be a minimal
projective presentation of M . Let b1, . . . , bn and c1, . . . , cm be vertices of QA such
that P1 = ⊕n

j=1bjA and P0 = ⊕m
i=1ciA. The matrix of φ is then (xij)m×n with

xij ∈ ci rad(A) bj . Since δ is normalized, δ(ciAbj) ⊆ ciAbj . Hence the matrix of
δ(φ) : P1 → P0 is (δ(xij))m×n. For each fixed 1 ≤ i ≤ m, we consider the i-th row
(xi1, xi2, . . . , xin) of the matrix of φ. If ci 6= a, then δ(xij) = 0 for all 1 ≤ j ≤ n by
(3). Thus,

(δ(xi1), δ(xi2), . . . , δ(xin)) = 0 · (xi1, xi2, . . . , xin) .
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Assume that ci = a. If bj 6= a, then δ(xij) = 0 by (3) and ρ̄ m−2xij = 0 by
(2), since xij ∈ ci rad(A) bj . If bj = a, then xij =

∑m−1
s=1 λsρ̄

s with λs ∈ k since
aAa = k[ρ]/(ρm). Now δ(ρ̄) = ρ̄ m−2 · ρ̄, whereas for s ≥ 2, both δ(ρ̄ s) = 0 and
ρ̄ m−2 · ρ̄ s = 0. This shows that

(δ(xi1), δ(xi2), . . . , δ(xin)) = ρ̄m−2 · (xi1, xi2, . . . , xin) .

For 1 ≤ i, j ≤ m, let yij = 0 if i 6= j; yii = 0 if ci 6= a; and yii = ρ̄ m−2 if ci = a.
Then (δ(xij)) = (yij)(xij). Let ζ : P0 → P0 be the A-linear map given by the
matrix (yij). Then δ(φ) = ζφ, and hence εδ(φ) = (εζ)φ. This shows that the class
[εδ(φ)] ∈ Ext1A(M, M) is zero. Now Lemma 3.3 implies that the class [δ] ∈ HH1(A)
lies in the kernel of χM . Therefore, HH1(Λ) 6= 0. This completes the proof of the
lemma.

If A is of finite representation type, we say that A is simply connected if ΓA

is a simply connected translation quiver. In general, one says that A is strongly
simply connected if A is connected and triangular, and its basic algebra B admits a
presentation B ∼= kQA/IA such that the first Hochschild cohomology group vanishes
for every algebra defined by a convex bound subquiver of (QA, IA). It follows from
[24, (4.1)] that this definition coincides with the original one given in [24, (2.2)].
Moreover, if A is of finite representation type, then A is simply connected if and
only if it is strongly simply connected. We are now ready to establish the main
result of this section.

4.3. Theorem. Let A be a connected finite dimensional algebra over an alge-
braically closed field k. Assume that A is of finite representation type and let Λ be
its Auslander algebra. The following statements are equivalent :

(1) HH1(A) = 0 .

(2) HH1(Λ) = 0 .

(3) A is simply connected .

(4) Λ is strongly simply connected.

Proof. First of all, we claim that each of the conditions stated in the theorem
implies that A is standard. Indeed, for (1) or (2), this follows from Lemma 4.2.
Now each of (3) or (4) implies that ΓA contains no oriented cycle. This in turn
implies that the ordinary quiver of A contains no oriented cycle, as A is of finite
representation type. Therefore, A is standard by [6, (9.6)].

Thus we may assume that A is standard, that is, Λ ∼= k(ΓA). Now the equiv-
alence of (2), (3), and (4) follows immediately from Theorem 2.7. Moreover,
(1) implies (2) since HH1(Λ) embeds into HH1(A). Finally, if (2) holds, then
(3) holds as well. In particular, ind A contains only bricks. By Proposition 4.1,
HH1(A) = HH1(Λ) = 0. This completes the proof of the theorem.

We conclude this paper with a consequence of Theorem 4.3. Recall that A is
an Auslander algebra if its global dimension is less than or equal to two while its
dominant dimension is greater than or equal to two. Note that A is an Auslander
algebra if and only if it is Morita equivalent to the Auslander algebra of an algebra
of finite representation type; see, for example, [4].
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4.4. Corollary. Let A be of finite representation type or an Auslander algebra.
If HH1(A) = 0, then HHi(A) = 0 for all i ≥ 1. In particular, A is rigid in this
case.

Proof. For the first part, we apply Theorem 4.3 and the two results stated,
respectively, in [17, (5.4)] and [18, Section 5]. For the last part, observe that
HH2(A) = 0 implies rigidity, as originally proved by Gerstenhaber [16].
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[15] A. Grothendieck, “Éléments de géométrie algébrique III: Étude coho-
mologique des faisceaux cohérents II,” Inst. Hautes Études Sci. Publ. Math.
17 (1963).

[16] M. Gerstenhaber, “On the deformations of rings and algebras”, Ann. Math.
79 (1964) 59 - 103.

[17] D. Happel, “Hochschild cohomology of finite-dimensional algebras”, Lecture
Notes in Mathematics 1404 (Springer-Verlag, Berlin 1989) 108 - 126.

[18] D. Happel, “Hochschild cohomology of Auslander algebras”, Topics in Alge-
bra 26 (Banach Center Publication, Warsaw 1990) 303 - 310.

[19] D. Happel, “Quasitilted algebras”, Canad. Math. Soc. Conf. Proc. 23 (1998)
55 - 83.

[20] R. Hartshorne, “Coherent functors”, Adv. Math. 140 (1998) 44–94.
[21] J.-L. Loday, “Cyclic Homology”, Grundlehren der mathematischen Wis-

senschaften 301 (Springer, New York 1992).
[22] Ma. I. R. Martins and J. A. de la Peña, “Comparing the simplicial and

the Hochschild cohomologies of a finite dimensional algebra”, J. Pure Appl.
Algebra 138 (1999) 45 - 58.

[23] Y. Miyashita, “Tilting modules of finite projective dimension”, Math. Z. 193
(1986) 113 - 146.
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