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Abstract. We discover a new connection between Koszul theory and rep-

resentation theory. Let Λ be a quadratic algebra defined by a locally finite

quiver with relations. Firstly, we give a combinatorial description of the local
Koszul complexes and the quadratic dual Λ!, which enables us to describe the

linear projective resolutions and the colinear injective coresolutions of graded

simple Λ-modules in terms of Λ!. As applications, we obtain a new class of
Koszul algebras and a stronger version of the Extension Conjecture for finite

dimensional Koszul algebras with a noetherian Koszul dual. Then we con-

struct two Koszul functors, which induce a 2-real-parameter family of pairs
of derived Koszul functors between categories derived from graded Λ-modules

and those derived from graded Λ!-modules. In case Λ is Koszul, each pair of

derived Koszul functors are mutually quasi-inverse, one of the pairs is Beilin-
son, Ginzburg and Soergel’s Koszul duality. If Λ and Λ! are locally bounded on

opposite sides, then the Koszul functors induce two equivalences of bounded
derived categories: one for finitely piece-supported graded modules, and one for

finite dimensional graded modules. And if Λ and Λ! are both locally bounded,

then the bounded derived category of finite dimensional graded Λ-modules has
almost split triangles with the Auslander-Reiten translations and the Serre

functors given by composites of derived Koszul functors.

Introduction

The history of Koszul theory traces back to Cartan and Eilenberg’s computation
of the cohomology groups of a Lie algebra using the Koszul resolution; see [7, Section
8.7]. This theory is connected to numerous research domains such as algebraic
topology; see [12, 29], algebraic geometry; see [5], Hopf algebras and Lie theory;
see [5, 25, 26, 32]. Beilinson, Ginzburg and Soergel described the Koszul duality

between a locally finite dimensional Koszul algebra Λ and its Koszul dual Λ!, that
is a pair of mutually quasi-inverse equivalences between a category derived from
graded Λ-modules and one derived from graded Λ!-modules. In case Λ is finite
dimensional and Λ! is left noetherian, they obtained an equivalence of the bounded
derived categories of finitely generated graded modules. Later, the Koszul duality
has been generalized to positively graded Koszul categories; see [26]. On the other
hand, the representation theory of finite dimensional Koszul algebras has been
studied by many representation theorists; see, for example, [9, 10, 11, 21, 22, 23, 24].

Motivated by the application of the covering technique in representation theory;
see [1, 2, 6, 8], this paper aims to study Koszul algebras defined by locally finite
quivers, from a novel viewpoint of connecting Koszul theory and representation
theory. Our contribution is twofold. As to Koszul theory, not only our Koszul
algebras have infinitely many graded simple modules, the classical Koszul duality
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of Beilinson, Ginzburg and Soergel is extended to a 2-real-parameter family of pairs
of mutually quasi-inverse equivalences. And under a weaker hypothesis, we obtain
two equivalences of bounded derived categories, one for finitely piece-supported
graded modules and one for finite dimensional graded modules. In contrast to their
sophisticated technique of spectral sequences, our tool is elementary: a local version
of the Acyclic Assembly Lemma and an existent technique of functor extension.

As to representation theory, we obtain a new class of Koszul algebras and a
stronger version of the Extension Conjecture for finite dimensional Koszul algebras
with a noetherian Koszul dual. The Koszul functors yield an explicit graded pro-
jective resolution and a graded injective co-resolution for every finite dimensional
graded modules over a Koszul algebra. This could make finite dimensional Koszul
algebras a testing class for other homological conjectures such as the Finitistic Di-
mensional Conjecture. In the locally bounded Koszul case, we obtain an existence
theorem for almost split triangles in the bounded derived category of finite di-
mensional graded modules, and describe the Auslander-Reiten translations and the
Serre functors in terms of the derived Koszul functors. This will stimulate future
study on graded Auslander-Reiten components of a hereditary or radical squared
zero algebra, as did in the ungraded setting; see [3, 4].

In order to outline the content section by section, we let Λ be a graded al-
gebra defined by a locally finite quiver with homogeneous relations, and denote
by GModΛ the category of unitary graded left Λ-modules, whose subcategories of
finitely piece-supported modules, of piecewise finite dimensional modules and of fi-
nite dimensional modules are written as GModbΛ, gmodΛ and gmodbΛ, respectively.

In Section 1, we lay the foundation for this paper. In Section 2, we introduce
linear projective n-presentations and colinear injective n-copresentations; see (2.4)
and prove that Λ is quadratic if and only if every graded simple Λ-module admits a
linear projective 2-presentation; see (2.6). In particular, a Koszul algebra; see (2.8)
is always quadratic; compare [5, (2.3.3)].

In Section 3, we give a combinatorial description of the local Koszul complexes
and the quadratic dual Λ! in case Λ is quadratic; see (3.2) and (3.8). This enables
us to describe linear projective resolutions and colinear injective coresolutions for
graded simple modules in terms of subspaces of Λ!; see (3.10) and (3.11). And we
show that Λ is Koszul if and only if its quadratic dual or opposite algebra is Koszul
if and only if every graded simple module has a colinear injective coresolution; see
(3.12); compare [5, (2.2.1), (2.9.1)]. As applications, we obtain a sufficient condition
for a quadratic special multi-serial algebra to be Koszul; see (3.14) and establish a
stronger version of the Extension Conjecture; see, for definition, [16, (2.6)] for finite
dimensional Koszul algebras with a noetherian Koszul dual; see (3.15).

In Section 4, we first develop a homotopy theory for double complexes over a
concrete additive category A, including a local version of the Acyclic Assembly
Lemma; see (4.1); compare [33, (2.7.3)]. Then, we formalize a technique of ex-
tending a functor from A into the complex category C(B) of a concrete additive
category B to a functor from C(A) into C(B); see (4.6). Then, we show that the ex-
tended functor descends to categories derived from suitable subcategories of C(A);
see (4.9). This is the key ingredient for constructing the derived Koszul functors.

In Section 5, we describe the generalized Koszul dualities. First in case Λ is
quadratic, we construct two Koszul functors from GModΛ to C(GModΛ!); see (5.1).

They extend to two complex Koszul functors from C(GModΛ) to C(GModΛ!),
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which induce a 2-real-parameter family of pairs of derived Koszul functors between
categories derived from subcategories of C(ModΛ) and those derived from subcate-

gories of C(ModΛ!); see (5.7). In case Λ is Koszul, derived Koszul functors in
each pair are mutually quasi-inverse; see (5.16), and one of the pairs is the classical

Koszul duality; see [5, (2.12.1)] and [26, Theorem 30]. In case Λ and Λ! are locally
bounded on opposite sides, the Koszul functors induce two triangle-equivalences
Db(GModbΛ) ∼= Db(GModbΛ!) and Db(gmodbΛ) ∼= Db(gmodbΛ!); see (5.17).

In Section 6, we study almost split triangles in bounded derived categories of
graded Λ-modules in case Λ is Koszul. In fact, the indecomposable images of
complexes in C b(gmodbΛ!) under the complex Koszul functors fit into almost split
triangles in Db(gmodΛ); see (6.1). And every derived-indecomposable complex in

C b(gmodbΛ) is the ending (respectively, starting) term of an almost split triangle in

Db(gmodΛ) if and only if Λ! is locally right (respectively, left) bounded; see (6.2).

In case Λ is locally bounded, Db(gmodbΛ) has almost split triangles on the right

(respectively, left) if and only if Λ! is locally right (respectively, left) bounded. In

case Λ and Λ! are both locally bounded, the Auslander-Reiten translations and the
Serre functors for Db(gmodbΛ) are composites of derived Koszul functors; see (6.4).

1. Preliminaries

The objective of this section is to fix some terminology and notation, which will
be used throughout the paper, and collect some preliminary results.

1) Linear algebra. Throughout this paper, k denotes a commutative field, and
all tensor products will be over k. Given a set S, the k-vector space spanned by S
will be written as kS. We write Modk for the category of k-vector spaces and modk
for the category of finite dimensional k-vector spaces. We shall make a frequent use
of the exact functor D = Homk(−, k) : Modk → Modk, which restricts to a duality
D : modk → modk. The following statement is well-known.

1.1. Lemma. Given any k-vector spaces U, V ;M,N , we have a k-linear map

ρ : Homk(U,M)⊗Homk(V,N)→ Homk(U ⊗ V,M ⊗N) : f ⊗ g 7→ ρ(f ⊗ g),

which is natural in all variables, such that ρ(f ⊗ g)(u⊗ v) = f(u)⊗ g(v) for u ∈ U
and v ∈ V . And ρ is an isomorphism in case U,M ∈ modk or V,N ∈ modk.

Remark. We shall identify f ⊗ g with ρ(f ⊗ g) in case ρ is an isomorphism.

Since V⊗k ∼=V ∼= Homk(k, V ), we immediately obtain the following consequence.

1.2. Corollary. Given U ∈ modk and V ∈ Modk, we have

(1) a natural k-linear isomorphism σ : DU ⊗V → Homk(U, V ) : f ⊗ v 7→ σ(f ⊗ v),
where σ(f ⊗ v)(u) = f(u)v, for u ∈ U and v ∈ V ;

(2) a natural k-linear isomorphism ϕ : DV ⊗DU → D(V ⊗U) : f ⊗ g 7→ ϕ(f ⊗ g),
where ϕ(f ⊗ g)(v ⊗ u) = f(v)g(u), for u ∈ U and v ∈ V .

The following statement will be needed for our later investigation.

1.3. Lemma. Let f : U → M and g : N → V be morphisms in modk. Then, we
obtain a commutative diagram with vertical isomorphisms

U ⊗DV
θU,V
��

f⊗Dg // M ⊗DN
θM,N
��

D(V ⊗DU)
D(g⊗Df) // D(N ⊗DM).
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Proof. Composing the canonical k-linear isomorphism U ⊗ DV → D2U ⊗ DV
with the k-linear isomorphism D2U ⊗ DV → D(V ⊗ DU) as stated in Corollary
1.2(2), we obtain a k-linear isomorphism θU,V : U ⊗DV → D(V ⊗DU) such that
θU,V (u ⊗ ζ)(v ⊗ ξ) = ζ(v)ξ(u), for u ∈ U ; v ∈ V ; ζ ∈ DV and ξ ∈ DU . Now, it is
routine to verify the commutativity of the diagram stated in the lemma commutes.
The proof of the lemma is completed.

2) Quivers. Throughout this paper, Q = (Q0, Q1) denotes a locally finite quiver,
where Q0 is a set of vertices and Q1 is a set of arrows such that at most finitely
many arrows start or end at any given vertex. Given an arrow α : x→ y, we write
x = s(α) and y = e(α). For each x ∈ Q0, one associates a trivial path εx with
s(εx) = e(εx) = x. A path of positive length n is a sequence ρ = αn · · ·α1, with
αi ∈ Q1, such that s(αi+1) = e(αi), for i = 1, . . . , n − 1. In this case, we call α1

the initial arrow; and αn, the terminal arrow, of ρ. Fix x, y ∈ Q0 and an integer
n ≥ 0. We shall denote by Q(x, y) the set of paths from x to y in Q and by Qn the
set of all paths of length n in Q. Moreover, put Qn(x, y) = Qn ∩Q(x, y) and write
Qn(x,−) = ∪z∈Q0Qn(x, z) and Qn(−, x) = ∪z∈Q0Qn(z, x).

The opposite quiver Qo of Q is a quiver defined in such a way that (Qo)0 = Q0

and (Qo)1 = {αo : y → x | α : x → y ∈ Q1}. A non-trivial path ρ = αn · · ·α1

in Q(x, y), where αi ∈ Q1, corresponds to a non-trivial path ρo = αo
1 · · ·αo

n in
Qo(y, x). For convenience, we identify the trivial path at a vertex x in Q with the
trivial path at x in Qo.

3) Algebras defined by quivers with relations. In this paper, an algebra
does not necessarily have an identity, and an ideal in an algebra is always two-sided.

Let Q = (Q0, Q1) be a locally finite quiver. Write kQ for the path algebra of Q
over k. An ideal in kQ is called a relation-ideal if it is contained in (kQ+)2, where
kQ+ is the ideal in kQ generated by the arrows. A non-zero element ρ ∈ kQ(x, y)
with x, y ∈ Q0 is called monomial if ρ = λp with λ ∈ k and p ∈ Q(x, y), and
polynomial otherwise. An element in kQn with n > 0 is called homogeneous; and
quadratic if n = 2.

Let Λ = kQ/R, where R is a relation-ideal in kQ. Given x, y ∈ Q0 and
n ≥ 0, we write R(x, y) = R ∩ kQ(x, y) and Rn(x, y) = R ∩ kQn(x, y), and
put Rn(x,−) = ∪z∈Q0

Rn(x, z) and Rn(−, y) = ∪z∈Q0
Rn(z, y). Furthermore, set

R(x,−) = ∪n≥0Rn(x,−) and R(−, y) = ∪n≥0Rn(−, y). An element ρ =
∑s
i=1 λipi

in R(x, y) is called a relation for Λ if the pi are pairwise distinct paths such that∑
i∈Σ λipi 6∈ R for any ∅ 6= Σ ( {1, . . . , s}; and in this case, the λipi are called the

summands of the relation ρ.
The algebra Λ is called graded or quadratic ifR is generated by some homogeneous

relations or by some quadratic relations, respectively. Moreover, we say that Λ is
locally left bounded if the Λex are all finite dimensional; locally right bounded if
the exΛ are all finite dimensional, and locally bounded if it is locally left and right
bounded; compare [6, (2.1)]. Furthermore, Λ is called special multi-serial provided,
for any arrow α in Q1, that there exists at most one arrow β in Q such that βα /∈ R,
and at most one arrow γ such that αγ /∈ R; see [15].

Finally, let us fix some notation for Λ. Write γ̄ = γ + R ∈ Λ for γ ∈ kQ, and
ex = ε̄x for x ∈ Q0. Then, {ex |x ∈ Q0} is a complete orthogonal set of idempotents
in Λ. The opposite algebra of Λ is given by Λo = kQo/Ro, where Ro = {ρo | ρ ∈ R}.
We write γ̄ o = γo +Ro for γ ∈ kQ, but ex = εx +Ro for x ∈ Q0.
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4) Almost split triangles. In this paper, all categories are additive k-categories,
in which morphisms are composed from the right to the left. A full subcategory
of a category is called strictly full if it is closed under isomorphisms. All functors
between additive k-categories are k-linear. Let A be a triangulated k-category with
translation functor [1]. An almost split triangle in A is an exact triangle

X
f // Y

g // Z
δ // X[1]

with f minimal left almost split and g minimal right almost split; see [14]. In
this case, X is called the starting term, and Z the ending term, of the almost splt
triangle, and we write X = τZ and Z = τ−X.

An object in A is called strongly indecomposable if it has a local endomorphism
algebra. We say that A has almost split triangles on the right (respectively, left)
if every strongly indecomposable object in A is the ending (respectively, starting)
term of an almost split triangle; and in this case, τ (respectively, τ−) is called
the right (respectively, left) Auslander-Reiten translation. And we say that A has
almost split triangles if it has almost split triangles on both sides.

Let now A be Hom-finite and Krull-Schmidt. A functor S : A → A is called a left
(respectively, right) Serre functor if there exists a binatural k-linear isomorphism
HomA(X,Y ) ∼= DHomA(SY,X) (respectively, HomA(X,Y ) ∼= DHomA(Y,SX))
for any X,Y ∈ A; see [30, (I.1)]. As shown by Reiten and Van den Bergh, A has
almost split triangles on the right (respectively, left) if and only if it admits a right
(respectively, left) Serre functor S; and in this case, τX = S(X)[−1] (respectively,
τ−X = S(X)[1]) for any indecomposable object X ∈ A. Moreover, A has almost
split triangles if and only if it admits a right Serre equivalence, or equivalently, a
left Serre equivalence; see [30, (I.2.3)].

6) Derived categories. Let A be a strictly full additive subcategory of an
abelian k-category A. We denote by C(A) the complex category of A, whose full
subcategories of bounded complexes, of bounded-below complexes and of bounded-
above complexes are written as Cb(A), C+(A) and C−(A) respectively. Given
∗∈{∅, b,+,−}, we denote by K∗(A) the (∗)-homotopy category and by D∗(A) the
(∗)-derived category of A.

A strictly full additive subcategory A of C(A) is called derivable if it is closed
under shifts. In this case, A is closed under mapping cones. Thus, the quotient
category K(A ) of A modulo the null-homotopic morphisms is a full triangulated
subcategory of K(A); see [27, (II.1.7)], in which the quasi-isomorphisms form a
localizing class compatible with the triangulation; see [27, (III.3.1.2)]. Therefore,
the localization D(A ) of K(A ) at quasi-isomorphisms is a triangulated category;
see [27, (II.1.6.1)], which we call the category derived from A .

2. Linear projective n-presentations and quadratic algebras

The main objective of this section to introduce linear projective n-presentations
and colinear injective n-copresentations for graded modules and show that a graded
algebra is quadratic if and only if every graded simple module admits a linear
projective 2-presentation.

We start with some preliminaries on graded modules. Throughout this section
let Λ = kQ/R be a graded algebra, where Q is a locally finite quiver and R is a
homogeneous relation-ideal in kQ. Then Λ is a positively graded k-algebra with
grading Λ = ⊕i≥0Λi, where Λi = {γ̄ | γ ∈ kQi}. Moreover, Λo is also positively
graded with grading Λo = ⊕i≥0Λo

i , where Λo
i = {γ̄ o | γ ∈ kQi}.
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A left Λ-module M is called unitary if M = ⊕x∈Q0
exM and graded provided

M = ⊕i∈ZMi, where the Mi are k-vector spaces such that ΛiMj ⊆ Mi+j for
i, j ∈ Z. Let M be a unitary graded left Λ-module. Then M = ⊕(i,x)∈Z×Q0

Mi(x),
where Mi(x) = exMi is called the (i, x)-piece of M . The elements in Mi are called
homogeneous of degree i and those in Mi(x) are called pure.

Let N be also a unitary graded left Λ-module. A Λ-linear morphism f : M → N
is graded if f(Mi) ⊆ Ni for all i ∈ Z. In this case, we write fi : Mi → Ni and
fi,x : Mi(x) → Ni(x) for the k-linear maps obtained by restricting f . In the
sequel, we shall identify f with a family of k-linear maps fi,x : Mi(x)→ gi(x) with
(i, x) ∈ Z×Q0 such that ufi,x(m) = fi+j,y(um), for all u ∈ eyΛjex and m ∈Mi(x).

The unitary graded left Λ-modules together with the graded Λ-linear morphisms
form an abelian k-category GModΛ, in which the morphism spaces will be written
as GHomΛ(M,N). A module M ∈ GModΛ is called bounded-below if Mi = 0 for
i � 0; bounded-above if Mi = 0 for i � 0; finitely piece-supported if Mi(x) = 0 for
all but finitely many (i, x) ∈ Z × Q0; and piecewise finite dimensional if Mi(x) is

finite dimensional for all (i, x) ∈ Z × Q0. We write GMod+Λ, GMod−Λ, GModbΛ,

gmod Λ and gmodbΛ for the subcategories of GModΛ of bounded-below modules,
of bounded-above modules, of finitely piece-supported modules, of piecewise finite
dimensional modules and of finite dimensional modules, respectively.

Let M ∈ GModΛ. Given s ∈ Z, the grading s-shift M〈s〉 of M is defined by
M〈s〉i = Ms+i for all i ∈ Z. In particular, M〈s〉i(x) = Ms+i(x), for (i, x) ∈ Z×Q0.
Given a morphism f : M → N in GModΛ, the grading s-shift f〈s〉 of f is defined
by f〈s〉i = fi+s : Mi+s → Ni+s for all i ∈ Z. Moreover, given V ∈ Modk, we have

M ⊗ V = ⊕i∈Z(Mi ⊗ V ) ∈ GModΛ. Note that (M ⊗ V )i(x) = Mi(x) ⊗ V for all
(i, x) ∈ Z×Q0. It is evident that (M ⊗ V )〈s〉 = M〈s〉 ⊗ V .

In the study of graded Λ-modules, an important role will be played by a con-
travariant functor D : GModΛ → GModΛo introduced in [18, (2.2)]. Given
M ∈ GModΛ, we have DM = ⊕i∈Z;x∈Q0D(M−i(x)) such that (uo · ϕ)(v) = ϕ(uv),
for ϕ ∈ D(M−i(x)); u ∈ exΛjey and v ∈M−i−j(y). So (DM)i = ⊕x∈Q0 D(M−i(x))

and (DM)i(x) = D(M−i(x)). Given a morphism f : M → N in GModΛ, we have a
morphism D(f) : DN → DM such that D(f)i,x = D(f−i,x), for all (i, x) ∈ Z×Q0.
For convenience, we quote the following statement from [18, (2.2.1), (2.2.2)].

2.1. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M ∈ GModΛ and s ∈ Z, then D(M〈s〉) = (DM)〈−s〉.
(2) If M ∈ GModΛ and V ∈ modk, then D(M ⊗ V ) ∼= DM ⊗DV .

(3) The functor D restricts to a duality D : gmodΛ→ gmodΛo.

Let M ∈ GModΛ. A Λ-submodule N of M is graded if N = ⊕i∈Z(Mi ∩ N).
In this case, if m =

∑
(i,x)∈Z×Q0

mi,x ∈ N with mi,x ∈ Mi(x), then mi,x ∈ N for

any (i, x) ∈ Z × Q0. The quotient M/N is graded as M/N = ⊕i∈Z(Mi + N)/N .
Recall that the graded radical radM of M is the intersection of all graded maximal
submodules of M , the graded socle socM of M is the sum of all graded simple
submodules of M , and the graded top topM of M is the quotient M/radM . Note
that rad(ΛΛ) = ⊕i≥1Λi =: radΛ and radM = (radΛ)M ; see [18, (2.6.2)], and
socM = {m ∈ M | (radΛ)m = 0}; see [18, (2.9.1)]. Further, one says that M
is finitely generated (in degree s) if M = Λm1 + · · · + Λmt, where m1, . . . ,mt are
homogeneous (of degree s); and finitely cogenerated (in degree s) if socM is finitely
generated (in degree s) and graded essential in M .
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Let a ∈ Q0. Put Pa = Λea = ⊕i≥0Λiea ∈ gmodΛ, which is generated in degree
0 by ea. We denote by GProjΛ and gprojΛ the strictly full additive subcategories
of GModΛ generated by Pa〈−s〉 ⊗ V with (s, a) ∈ Z ×Q0 and V ∈ Modk, and by
Pa〈−s〉 with (s, a) ∈ Z×Q0, respectively. Then, GProjΛ contains only graded pro-
jective modules, and gprojΛ is generated by all finitely generated graded projective
modules in GModΛ; see [18, (2.3.2), (2.12.2)].

On the other hand, we write P o
a = Λoea ∈ gprojΛo and Ia = DP o

a ∈ gmodΛ.
Then, Ia = ⊕i≥0(Ia)−i with (Ia)−i = ⊕x∈Q0(Ia)−i(x) and (Ia)−i(x) = D(exΛo

i ea),
for i ≥ 0 and x ∈ Q0. Note that Ia is co-generated in degree 0 by e?a, where
e∗a ∈ D(e0Λoea) such that e∗a(ea) = 1. We denote by GInjΛ and ginjΛ the strictly
full additive subcategories of GModΛ generated by Ia〈s〉 ⊗ V with (s, a) ∈ Z×Q0

and V ∈ Mod k and by Ia〈s〉 with s ∈ Z, respectively. Then, GInjΛ contains only
graded injective modules, and ginjΛ is generated by all finitely cogenerated graded
injective modules in GModΛ; see [18, (2.4.2), (2.12.2)].

Let M ∈ gmodΛ. A graded projective cover over gprojΛ for M is an epimorphism
f : P → M with P ∈ gprojΛ such that Ker(f) ⊆ radP ; and a graded injective
envelope over ginjΛ is monomorphism g :M → I with I ∈ ginjΛ and socI ⊆ Im(g).
The following definition; see [18, (2.7.1), (2.10.1)] is important for constructing
graded projective covers and graded injective envelopes.

2.2. Definition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
A set {m1, . . . ,mr} of pure elements in a module M ∈ GModΛ is called a top-basis
for M provided that M = Λm1 + · · ·+ Λmr and {m1 + radM, . . . ,mr + radM} is
a k-basis of topM ; and a soc-basis for M provided that socM has {m1, . . . ,mr} as
a k-basis and is graded essential in M .

The following statement follows from the results stated in [18, (2.8.2), (2.11.2)].

2.3. Proposition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Given s ∈ Z, a module M in gmodΛ has
(1) a graded projective cover f : Pa1〈−s〉⊕ · · · ⊕Par〈−s〉 →M, sending eai to mi, if

and only if {m1, . . . ,mr} with mi ∈Ms(ai) is a top-basis for M ;
(2) a graded injective envelope g :M → Ia1〈s〉 ⊕ · · · ⊕ Iar〈s〉, sending mi to e?ai, if

and only if {m1, . . . ,mr} with mi ∈M−s(ai) is a soc-basis for M.

We are ready to introduce the main notions of this section.

2.4. Definition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Consider a module M ∈ gmodΛ and an integer n ≥ 0.
(1) In case M is finitely generated in degree s, an exact sequence

P−n
d−n // P 1−n // · · · // P−1 d−1

// P 0 d0
// M // 0

in gmodΛ is called a linear projective n-presentation of M if P−i ∈ gprojΛ is
generated in degree s+ i, for i = 0, . . . , n, and Ker(d−n) ⊆ radP−n.

(2) In case M is finitely cogenerated in degree −s, an exact sequence

0 // M
d0 // I0 d1 // I1 // · · · // In−1 dn // In

in gmodΛ is called a colinear injective n-copresentation of M if Ii ∈ ginjΛ is
cogenerated in degree −s− i, for i = 0, . . . , n, and socIn ⊆ Im(dn).

The following statement is important for our later investigation.

2.5. Lemma. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Given a module M ∈ gmodΛ, a sequence
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P−n
d−n // P−n+1 // · · · // P−1 d−1

// P 0 d0
// M // 0

in gmodΛ is a linear projective n-presentation of M if and only if

0 // DM
Dd0
// DP 0 Dd−1

// DP−1 // · · · // DP 1−n Dd−n // DP−n

is a colinear injective n-copresentation of DM .

Proof. By Proposition 2.1(2), we have a duality D : gmodΛ→ gmodΛo. Thus, one
of the two sequences stated in the lemma is exact if and only if the other one is exact.
Moreover, P−i is generated in dgeree s+i if and only if P−i ∼= ⊕ri=1Pai〈−s−i〉 with
ai ∈ Q0 if and only if DP−i ∼= ⊕ri=1Iai〈s+ i〉 if and only if DP−i is cogenerated in
degree −s − i. Finally, Ker(d−n) ⊆ radP−n if and only if d−n is right minimal if
and only if Ddn is left minimal if and only if soc(DP−n) ⊆ Im(Dd−n). The proof
of the lemma is completed.

Given u ∈ eaΛs−teb, the right multiplication by u yields a graded Λ-linear mor-
phism P [u] : Pa〈−s〉 → Pb〈−t〉 : v 7→ vu. Note that this notation does not distin-
guish P [u] from its grading shifts. It is known that every graded simple module
in GModΛ is isomorphic to Sa〈s〉 for some (s, a) ∈ Z × Q0; see [18, (2.5.1)]. The
following statement is the promised characterization of quadratic algebras.

2.6. Theorem. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Then Λ is a quadratic algebra if and only if every graded simple Λ-module admits
a linear projective 2-presentation.

Proof. It suffices to show, for any a ∈ Q0, that R(a,−) is generated by qua-
dratic relations if and only if Sa admits a linear projective 2-presentation. Write
Q1(a,−) = {αi : a→ bi | i = 1, . . . , r}. Then, {ᾱ1, · · · , ᾱr} is a top-basis for radPa.
Since ᾱi∈(radPa)1(bi), by Proposition 2.3(1), we obtain a projective presentation

P−1
a = Pb1〈−1〉 ⊕ · · · ⊕ Pbr〈−1〉

d−1
a // Pa

pa // Sa // 0

of Sa over gprojΛ, where d−1
a = (P [ᾱ1], · · · , P [ᾱr]) with Ker(d−1

a ) ⊆ radP−1
a .

Suppose that R(a,−) is generated by quadratic relations. Since Q is locally
finite, R(a,−) has a minimal generating set {ρ1, . . . , ρs}, where ρj ∈ kQ2(a, cj)
with cj ∈ Q0. Write ρj =

∑r
i=1 γijαi, where γij ∈ kQ1(bi, cj), for j = 1, . . . , s.

Considering γ̄ij ∈ Pbi〈−1〉2(cj), we have morphisms P [γ̄ij ] : Pcj〈−2〉→ Pbi〈−1〉 in

gprojΛ, for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Putting d−2
a = (P [γ̄ij ])r×s, we claim that Sa

admits a linear projective 2-presentation

Pc1〈−2〉 ⊕ · · · ⊕ Pcs〈−2〉
d−2
a // Pb1〈−1〉 ⊕ · · · ⊕ Pbr〈−1〉

d−1
a // Pa

pa // Sa // 0.

Set uj = d−2
a (ecj ) = (γ̄1j , . . . , γ̄rj) ∈ Ker(d−1

a )2, for j = 1, . . . , s. Since radP−1
a

is generated in degree 2, the u1, . . . , us are top-elements of Ker(d−1
a ). Consider

v = (δ̄1, . . . , δ̄r) ∈ Ker(d−1
a ). To show that v ∈

∑s
j=1 Λuj , since Ker(d−1

a ) is graded,

we may assume that δi ∈ kQp(bi, c), where c ∈ Q0 and p ≥ 1, for i = 1, . . . , r.
Then,

∑r
i=1 δiαi ∈ Rp+1(a, c). Since R(a,−) is generated by the ρj , we may write∑r

i=1δiαi =
∑s
j=1ωjρj +

∑r
i=1ηiαi =

∑r
i=1(

∑s
j=1ωjγij + ηi)αi,

where ωj ∈ kQp−1(cj , c) and ηi ∈ Rp(bi, c). Therefore, δi =
∑s
j=1ωjγij + ηi, for

i = 1, . . . , r. This yields v =
∑s
j=1ω̄juj . Further, assume that

∑s
i=1 λjuj = 0 with

λj ∈ k. Then
∑s
j=1 λj γ̄ij = 0. Since R ⊆ (kQ+)2, we have

∑s
j=1 λjγij = 0, for

i = 1, . . . , r, and hence,
∑s
j=1 λjρj = 0. By the minimality, λ1 = · · · = λs = 0.
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This shows that {u1, . . . , us} is a top-basis for Ker(d−1
a ). By Proposition 2.3, d−2

a

co-restricts to a graded projective cover of Ker(d−1
a ). This establishes our claim.

Conversely, suppose that Sa admits a linear projective 2-presentation

P−2 d−2
// P−1 d−1

// P 0 d0 // Sa // 0.

By the uniqueness of graded projective cover, we may assume that d0 = pa and
d−1 = d−1

a . Being generated in degree two, P−2 = Pc1〈−2〉 ⊕ · · · ⊕ Pcs〈−2〉 where
c1, . . . , cs ∈ Q0. Then uj : = d−2(ecj ) ∈ Ker(d−1

a )2(cj) ⊆ ecjΛ1eb1 ⊕ · · · ⊕ ecjΛ1ebr ,
which can be written as uj = (γ̄1j , . . . , γ̄rj), where γij ∈ kQ1(bi, cj). By Proposition
2.3(1), {u1, . . . , us} is a top-basis for Ker(d−1

a ). By the definition of d0
a, we see that

ηj :=
∑r
i=1 γijαi ∈ R2(a, cj), for j = 1, . . . , s.

Suppose that ρ ∈ Rn(a, c), for some n ≥ 2 and c ∈ Q0. Then, ρ =
∑r
i=1 γiαi

for some γi ∈ kQn−1(bi, c). Observing that (γ̄1, . . . , γ̄r) ∈ Ker(d−1
a ), we may write

(γ̄1, . . . , γ̄r) =
∑s
j=1 δ̄j uj , for some δj ∈ kQn−2(cj , c). So, γi = σi +

∑s
j=1 δjγij ,

where σi ∈ Rn−1(bi, c), for i = 1, . . . , r. If n = 2, since R1(−, c) = 0, we have
γi =

∑s
j=1 δjγij , for i = 1, . . . , r, and consequently, ρ =

∑s
j=1 δjηj . By induction

on n, we see that ρ ∈
∑s
j=1(kQ)ηj . This shows that R(a,−) is generated by the

quadratic relations η1, . . . , ηs. The proof of the proposition is completed.

More generally, we have the notions of linear projective resolution and colinear
injective coresolution.

2.7. Definition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
Given a module M ∈ gmodΛ, a graded projective resolution

· · · // P−n
d−n // P 1−n // · · · // P−1 d−1

// P 0 // 0 // · · ·
of M over gprojΛ is called linear if P−n is generated in degree s + n with s a
constant, for all n ≥ 0. And a graded injective coresolution

· · · // 0 // I0 d1 // I1 // · · · // In−1 dn // In // · · ·
of M over ginjΛ is called colinear if In is cogenerated in degree t − n with t a
constant, for all n ≥ 0.

The following definition of a Koszul algebra is essentially the same as the classical
one; see [5, (1.2.1)] and [26, (5.4)].

2.8. Definition. Let Λ = kQ/R be a graded algebra with Q a locally finite quiver.
We call Λ a Koszul algebra if every graded simple Λ-module admits a linear projec-
tive resolution over gprojΛ.

Remark. (1) By Theorem 2.6, a Koszul algebra is quadratic; compare [5, (2.3.3)].
(2) It is clear that Λ is Koszul if and only if Sa admits a linear projective resolution
over gprojΛ, for every a ∈ Q0.

Example. Given a locally finite quiver Q, the path algebra kQ is Koszul. Indeed,
every Sa with a ∈ Q0 admits a linear projective resolution

· · · // 0 // Pb1〈−1〉 ⊕ · · · ⊕ Pbr〈−1〉
(P [ᾱ1],··· ,P [ᾱr])// Pa // 0,

where αi : a→ bi, i = 1, . . . , r are the arrows in Q1(a,−).

3. Local Koszul complexes and Koszul duals

Throughout this section, let Λ = kQ/R be a quadratic algebra, where Q is a
locally finite quiver. First, we give a combinatorial description of the local Koszul
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complexes and the quadratic dual Λ!. Then, we describe linear projective resolu-
tions and colinear injective coresolutions of graded simple modules in terms of the
subspaces of Λ!. This leads to a number of equivalent conditions for Λ to be Koszul.
As applications, we obtain a new class of Koszul algebras and a stronger version of
the Extension Conjecture for certain finite dimensional Koszul algebras.

Let us start with some notation and terminology. Given an arrow α : y → x in
Q, we have a k-linear derivation ∂α : kQ→ kQ, sending a path ρ to δ if ρ = αδ, and
to 0 if α is not a terminal arrow of ρ. In particular, ∂α vanishes on kQ0 and sends
kQn to kQn−1 for any n > 0. Fix a ∈ Q0 and n > 0. Given α ∈ Q1(y, x), we have
a graded Λ-linear morphism P [ᾱ] : Px〈−n〉 → Py〈1 − n〉, the right multiplication
by ᾱ, and a k-linear map ∂α : kQn(a, x) → kQn−1(a, y). Since Q is locally finite,
for any x, y ∈ Q0, we have a morphism

∂−na (y, x)=
∑
α∈Q1(y,x)P [ᾱ]⊗ ∂α : Px〈−n〉⊗ kQn(a, x)→Py〈1−n〉⊗ kQn−1(a, y)

in gprojΛ. The following statement is useful for later calculation.

3.1. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
If u∈Px〈−n〉, δ ∈ kQn−1(a, y) and ζ ∈ kQ1(y, x), then ∂−na (y, x)(u⊗ ζδ) = uζ̄ ⊗ δ.
Proof. Let δ ∈ kQn−1(a, y) and ζ ∈ kQ1(y, x). Then, ∂α(ζδ) = ∂α(ζ) δ for any
α ∈Q1. Write ζ =

∑
β∈Q1(y,x) λββ, where λβ ∈ k. For any u ∈ Px〈−n〉, we have

∂−na (y, x)(u⊗ ζδ) =
∑
α,β∈Q1(y,x) λαuᾱ⊗ ∂α(βδ) =

∑
α∈Q1(y,x) λαuᾱ⊗ δ = uζ̄ ⊗ δ.

The proof of the lemma is completed.

Fix a, x ∈ Q0. For n = 0, 1, we put R(n)(a, x) = kQn(a, x); and for any integer
n ≥ 2, we define R(n)(a, x) = ∩0≤j≤n−2 kQn−2−j(−, x)·R2·kQj(a,−). In particular,

R(2)(a, x) = R2(a, x). Moreover, set R(n)(a,−) = ⊕x∈Q0
R(n)(a, x).

3.2. Lemma. Let R be a quadratic ideal of kQ, where Q is a locally finite quiver.
Consider a, x ∈Q0 with Q1(−, x)={αi : yi→ x | i = 1, . . . , r} and an integer n ≥ 1.

(1) If γ ∈ R(n)(a, x) and α ∈ Q1(y, x), then ∂α(γ) ∈ R(n−1)(a, y); and consequently,
γ =

∑r
i=1 αiγi, for some γi ∈ R(n−1)(a, yi).

(2) If ρ =
∑r
i=1 ζiρi with ρi ∈ R(n−1)(a, yi) and ζi ∈ kQ1(yi, x), then ρ ∈ R(n)(a, x)

if and only if ρ ∈ R2(−, x) · kQn−2(a,−).

Proof. Let γ ∈ R(n)(a, x) and α ∈ Q1(y, x). Since ∂α(γ) ∈ kQn−1(a, y), we may
assume that n ≥ 3. For any 0 ≤ j ≤ n− 3, we may write γ =

∑r
i=1βiζiρiδi, where

βi ∈ Q1(−, x); ζi ∈ kQn−3−j(−, yi); ρi ∈R2; δi ∈ kQj(a,−). Assume that βi = α if
and only if 1 ≤ i ≤ s. Then, ∂α(γ) =

∑s
i=1 ζiρiδi ∈ kQn−3−j(−, y) ·R2 · kQj(a,−).

So, ∂α(γ) ∈ R(n−1)(a, y). The first part of Statement (1) is established, and the
second part follows immediately from it. Moreover, Statement (2) follows directly
from the definition of R(n)(a, x). The proof of the lemma is completed.

Fix a ∈ Q0. For n ≥ 0, put K−na = ⊕x∈Q0
Px〈−n〉 ⊗ R(n)(a, x) ∈ gprojΛ. Given

n ≥ 1 and x, y ∈ Q0, by Lemma 3.2(1), we get a graded Λ-linear morphism

∂−na (y, x) =
∑
α∈Q1(y,x)P [ᾱ]⊗ ∂α : Px〈−n〉⊗R(n)(a, x)→Py〈1−n〉⊗R(n−1)(a, y).

Write K1−n
a = ⊕y∈Q0

Py〈1 − n〉 ⊗ R(n−1)(a, y) and consider the graded Λ-linear

morphism ∂−na = (∂−na (y, x))(y,x)∈Q0×Q0
: K−na → K1−n

a . We obtain a sequence

K.a : · · · // K−na
∂−na // K1−n

a
// · · · // K−1

a

∂−1
a // K0

a
// 0 // · · ·

in gprojΛ, which is a complex as shown below, called the local Koszul complex at
a; compare [5, (2.6)].
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3.3. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
If a∈Q0, then K.a is a complex such that Ker(∂−na )⊆radK−na , for all n > 0.

Proof. Fix n ≥ 1. By definition, K−na is generated in degree n. Let w ∈ (K−na )n
be such that ∂−na (w) = 0. Then, w =

∑
x∈Q0

ex ⊗ γx where γx ∈ R(n)(a, x). By

Lemma 3.2(1), γx =
∑
β∈Q1(−,x) βδβ with δβ ∈ R(n−1)(a,−). And by Lemma 3.1,

∂−na (w) =
∑
x∈Q0;β∈Q1(−,x) β̄ ⊗ δβ = 0. Since the β̄ are k-linearly independent,

δβ = 0 for all β ∈ Q1(−, x). Thus, w = 0. This shows that Ker(∂−na ) ⊆ radK−na .

Next, let u ∈ Px〈−n〉 and ξ ∈ R(n)(a, x). We may assume that ξ = ρδ, where
δ ∈ kQn−2(a, z) and ρ ∈ R2(z, x). Write ρ =

∑s
i=1 γiζi with γi ∈ kQ1(yi, x) and

ζi ∈ kQ1(z, yi). By Lemma 3.1, (∂1−n
a ◦∂−na )(u⊗ξ) = u(

∑s
i=1 γ̄i ζ̄i⊗δ) = uρ̄⊗δ = 0.

The proof of the lemma is completed.

Observe that K0
a = Pa⊗ kεa, for any a ∈ Q0. Thus, we have a graded projective

cover ∂0
a : K0

a → Sa, sending ea ⊗ εa to ea + radPa.

3.4. Proposition. Let Λ = kQ/R be a quadratic algebra with Q a locally finite
quiver. If a ∈ Q0 and n > 0, then Sa has a linear projective n-presentation over
gprojΛ if and only if the following sequence is exact:

K−na
∂−na // K1−n

a
// · · · // K−1

a

∂−1
a // K0

a

∂0
a // Sa // 0.

Proof. Since K−na is generated in degree n, it suffices to show the necessity. Let

P−n
d−n // P 1−n // · · · // P−1 d−1

// P 0 d0
// Sa // 0

be a linear projective n-presentation of Sa over gprojΛ. Then, there exists a graded
Λ-linear isomorphism f0 : P 0 → K0

a such that d0 = f0 ◦ ∂0
a . Assume that we have

a commutative diagram with vertical isomorphisms

P−p
d−p // P 1−p d1−p //

f1−p

��

· · · // P 0

f0

��

//d0 // Sa // 0

K−pa
∂−pa // K1−p

a

∂1−p
a // · · · // K0

a

∂0
a // Sa // 0

for some 1 ≤ p ≤ n. Then, f1−p ◦ d−p co-restricts to a graded projective cover of
Ker(∂1−p

a ). We shall obtain an isomorphism f−p : P−p→K−pa in gprojΛ such that
f1−p ◦ d−p = ∂−pa ◦ f−p. This amounts to show that ∂−pa co-restricts to a graded
projective cover of Ker(∂1−p

a ), that is, Ker(∂1−p
a ) ⊆ Im(∂−pa ) by Lemma 3.3.

Since P−p is generated in degree p, by Proposition 2.3(1), Ker(∂1−p
a ) has a top-

basis T p−1 contained in (K1−p
a )p. Choose a k-basis {ρ1, . . . , ρt} of R(p−1)(a,−),

where ρj ∈ R(p−1)(a, yj). Then, K1−p
a = ⊕tj=1Pyj〈1− p〉 ⊗ kρj . Consider u∈T p−1.

Then, u ∈ (K1−p
a )p(z) =⊕tj=1ezΛ1eyj ⊗ kρj , for some z∈Q0. Write u =

∑t
j=1 uj ,

where uj = γ̄j ⊗ ρj with γj ∈ kQ1(yj , z), for j = 1, . . . , t. Now, choose a k-

basis {ξ1, . . . , ξs} of R(n−1)(a,−), where ξi ∈ R(n−1)(a, xi). By Lemma 3.2(2),

ρj =
∑s
i=1ζij ξi, where ζij ∈ kQ1(xi, yj). Thus, u =

∑s
i=1

∑t
j=1 γ̄j ⊗ ζijξi. This

yields ∂−na (u) =
∑s
i=1(

∑t
j=1 γ̄j ζ̄ij)⊗ξi = 0. As a consequence,

∑t
j=1γ̄j ζ̄ij = 0, and

hence, ηi =
∑t
j=1γjζij ∈ R2(xi, z), for i = 1, . . . , s. Put ω =

∑t
j=1 γjρj , where

γj ∈ kQ1(yj , z) and ρj ∈ R(p−1)(a, yj). Since ω =
∑s
i=1 ηiξi, where ηi ∈ R2(xi, z)

and ξi ∈ kQn−1(a, xi), by Lemma 3.2(2), ω ∈ R(p)(a, z). So, ez ⊗ ω ∈ K−pa and

∂−pa (ez ⊗ ω) = ∂−pa (
∑t
j=1ez ⊗ γjρj) =

∑t
j=1γ̄j ⊗ ρj =

∑t
j=1uj = u. This shows

that Ker(∂1−p
a ) ⊆ Im(∂−pa ). The proof of the proposition is completed.
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As an immediate consequence, we obtain the following statement, which genera-
lizes the result stated in [5, (2.6.1)].

3.5. Theorem. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
Then Λ is Koszul if and only if K.a is a graded projective resolution of Sa for a ∈ Q0.

Next, we shall define the quadratic dual of Λ by Qo; compare [5, 21, 26]. We
need some notation. Let n ≥ 0. Given ξ ∈ Qn, let ξ∗ ∈ D(kQn) such, for any
η ∈ Qn, that ξ∗(η) = 1 if η = ξ; and ξ∗(η) = 0 otherwise. Given γ =

∑
λiξi ∈ kQn

with λi ∈ k and ξi ∈ Qn, we write γ∗ =
∑
λiξ
∗
i . This yields a k-isomorphism

ψn : kQo
n → D(kQn) : γo → γ∗.

If ξ ∈ kQn(x, y), then the restriction of ξ∗ to kQn(x, y) is also written as ξ∗. Since
Q is locally finite, {ξ∗ | ξ ∈ Qn(x, y)} is the dual basis of Qn(x, y) in D(kQn(x, y)).
For a subspace U of kQn(x, y), we denote by U⊥ the subspace of D(kQn(x, y)) of
k-linear functions vanishing on U . The following statement is evident.

3.6. Lemma. Let Q be a locally finite quiver with x, y, z ∈ Q0 and s, t ≥ 0.

(1) If ξ∈kQs(x, y) and ζ∈Q1(y, z), then (ζξ)∗(η) = ξ∗(∂ζ(η)), for all η∈ kQs+1.

(2) If ξ ∈ kQs(x, y) and ζ ∈ kQt(y, z), then (ζξ)∗(γδ) = ζ∗(γ)ξ∗(δ) for all δ ∈ kQs
and γ ∈ kQt.

(3) If U and V are k-vector subspaces of kQs(x, y), then (U +V )⊥ = U⊥∩V ⊥ and
(U ∩ V )⊥ = U⊥ + V ⊥.

Let R be a quadratic ideal in kQ. The quadratic dual of R is the ideal R! in kQo

generated by the R!
2(y, x) with x, y ∈ Q0, where R!

2(y, x) stands for the k-subspace
of kQo

2(y, x) of elements ρo with ρ ∈ kQ2(x, y) such that ρ∗ ∈ R2(x, y)⊥.

3.7. Definition. Let Λ = kQ/R be a quadratic algebra, where Q is a locally finite

quiver. Then Λ! = kQo/R! is called the quadratic dual of Λ.

The quadratic dual of a quadratic ideal in kQ is described explicitly as follows.

3.8. Lemma. Let R be a quadratic ideal in kQ, where Q is a locally finite quiver.
If σ ∈ kQn(x, y) with n ≥ 0, then σo ∈ R!

n(y, x) if and only if σ∗ ∈ R(n)(x, y)⊥.

Proof. Fix σ ∈ kQn(x, y) with x, y ∈ Q0 and n ≥ 0. We only need to consider the
case where n ≥ 3. By definition, we have R(n)(x, y) = ∩n−2

j=0R
(n,j)(x, y) where

R(n,j)(x,y)=
∑
a,b∈Q0

kQn−2−j(b,y) ·R2(a,b) · kQj(x,a);

and R!
n(y, x)=

∑n−2
j=0R

!
n,j(y, x) where

R!
n,j(y, x) =

∑
a,b∈Q0

kQo
j (a, x) ·R!

2(b, a) · kQo
n−2−j(y, b).

For the necessity, we may assume that σo = γoηoδo, where δ ∈ kQn−2−j(b, y),
γ ∈ kQj(x, a), and η ∈ kQ2(a, b) such that ηo ∈ R!

2(b, a), for some a, b ∈ Q0

and 0 ≤ j ≤ n − 2. Given w ∈ R(n)(x, y), we may write w =
∑s
i=1 δiηiγi, for

some γi ∈ kQj(x, ai), ηi ∈ R2(ai, bi) and δi ∈ kn−j−2Q(bi, y), where ai, bi ∈ Q0.
Since η∗ ∈ R2(a, b)⊥, we see that η∗(ηi) = 0, for i = 1, . . . , s. By Lemma 3.6(1),
σ∗(w) = (δηγ)∗(w) =

∑s
i=1 δ

∗(δi) η
∗(ηi) γ

∗(γi) = 0. That is, σ∗ ∈ R(n)(x, y)⊥.

Conversely, since R(n)(x, y)⊥ =
∑n−2
j=0 R

(n,j)(x, y)⊥; see (3.6), we may assume

that 0 6= σ∗∈R(n,p)(x, y)⊥ for some 0 ≤ p ≤ n − 2, and show that σo∈R!
n,p(y, x).

Write σ =
∑t
i=1 σi, where σi ∈ kQn−2−p(bi, y) · kQ2(ai, bi) · kQp(x, ai). By Lemma

3.6(1), σ∗i ∈ (kQn−p−2(bj , y) · kQ2(aj , bj) · kQp(x, aj))⊥ for j 6= i, and hence,

σ∗i ∈ R(n,p)(x, y)⊥, for i = 1, . . . , t. So, we may assume that σ = δ1ζ1γ1, for some
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δ1 ∈ kQn−p−2(b1, y), ζ1 ∈ kQ2(a1, b1) and γ1 ∈ kQp(x, a1). Since σ∗ 6= 0, by
Lemma 3.6(1), δ∗1 and γ∗1 are non-zero. Hence, δ∗1(ν1) = γ∗1(µ1) = 1, for some
ν1 ∈ kQn−2−p(b1, y) and µ1 ∈ kQp(x, a1).

Choose a basis {ρ1, . . . , ρr, ρr+1, . . . , ρs} of kQ2(a1, b1), where {ρ1, . . . , ρr} is a
basis of R2(a1, b1). There exists a basis {η1, . . . , ηr, ηr+1, . . . , ηs} of kQ2(a1, b1)
such that {η∗1 , . . . , η∗r , η∗r+1, . . . , η

∗
s} is the dual basis of {ρ1, . . . , ρr, ρr+1, . . . , ρs},

and hence, {ηo
r+1, . . . , η

o
s} is a basis of R!

2(b1, a1). Writing ζ1 =
∑s
j=1 λjηj where

λj ∈ k, we get σ∗ =
∑s
j=1 λj(δ1ηjγ1)∗ ∈ (Qn−2−p(b1, y) ·R2(a1, b1) · kQp(x, a1))⊥.

In view of Lemma 3.6(1), we see that

0 = σ∗(ν1ρiµ1) =
∑s
j=1 λj(δ1ηjγ1)∗(ν1ρiµ1) =

∑s
j=1 λjδ

∗
1(ν1)η∗j (ρi)γ

∗
0 (µ1) = λi,

for i = 1, . . . , r. Therefore, σ∗ =
∑s
j=r+1 λj(δ1ηjγ1)∗, and consequently, we have

σo =
∑s
j=r+1 λjγ

o
1η

o
j δ

o
1 ∈ R !

n,p(y, x). The proof of the lemma is completed.

The following statement in particular justifies the terminology of quadratic dual;
compare [5, (2.8.1)].

3.9. Proposition. Let Λ = kQ/R be a quadratic algebra with Q a locally finite

quiver. Then Λ! and Λo are quadratic with (Λ!)! = Λ and (Λo)! = (Λ!)o.

Proof. Clearly, Λo and Λ! are quadratic with (Λ!)! = k((Qo)o)/(R!)! = kQ/(R!)!

and (Λo)! = k((Qo)o)/(R!)o = kQ/(R!)o. Let γ, ρ ∈ kQ2(x, y) with x, y ∈ Q0. It is
easy see that (γo)∗(ρo) = ρ∗(γ) = γ∗(ρ).

Now, γ ∈ (R!)!
2(x, y) if and only if (γo)∗(ρo) = 0 for all ρo ∈ R!

2(y, x), or
equivalently, ρ∗(γ) = 0, for all ρ∗ ∈ R2(x, y)⊥, that is, γ ∈ R2(x, y). This implies

that (R!)! = R, and hence, (Λ!)! = kQ/R = Λ.
Next, γ ∈ (Ro)!

2(x, y) if and only if, (γo)∗(ρo) = 0 for all ρo ∈ Ro
2(y, x), if and

only if γ∗(ρ) = 0, for all ρ ∈ R2(x, y), or equivalently, γo ∈ R!
2(y, x), that is,

γ ∈ (R!)o
2(x, y). This implies that (Ro)! = (R!)o. Now, (Λo)! = kQ/(R!)o = (Λ!)o.

The proof of the proposition is completed.

We shall give an alternative description of the local Koszul complexes in terms of
Λ!. We need to fix some notation. Write γ̄ ! = γo+R! for γ ∈ kQ+, but ex = εx+R!

for x ∈ Q0. Then Λ! = ⊕n≥0Λ!
n, where Λ!

n = {γ̄ ! | γ ∈ kQn} for n ≥ 0. Given any

x ∈ Q0, we shall write P !
x = Λ!ex, and S!

x = P !
x/radP !

x, and I !
x = D((Λ!)oex).

Fix a ∈ Q0. Given n ∈ Z, we set P−na =⊕x∈Q0
Px〈−n〉 ⊗D(eaΛ!

nex) ∈ gprojΛ.
Given α∈Q1(y, x), we have a morphism P [ᾱ] : Px〈−n〉 → Py〈1−n〉 in gprojΛ, that

is the right multiplication by ᾱ; and a k-linear map P [ᾱ!] : eaΛ!
n−1ey → eaΛ!

nex,

that is the right multiplication by ᾱ!. Thus, we obtain a graded Λ-linear morphism

P [ᾱ]⊗DP [ᾱ!] : Px〈−n〉 ⊗D(eaΛ!
nex)→ Py〈1− n〉 ⊗D(eaΛ!

n−1ey).

Write P1−n
a = ⊕y∈Q0

Py〈1−n〉⊗D(eaΛ!
n−1ey) and consider the graded morphism

`−na = (
∑
α∈Q1(y,x)P [ᾱ]⊗DP [ᾱ!])(x,y)∈Q0×Q0

: P−na → P1−n
a . We obtain a sequence

P.a : · · · // P−na
`−na // P1−n

a
// · · · // P−1

a

`−1
a // P 0

a
// 0 // · · ·

in gprojΛ, which is a complex as shown below.

3.10. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
Then K.a ∼= P

.
a, for all a ∈ Q0.

Proof. Fix a, x ∈ Q0 and n ≥ 0. Then, D(kQn(a, x)) = {γ∗ | γ ∈ kQn(a, x)} and

eaΛ!
nex = {γ̄ ! = γo + R! | γ ∈ kQn(a, x)}. By Lemma 3.8, γ∗ ∈ R(n)(a, x)⊥ if and
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only if γo ∈ R!
n(x, a). Therefore, we obtain a k-bilinear form

〈−,−〉 : R(n)(a, x)× eaΛ!
nex → k : (δ, γ̄ !) 7→ γ∗(δ),

which is non-degenerate on the right. If δ ∈ R(n)(a, x) is non-zero, then γ∗(δ) 6= 0,
that is, 〈δ, γ!〉 6= 0, for some γ ∈ kQn(a, x). Hence, 〈−,−〉 is non-degenerate.

This yields a k-isomorphism φnx : R(n)(a, x) → D(eaΛ!
nex) : δ → 〈δ,−〉. Given

α ∈ Q1(y, x) and n > 0, we claim that the following diagram commutes:

R(n)(a, x)
∂α //

φnx ��

R(n−1)(a, y)

φn−1
y��

D(eaΛ!
nex)

DP [ᾱ!] // D(eaΛ!
n−1ey).

Indeed, for any ρ ∈ R(n)(a, x) and ζ ∈ kQn−1(a, y), by Lemma 3.6(2), we have

DP [ᾱ!](φnx(ρ))(ζ̄ !) = φnx(ρ)(ζ̄ !ᾱ!) = (αζ)∗(ρ) = ζ∗(∂α(ρ)) = φn−1
y (∂α(ρ))(ζ̄ !).

Thus, the above commutative diagram commutes. It is now easy to see that the
graded Λ-linear isomorphisms ⊕x∈Q0

(id ⊗ φnx) with n ∈ Z gives rise to a complex
isomorphism K.a ∼= P

.
a. The proof of the lemma is completed.

Next, we shall consider colinear injective coresolutions of graded simple mo-
dules. Given u ∈ eaΛt−seb, the right multiplication by uo yields a morphism
P [uo] : P o

b 〈−t〉 → P o
a 〈−s〉 in gprojΛo. Then, I[u] = D(P [uo]) : Ia〈s〉 → Ib〈t〉 is

a morphism in ginjΛ. Note that this notation does not distinguish I[u] from its

grading shifts. For simplicity, we put Λ̂ = (Λ!)o = kQ/(R!)o. Write γ̂ = γ + (R!)o

for γ ∈ kQ+ and ex = εx + (R!)o for x ∈ Q0. In this way, Λ̂ = ⊕n≥0Λ̂n, where

Λ̂n = {γ̂ |γ ∈ kQn} for all n ≥ 0.

Fix a ∈ Q0. Given n ∈ Z, we set Ina = ⊕x∈Q0Ix〈n〉 ⊗ exΛ!
nea ∈ ginjΛ. For n ≥ 0

and α ∈ Q1(x, y), we have a morphism I[ᾱ] : Iy 〈n− 1〉 → Ix〈n〉 in ginjΛ. And the

left multiplication by ᾱ! yields a k-linear map P !
a(ᾱ!) : eyΛ!

n−1ea → exΛ!
nea. This

yields a graded Λ-linear morphism

I[ᾱ]⊗ P !
a(ᾱ!) : Iy〈n− 1〉 ⊗ eyΛ!

n−1ea → Ix〈n〉 ⊗ exΛ!
nea.

Write In−1
a = ⊕y∈Q0

Iy〈n − 1〉 ⊗ eyΛ!
n−1ea and consider the graded morphism

dna =(
∑
α∈Q1(x,y) I[ᾱ]⊗ P !

a(α
!))(x,y)∈Q0×Q0

: In−1
a → Ina . We obtain a sequence

I.a : · · · // 0 // I0
a

d1a // I1
a

// · · · // In−1
a

dna // Ina // · · ·

in ginjΛ, which is a complex as shown below.

3.11. Proposition. Let Λ = kQ/R be a quadratic algebra with Q a locally finite
quiver. If a ∈ Q0, then I.a is a complex, and it is a graded injective coresolution of
Sa if and only if Sa admits a colinear injective coresolution over ginjΛ.

Proof. By Proposition 3.9, (Λo)! = (Λ!)o = Λ̂ = {γ̂ | γ ∈ kQ}, where γ̂ = γ + (R!)o

for γ ∈ kQ. Fix a ∈ Q0. As stated in Lemma 3.10, we have a complex

P.ao : · · · // P−nao
`−n // P1−n

ao
// · · · // P−1

ao
`−1
// P0
ao

// 0 // · · · ,

where P−nao =⊕x∈Q0
P o
x 〈−n〉 ⊗D(eaΛ̂nex); P1−n

ao =⊕y∈Q0
P o
y 〈1 − n〉 ⊗D(eaΛ̂n−1ey)

and `−n = (
∑
α∈Q1(x,y)P [ᾱo]⊗DP [α̂])(y,x)∈Q0×Q0

for all n ≥ 1.

First, we show that D(P.ao)∼=I.a. Given any n ≥ 0, since Q is locally finite, eaΛ̂n
is finite dimensional. By Proposition 2.1, D(P−nao ) = ⊕x∈Q0

Ix〈n〉 ⊗ D2(eaΛ̂nex)
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and D(`−n) = (I[ᾱ] ⊗ D2P [α̂])(y,x)∈Q0×Q0
. Moreover, since Λ̂ = (Λ!)o, we have a

k-linear isomorphism σnx : eaΛ̂nex → exΛ!
nea, sending γ̂ 7→ γ̄ !. Composing this

with the canonical k-isomorphism ϕnx : D2(eaΛ̂nex)→ eaΛ̂nex, we obtain a k-linear

isomorphism θnx = σnx ◦ϕnx : D2(eaΛ̂nex)→ exΛ!
nea. It is easy to verify that

D2(eaΛ̂n−1ey)
ϕn−1
y //

D2P [α̂]
��

eaΛ̂n−1ey
σn−1
y //

P [α̂]
��

eyΛ!
n−1ea

P !
a(ᾱ!)
��

D2(eaΛ̂nex)
ϕnx // eaΛ̂nex

σnx // exΛ!
nea

commutes for every α ∈ Q1(x, y). This yields a complex isomorphism D(P.ao)∼=I.a,

given by ⊕x∈Q0(id ⊗ θnx ) : ⊕x∈Q0Ix〈n〉⊗D2(eaΛ̂nex)→⊕x∈Q0Ix〈n〉 ⊗ exΛ!
nea with

n ∈ Z. So, I.a is a complex. Since Ina is co-generated in degree −n, we see that I.a
is a colinear injective coresolution if it is a graded injective co-resolution of Sa.

Suppose that Sa has a colinear injective coresolution I. over ginjΛ. In view of
Lemma 2.5, we see that D(I.) is a linear projective resolution of So

a over gprojΛo. By
Theorem 3.5 and Lemma 3.10, D(I.) ∼= P.ao . Hence, I. ∼= D2(I.) ∼= D(P.ao) ∼= I.a.
The proof of the proposition is completed.

Given M,N ∈ GModΛ, we write GExtnΛ(M,N) for the n-th graded extension
group in GModΛ; see [20, Section III.5]. The following statement includes the
classical results stated in [5, (2.2.1), (2.10.2)].

3.12. Theorem. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
The following statements are equivalent.

(1) The algebra Λ is Koszul.
(2) The opposite algebra Λo is Koszul.

(3) The quadratic dual Λ! is Koszul.
(4) Every graded simple Λ-module has a colinear injective coresolution over ginjΛ.

Proof. By Lemma 2.5, Statements (2) and (4) are equivalent. By Proposition 3.9,
if Statement (1) implies (4), then Statements (1) and (2) are equivalent; and if
Statement (1) implies (3), then Statements (1) and (3) are equivalent. Thus, it
suffices to show that Statement (1) implies Statements (3) and (4).

Assume that Λ is Koszul. Fix a ∈ Q0. Since Λo is quadratic; see (3.9), by The-
orem 2.6, So

a has a linear projective 2-presentation over gprojΛo. And by Lemma
2.5, we may assume that Sa has a colinear injective (n− 1)-copresentation

0 // Sa
d0
// I0 d1 // I1 // · · · // In−2 dn−1

// In−1

over ginjΛ, for some n ≥ 3. Denote by cn : In−1 → Cn the cokernel of dn−1.
Given any b ∈ Q0 and p ∈ Z, since socIn−1 ⊆ Ker(cn), it is well-known that
GExtnΛ(Sb〈p〉, Sa) ∼= GHomΛ(Sb〈p〉, Cn); see [20, (III.6.4)]. Since Λ is Koszul, Sb
has a linear projective resolution

· · · // P−i // P 1−i // · · · // P−1 // Pb // Sb // 0.

over projΛ. So, GHomΛ(Sb〈p〉, Cn) ∼= GExtnΛ(Sb, Sa〈−p〉)∼= GHomΛ(P−n, Sa〈−p〉).
Since P−n is finitely generated generated in degree n and Sa〈−p〉 is generated in
degree p, we deduce that GHomΛ(Sb〈p〉, Cn) = 0 for all but finitely many b ∈ Q0

and for all p 6= n. Hence, socCn is finitely generated in degree −n. Since In−1 is
bounded above, so is Cn. Hence, socCn is graded essential in Cn; see [18, (2.9.2)].
That is, Cn is finitely cogenerated in degree −n. By Proposition 2.3(2), there
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exists a graded injective envelope qn : Cn → In, where In ∈ ginjΛ is cogenerated
in degree −n. Thus, Sa has a colinear injective n-copresentation over ginjΛ. By
induction, Statement (4) holds. It remains to show that Statement (3) holds.

Since Λ is quadratic, Λ! is quadratic with (Λ!)! = Λ; see (3.9). By Lemma 3.10,

the local Koszul complex at a of Λ! is isomorphic to the complex

P.a! : · · · // P−n
a!

`−n // P1−n
a!

// · · · // P−1
a!

`−1
// P0
a!

// 0 // · · · ,

where P−n
a!

=⊕x∈Q0P
!
x〈−n〉⊗D(eaΛnex) and P1−n

a!
=⊕y∈Q0P

!
y〈1−n〉⊗D(eaΛn−1ey),

and `−n = (
∑
α∈Q1(x,y)P [ᾱ!]⊗DP [ᾱ])(y,x)∈Q0×Q0

. Fix n > 0. We claim that

(†) ⊕z∈Q0
ebΛ

!
s−1ez ⊗D(eaΛn+1ez)

`−n−1
n+s,b // ⊕x∈Q0

ebΛ
!
sex ⊗D(eaΛnex)

`−nn+s,b // ⊕y∈Q0
ebΛ

!
s+1ey ⊗D(eaΛn−1ey)

is exact for any (s,b)∈ Z×Q0, where `−nn+s,b=(
∑
α∈Q1(x,y)P [ᾱ!]⊗DP [ᾱ])(y,x)∈Q0×Q0

.

If s < 0, then ebΛ
!
sex = 0, and (†) is evidently exact. In case s = 0, it becomes

0 // ebΛ
!
0eb ⊗D(eaΛneb)

`−nn,b // ⊕y∈Q0
ebΛ

!
1ey ⊗D(eaΛn−1ey),

where `−nn,b = (`−nn,b(y, b))y∈Q0
with `−nn,b(y, b) =

∑
α∈Q1(b,y) P [ᾱ!]⊗DP [ᾱ]. Consider

0 6= f ∈ D(eaΛneb). Since n > 0, there exist β ∈ Q1(b, y) and u ∈ eaΛn−1ey with
y ∈ Q0 such that f(uβ̄) 6= 0, that is, (DP [β̄])(f)(u) 6= 0. So, (DP [β̄])(f) 6= 0.
Now, `−nn,b(y, b)(eb⊗ f) =

∑
α∈Q1(b,y)ᾱ

!⊗ (DP [ᾱ])(f), which is non-zero. Thus, `−nn,b
is a monomorphism. That is, the sequence (†) is exact in this case.

Let s > 0. By Theorem 3.5 and Lemma 3.10, Sb has a linear projective resolution
P.b, which is exact in degree −s. Writing P−sb = ⊕x∈Q0Px〈−s〉 ⊗ D(ebΛ

!
sex), and

restricting it to the (n+ s, a)-piece, we obtain an exact sequence

(‡) ⊕y∈Q0 eaΛn−1ey ⊗D(ebΛ
!
s+1ey)

`−s−1
b,n+s,a // ⊕x∈Q0eaΛnex ⊗D(ebΛ

!
sex)

`−sb,n+s,a // ⊕z∈Q0eaΛn+1ez ⊗D(ebΛ
!
s−1ez),

where `−s−1
b,n+s,a = (

∑
α∈Q1(x,y)P [ᾱ] ⊗ DP [ᾱ!])(x,y)∈Q0×Q0

. Applying D to the se-

quence (‡), by Lemma 1.3, we obtain an exact sequence isomorphic to (†). This
proves our claim. Thus, P.a! is a graded projective resolution of S!

a. By Theorem

3.5, Λ! is Koszul. The proof of the theorem is completed.

Remark. In case Λ is Koszul, one calls Λ! the Koszul dual of Λ.

Example. Consider Λ = kQ/(kQ+)2, where Q is a locally finite quiver. Then

Λ! = kQop, which is Koszul. By Theorem 3.12, Λ is Koszul.

We shall conclude this section with two applications. Some quadratic algebras
are known to be Koszul, such as symmetric algebras and exterior algebras; see [5,
page 476], and monomial quadratic algebras; see [21, (2.19)]. Using our description
of the local Koszul complexes, we will provide a new class of Koszul algebras.
For this purpose, we introduce a condition (∗) for a quadratic special multi-serial
algebra Λ = kQ/R as follows:

Let
∑s
i=1 λiβiαi be a polynomial relation in R2(x, z) with αi, βi ∈ Q1 and λi ∈ k

such that ζβi /∈ R2(−, b) for some ζ ∈ Q1(z, b) and 1 ≤ i ≤ s. If γ ∈ Q1(a, x), then
αjγ is a summand of a relation in R2(a,−), for all 1 ≤ j ≤ s with j 6= i.

Remark. A quadratic special multi-serial algebra Λ satisfies the condition (∗) if
and only if Λo satisfies its dual, which is left for the reader to formulate explicitly.
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3.13. Lemma. Let Λ = kQ/R be a quadratic special multi-serial algebra with Q a
locally finite quiver, satisfying the condition (∗). Consider a polynomial relation∑s
i=1 λiβiαi ∈ R2(x, z) with λi ∈ k, αi ∈ Q1(x, yi) and βi ∈ Q1(yi, z), such that

ζβ1 /∈ R2 for some ζ ∈ Q1(z,−). If ξ ∈ R(n−1)(a, x) with n ≥ 1 then, for each
2 ≤ i ≤ s, there exists some ηi ∈ kQn(a, yi) such that αiξ + ηi ∈ R(n)(a, yi) and
βiηi ∈ R2(−, z) · kQn−1(a,−).

Proof. Let ξ ∈R(n−1)(a, x). If n = 1, then we take ηi = 0, for 2 ≤ i ≤ s. Assume
that n ≥ 2. Choose a k-basis {ξ1, . . . , ξt} of R(n−2)(a,−), where ξj ∈ R(n−2)(a, bj).

By Lemma 3.2, we may write ξ =
∑t
j=1 σj ξj for some σj ∈ kQ1(bj , x).

Fix 1 < i ≤ s. If αiσj ∈ R2(bi, yl) for all 1 ≤ j ≤ t, then αiξ ∈ R(n)(a, yi);
see (3.2), and set ηi = 0. Otherwise, let Ji be the set of j ∈ {1, . . . , t} such that
αiσj /∈ R2(bj , yi). Fix j ∈ Ji. Since Λ is special multi-serial, σj = λjθj + δj , where
λj ∈ k and θj , δj ∈ Q1(bj , x) such that λjαiθj /∈ R2(bj , yi) and αiδj ∈ R2(bj , yi). By
the condition (∗), there exists a polynomial relation ωj = λjαiθj +

∑rj
l=1 λjlαilθjl

in R2(bj , yi), where λjl ∈ k; θjl ∈ Q1(bj , cjl) and αil ∈ Q1(cjl, yi). Again since
Λ is special multi-serial, αil 6= αi for 1 ≤ l ≤ rj . Since βiαi /∈ R2(x, z), we
have βiαil ∈ R2(cjl, z) for 1 ≤ l ≤ rj . By the induction hypothesis, we have

ηjl ∈ kQn−1(a, cjl) such that ξjl = λjlθjlξj + ηjl ∈ R(n−1)(a, cjl) and αilηjl lies
in R2(−, yi) · kQn−2(a,−), for 1≤ l≤ rj . Set ηi =

∑
j∈Ji;1≤l≤rjαilξjl ∈ kQn(a, yi).

Then, βiηi =
∑
j∈J;1≤l≤rj αiβjlξjl∈R2(−, z) ·kQn−1(a,−). Consider χi = αiξ+ηi.

Then χi = αiξ+
∑
j∈Ji;1≤l≤rjαjlξjl with ξ, ξjl ∈ R(n−1)(a,−). On the other hand,

we can verify that

χi=
∑
j∈Ii(ωj+αiδj)ξj+

∑
j /∈Iiαiσjξj+

∑
j∈Ji;1≤l≤rjαilηjl ∈ R2(−, yi)·kQn−2(a,−).

Thus, χi ∈ R(n)(a, yi) by Lemma 3.2. The proof of the lemma is completed.

The following is the promised new class of Koszul algebras.

3.14. Theorem. Let Λ = kQ/R be a quadratic special multi-serial algebra with Q
a locally finite quiver. If the condition (∗) or its dual is satisfied, then Λ is Koszul.

Proof. By Theorem 3.12, we only need to consider the case where the condition (∗)
is satisfied. By Theorem 3.5, it amounts to show, for any a ∈ Q0, that K.a is exact
in degree −n for all n ≥ 1. By Theorem 2.6 and Proposition 3.4, we may assume
n ≥ 2. By Lemma 3.3, it suffices to prove that Ker (∂−na ) ⊆ Im

(
∂−n−1
a

)
. For this

purpose, we recall that K−na = ⊕y∈Q0Py〈−n〉 ⊗R(n)(a, y).

Consider 0 6= u ∈ Ker(∂−na ) ⊆ radK−na . Since ∂−na is graded, we may assume that
u ∈ ⊕y∈Q0Py〈−n〉m(b)⊗R(n)(a, y) = ⊕y∈Q0ebΛm−ney ⊗R(n)(a,y), for some b∈Q0

and m > n. Let s(≥ 1) be minimal such that we can write u =
∑s
l=1 θ̄l⊗ρl, for some

θl ∈ Qm−n(yl, b) and ρl ∈ R(n)(a, yl). Then, θ̄1, . . . , θ̄s are k-linearly independent
in ebΛm−n. Choose a k-basis {ξ1, . . . , ξt} of R(n−1)(a,−), where ξj ∈ R(n−1)(a, xj).
And since Λ is special multi-serial, ebΛm−n−1 has a k-basis {η̄1, . . . , η̄r}, where ηi is

a path in Qm−n−1(zi, b) with zi ∈ Q0. Then, ρl =
∑t
j=1ζlj ξj with ζlj ∈ kQ1(xj , yl);

see (3.2) and θ̄l =
∑r
i=1 η̄i δ̄il with δil ∈ kQ1(yl, zi), for l = 1, . . . , s. We shall divide

our argument into several statements.

(1) For any 1 ≤ j ≤ t, we have
∑s
l=1 θ̄lζ̄lj =

∑r
i=1

∑s
l=1 η̄iδ̄ilζ̄lj = 0.

Since u =
∑t
j=1

∑s
l=1 θ̄l ⊗ ζljξj , we have ∂−na (u) =

∑t
j=1(

∑s
l=1 θ̄lζ̄lj) ⊗ ξj = 0;

see (3.1). Since the ξj are linearly independent,
∑s
l=1θ̄lζ̄lj=

∑r
i=1

∑s
l=1 η̄iδ̄ilζ̄lj = 0,

for 1 ≤ j ≤ t. This establishes Statement (1).
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(2) If m = n+ 1, then u ∈ Im(∂−n−1
a ).

Let m = n+ 1. Then ebΛm−n−1 = ebΛ0 = keb. In particular, r = 1 and η1 = εb.
By Statement (1),

∑s
l=1 δ1lζlj =

∑r
i=1 ηi(

∑s
l=1 δilζlj) ∈R2(xj , b), for j = 1, . . . , t.

Set χ1 =
∑s
l=1 δ1lρl =

∑s
l=1(

∑t
j=1 δ1lζlj)ξj ∈ R2(−, z1) ·kQn−1(xj ,−). By Lemma

3.2(2), χ1 ∈ R(n+1)(a, z1) such that ∂−n−1
a (η̄1 ⊗ χi) =

∑s
l=1 θ̄l ⊗ ρl = u. This

establishes Statement (2).
Now, assume that m ≥ n + 2. Since δil ∈ kQ1(yl, zi) and ηi ∈ Qm−n−1(zi, b) is

non-trivial, θ̄l =
∑r
i=1 η̄i δ̄il. Since Λ is special multi-serial, we may assume that δil

is monomial, for i = 1, . . . , r; l = 1, . . . , s. We need to consider another derivation
∂α : kQ → kQ for any α ∈ Q1, which sends a path ρ to η if ρ = ηα; and 0 if α is
not an initial arrow of ρ.

(3) If δilζlj /∈ R2(xj , zi), then ζlj has a summand λljαlj, where λlj ∈ k and
αlj ∈ Q1(xj , yl), such that λljδilαlj is a summand of a polynomial relation in R2.

Suppose that δipζpq /∈ R2(xq, zi) for some 1 ≤ i ≤ r; 1 ≤ p ≤ s; 1 ≤ q ≤ t.
Then, δip is a non-zero monomial in kQ1(yp, zi) and ζpq has a non-zero summand
λpqαpq, where αpq ∈ k and αpq ∈ Q1(xq, yp), such that λpqδipαpq /∈ R2(xq,zi). By

Statement (1), we may write
∑s
l=1 θlζlq =

∑d
j=1 νjωjκj , where κj ∈ Qnj (xq,−)

with nj some non-negative integer, ωj ∈ R2 and νj ∈ kQm−n−nj−1(−, b).
Assume, for each 1 ≤ j ≤ d, that either nj > 0 or ∂αpq (ωj) = 0. Applying ∂αpq

to the above equation, we obtain
∑s
l=1 λlθl∈Rm−n(−, b), where λl=∂αpq(ζlq) ∈k.

Since λp = λpq 6= 0, contrary to θ̄1, . . . , θ̄s being k-linearly independent. Thus, we
may assume that n1 = 0 and αpq is the initial arrow of a monomial summand of
ω1 ∈ R2(xq,−). Since Λ is special multi-serial with λpqδip(αpq /∈ R2(xq, zi), we see
that λpqδip(αpq) is a summand of ω1, which is a polynomial relation in R2(xq, zi).
This establishes Statement (3).

(4) For each 1 ≤ i ≤ r, there exists some element χi ∈ R(n+1)(a, zi) such that
∂−n−1
a (η̄i ⊗ χi) =

∑s
l=1 η̄iδ̄il ⊗ ρl.

Fix 1 ≤ i ≤ r. If η̄iδ̄i1 = 0 for all l = 1, . . . , s, then we take χi = 0. Otherwise,
denote by L the set of l ∈ {1, . . . , s} such that η̄iδ̄il 6= 0; and for l ∈ L, denote by
Jl the set of j ∈ {1, . . . , t} such that δilζlj /∈ R2(xj , zi).

Fix (j, l) ∈ L×Jl. Since Λ is special multi-serial, we write ζlj = αlj+σlj , where σlj
is such that δilσlj ∈ R2(xj , zi) and αlj is a monomial such that δilαlj 6∈ R2(xj , zi).
By Statement (3), we have a polynomial relation ωlj = δilαlj +

∑rlj
p=1 γ

p
ilβ

p
lj in

R2(xj , zi), where βplj ∈ Q1(xj , c
p
lj) with cplj ∈ Q0 and γpil ∈ kQ1(cplj , zi) is monomial.

Since ηi is a non-trivial path with η̄iδ̄il 6= 0, we have η̄iγ̄
p
il = 0 for all 1 ≤ p ≤ rlj . By

Lemma 3.13, there exists ξplj ∈ kQn(a, cplj) such that ρplj = βpljξj + ξplj ∈ R(n)(a, cplj)

and γpilξ
p
lj ∈ R2(−, zi) · kQn−1(a,−), for each 1 ≤ p ≤ rlj .

Put χi =
∑
l∈Lδilρl +

∑
l∈L;j∈Jl;1≤p≤rljγ

p
ilρ

p
lj , where ρl, ρ

p
lj ∈ R(n)(a,−). Since

ρl =
∑t
j=1ζlj ξj , a routine verification shows that

χi=
∑
l∈L;j∈Jl(ωlj + δilσlj)ξj +

∑
l∈L;j /∈Jlδilζljξj +

∑
l∈L;j∈Jl;1≤p≤tljγ

p
ilξ

p
lj .

Since δilζlj ∈ R2(xj , zi) for (l, j) ∈ L × Jl, we get χi ∈ R2(−, zi) · kQn−1(a,−).

By Lemma 3.2(2), χi ∈ R(n+1)(a, zi), and hence, η̄i ⊗ ϕi ∈ K−n−1
a . Further, since

η̄iγ̄
p
il = 0 for (l, j) ∈ L×Jl and 1 ≤ p ≤ rlj , and η̄iδ̄il = 0 for l /∈ Li, we deduce that

∂−n−1
a (η̄i ⊗ χi) =

∑
l∈Lη̄iδ̄il ⊗ ρl =

∑s
l=1 η̄iδ̄il ⊗ ρl. This establishes Statement (4).

Finally, w =
∑r
i=1 η̄i ⊗ χi ∈ K−n−1

a is such that ∂−n−1
a (w) =

∑s
l=1 θ̄l ⊗ ρl = u.

The proof of the theorem is completed.
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Example. Consider the quadratic special biserial algebra Λ = kQ/R, where

3 γ
))Q : 1

α // 2
ζ
))

β 66
5

δ // 6
4 η

66

and R = 〈ζα, δγ, γβ + ηζ〉. Clearly, S1 has a linear projective 2-presentation

P4〈−2〉 ⊗ k〈ζα〉
∂−2
1 // P2〈−1〉 ⊗ k〈α〉

∂−1
1 // P1 ⊗ k〈ε1〉

∂0
1 // S1

// 0.

Note that Ker(∂−2
1 ) = k〈δ̄η̄ ⊗ ζα〉, which is generated in degree 4. Thus, S1 has

no linear projective resolution. So, Λ is not Koszul. In fact, Λ does not satisfy
condition (∗) or its dual.

Finally, applying the description of the linear projective resolutions and the
colinear injective coresolutions for graded simple modules, we obtain a stronger
version of the Extension Conjecture for certain finite dimensional Koszul algebras.

3.15. Theorem. Let Λ = kQ/R be a finite dimensional Koszul algebra such that Λ!

is left or right noetherian. If Ext1
Λ(Sa, Sa) 6= 0 with a ∈ Q0, then ExtnΛ(Sa, Sa) 6= 0

for every integer n ≥ 1.

Proof. Let Ext1
Λ(Sa, Sa) 6= 0 for some a ∈ Q0. Then Q has a loop σ at a. Suppose

first that Λ! is left noetherian. Since Λ is finite dimensional, Λtea = 0 for some
t > 0. By Proposition 3.11 and Theorem 3.12, S !

a has a graded injective coresolution

I.a with Ina = ⊕x∈Q0
I !
x〈n〉 ⊗ exΛnea, for n ∈ Z. In particular, Ina = 0 for n > t.

Consider M (i) = Λ!(σ̄!)i ∈ gmodΛ! for i ≥ 1. Since Λ! is left noetherian, by
Proposition 2.3, M (i) has a minimal graded projective resolution

P .,i : · · · // P−n,i // · · · // P−1,i // P 0,i // 0

over gprojΛ!. For any s ∈ Z, we have GHomΛ!(P−n,i, S !
a〈s〉) ∼= GExtnΛ!(M (i), S !

a〈s〉),
which is a subquotient of GHomΛ!(M (i), Ina 〈s〉). Thus GHomΛ!(P−n,i, S !

a〈s〉) = 0.
That is, P !

a〈s〉 is not a direct summand of P−n,i for all n > t and all s ∈ Z.
Forgetting the gradation, we see that P .,i is a projective resolution of M (i) over
projΛ! such that P !

a is not direct summand of P−n,i for all n > t. In other words,

P .,i is an ea-bounded projective resolution of Λ!(σ̄ !)i over projΛ!; see, for definition,
[16], for every i ≥ 1. If σ̄ ! is nilpotent, as argued in the proof of [16, (1.6)], we

conclude that σ̄ ! ∈ [Λ!,Λ!] +
∑
a 6=x∈Q0

Λ!exΛ!, where [Λ!,Λ!] is the commutator

group of Λ!. This implies that σ̄ !∈ rad2Λ!, contrary to R! being generated in degree
2. Thus, 0 6= (σ̄ !)n ∈ eaΛ!

nea for every n ≥ 0. By Lemma 3.10, Sa admits a linear

projective resolution P.a, which is defined by P−na = ⊕x∈Q0Px〈−n〉 ⊗ D(eaΛ!
nex)

for n ≥ 1. Since eaΛ!
nea 6= 0, we see that Pa〈−n〉 is a direct summand of Pna , for

n ≥ 1. That is, GExtnΛ(Sa, Sa〈−n〉) 6= 0, and hence, ExtnΛ(Sa, Sa) 6= 0 for n ≥ 1.

Suppose now that Λ! is right noetherian. Then, (Λ!)o is left noetherian. By
Theorem 3.12 and Proposition 3.9,Λo is a finite dimensional Koszul algebra with
(Λo)! = (Λ!)o. Since σo is a loop in Qo at a, ExtnΛo(So

a, S
o
a) 6= 0, for every n ≥ 1.

Since Λ is finite dimensional, we have a duality D : modbΛo → modbΛ. Therefore,
ExtnΛ(Sa, Sa) 6= 0, for every n ≥ 1. The proof of the theorem is completed.

Remark. Note that special multiserial algebras defined by finite quivers are left
and right noetherian; see [15, 18]. Thus, the Extension Conjecture holds for finite
dimensional Koszul algebras with a special multiserial Koszul dual.
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Example. Consider the special multi-serial algebra Λ = kQ/R, where

1 α2
β

γ

δ
3

ζ

η
4σQ :

and R = 〈α2 + βγ, αβ, γβ, γα, ησ, σ2〉. Satisfying the condition (∗), Λ is Koszul;

see (3.14). Note that Λ! = kQo/R!, where R! = 〈(αo)2 − γoβo, γoδo, σoζo〉, which
is noetherian. By Theorem 3.15, ExtiΛ(S1, S1) 6= 0 and ExtiΛ(S4, S4) 6= 0 for i ≥ 1.

4. Double complexes and extension of functors

The main objective of this section is to formalize a technique of extending a
functor from an additive category to a complex category to the complex category,
which has been already used in various settings; see, for example, [3, 5, 31]. This
technique is essential for us to construct derived Koszul functors. An additive k-
category is called concrete if the objects are equipped with a k-vector space structure
and morphisms are k-linear maps.

Throuout this section, A,B, C stand for concrete additive k-categories. Let
(X., d.X) be a complex over A. Given n ∈ Z, we shall write X.[n] for the n-shift
of X. and Hn(X.) for its n-th homology group. The twist complex t(X.) of X. is
defined by t(X.)n = Xn and dnt(X.) = −dnX ; see [3]. This induces an automorphism

t of C(A), called the twist functor. And for a morphism f. : X.→ Y . in C(A), we
shall write Cf. for its mapping cone; see [27, (III.1.5)].

First, we develop a homotopy theory of double complexes. Let (M.., v..
M
, h..
M

)
be a double complex over A, where v..

M
is the vertical differential and h..

M
is the

horizontal one. Given i, j ∈ Z, we call (M i,., vi, .
M

) and (M.,j , h.,j
M

) the i-th column
and the j-th row of M.., respectively. A double complex morphism f.. : M..→ N..

consists of morphisms f i,j : M i,j → N i,j in A with i, j ∈ Z making

N i,j+1

M i,j+1

fi,j+1 77

N i,j
hi,j
N //

vi,j
N

OO

N i+1,j

M i,j

vi,j
M

OO

fi,j 77
hi,j
M // M i+1,j fi+1,j

77

commute for all i, j ∈ Z, that is, f i,. : M i,. → N i,. and f.,j : M.,j → N.,j are
complex morphisms, for all i, j ∈ Z. The double complexes over A together these
morphisms form an additive k-category written as DC(A).

Now, assume that A has countable direct sums. Given M.. ∈ DC(A), its total
complex T(M..) ∈ C(A) is defined by T(M..)n = ⊕i∈ZM i,n−i and

dnT(M..) = (dnT(M..)(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZM j,n+1−j ,

where dnT(M..)(j, i) : M i,n−i → M j,n+1−j is defined such that dnT(M..)(i, i) = vi,n−i
M

;

dnT(M..)(i+1, i) = hi,n−i
M

and dnT(M..)(j, i) = 0 if j /∈ i or i+1. And given a morphism

f .. :M..→N.. in DC(A), we define its total morphism T(f..) :T(M..)→T(N..) by

T(f
..
)n = (T (f

..
)
n
(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZN j,n−j ,

where T(f..)n(j, i) : M i,n−i → N j,n−j is such that T(f..)n(i, i) = f i,n−i and
T(f..)n(j, i) = 0 for all j 6= i. This yields clearly a functor T : DC(A)→ C(A).

We shall study when the total complex of a double complex is acyclic. Consider
a double complex M .. ∈ DC(A). Given n ∈ Z, the n-diagonal of M .. consists of the
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objects M i,n−i with i ∈ Z. We shall say that M .. is n-diagonally bounded (respec-
tively, bounded-above, bounded-below) if M i,n−i = 0 for all but finitely many (re-
spectively, positive, negative) integers i. Moreover, M .. is called diagonally bounded
(respectively, bounded-above, bounded-below) if it is n-diagonally bounded (respec-
tively, bounded-above, bounded-below) for every n ∈ Z. We obtain a local version
of the well-known Acyclic Assembly Lemma; see [33, (2.7.3)] as follows.

4.1. Proposition. Let A be a concrete additive k-category with countable direct
sums. If M..∈ DC(A) and n ∈ Z, then Hn(T(M..)) = 0 in case

(1) M.. is n-diagonally bounded-below with Hn−j(M.,j) = 0 for all j ∈ Z; or

(2) M.. is n-diagonally bounded-above with Hn−i(M i,.) = 0 for all i ∈ Z.
Proof. Let (M.., v.., h..)∈DC(A) such that Statement (1) holds, sayM i,n−i= 0, for
all i < t, where t is some negative integer. Consider c = (ci,n−i)i∈Z ∈ Ker(dnT(M..))

with ci,n−i ∈M i,n−i. Then, vi,n−i(ci,n−i) + hi−1,n−i+1(ci−1,n−i+1) = 0, for i ∈ Z.
We may assume that ci,n−i = 0 for i > 0. Then, h0,n(c0,n) = −v1,n−1(c1,n−1) = 0.
Since H0(M.,n) = 0, we have c0,n = h−1,n(x−1,n), for some x−1,n ∈M−1,n. So

h−1,n+1(c−1,n+1 − v−1,n(x−1,n)) = h−1,n+1(c−1,n+1) + v0,n(c0,n) = 0.

Since H−1(M.,n+1) = 0, we see that c−1,n+1 − v−1,n(x−1,n) = h−2,n+1(x−2,n+1)
for some x−2,n+1 ∈M−2,n+1. Continuing this process, we get xi,n−1−i ∈M i,n−1−i

such that ci,n−i = vi,n−1−i(xi,n−1−i) + hi−1,n−i(xi−1,n−i), for i = −1,−2, . . . , t.
Since M t−1,n−t+1 = 0, we see that vt−1,n−t(xt−1,n−t) = 0 = ct−1,n−1+1. Setting

x = (xi,n−1−i)i∈Z with xi,n−1−i = 0 for i ≥ 0 or i < t−1, we obtain c = dn−1
T(M..)(x).

The proof of the proposition is completed.

Given a double complex (M.., v..
M
, h..
M

), we define its horizontal shift M..[1] to be

(X.., v..
X
, h..
X

) with Xi,j = M i+1,j , vi,j
X

= −vi+1,j
M

and hi,j
X

= −hi+1,j
M

, for all i, j ∈ Z.

Moreover, a morphism f.. : M.. → N.. is called horizontally null-homotopic if there

exist morphisms ui,j : M i,j → N i−1,j such that ui+1,j ◦ hi,j
M

+ hi−1,j
N

◦ ui,j = f i,j

and vi−1,j
N

◦ ui,j + ui,j+1 ◦ vi,j
M

= 0, for all i, j ∈ Z.

4.2. Lemma. Let A be a concrete additive k-category with countable direct sums.

(1) If M..∈ DC(A), then T(M..[1]) = T(M..)[1].

(2) If f.. : M..→ N.. is horizontally null-homotopic, then T(f..) is null-homotopic.

Proof. Statement (1) can be shown by a routine verification. Let f .. : M..→ N..

be horizontally null-homotopic. Then, there exist ui,j : M i,j → N i−1,j such that
f i,j = ui+1,j ◦ hi,j

M
+ hi−1,j

N
◦ ui,j and vi−1,j

N
ui,j + ui,j+1vi,j

M
= 0, for all i, j ∈ Z.

Given n ∈ Z, set hn = (hn(j, i))(j,i)∈Z×Z : ⊕i∈ZM i,n−i → ⊕j∈ZN j,n−j , where

hn(n − i, i) = ui,n−i and hn(j, i) = 0 for j 6= n − i. It is easy to verify that
T(f..)n = hn+1 ◦ dnT(M..) + dn−1

T(N..) ◦ h
n. The proof of the lemma is completed.

Given a morphism f.. : M.. → N.. in DC(A). We define its horizontal cone Hf..

to be the double complex (H.., v.., h..) with Hi,j = M i+1,j ⊕N i,j and

vi,j =

(
−vi+1,j

M
0

0 vi,j
N

)
, hi,j =

(
−hi+1,j

M
0

f i+1,j hi,j
N

)
.

Observe that the j-th row of Hf.. is the mapping cone of f.,j : M.,j → N.,j . In
a similar fashion, we may define the vertical cone Vf.. of f.. in such a way that its
i-th column is the mapping cone of f i,. : M i,.→ N i,.. By a routine verification, we
can verify the following statement.
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4.3. Lemma. Let A be a concrete additive k-category having countable direct sums.
If f.. : M..→ N.. is a morphism in DC(A), then T(Hf..) = CT(f..) = T(Vf..).

The following statement tells us when the total morphism of a double complex
morphism is a quasi-isomorphism.

4.4. Lemma. Let A be a concrete additive category having countable direct sums.
Consider a morphism f.. : M.. → N.. in DC(A) such that f i,. : M i,.→N i,. is a
quasi-isomorphism, for every i ∈ Z. If M.. and N.. are diagonally bounded-above,
then T(f..) is a quasi-isomorphism.

Proof. Assume that M.. and N.. are diagonally bounded-above. Then, the vertical
cone Vf.. of f.. is also diagonally bounded-above. Given i ∈ Z, since f i,. :M i,.→N i,.

is a quasi-isomorphism, its cone is acyclic, that is, the i-th column of Vf.. is acyclic.
By Proposition 4.1, T(Vf..) is acyclic. By Lemma 4.3, CT(f..) is acyclic, and hence,
T(f..) is a quasi-isomorphism. The proof of the lemma is completed.

Now, suppose that B has countable direct sums. Consider a functor

F : A → C(B) : M → F (M)
.
; f 7→ F (f)

.
.

In order to extend F to C(A), we first construct a functor FDC : C(A)→ DC(B).
Given a complex M. ∈ C(A), applying F component-wise yields a double complex

...
...

F (M.). : · · · // F (M i)j+1

OO

F (diM )j+1

// F (M i+1)j+1

OO

// · · ·

· · · // F (M i)j
F (diM )j //

(−1)idj
F (Mi)

OO

F (M i+1)j

(−1)i+1dj
F (Mi+1)

OO

// · · ·
OO OO

...
...

whose i-th column is ti(F (M i).), that is the i-th twist of F (M i).. And given a
morphism f. : M.→ N. in C(A), we obtain a commutative diagram

F (N i)j+1

F (M i)j+1

F (fi)j+1 55

F (N i)j
F (diN )j //

(−1)idj
F (Ni)

OO

F (N i+1)j ,

F (M i)j

(−1)idj
F (Mi)

OO

F (fi)j 55
F (diM )j // F (M i+1)j F (fi+1)j

55

for i, j ∈ Z. So, F (f.).= (F (f i)j)i,j∈Z : F (M.).→ F (N.). is a morphism in DC(B).

4.5. Proposition. Let A,B be concrete additive k-categories such that B has coun-
table direct sums. Then every functor F : A → C(B) induces a functor

FDC : C(A)→ DC(B) : M
. 7→ F (M

.
)
.
; f
. 7→ F (f

.
)
.
.

(1) If M. is a complex in C(A), then FDC(M.) = FDC(M.)[1].
(2) If f. is a morphism in C(A), then FDC(Cf.) = HFDC(f.); and in case f. is

null-homotopic, FDC(f.) is horizontally null-homotopic.
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Proof. Statement (1) and the first part of Statement (2) can be shown by a
routine verification. Let f. : M. → N. be a null-homotopic morphism in C(A)
with morphisms ui : M i → N i−1 in A such that f i = ui+1 ◦ di

M
+ di−1

N
◦ ui,

for all i ∈ Z. Therefore, F (f i)j = F (ui+1)j ◦ F (di
M

)j + F (di−1
N

)j ◦ F (ui)j , for

all j ∈ Z. Since F (ui). : F (M i). → F (N i−1). is a complex morphism, we see that

(−1)iF (ui)j+1◦djF (Mi) +(−1)idjF (Ni−1)◦F (ui)j = 0, for all j ∈ Z. That is, FDC(f.)
is horizontally null-homotopic. The proof of the proposition is completed.

Originally formulated for module categories in [3, (3.7)], the following statement
can be routinely verified using Lemmas 4.2 and 4.3 and Proposition 4.5.

4.6. Proposition. Let A and B be concrete additive k-categories such that B has
countable direct sums. Then, every functor F : A → C(B) extends to a functor

F C = T ◦ FDC : C(A)→ C(B) with the following properties.

(1) If M is an object in A, then F C(M) = F (M).
(2) If M. is a complex in C(A), then F C(M.[1]) = F C(M.)[1].
(3) If f. is a morphism in C(A), then F C(Cf.) = CFC(f.); and in case f. is null-

homotopic, F C(f.) is null-homotopic.

As shown below, this extension of functors is compatible with the composition
of functors. This is essential for our later investigation.

4.7. Proposition. Let A,B and C be concrete additive k-categories such that B and
C have countable direct sums. If F : A → C(B) and G : B → C(C) are functors,
then (GC ◦ F )C = GC ◦ F C .

Proof. Consider functors F : A → C(B) and G : B → C(C). We obtain a composite
functor GC ◦F : A → C(C), which extends to a functor (GC ◦F )C : C(A)→ C(C).
Fix M. ∈ C(A) and n ∈ Z. By definition, we have

(GC ◦ F )C(M
.
)n = ⊕i∈ZGC(F (M i)

.
)n−i = ⊕(i,p)∈Z×ZG(F (M i)p)n−i−p.

Writing (GC◦F )C(M.)n+1 = ⊕(j,q)∈Z×ZG(F (M j)q)n+1−j−q, we can routinely verify

that the differential dn(GC◦F )C(M.) : (GC ◦F )C(M.)n → (GC ◦F )C(M.)n+1 is given

by the matrix (dn(GC◦F )C(M.)(j, q; i, p))(j,q;i,p)∈Z4 , where

dn(GC◦F )C(M.)(j, q; i, p) : G(F (M i)p)n−i−p → G(F (M j)q)n+1−j−q

is defined by

dn(GC◦F )C(M.)(j, q; i, p) =


(−1)i+pdn−i−pG(F (Mi)p), j = i; q = p;

(−1)iG(dpF (Mi))
n−i−p, j = i; q = p+ 1;

G(F (diM )p)n−i−p, j = i+ 1, q = p;

0, otherwise.

On the other hand, we have

GC(F C(M
.
))n = ⊕s∈ZG(F C(M

.
)s)n−s = ⊕(i,s)∈Z×ZG(FM i)s−i)n−s.

Writing GC(F C(M.))n+1 = ⊕(j,t)∈Z×ZG(F (M j)t−j)n+1−t, we can routinely verify

that the differential dnGC(F C(M.)) : GC(F C(M.))n → GC(F C(M.))n+1 is given by

the matrix (dnGC(FC(M.))(j, t; i, s))(j,t;i,s)∈Z4 , where

dnGC(FC(M.))(j, t; i, s) : G(F (M i)s−i)n−s → G(F (M j)t−j)n+1−t

is given by
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dnGC(FC(M.))(j, t; i, s) =


(−1)sdn−sG(F (Mi)s−i), t = s, j = i;

(−1)iG(ds−iF (Mi))
n−s, t = s+ 1, j = i;

G(F (diM )s−i)n−s, t = s+ 1, j = i+ 1;

0, otherwise.

Setting p = s− i, we see that

GC(F C(M
.
))n = ⊕(i,p)∈Z2 G(F (M i)p)n−i−p = (GC◦F )C(M

.
)n.

And setting q = t− j, we see that

dnGC(FC(M.)) : GC(F C(M
.
))n → GC(F C(M

.
))n+1 = ⊕(j,q)∈Z×ZG(F (M j)q)n+1−j−q

is given by the matrix (dn(j, q; i, p))(j,q;i,p)∈Z4 , where

dn(j, q; i, p) : G(F (M i)p)n−i−p → G(F (M j)q)n+1−j−q

is such that dn(j, q; i, p) = dnGC(FC(M.))(j, q + j; i, p + i) = dn(GC◦F )C(M.)(j, q; i, p).

This shows that (GC ◦ F )C(M .) = (GC ◦ FC)(M .). And given a morphism f. in

C(A), we verify in a similar manner that (GC◦F )C(f.) = (GC◦FC)(f.). The proof
of the proposition is completed.

Now, we show how to extend functorial morphisms.

4.8. Lemma. Let A,B be concrete additive k-categories such that B has countable
direct sums. Given functors F,G : A → C(B), any functorial morphism η : F → G

extends to functorial morphisms ηDC : FDC → GDC and ηC : FC → GC .

Proof. Let η = (η.
M

)M∈A : F → G be a functorial morphism between two functors
F,G : A → C(B). Fix a complex M. ∈ C(A). Given i, j ∈ Z, since η.

M
is natural

in M , we obtain a commutative diagram

G(M i)j+1

F (M i)j+1

ηj+1

Mi 55

G(M i)j
G(diM )j //

(−1)idj
G(Mi)

OO

G(M i+1)j .

F (M i)j

(−1)idj
F (Mi)

OO

ηj
Mi 55

F (diM )j // F (M i+1)j
ηj
Mi+1

55

This yields a morphism η.
M
. = (ηj

Mi
)i,j∈Z : FDC(M.) → GDC(M.) in DC(B).

Applying T, we obtain a morphism η
M
. = T(η.

M
.) : F C(M.) → GC(M.) in C(B).

Clearly, η.
M
. and η

M
. are natural in M.. Thus, we have desired functorial morphisms

ηDC =(η.
M
.)M.∈C(A) and ηC =(η

M
.)M.∈C(A). The proof of the lemma is completed.

Even if F : A → C(B) is exact, the extended functor F C does not necessarily
send all acyclic complexes to acyclic ones. So it only descends to categories derived
from some suitable derivable subcategories of C(A).

4.9. Theorem. Let A,B be concrete additive k-categories such that B has countable
direct sums. Consider an exact functor F : A → C(B) such that F C sends a
derivable subcategory A of C(A) into a derivable subcategory B of C(B).

(1) If FDC sends complexes in A to diagonally bounded-below double complexes,
then F C sends acyclic complexes in A to acyclic ones.
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(2) If F C sends acyclic complexes in A to acyclic ones, then it induces a diagram

A //

F C

��

K(A ) //

FK

��

D(A )

FD

��
B // K(B) // D(B),

which is commutative with FK and FD being triangle-exact.

Proof. (1) Suppose that FDC sends complexes in A to diagonally bounded-below
double complexes. Let M. be an acyclic complex in A . Since F is exact, F (M.).

has exact rows. By Proposition 4.1, T(F (M.).), that is FC(M.), is acyclic.
(2) By Proposition 4.6, we have a triangle-exact functor FK : K(A ) → K(B)

making the left square of the diagram stated in Statement (2) commute. Suppose
that F C sends acyclic complexes in A to acyclic ones. It is well-known that there
exists a triangle-excat functor FD : D(A ) → D(B) making right square of the
diagram commute. The proof of the theorem is completed.

5. Generalized Koszul dualities

The main objective of this section is to describe the generalized Koszul dualities,
that is a 2-real-parameter family of pairs of mutually quasi-inverse equivalences
between categories derived from graded modules over a Koszul algebra and over
its Koszul dual, and one of the pairs is the classical Koszul duality of Beilinson,
Ginzburg and Soergel; see [5, (2.12.1)] and [26, Theorem 30].

Throughout this section, Λ = kQ/R stands for a quadratic algebra, where Q is
a locally finite quiver. We recall and introduce some notation. Given u ∈ eyΛrex
with r ∈ Z and x, y ∈ Q0 and M ∈ GModΛ, the right multiplication by u yields a
graded Λ-linear morphisms P [u] : Py〈n〉 → Px〈n+ r〉, while the left multiplication
by u yields a k-linear map M(u) : Mn(x) → Mn+r(y), for every n ∈ Z. For each

x ∈ Q0, we write P !
x = Λ!ex and I !

x = D(Λ̂ex), where Λ̂ = (Λ!)o = kQ/(R!)o.
Now, we define two Kozsul functors. The first is the so-called right Koszul

functor F : GModΛ → C(GModΛ!) defined as follows; compare [3, (3.1)]. Given

M ∈ GModΛ, as will be shown below, we have a complex F(M). ∈ C(GModΛ!)
such, for all n ∈ Z, that F(M)n=⊕x∈Q0

P !
x〈n〉 ⊗Mn(x) and

dnF(M) = (
∑
α∈Q1(x,y)P [ᾱ!]⊗M(ᾱ))(y,x)∈Q0×Q0

: F(M)n → F(M)n+1

with P [ᾱ!]⊗M(ᾱ) : P !
x〈n〉 ⊗Mn(x)→ P !

y〈n+1〉 ⊗Mn+1(y), for every α ∈ Q1(x, y).
And given a morphism f : M → N in GModΛ, we have a complex morphism

F(f). : F(M). → F(N). such, for all n ∈ Z, that

F(f)n = ⊕x∈Q0
(id⊗ fn,x) : ⊕x∈Q0

P !
x〈n〉 ⊗Mn(x)→ ⊕x∈Q0

P !
x〈n〉 ⊗Nn(x),

where fn,x : Mn(x)→ Nn(x) is the k-linear map obtained by restricting f .

The second is the so-called left Koszul functor G : GModΛ→ C(GModΛ!) defined

as follows. Given M ∈ GModΛ, we will have a complex G(M). ∈ C(GModΛ!) such,
for all n ∈ Z, that G(M)n = ⊕x∈Q0I

!
x〈n〉 ⊗Mn(x) and

dnG(M) = (
∑
α∈Q1(x,y) I[ᾱ!]⊗M(ᾱ))(y,x)∈Q0×Q0

: G(M)n → G(M)n+1

with I[ᾱ!]⊗M(ᾱ) : I !
x〈n〉 ⊗Mn(x)→ I !

y〈n+ 1〉 ⊗Mn+1(y), for every α ∈ Q1(x, y).
And given a morphism f : M → N in GModΛ, we will have a complex morphism
G(f). : G(M). → G(N). such, for all n ∈ Z, that

G(f)n = ⊕x∈Q0
(id⊗ fn,x) : ⊕x∈Q0

I !
x〈n〉 ⊗Mn(x)→ ⊕x∈Q0

I !
x〈n〉 ⊗Nn(x).



26 A. BOUHADA, M. HUANG, Z. LIN, AND S. LIU

5.1. Proposition. Let Λ = kQ/R be a quadratic algebra with Q a locally finite

quiver. The above construction yields exact functors F : GModΛ → C(GModΛ!)

and G : GModΛ→ C(GModΛ!).

Proof. Fix M ∈ GModΛ. For n ∈ Z, write F(M)n = ⊕x∈Q0P
!
x〈n〉 ⊗Mn(x) and

F(M)n+2 = ⊕z∈Q0
P !
z〈n + 2〉 ⊗Mn+2(z) with dn+1

F(M)◦ d
n
F(M) = (dnz,x)(z,x)∈Q0×Q0

,

where dnz,x : P !
x〈n〉 ⊗Mn(x) → P !

z〈n+2〉 ⊗Mn+2(z). Fix (z, x) ∈ Q0 × Q0. Write

Q2(x, z) = {α1β1, . . . , αsβs}, where αi, βi ∈ Q1. In view of the definition of F , we

see that dn+1
z,x =

∑s
i=1P [β̄ !

i ᾱ
!
i ]⊗M(ᾱi β̄i).

As seen in the proof of Lemma 3.8, we have k-bases {ρ1, . . . , ρr, ρr+1, . . . , ρs} and
{η1, . . . , ηr, ηr+1, . . . , ηs} of kQ2(x, z) such that {ρ1, . . . , ρr} is a basis of R2(x, z);
{ηo
r+1, . . . , η

o
s} is a basis of R!

2(z, x) and {η∗1 , . . . , η∗s} is the dual basis of {ρ1, . . . , ρs}.
Then, ρ̄i = 0 for 1 ≤ i ≤ r, and η̄!

j = 0 and for r < j ≤ s. By Corollary 1.2, we
have a k-linear isomorphism σ : D(kQ2(x, z))⊗ kQ2(x, z)→ Endk(kQ2(x, z)). We
easily see that σ(

∑s
i=1(αiβi)

∗ ⊗ αiβi) = id = σ(
∑s
i=1η

∗
i ⊗ ρi). Thus,∑s

i=1(αiβi)
∗ ⊗ αiβi =

∑s
i=1η

∗
i ⊗ ρi.

Applying the k-linear isomorphism D(kQ2(x, z)) → kQo
2(z, x) : ξ∗ 7→ ξo, we

obtain
∑s
i=1(αiβi)

o⊗αiβi =
∑s
i=1η

o
i ⊗ ρi. And applying the tensor product of the

canonical projections kQ2(x, z)→ ezΛ2ex and kQo
2(z, x)→ exΛ!

2ez, we obtain∑s
i=1 β̄

!
i ᾱ

!
i ⊗ ᾱiβ̄i =

∑s
i=1 η̄

!
i ⊗ ρ̄i.

Finally, we have a k-isomorphism ezΛ!
2ex → HomΛ(P !

z〈n−2〉, P !
x〈n〉) : u 7→ P [u];

see [18, (2.3.3)], and a k-linear map exΛ2ez → Homk(Mn−2(z),Mn(x)) : u 7→M(u).
This yields a k-linear map

ψ : ezΛ!
2ex ⊗ exΛ2ez → HomΛ(P !

z〈n−2〉, P !
x〈n〉)⊗Homk(Mn−2(z),Mn(x)),

sending η̄! ⊗ ρ̄ to P [η̄!]⊗M(ρ̄). Applying it to the above equation, we obtain∑s
i=1P [β̄ !

i ᾱ
!
i ]⊗M(ᾱiβ̄i) =

∑s
i=1P [η̄!

i]⊗M(ρ̄i) = 0.

Therefore, dn−1
F(M)◦d

n−2
F(M) = 0. That is, F(M). ∈ C(GModΛ!). Given a morphism

f : M → N , it is easy to verify that F(f)n ◦ dn−1
F(M) = dn−1

F(N) ◦ F(f)n−1, for n ∈ Z.

Thus, we have a morphism F(f). : F(M). → F(N).. So F is a functor, which is
exact the tensor product is over a field. The proof of the proposition is completed.

Let M. be a complex and f. : M.→ N. a morphism in C(GModΛ). Given i ∈ Z,
restricting M. and f. to the degree i, we obtain a complex M.

i and a morphism
f.i : M.

i → N.
i in C(Modk). Note that Hn(M.) ∼= ⊕i∈ZHn(M.

i ), for n ∈ Z. And f.

is a quasi-isomorphism if and only if so is f.i for every i ∈ Z. A similar consideration
is given to a double complex M.. and a morphism f.. in DC(GModΛ) so that
T(M..)i = T(M..

i ) and T(f..)i = T(f..i ), for all i ∈ Z.

Given s ∈ Z, the grading s-shift M.〈s〉 of M. is defined by (M.〈s〉)n = Mn〈s〉
and dnM.〈s〉 = dnM〈s〉 for all n ∈ Z. In view of the above consideration, we see that

Hn(M.〈s〉)=Hn(M.) for all n ∈ Z. And it is clear that t(M.〈s〉) = t(M.)〈s〉, where
t is the twist functor. The following statement follows from a routine verification.

5.2. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
Given any M ∈ GModΛ and s ∈ Z, we have F(M).[s] = ts(F(M〈s〉).〈s〉) and
G(M).[s] = ts(G(M〈s〉).〈s〉).

In view of Proposition 4.6, we can extend the two Koszul functors as follows.
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5.3. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.

(1) The right Koszul functor F extends to FC : C(GModΛ) → C(GModΛ!), called
the right complex Koszul functor such, for any M. ∈ C(GModΛ), that

FC(M
.
)n = ⊕(i,x)∈Z×Q0

P !
x〈n−i〉 ⊗M i

n−i(x); n ∈ Z.

(2) The left Koszul functor G extends GC : C(GModΛ) → C(GModΛ!), called the
left complex Koszul functor such, for any M. ∈ C(GModΛ), that

GC(M
.
)n = ⊕(i,x)∈Z×Q0

I !
x〈n−i〉 ⊗M i

n−i(x); n ∈ Z.

We compose Koszul functors and complex Koszul functors as follows.

5.4. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.

(1) The functor FC ◦ G : GModΛ→ C(GModΛ) is such, for M ∈ GModΛ, that

(FC◦ G)(M)n = ⊕i∈Z;a,x∈Q0Pa〈n−i〉 ⊗ (I !
x)n(a)⊗Mi(x); n ∈ Z.

(2) The functor GC ◦ F : GModΛ→ C(GModΛ) is such, for M ∈ GModΛ, that

(GC ◦ F)(M)n = ⊕i∈Z;x,a∈Q0
Ia〈n−i〉 ⊗ (P !

x)n(a)⊗Mi(x); n ∈ Z.
Proof. We only verify Statement (1). Consider a module M ∈ GModΛ. By
definition, (FC◦ G)(M). = FC(G(M).) = T(F(G(M).).). Thus, for any integer n,
we have (FC◦ G)(M)n = ⊕i∈Z F(G(M)i)n−i. Since G(M)i = ⊕x∈Q0

I !
x〈i〉 ⊗Mi(x),

we see from the definition of F that

F(G(M)i)n−i =⊕a∈Q0Pa〈n−i〉⊗G(M)in−i(a) =⊕a,x∈Q0Pa〈n−i〉⊗(I !
x)n(a)⊗Mi(x).

The proof of the lemma is completed.

The above two composite functors are extended as follows.

5.5. Lemma. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
Consider a complex M.∈C(GModΛ) and an integer n.

(1) The functor (FC◦ G)C : C(GModΛ)→C(GModΛ) is such, for n ∈ Z, that

(FC◦ G)C(M
.
)n = ⊕i,j∈Z;a,x∈Q0Pa〈n−i−j〉 ⊗ (I !

x)n−i(a)⊗M i
j(x).

(2) The functor (GC ◦ F)C : C(GModΛ)→C(GModΛ) is such, for n ∈ Z, that

(GC ◦ F)C(M
.
)n = ⊕i,j∈Z;a,x∈Q0

Ix〈n−i−j〉 ⊗ (P !
x)n−i(a)⊗M i

j(a).

Proof. We shall only verify Statement (1). Let M. ∈ C(GModΛ). By definition,

(FC◦ G)C(M.) = T((FC ◦ G)(M.).). So (FC ◦ G)C(M.)n = ⊕i∈Z (FC◦ G)(M i)n−i,
for any n ∈ Z. In view of Lemma 5.4, we see that

(FC◦ G)(M i)n−i = ⊕j∈Z;a,x∈Q0
Pa〈n−i−j〉 ⊗ (I !

x)n−i(a)⊗M i
j(x).

This implies Statement (1). The proof of the lemma is completed.

Next, we show that the complex Koszul functors descend to categories derived
from some subcategories of C(GModΛ). To introduce these subcategories, we will
view a complex M. of graded modules M i=⊕j∈ZM i

j as a bigraded k-vector spaces

M i
j with i, j ∈ Z.

5.6. Definition. Let Λ = kQ/R be a quadratic algebra with Q a locally finite
quiver. Given p, q ∈ R with p ≥ 1 and q ≥ 0, we denote

(1) by C ↓p,q(GModΛ) the full subcategory of C(GModΛ) of complexes M. such that

M i
j = 0 for i + pj � 0 or i − qj � 0 ; in other words, M. concentrates in a

lower triangle formed by two lines of slopes − 1
p and 1

q , respectively;
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(2) by C ↑p,q(GModΛ) the full subcategory of C(GModΛ) of complexes M. such that

M i
j = 0 for i + pj � 0 or i − qj � 0; in other words, M. concentrates in a

upper triangle formed by two lines of slopes − 1
p and 1

q , respectively;

(3) by C ↓p,q(gmodΛ!) and C ↑p,q(gmodΛ) the full subcategories of C ↓p,q(GModΛ) and

C ↑p,q(GModΛ) respectively of piecewise finite dimensional modules.

Remark. (1) Taking p = 1 and q = 0, we recover the categories C↓(Λ) and C↑(Λ)
defined in [5, (2.12)]; see also, [26, (2.4)].

(2) The categories C ↓p,q(GModΛ) are pairwise distinct derivable subcategories of

C(GMod−Λ) containing Cb(GMod−Λ), and the C ↑p,q(GModΛ) are pairwise distinct

derivable subcategories of C(GMod+Λ) containing Cb(GMod+Λ).

Let A = GModΛ or gmodΛ. In the sequel, we shall denote by K ↓p,q(A) and

K ↑p,q(A) the quotient categories modulo null-homotopic morphisms of C ↓p,q(A) and

C ↑p,q(A) respectively; and by D ↓p,q(A) and D ↑p,q(A) the localizations at quasi-isomor-

phisms of K ↓p,q(A) and K ↑p,q(A) respectively.

5.7. Theorem. Let Λ = kQ/R be a quadratic algebra with Q a locally finite quiver.
Consider p, q ∈ R with p ≥ 1 and q ≥ 0.

(1) The right complex Koszul functor FC induces a commutative diagram

C ↓p,q(GModΛ)

FCp,q ��

// K ↓p,q(GModΛ)

FKp,q��

// D ↓p,q(GModΛ)

FDp,q��
C ↑q+1,p−1(GModΛ!) // K ↑q+1,p−1(GModΛ!) // D ↑q+1,p−1(GModΛ!).

(2) The left complex Koszul functor GC induces a commutative diagram

C ↑p,q(GModΛ) //

GCp,q ��

K ↑p,q(GModΛ) //

GKp,q��

D ↑p,q(GModΛ)

GDp,q��
C ↓q+1,p−1(GModΛ!) // K ↓q+1,p−1(GModΛ!) // D ↓q+1,p−1(GModΛ!).

(3) In the above two statements, GModΛ and GModΛ! can be replaced simul-

taneously by gmodΛ and gmodΛ!, respectively.

Proof. Note that Kb(GProjΛ) and Kb(GInjΛ) are full triangulated subcategories
of Db(GModΛ), and Kb(gprojΛ) and Kb(ginjΛ) are full triangulated subcategories
of Db(gmodΛ); see [33, (10.4.7)]. Consider M.∈C ↓p,q(GModΛ). There exist s, t∈Z
such that M i

j = 0 when i+ pj>s or i− qj<t. Fix n,m ∈ Z. By Lemma 5.3,

FC(M
.
)nm = ⊕i≤n+m;x∈Q0

(P !
x)n+m−i ⊗M i

n−i(x).

Fix some i ≤ n + m. If n + (q + 1)m < t, then i − q(n − i) < t; and if
n− (p− 1)m > s, then i+ p(n− i)>s. Thus, FC(M.)nm=0 in case n+(q+ 1)m< t

or n−(p−1)m> s. That is, FC(M.)n ∈ C ↑q+1,p−1(GModΛ!). This yields a functor

FCp,q : C ↓p,q(GModΛ)→ C ↑q+1,p−1(GModΛ!). Furthermore, the n-diagonal of F(M.).

consists of F(M i)n−i = ⊕x∈Q0
P !
x〈n−i〉 ⊗M i

n−i(x) with i ∈ Z. Since M i
n−i = 0

for i < (nq + t)(1 + q)−1, we see that F(M.). is diagonally bounded-below. By
Theorem 4.9, FCp,q induces a commutative diagram as stated in Statement (1).

Similarly, GC restricts to a functor GCp,q : C ↑p,q(GModΛ)→ C ↓q+1,p−1(GModΛ!).

Let N. ∈ C(GModΛ!) be acyclic. Fix m ∈ Z. Then GC(N.)m = T(G(N.).m). Since
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G is exact, G(N.). has acyclic rows, and so does G(N.).m. Given n ∈ Z, in view of
Lemma 5.3, the n-diagonal of G(N.).m consists of

G(N i)n−im =⊕x∈Q0(I !
x)n+m−i ⊗N i

n−i(x); i ∈ Z.

If i < n+m, then G(N i)n−im = 0. That is, G(N.).m is diagonally bounded-below. By

Proposition 4.1, GC(N.)m is acyclic. Hence, GC(N.) is acyclic. Thus, GC induces a
commutative diagram as stated in Statement (2); see (4.9).

Finally, assume that M. ∈ C ↓p,q(gmodΛ). Fix n,m ∈ Z and y ∈ Q0. Then,

FC(M.)nm(y) = ⊕i∈Z; x∈Q0eyΛ!
n+m−iex ⊗M i

n−i(x). Clearly, FC(M.)nm(y) 6= 0 only

if (qn+ t)(q+ 1)−1 ≤ i ≤ n+m. Hence, FC(M.)nm(y) is a finite direct sum of finite

dimensional k-spaces. So, FC(M.). ∈ C(gmodΛ!). As seen above, FC(M.) lies in

C ↑q+1,p−1(gmodΛ!). This yields a functor FCp,q : C ↓p,q(gmodΛ)→ C ↑q+1,p−1(gmodΛ!).

Similarly, we obtain a functor GCp,q : C ↑p,q(gmodΛ)→C ↓q+1,p−1(gmodΛ!). The rest

of the proof of Statement (3) are similar to those of the first two statements. The
proof of the theorem is completed.

Remark. (1) In case p = 0 and q = 1, Theorem 5.7 has been established for
positively graded quadratic categories; see [26, Proposition 20].

(2) In the sequel, we shall call FDpq and GDpq the right and the left derived Koszul
functors, respectively.

We shall show that the complex Koszul functors always descend to bounded
derived category of finitely piece-supported graded modules.

5.8. Theorem. Let Λ = kQ/R be a qudratic algebra with Q a locally finite quiver.

(1) The Koszul functor F : GModΛ→ C(GModΛ!) induces a commutative diagram

C b(GModbΛ)

FC ��

// K b(GModbΛ)

FK ��

// Db(GModbΛ)

FD ��
C b(GProjΛ!) // K b(GProjΛ!) // Db(GModΛ!).

(2) The Koszul functor G : GModΛ→ C(GModΛ!) induces a commutative diagram

C b(GModbΛ)

GC ��

// K b(GModbΛ)

GK ��

// Db(GModbΛ)

GD ��
C b(GInjΛ!) // K b(GInjΛ!) // Db(GModΛ!).

(3) In the above two statements, GModbΛ, GProjΛ!, GInjΛ! and GModΛ! can be

replaced simultaneously by gmodbΛ, gprojΛ!, ginjΛ! and gmodΛ!, respectively.

Proof. Let M. ∈ Cb(GModbΛ), say M i
j 6= 0 only if −s ≤ i ≤ s and −t ≤ j ≤ t,

for some s, t > 0. By Lemma 5.3, FC(M.)n = ⊕(i,x)∈Z×Q0
P !
x〈n− i〉 ⊗M i

n−i(x),

for all n ∈ Z. Since M i
n−i 6= 0 only if −s − t ≤ n ≤ s + t, the complex FC(M.)

is bounded. And since the M i are finitely piece-supported, M i
n−i(x) 6= 0 only for

finitely many (i, x) with −s ≤ i ≤ s and x ∈ Q0. Thus, FC(M.) ∈ Cb(GProjΛ!).

So, we have a functor FC : Cb(GModbΛ) → Cb(GProjΛ!) which, as seen in the
proof of Theorem 5.7, induces a commutative diagram as stated in Statement (1).
Similarly, Statement (2) holds.

Now, suppose that M.∈Cb(gmodbΛ). Since the M i
n−i(x) are finite dimensional,

FC(M.) ∈Cb(gprojΛ). Hence, we have a functor FC :Cb(gmodbΛ)→ Cb(gprojΛ!)
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which, as seen in the proof of Theorem 5.7, induces a commutative diagram as
stated in Statement (1) with GModbΛ, GProjΛ! and GModΛ! replaced by gmodbΛ,

gprojΛ! and gmodΛ!, respectively. The proof of the theorem is completed.

In the locally bounded cases, the Koszul functors induce derived functors between
bounded derived categories of finitely piece-supported graded modules.

5.9. Theorem. Let Λ = kQ/R be a qudratic algebra with Q a locally finite quiver.

(1) If Λ! is locally left bounded, the right Koszul functor F : GModΛ→ C(GModΛ!)
induces a commutative diagram of functors

C b(GModbΛ)

FCb ��

// K b(GModbΛ)

FKb ��

// Db(GModbΛ)

FDb ��
C b(GProjΛ!) // K b(GProjΛ!) // Db(GModbΛ!).

(2) If Λ! is locally right bounded, the left Koszul functor G : GModΛ→ C(GModΛ!)
induces a commutative diagram of functors

C b(GModbΛ)

GCb ��

// K b(GModbΛ)

GKb ��

// Db(GModbΛ)

GDb ��
C b(GInjΛ!) // K b(GInjΛ!) // Db(GModbΛ!).

(3) In the above two statements, we can simultaneously replace GModbΛ, GModbΛ!,

GProjΛ! and GInjΛ! by gmodbΛ, gmodbΛ!, gprojΛ! and ginjΛ!, respectively.

Proof. Let Λ! be locally left bounded. Then, the P !
x with x ∈ Q0 are all finite

dimensional. Hence, GProjΛ! ⊆ GModbΛ! and gprojΛ! ⊆ gmodbΛ!. Therefore,
Kb(GProjΛ!) and Kb(gprojΛ!) are full triangulated subcategories of Db(GModbΛ!)

and Db(gmodbΛ!), respectively. Now, by the argument used in the proof of Theorem
5.8, we can prove the three statements stated in the theorem. The proof of the
theorem is completed.

Remark. In the sequel, we shall call FDb and GDb the right and the left bounded
derived Koszul functors, respectively.

Next, we shall show that all derived Koszul functors are triangle equivalences in
the Koszul case. We start with the following important property of Koszul functors;
see [5, (1.2.6)] and [26, Theorem 30].

5.10. Lemma. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

Given a ∈ Q0, the graded simple Λ!-module S !
a has F(Ia)

. as a linear projective
resolution and G(Pa)

. as a colinear injective coresolution.

Proof. Fix a ∈ Q0. Since Λ! is Koszul; see (3.12), S!
a has a colinear injective

coresolution I.a! ; see (3.11). Since (Λ!)! = Λ; see (3.9), by definition, G(Pa). = I.a! .
Next, by Lemma 3.10, S!

a has a linear projective resolution P.a! as follows :

· · · // P−n
a!

`−n // P1−n
a!

// · · · // P−1
a!

`−1
// P0
a!

// 0 // · · · ,

where P−n
a!

=⊕x∈Q0P
!
x〈−n〉⊗D(eaΛnex) and P1−n

a!
=⊕y∈Q0P

!
y〈1−n〉⊗D(eaΛn−1ey)

with `−n = (
∑
α∈Q1(x,y)P [ᾱ!]⊗DP [ᾱ])(y,x)∈Q0×Q0

.

On the other hand, F(Ia)−n = ⊕x∈Q0
P !
x〈−n〉 ⊗ D(exΛo

nea), for all n ∈ Z.
In particular, F(Ia)−n = P−n

a!
, for all n < 0. Fix some integer n ≥ 1. Write
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F(Ia)1−n = ⊕y∈Q0
P !
y〈1 − n〉 ⊗ D(eyΛo

n−1ea). Since Ia(ᾱ) = DP o
a (ᾱo) for any

α ∈ Q1(x, y), we see that d−nF(Ia) = (
∑
α∈Q1(x,y) P [ᾱ!]⊗DP o

a (ᾱo))(y,x)∈Q0×Q0
.

Consider the k-linear isomorphism θnx : eaΛnex → exΛo
nea : ξ 7→ ξo, which in-

duces a k-linear isomorphism Dθnx : D(exΛo
nea)→ D(eaΛnex). Given α ∈ Q1(x, y),

since θnx ◦P [ᾱ] = P o
a (ᾱo)◦θn−1

y , we have DP [ᾱ]◦Dθnx = Dθn−1
y ◦DP o

a (ᾱo). Thus, the
graded Λ-linear isomorphisms ⊕x∈Q0

(id⊗Dθnx ) with n ∈ Z give rise to a complex
isomorphism F(Ia)

. ∼= P.a! . The proof of the lemma is completed.

More generally, applying the left Koszul functor and the right complex Koszul
functor yields graded projective resolutions for any graded modules.

5.11. Lemma. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

Given M ∈GModΛ, we have a natural quasi-isomorphism η.
M

: (FC◦G)(M).→M.

Proof. Consider M ∈GModΛ. By definition, (FC◦ G)(M).=T(F(G(M).).). Given
n ∈ Z, by Lemma 5.4(1), the n-diagonal of F(G(M).). consists of

F(G(M)i)n−i = ⊕a,x∈Q0Pa〈n− i〉 ⊗ (I !
x)n(a)⊗Mi(x); i ∈ Z,

and so, (F C ◦ G)(M)n = ⊕i∈Z;a,x∈Q0
Pa〈n−i〉 ⊗ (I !

x)n(a) ⊗Mi(x). In particular,

(FC◦ G)(M)n = 0 for n > 0. We divide the rest of the proof into two statements.

Statement 1. If n < 0, then Hn((FC◦ G)(M).) = 0.

Fix an integer n < 0. For any i ∈ Z, recall that the i-th column of F(G(M).). is
ti(F(G(M)i).) = ⊕x∈Q0

ti(F(I !
x〈i〉)

.)⊗Mi(x), where t is the twist functor. In view
of Lemmas 5.2 and 5.10, we see that

Hn−i(ti(F(I !
x〈i〉)

.
))∼=Hn−i(ti(F(I !

x〈i〉)
.〈i〉)) = Hn−i(F(I !

x)[i]) = Hn(F(I !
x)
.
) = 0.

So, Hn−i(ti(F(G(M)i).)) ∼= ⊕x∈Q0Hn−i(ti(F(I !
x〈i〉)

.)) ⊗ Mi(x) = 0. Fix p ∈ Z.
Consider the double complex F(G(M).).p , whose i-th column is ti(F(G(M)i).)p
with Hn−i(ti(F(G(M)i).)p) = 0, and whose n-diagonal consists of

F(G(M)i)n−ip = ⊕a,x∈Q0Λp+n−iea ⊗D(eaΛ̂−nex)⊗Mi(x); i ∈ Z.

So, F(G(M).).p is n-diagonally bounded-above. In view of Lemma 4.1, we see that

Hn((FC◦G)(M).p) = Hn(T(F(G(M).).p)) = 0. Therefore, Hn((FC◦G)(M).) = 0.
This establishes Statement (1).

It remains to show that H0((FC◦ G)(M).) is naturally isomorphic to M . Recall

that Λ! = {γ̄ ! | γ ∈ kQ}, where γ̄ ! = γo + R!; and Λ̂ = kQ/(R!)o = {γ̂ | γ ∈ kQ},
where γ̂ = γ + (R!)o. Observe that the 1-diagonal of F(G(M).). is null. Since
(I !
x⊗M)(ᾱ!) = I !

x(ᾱ!)⊗ idM for α ∈ Q1(a, x), the 0-diagonal and the (−1)-diagonal
of F(G(M).). are illustrated as

⊕b∈Q0
Pb〈−i〉 ⊗ (I !

b)0(b)⊗Mi(b)

⊕a,x∈Q0
Pa〈−i−1〉 ⊗ (I !

x)−1(a)⊗Mi(x)

vi,−i−1

OO

hi,−i−1// ⊕c∈Q0Pc〈−i−1〉⊗(I !
c)0(c)⊗Mi+1(c),

where vi,−i−1 = (vi,−i−1(b, a, x))(b,a,x)∈Q0×Q0×Q0
with

vi,−i−1(b, a, x) =

{ ∑
α∈Q1(x,a)(−1)iP [ᾱ]⊗ I !

x(ᾱ!)⊗ id, if b = x;
0, if b 6= x,

and hi,−i−1 = (hi,−i−1(c, a, x))(c,a,x)∈Q0×Q0×Q0
with

hi,−i−1(c, a, x) =

{ ∑
α∈Q1(x,a)id⊗ I[ᾱ!]⊗M(ᾱ), if c = a;

0, if c 6= a.
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In particular, (FC◦G)(M)−1 = ⊕i∈Z;a,x∈Q0
Pa〈−i−1〉⊗ (I !

x)−1(a)⊗Mi(x), where

(I !
x)−1(a) = D(eaΛ̂1ex) has a k-basis {β̂? | β ∈ Q1(x, a)}, that is the dual basis of

{β̂ |β ∈ Q1(x, a)}. Moreover, (FC◦G)(M)0 = ⊕(i,b)∈Z×Q0
Pb〈−i〉⊗ (I !

b)0(b)⊗Mi(b),

where (I !
b)0(b) = D(ebΛ̂0eb) has a k-basis {ê?b}.

Statement 2. There exists a natural graded Λ-linear epimorphism

η
M

: (FC◦G)(M)0→M :
∑

(i,b)∈Z×Q0
ui,b⊗ ê?b ⊗mi,b 7→

∑
i∈Z;b∈Q0

(−1)
i(i+1)

2 ui,bmi,b,

such that η0
M
◦d−1 = 0, where d−1 is the differential of degree −1 of (FC◦ G)(M)..

The existence and the naturalness of of η
M

are evident. Let ω ∈ (FC◦ G)(M)−1.
We may assume that ω ∈ Pa〈−i−1〉 ⊗ I !

x〈i〉−i−1(a) ⊗Mi(x) for some i ∈ Z and

a, x ∈ Q0. Further, we may assume that ω = u0⊗ β̂?0⊗m0, for some u0 ∈ Pa〈−i−1〉,
β0 ∈ Q1(x, a) and m0 ∈Mi(x). Write P̂x = Λ̂ex. For α ∈ Q1(x, a), since (ᾱ!)o = α̂,

we obtain I !
x(ᾱ!) = DP̂x(α̂) and I !

x[ᾱ!] = DP [α̂]. Thus, I !
x(ᾱ!)(β̂?0)(ex) = β̂?0(α̂)

and I[ᾱ!](β̂?0)(ea) = β̂?0(α̂). Hence, I !
x(ᾱ!)(β̂?0) = I[ᾱ!](β̂?0) = ê?x in case α = β0; and

otherwise, I !
x(ᾱ!)(β̂?0) = I[ᾱ!](β̂?0) = 0. This yields

d−1(ω) = (−1)i
∑
α∈Q1(x,a)(P [ᾱ]⊗ I !

x(ᾱ!)⊗ id)(u0 ⊗ β̂?0 ⊗m0)

+
∑
α∈Q1(x,a)(id⊗ I[ᾱ!]⊗M(ᾱ))(u0 ⊗ β̂?0 ⊗m0) (∗)

= (−1)i(u0β̄0)⊗ ê?x ⊗m0 + u0 ⊗ ê?a ⊗ (β̄0m0).

Since u0 ∈ Pa〈−i−1〉 and u0β̄0 ∈ Px〈−i〉, we obtain

(η
M
◦ d−1)(ω) = (−1)

i(i+1)
2 +i(u0β̄0m0) + (−1)

(i+1)(i+2)
2 (u0β̄0m0) = 0.

This establishes Statement 2.
To conclude, we need to verify that Ker(d−1) ⊆ Im(η

M
). Fix ω ∈ Ker(η

M
).

Since η
M

is graded, we may assume that there exists (p, a) ∈ Z×Q0 such that

ω ∈ (FC ◦ G)(M)0
p(a) = ⊕i≤p;x∈Q0

eaPx〈−i〉p ⊗ (I !
x)0(x)⊗Mi(x),

where eaPx〈−i〉p = eaΛp−iex. Then, we may find some is ≤ · · · ≤ i2 ≤ i1 = p and
x1, . . . , xs ∈ Q0 such that ω =

∑s
j=1 γ̄j ⊗ ê?xj ⊗mj , where γj ∈ Qp−ij (xj , a) such

that the γ̄j are pairwise distinct and mj ∈ Mij (xj). In particular, γ1 = εa. We
shall proceed by induction on the minimal integer nω for which ω can be written
in this form and nω =

∑s
j=1(p− ij).

If nω = 0, then s = 1 and m1 = ±η
M

(ω) = 0, and hence, ω = 0. Suppose
that nω > 0. Since γj 6= γ1 = εa, we may write γj = σjβj with βj ∈ Q1(xj , yj)

and σj ∈ Qp−ij−1(yj , a), for 2 ≤ j ≤ s. Set σ =
∑s
j=2(−1)ij σ̄j ⊗ β̂?j ⊗mj , where

σ̄j ∈ Pyj〈−ij−1〉p. In view of the equations (∗), we obtain

d−1(σ) =
∑s
j=2((−1)2ij (σ̄j β̄j)⊗ ê?xj ⊗mj + (−1)ij σ̄j ⊗ ê?yj ⊗ (β̄jmj))

= ω + ea ⊗ ê?a ⊗ (−m1) +
∑s
j=2 σ̄j ⊗ ê?yj ⊗ (−1)ij (β̄jmj),

Put ω′ = d−1(σ) − ω = ea ⊗ ê?a ⊗ (−m1) +
∑s
j=2 σ̄j ⊗ ê?yj ⊗ (−1)ij (β̄jmj). Then,

ω′ ∈ Ker(η
M

) with nω′ < nω. Thus ω′ ∈ Im(d−1), and hence, ω ∈ Im(d−1). The
proof of the lemma is completed.

Similarly, applying the right Koszul functor and the left complex Koszul functor
yields graded injective coresolutions for bounded-above graded modules.

5.12. Lemma. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

Given M ∈ GMod−Λ, we have a natural quasi-isomorphism ζ.
M

:M→(GC◦F)(M)..
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Proof. Let M ∈ GMod−Λ, say Mi = 0 for all i ≥ r, where r ∈ Z. By definition,
(GC ◦ F)(M). = T(G(F(M).).). Given any n ∈ Z, by Lemma 5.4(2), we see that
the n-diagonal of G(F(M).). consists of

G(F(M)i)n−i = ⊕x,a∈Q0
Ix〈n− i〉 ⊗ exΛ!

nea ⊗Mi(a); i ∈ Z,
and so, (GC ◦ F)(M.)n = ⊕i∈Z; x,a∈Q0Ix〈n − i〉 ⊗ exΛ!

nea ⊗Mi(a). In particular,
G(F(M).). is diagonally bounded-above and (GC◦F)(M)n = 0 for n < 0.

Statement 1. Consider ti(G(F(M)i).), the i-th column of G(F(M).).. Given
any n ∈ Z, we have Hn−i(ti(G(F(M)i).)) ∼= ⊕a∈Q0

Hn(G(P !
a).)⊗Mi(a).

Indeed fix n, i ∈ Z. Then, F(M)i = ⊕a∈Q0
P !
a〈i〉 ⊗Mi(a). It follows easily that

ti(G(F(M)i).) = ⊕a∈Q0
ti(G(P !

a〈i〉)
.)⊗Mi(a). In view of Lemma 5.2, we see that

Hn−i(ti(G(P !
a〈i〉)

.
)) ∼= Hn−i(ti(G(P !

a〈i〉)
.〈i〉)) ∼= Hn−i(G(P !

a)
.
[i]) ∼= Hn(G(P !

a)
.
).

This establishes Statement 1.

Statement 2. If n > 0, then Hn((GC◦F)(M).) = 0.
Fix n > 0. By Statement (1) and Lemma 5.10, Hn−i(ti(G(F(M)i).)) = 0 for all

i ∈ Z. Since G(F(M).). is diagonally bounded-above, we deduce from Lemma 4.1
that Hn((GC◦F)(M).) = Hn(T(G(F(M).).)) = 0. This establishes Statement 2.

It remains to construct a natural graded isomorphism M → H0((GC◦F)(M).).
Note that (GC◦F)(M)0 = ⊕i∈Z; a∈Q0

Ia〈−i〉⊗eaΛ!
0ea⊗Mi(a). Given (i, a) ∈ Z×Q0,

we shall construct a morphism f ia : M → Ia〈−i〉 ⊗ eaΛ!
0ea ⊗Mi(a) in GModΛ. For

this, we shall first define a k-linear map f ia,j : Mj → Ia〈−i〉j ⊗ eaΛ!
0ea ⊗Mi(a) for

every j ∈ Z, where Ia〈−i〉j = D(Λo
i−jea). Indeed, we set f ia,j = 0 for j > i. Fix j

with j ≤ i. We have a k-linear map

ψia,j : Mj → Homk(Λo
i−jea, eaΛ!

0ea ⊗Mi(a)) : w 7→ ψia,j(w),

where ψia,j(w) sends γ̄o to ea ⊗ γ̄w, for all γ ∈ kQi−j(−, a). Since Λo
i−jea is finite

dimensional, in view of Corollary 1.2(1), we have a k-linear isomorphism

θia,j : D(Λo
i−jea)⊗ eaΛ!

0ea ⊗Mi(a)→ Homk(Λo
i−jea, eaΛ!

0ea ⊗Mi(a)).

Now, put f ia,j = (θ ia,j)
−1 ◦ ψia,j : Mj → Ia〈−i〉j ⊗ eaΛ!

0ea ⊗Mi(a), which can be
computed in the following way.

Statement 3. Let {γ̄o
1, . . . ,γ̄

o
s} with γp ∈ kQi−j(−, a) be a k-basis of Λo

i−jea
with dual basis {γ̄o,?

1 , . . . ,γ̄o,?
s }. Then f ia,j(w) =

∑s
p=1 γ̄

o,?
p ⊗ ea ⊗ γ̄pw, for w ∈Mj.

Indeed, every γ̄o ∈ Λo
i−jea is written as γ̄o =

∑s
t=1 λt γ̄

o
t with λt ∈ k. Given

w ∈Mj , by the definition given in Corollary 1.2(1), we obtain

θia,j(
∑s
p=1 γ̄

o,?
p ⊗ ea ⊗ γ̄pw)(γ̄o) = ea ⊗ (

∑s
t=1 λtγ̄

o
t )w = ψia,j(w)(γ̄o).

Thus, θia,j(
∑s
p=1 γ̄

o,?
p ⊗ ea ⊗ γ̄pw) = ψia,j(w). This establishes Statement 3.

Statement 4. Given (i, a) ∈ Z × Q0, there exists a natural graded Λ-linear

morphism f ia : M → Ia〈−i〉 ⊗ eaΛ!
0ea ⊗Mi(a) such that (f ia)j = f ia,j, for all j ∈ Z.

Given α ∈ Q1 and j ≤ i, it is easy to see that we have a commutative diagram

Mj

ψia,j //

M(ᾱ)

��

Hom((P o
a )i−j , eaΛ!

0ea ⊗Mi(a))

Hom(P o
a (ᾱo),eaΛ

!
0ea⊗Mi(a))

��

Ia〈−i〉j ⊗ eaΛ!
0ea ⊗Mi(a)

θia,joo

Ia〈−i〉(ᾱ)⊗id⊗id
��

Mj+1

ψia,j+1// Hom((P o
a )i−j−1, eaΛ!

0ea ⊗Mi(a)). Ia〈−i〉j+1 ⊗ eaΛ!
0ea ⊗Mi(a)

θia,j+1oo

Therefore, f ia is a graded Λ-linear morphism. Similarly, one can verify that f ia is
natural in M . This establishes Statement 4.
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Fix i ∈ Z. Given a ∈ Q0, by Statement 4, we obtain a natural graded Λ-linear

morphism gia : M → Ia〈−i〉⊗eaΛ!
0ea⊗Mi(a) with (gia)j = (−1)

(i−1)i
2 f ia,j , which will

be written as gia,j , for all j ∈ Z. Let w =
∑
x∈Q0;j∈Z wx,j ∈ M with wx,j ∈ exMj .

If gia(wj,x) = gia,j(wj,x) 6= 0 for some a ∈ Q0, then f ia,j(wj,x) 6= 0. Hence, j ≤ i,

and by Statement 3, kQi−j(x, a) 6= 0. Since Q is locally finite, gia(w) = 0 for all
but finitely many a ∈ Q0. Hence, we have a graded Λ-linear morphism

gi = (gia)a∈Q0
: M → G(F(M)i)−i = ⊕a∈Q0

Ia〈−i〉 ⊗ eaΛ!
0ea ⊗Mi(a)

such that gij = (gia,j)a∈Q0 : Mj → ⊕a∈Q0(Ia〈−i〉)j ⊗ eaΛ!
0ea ⊗Mi(a), for all j ∈ Z.

Statement 5. We have a natural graded Λ-linear monomorphism

ζ
M

= (gi)i∈Z : M → (GC◦F)(M)0 = ⊕i∈Z G(F(M)i)−i.

Indeed, observe that G(F(M)i)−i = 0, for all i ≥ r. Let w =
∑
j∈Z wj ∈M with

wj ∈ Mj . If gi(wj) =
∑
a∈Q0

gia(wj) = gia,j(wj) 6= 0 for some i, then j ≤ i, and

hence, j ≤ i < r. As a consequence, gi(w) = 0 for all but finitely many i ∈ Z. Thus,
we obtain a graded Λ-linear morphism ζ

M
= (gi)i∈Z : M → (GC◦F)(M)0, which is

clearly natural in M . Assume that ζ
M

(w) = 0, for some w ∈ Mj with j ∈ Z. In

particular, gj(w) = 0, that is, gjj (wj) =
∑
a∈Q0

gja,j(w) = 0. Thus, gja,j(w) = 0, and

hence, f ja,j(w) = 0, for all a ∈ Q0. Since {ea} is a basis of Λo
j−jea, by Statement

3, eo,?
a ⊗ ea ⊗ eaw = 0, and hence, eaw = 0, for all a ∈ Q0. That is, w = 0. This

implies that ζ
M

is a monomorphism. Statement 5 is established.
Observe that the (−1)-diagonal of G(F(M).). is null, while the 0-diagonal and

the 1-diagonal can be illustrated as follows :

⊕b∈Q0 Ib〈−i〉⊗ebΛ
!
0eb⊗Mi(b)

hi,−i// ⊕a,x∈Q0
Ix〈−i〉⊗exΛ!

1ea⊗Mi+1(a)

⊕c∈Q0
Ic〈−i−1〉⊗ecΛ!

0ec⊗Mi+1(c),

vi+1,−i−1

OO

where hi,−i = (hi,−i(a, x, b))a,x,b∈Q0
with

hi,−i(a, x, b) =

{ ∑
α∈Q1(x,a) id⊗ P [ᾱ!]⊗M(ᾱ), if b = x;

0, if b 6= x,

and vi+1,−i−1 =(vi+1,−i−1(a,x,c))a,x,c∈Q0
with

vi+1,−i−1(a,x,c)=

{∑
α∈Q1(x,a)(−1)i+1I[ᾱ]⊗P !

a (ᾱ!)⊗id, if c = a;

0, if c 6= a.

Statement 6. We have d0◦ ζ
M

= 0, where d0 denotes the differential of degree
0 of the complex (GC ◦ F)(M)..

Indeed, it amounts to show, for any i ∈ Z, that the diagram

⊕x∈Q0I
!
x〈−i〉⊗exΛ0ex⊗Mi(x)

⊕x∈Q0
hi,−i(a,x,x)

// ⊕a,x∈Q0I
!
x〈−i〉⊗exΛ1ea⊗Mi+1(a)

M
(gi+1
a )a∈Q0 //

(gix)x∈Q0

OO

⊕a∈Q0
I !
a〈−i−1〉⊗eaΛ0ea⊗Mi+1(a),

⊕a∈Q0
vi+1,−i−1(a,x,a)

OO

is anti-commutative, or equivalently, the diagram
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⊕x∈Q0
Ix〈−i〉j ⊗exΛ!

0ex⊗Mi(x)
⊕hi,−i(a,x,x)j// ⊕a,x∈Q0

Ix〈−i〉j ⊗exΛ!
1ea⊗Mi+1(a)

Mj

(gi+1
a,j )a∈Q0 //

(gix,j)x∈Q0

OO

⊕a∈Q0
Ia〈−i−1〉j ⊗ eaΛ!

0ea ⊗Mi+1(a)

⊕vi+1,−i−1(a,x,a)j

OO

is anti-commutative for all i, j ∈ Z, where Ix〈−i〉j = D(Λo
i−jex). This is evident

in case j > i. Fix some i ≥ j and a, x ∈ Q0. Then, we have a k-isomorphism
θij : D(Λo

i−jex)⊗ exΛ!
1ea ⊗Mi+1(a)→ Homk(Λo

i−jex, exΛ!
1ea ⊗Mi+1(a)) as stated

in Corollary 1.2(1). Consider α ∈ Q1(x, a) and w ∈ Mj . We choose a k-basis
{δ̄o

1 , . . . , δ̄
o
s} for Λo

i−jex. By Statement 3, we obtain

(id⊗ P [ᾱ!]⊗M(ᾱ))(gix,j(w)) = (−1)
(i−1)i

2

∑s
p=1 δ̄

o,?
p ⊗ ᾱ! ⊗ ᾱδ̄pw.

As a consequence, we see that

θij
[
(id⊗ P [ᾱ!]⊗M(ᾱ))(gix,j(w))

]
(δ̄o
p) = (−1)

(i−1)i
2 (ᾱ! ⊗ ᾱδ̄pw), p = 1, . . . , s.

On the other hand, for any k-basis {γ̄o
1 , . . . , γ̄

o
t } of Λo

i+1−jea, by Statement 3,

(I[ᾱ]⊗ Pa(ᾱ!)⊗ id)(gi+1
a,j (w)) = (−1)

i(i+1)
2

∑t
q=1(γ̄o,?

q ◦ P [ᾱo])⊗ ᾱ! ⊗ γ̄qw.
And hence, for any 1 ≤ p ≤ s, we obtain

θij
[
(I[ᾱ]⊗Pa(ᾱ!)⊗ id)(gi+1

a,j (w))
]
(δ̄o
p) = (−1)

i(i+1)
2

∑t
q=1γ̄

o,?
q (δ̄o

p ᾱ
o) · (ᾱ! ⊗ γ̄qw).

Fix 1 ≤ p ≤ s. If δ̄o
p ᾱ

o = 0, then ᾱδ̄p = 0. In this case, we see trivially that

θij
[
(id⊗P [ᾱ!]⊗M(ᾱ))(gij,x(w))

]
(δ̄o
p) = (−1)iθij

[
(I[ᾱ]⊗Pa(ᾱ!)⊗id)(gi+1

j,a (w))
]
(δ̄o
p).

If δ̄o
p ᾱ

o 6= 0, then Λo
i+1−jea has a basis {γ̄o

1 , . . . , γ̄
o
t }, where γ̄o

1 = δ̄o
p ᾱ

o. Noting

that γ̄1 = ᾱδ̄p, we obtain

θij
(
I[ᾱ]⊗Pa(ᾱ!)⊗id)(gi+1

j,a (w))
)
(δ̄o
p) = (−1)

i(i+1)
2 (ᾱ!⊗ ᾱδ̄p w)

= (−1)iθij
(
(id⊗P [ᾱ!]⊗M(ᾱ))(gij,x(w))

)
(δ̄o
p).

Thus, (I[ᾱ] ⊗ Pa(ᾱ!) ⊗ id)(gi+1
j,a (w)) = (−1)i(id ⊗ P [ᾱ!] ⊗M(ᾱ))(gij,x(w)). Now, it

is easy to see that

(hi,−ij (a, x, x) ◦ gij,x)(w) + (vi+1,−i−1
j (a, x, a) ◦ gi+1

j,a )(w) = 0.

This establishes our claim. Thus, Statement 6 holds.

To conclude, we shall show that Ker(d0) ⊆ Im(ζ
M

). Let ω =
∑
i∈Z ω

i ∈ Ker(d0),

where ωi ∈ G(F(M)i)−i = ⊕c∈Q0 Ic〈−i〉 ⊗ ecΛ
!
0ec ⊗Mi(c). Note that ωi = 0 for all

i ≥ r. We proceed by induction on the maximal integer nω ≤ r such that ωi = 0 for
all i < nω. If nω = r, then ω = 0 ∈ Im(ζ

M
). Assume that nω < r and write n = nω.

Since d0(ω) = 0, we have vn,−n(ωn) = −hn−1,1−n(ωn−1) = 0. By Statement 1,

H−n(tn(G(F(M)n)
.
))) ∼= ⊕c∈Q0 H0(G(Pa)

.
)⊗Mn(c).

By Lemma 5.10, ωn ∈ Soc(G(F(N)n)−n). Thus, ωn =
∑
c∈Q0

eo,?
c ⊗ ec⊗uc, where

uc ∈Mn(c) = ecMn. Put u = (−1)
(n−1)n

2

∑
c∈Q0

uc ∈Mn. Then, ζ
M

(u) =
∑
i∈Z u

i,

where ui = gi(u) = gin(u) ∈ G(F (M)i)−i. And by Statement 3, we get

un =
∑
c,a∈Q0

(−1)
(n−1)n

2 gna,n(wc) =
∑
c,a∈Q0

eo,?
c ⊗ea⊗eawc =

∑
c∈Q0

eo,?
c ⊗ec⊗wc.

Put ν = ω − ζ
M

(u) =
∑
i∈Z(ωi − ui) ∈ Ker(d0). If i < n, then gin(u) = 0, and

hence, ωi − ui = 0. Since un = ωn, we have nω < nν . Thus, ν ∈ Im(ζ
M

), and
hence, ω ∈ Im(ζ

M
). The proof of the lemma is completed.

As a consequence, we obtain the following interesting statement.
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5.13. Corollary. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.
Then every finite dimensional graded Λ-module admits a graded projective resolution
over gprojΛ and a graded injective co-resolution over ginjΛ.

Proof. We shall only prove the first part of the statement. Let M ∈ gmodbΛ. By
Lemmas 5.11 and 5.5, we obtain a quasi-isomorphism η.

M
: (F C◦G)(M). →M such

that (F C ◦ G)(M)n = ⊕(i,x)∈Z×Q0
Pa〈n − i〉 ⊗ (I !

x)n−i(a) ⊗Mi(x), for all n ∈ Z.

Since M is finite dimensional, (F C◦G)(M)n ∈ gprojΛ and (F C◦G)(M)n = 0 for
n � 0. That is, (FC ◦ G)(M). is a graded projective resolution of M over gprojΛ.
The proof of the corollary is completed.

More generally, applying the left complex Koszul functor and the right complex
Koszul functor yields graded projective resolutions for complexes in C ↑p,q(GModΛ).

5.14. Lemma. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.
Consider M. ∈ C ↑p,q(GModΛ), where p, q ∈ R with p ≥ 1 and q ≥ 0. Then, we have

a natural quasi-isomorphism ηCM. : (FC ◦ G)C(M.)→M..

Proof. Consider the functor FC◦ G : ModΛ→ C(ModΛ) and the embedding functor
κ : ModΛ → C(ModΛ). In view of Lemma 5.11, we obtain a functorial morphism
η = (η.M )M∈ModΛ : FC◦G → κ. By Lemma 4.8, it extends to a functorial morphism

ηC : (FC◦ G)C → κC = idC(ModΛ) such that ηCM. =T(η.M.) : (FC◦G)C(M.) → M.,
where η.M. = (ηjMi)i,j∈Z : (FC◦G)(M.). → κ(M.).. We claim that ηCM.=T(η.M.) is a
quasi-isomorphism, or equivalently, T(η.M.)s is a quasi-isomorphism for any s ∈ Z.

Now T(η.M.)s=T((η.M.)s), where (η.M.)s=((ηjMi)s)i,j∈Z : (FC◦ G)(M.).s→κ(M.).s.

For any i ∈ Z, by Lemma 5.11, (η.
Mi

)s : ti((FC◦ G)(M i).)s→ ti(κ(M i).)s is a quasi-

isomorphism. On the other hand, κ(M.).s is clearly diagonally bounded-above.
And given n ∈ Z, by Lemma 5.4(1), the n-diagonal of (FC◦ G)(M.). consists of

(FC◦ G)(M i)n−i = ⊕j∈Z;a,x∈Q0Pa〈n−i−j〉 ⊗ (I !
x)n−i(a)⊗M i

j(x); i ∈ Z
As a consequence, the n-diagonal of (FC◦ G)(M.).s consists of

(FC◦ G)(M i)n−is = ⊕j∈Z; a,x∈Q0 Λn+s−i−jea ⊗ (I !
x)n−i(a)⊗M i

j(x); i ∈ Z.
Let t ∈ Z be such that M i

j = 0 for i−qj > t. Fix any i > (q(n+s)+t)(q+1)−1. If

j >n+s−i, then Λn+s−i−j = 0; otherwise, M i
j = 0 since i−qj ≥ i−q(n+s−i)> t.

So (FC◦G)(M.).s is n-diagonally bounded-above. Hence, (FC◦G)(M.).s is diagonally
bounded-above. By Lemma 4.4, T((η.M.)s) is a quasi-isomorphism. This proves our
claim. The proof of the lemma is completed.

Applying the right complex Koszul functor and the left complex Koszul functor
yields injective coresolutions for complexes of bounded-above graded modules.

5.15. Lemma. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver. For
M.∈ C(GMod−Λ), we have a natural quasi-isomorphism ζCM. : M.→ (GC◦F)C(M.).

Proof. Consider the embedding functor κ : GMod−Λ→ C(GModΛ) and the functor
GC ◦ F : GMod−Λ→ C(GModΛ). In view of Lemma 5.12, we have a functorial
morphism ζ = (ζ.M)M∈Mod−Λ : κ → GC ◦F which, by Lemma 4.8, extends to a

functorial morphism ζC : idGMod−Λ = κC→(GC◦F)C .

Let M.∈ C(GMod−Λ). Then, (GC◦F)C(M.) = T((GC◦F)(M.).). By Lemma 4.8,

ζCM.=T(ζ.M.) :M.→(GC◦F)C(M.) with ζ.M. =(ζjMi)i,j∈Z : κ(M.).→ (GC◦F)(M.)..
It is evident that κ(M.). is diagonally bounded-above. Given n ∈ Z, by Lemma
5.4(2), we deduce that the n-diagonal of (GC◦F)(M.). consists of
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(GC◦F)(M i)n−i = ⊕j∈Z;x,a∈Q0
Ix〈n−i−j〉 ⊗ exΛ!

n−iea ⊗M i
j(a); i ∈ Z.

Since Λ!
n−i = 0 for i > n, we see that (GC◦ F)(M.). is n-diagonally bounded-

above. So (GC◦ F)(M.). is diagonally bounded above. Further for any i ∈ Z, by
Lemma 5.12, ζ.Mi : ti(κ(M i).) → ti((GC◦ F)(M i).) is a quasi-isomorphism. Thus,

by Lemma 4.4, ζCM. is a quasi-isomorphism. The proof of the lemma is completed.

We are ready to prove the main result of this section, which includes the classical
Koszul duality of Belinson, Ginzburg and Soergel; see [5].

5.16. Theorem. Let Λ = kQ/R be a Koszul algebra, where Q is a locally finite
quiver. Consider p, q ∈ R with p ≥ 1 and q ≥ 0.

(1) The right derived Koszul functor FDp,q :D ↓p,q(GModΛ)→D ↑q+1,p−1(GModΛ!) and

the left derived Koszul functor GDq+1,p−1 : D ↑q+1,p−1(GModΛ!)→D ↓p,q(GModΛ)
are mutually quasi-inverse.

(2) The left derived Koszul functor GDp,q :D ↑p,q(GModΛ)→D ↓q+1,p−1(GModΛ!) and

the right derived Koszul functor FDq+1,p−1 :D ↓q+1,p−1(GModΛ!)→D ↑p,q(GModΛ)
are mutually quasi-inverse.

(3) In the above two statements, GModΛ and GModΛ! can be simultaneously re-

placed by gmodΛ and gmodΛ!, respectively.

Proof. Recall that C ↓p,q(GModΛ) ⊆ C(GMod−Λ). By Lemmas 5.15 and 5.14, we

have natural quasi-isomorphisms ζCN. :N.→ (GC◦ F)C(N.) for N.∈C ↓p,q(GModΛ),

and ηCM. : (FC◦G)C(M.)→M. for M.∈ C ↑q+1,p−1(GModΛ!). And by Proposition 4.7,

(GC ◦F)C(N.) = (GCq+1,p−1 ◦FCp,q)(N
.) and (FC ◦G)C(M.) = (FCp,q ◦GCq+1,p−1)(M.).

This gives rise to natural isomorphisms ζDN. :N.→ (GDq+1,p−1◦ FDp,q)(N
.) for N. in

D ↓p,q(GModΛ) and ηDM. : (FDp,q ◦ GDq+1,p−1)(M.)→M. for M. in D ↑q+1,p−1(GModΛ!).

So, FDp,q and GDq+1,p−1 are mutually quasi-inverse. This establishes Statement (1).
Similarly, we can prove Statement (2). Finally using the same argument, we deduce
Statement (3) from Theorem 5.7(3). The proof of the theorem is completed.

Remark. Taking p = 1 and q = 0, Theorem 5.16(1) and (2) have been established
in [5, (2.12.1)] with a sophisticated proof, while Theorem 5.16(3) has been proved
for a positively graded Koszul category in [26, Theorem 30].

We shall show that the bounded derived Koszul functors are also triangle equiv-
alences in the locally bounded case,

5.17. Theorem. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

(1) If Λ is locally right bounded and Λ! is locally left bounded, then the derived Koszul

functors FDb :D(GModbΛ)→D(GModbΛ!) and GDb :D(GModbΛ!)→D(GModbΛ)
are mutually quasi-inverse.

(2) If Λ is locally left bounded and Λ! is locally right bounded, then the derived Koszul

functors GDb :D(GModbΛ)→D(GModbΛ!) and FDb :D(GModbΛ!)→D(GModbΛ)
are mutually quasi-inverse.

(3) In the above two statements, GModbΛ and GModbΛ! can be simultaneously re-

placed by gmodbΛ and gmodbΛ!, respectively.

Proof. Suppose that Λ is right locally bounded and Λ! is left locally bounded. Since
Λ! is Koszul with (Λ!)! = Λ, by Theorem 5.9, we obtain triangle exact functors

FDb : Db(GModbΛ)→ Db(GModbΛ!) and GDb : Db(GModbΛ!)→ Db(GModbΛ). As
argued in the proof of Theorem 5.16, we see that they are mutual quasi-inverse.
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This establishes Statement (1). Similarly, one can verify Statements (2) and (3).
The proof of the theorem is completed.

Remark. In case Λ is of finite dimensional and Λ! is left noetherian, Beilinson,
Ginzburg and Soergel established Theorem 5.17(3); see [5, (2.12.6)].

6. Graded almost split triangles

The objective of this section is to study almost split triangles in derived categories
of graded modules over a Koszul algebra. We shall show that the Auslander-Reiten
translations and the Serre functors are related to derived Koszul functors.

Throughout this section let Λ = kQ/R be a Koszul algebra, where Q is a locally
finite quiver. It is known that gprojΛ and ginjΛ are Hom-finite and Krull-Schmidt,
and so are K b(gprojΛ) and K b(ginjΛ); see [18, (2.12.2), (4.1.1)]. Moreover, there

exists a Nakayama functor ν : gprojΛ→ GModΛ!, which restricts to an equivalence
ν : gprojΛ → ginjΛ such that ν(Px〈s〉 ⊗ V ) ∼= Ix〈s〉 ⊗ V, for (s, x) ∈ Z × Q0 and
V ∈ modk; see [18, (3.2.1)]. Applying ν componentwise, we obtain a triagnle-
equivalence ν : K b(gprojΛ)→ K b(ginjΛ); see [18, (4.1.1)].

First, by making use of the derived Koszul functors, we may describe some almost
split triangles in Db(gmodΛ) in terms of bounded complexes of finite dimensional

graded Λ!-modules ; compare [3, (5.2)].

6.1. Proposition. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

If M.∈Db(gmodbΛ!) with FD(M.) or GD(M.) indecomposable, then we have an al-

most split triangle GD(M.)[−1] // N. // FD(M.) // GD(M.) in Db(gmodΛ).

Proof. Consider a complex M. ∈ C b(gmodbΛ!). By Theorem 5.8 and Lemma 5.3,

FC(M.) ∈ C b(gprojΛ!) such that FC(M.)n = ⊕(i,x)∈Z×Q0
P !
x〈n−i〉 ⊗M i

n−i(x), for

all n ∈ Z. Then, νFC(M.)n ∼= ⊕(i,x)∈Z×Q0
I !
x〈n−i〉 ⊗M i

n−i(x) = GC(M.)n, for all

n ∈ Z. That is, GC(M.) ∼= νFC(M.). In particular, FK(M.) is indecomposable
in Kb(gprojΛ) if and only if GK(M.) is indecomposable in Kb(ginjΛ). If FD(M.)
or GD(M.) is indecomposable in Db(gmodΛ), then FK(M.) is indecomposable in
Kb(gprojΛ). And in this case, by Theorem 4.1.2 in [18], we obtain a desired almost
split triangle in Db(gmodΛ). The proof of the proposition is completed.

Remark. Our terminology of left and right Koszul functors is explained by the
almost split triangle stated in Proposition 6.1.

Example. Let Λ = kQ/R be a Koszul algebra with a ∈ Q0. It is well known that
Sa is indecomposable in Db(gmodΛ); see [27, (III.3.4.7)]. If I !

a or P !
a is finite dimen-

sional, by Lemma 5.10, FD(I !
a) ∼= Sa or GD(P !

a) ∼= Sa in Db(gmodΛ) respectively,

and by Proposition 6.1, there exists an almost split triangle in Db(gmodΛ) ending
or starting with Sa respectively.

In case Λ! is locally bounded, we shall establish the existence of almost split trian-
gles in Db(gmodΛ) for bounded complexes of finite dimensional graded Λ-modules
and describe the Auslander-Reiten translates in terms of derived Koszul functors.
For this purpose, we call a bounded complex over gmodΛ derived-indecomposable
if it is indecomposable in Db(gmodΛ).

6.2. Theorem. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

(1) Every derived-indecomposable complex M. in C b(gmodbΛ) is the ending term of

an almost split triangle in Db(gmodΛ) if and only if Λ! is locally right bounded ;
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and in this case, τM. ∼= GD(GD(M.))[−1].

(2) Every derived-indecomposable complex M. in C b(gmodbΛ) is the starting term

of an almost split triangle in Db(gmodΛ) if and only if Λ! is locally left bounded ;

and in this case, τ−M. ∼= FD(FD(M.))[1].

Proof. We shall only prove Statement (1). Given a ∈ Q0, by Lemma 3.10, Sa has a

minimal graded projective resolution P.a with P−na = ⊕x∈Q0
Px〈−n〉 ⊗D(eaΛ!

nex),
for all n ∈ Z. If Sa is the ending term of an almost split triangle in Db(gmodΛ),

then P.a is finite; see [19, (5.2)]. Then, eaΛ!
n = 0 for all but finitely many n ≥ 0.

So, eaΛ! is finite dimensional. This establishes the necessity of Statement (1).

Suppose that Λ! is locally right bounded. Then ginjΛ! ⊆ gmodbΛ!. Consider
a derived-indecomposable complex M. ∈ C b(gmodbΛ). In view of Theorem 5.9(3),

GC(M.)∈C b(ginjΛ!), and by Theorem 5.8(3), FC(GC(M.)) ∈ C b(gprojΛ). Thus, by

Lemma 5.14(2) and Proposition 4.7, FD(GD(M.))∼=M. in Db(gmodΛ). Observing

that GD(M.)∈C b(gmodbΛ!), we deduce from Proposition 6.1 an almost split triangle

GD(GD(M.))[−1] // N. // M. // GD(GD(M.)) in Db(gmodΛ). The proof of
the theorem is completed.

Example. Let Λ = kQ, where Q is a locally finite quiver. Then Λ! = kQo/R!,

where R! is the ideal in kQo generated by the paths of length two. Clearly, Λ! is
locally bounded. By Theorem 6.2, every derived-indecomposable bounded complex
over gmodbΛ is the starting term, as well as the ending term, of an almost split
triangle in Db(gmodΛ).

To conclude, we concentrate on the bounded derived category Db(gmodbΛ).

6.3. Proposition. Let Λ = kQ/R be a Koszul algebra with Q a locally finite quiver.

Then Db(gmodbΛ) is Hom-finite and Krull-Schmidt.

Proof. Let M ∈ gmodbΛ. By Corollary 5.13, M admits a graded projective resolu-
tion over gprojΛ. Given any N ∈ gmodbΛ, since GHomΛ(P,N) is finite dimensional
for P ∈ gprojΛ; see [18, (2.12.1)], GExtnΛ(M,N) is finite dimensional for all n ∈ Z.

Thus, Db(gmodbΛ) is Hom-finite and Krull-Schmidt; see [17, Corollary B]. The
proof of the lemma is completed.

Finally, we find conditions for Db(gmodbΛ) to have almost split triangles and
describe the Serre functors in terms of the derived Koszul functors.

6.4. Theorem. Let Λ = kQ/R be a locally bounded Koszul algebra, where Q is a
locally finite quiver.

(1) There exist almost split triangles in Db(gmodbΛ) on the right if and only if Λ! is

right locally bounded ; and in this case, GD ◦ GD : Db(gmodbΛ) → Db(gmodbΛ)
is a right Serre functor.

(2) There exist almost split triangles in Db(gmodbΛ) on the left if and only if Λ! is

left locally bounded ; and in this case, FD ◦ FD : Db(gmodbΛ) → Db(gmodbΛ)
is a left Serre functor.

(3) There exist almost split triangles in Db(gmodbΛ) if and only if Λ! is locally

bounded. In this case, GD◦ GD : Db(gmodbΛ)→ Db(gmodbΛ) is a right Serre

equivalence and FD◦FD:Db(gmodbΛ)→Db(gmodbΛ) is a left Serre equivalence.

Proof. Since Λ is locally bounded, gprojΛ and ginjΛ are subcategories of gmodbΛ.
Now, using the same argument for proving Theorem 6.2(1), we can establish State-
ment (1). And Statement (2) can be shown in a similar fashion. Finally, Statement
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(3) is an immediate consequence of the first two statements. The proof of the
theorem is completed.

Remark. Let Λ = kQ/(kQ+)2, where Q is a locally finite quiver without in-

finite paths. Then, Λ and Λ! = kQ are locally bounded. Hence, Db(gmodbΛ)

and Db(gmodbkQ) are equivalent and have almost split triangles; see (5.17) and

(6.4). One could describe the Aulsander-Reiten components of gmodbkQ, and this

would yield a description of the Auslander-Reiten components for Db(gmodbkQ)

and Db(gmodbΛ), as is done in the ungraded case; see [3, 4].
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