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ABSTRACT. We discover a new connection between Koszul theory and rep-
resentation theory. Let A be a quadratic algebra defined by a locally finite
quiver with relations. Firstly, we give a combinatorial description of the local
Koszul complexes and the quadratic dual A', which enables us to describe the
linear projective resolutions and the colinear injective coresolutions of graded
simple A-modules in terms of A'. As applications, we obtain a new class of
Koszul algebras and a stronger version of the Extension Conjecture for finite
dimensional Koszul algebras with a noetherian Koszul dual. Then we con-
struct two Koszul functors, which induce a 2-real-parameter family of pairs
of derived Koszul functors between categories derived from graded A-modules
and those derived from graded A'-modules. In case A is Koszul, each pair of
derived Koszul functors are mutually quasi-inverse, one of the pairs is Beilin-
son, Ginzburg and Soergel’s Koszul duality. If 4 and A' are locally bounded on
opposite sides, then the Koszul functors induce two equivalences of bounded
derived categories: one for finitely piece-supported graded modules, and one for
finite dimensional graded modules. And if A and A' are both locally bounded,
then the bounded derived category of finite dimensional graded A-modules has
almost split triangles with the Auslander-Reiten translations and the Serre
functors given by composites of derived Koszul functors.

INTRODUCTION

The history of Koszul theory traces back to Cartan and Eilenberg’s computation
of the cohomology groups of a Lie algebra using the Koszul resolution; see [7, Section
8.7]. This theory is connected to numerous research domains such as algebraic
topology; see [12, 29|, algebraic geometry; see [5], Hopf algebras and Lie theory;
see [5, 25, 26, 32]. Beilinson, Ginzburg and Soergel described the Koszul duality
between a locally finite dimensional Koszul algebra A and its Koszul dual A', that
is a pair of mutually quasi-inverse equivalences between a category derived from
graded A-modules and one derived from graded A'-modules. In case A is finite
dimensional and A' is left noetherian, they obtained an equivalence of the bounded
derived categories of finitely generated graded modules. Later, the Koszul duality
has been generalized to positively graded Koszul categories; see [26]. On the other
hand, the representation theory of finite dimensional Koszul algebras has been
studied by many representation theorists; see, for example, [9, 10, 11, 21, 22, 23, 24].

Motivated by the application of the covering technique in representation theory;
see [1, 2, 6, 8], this paper aims to study Koszul algebras defined by locally finite
quivers, from a novel viewpoint of connecting Koszul theory and representation
theory. Our contribution is twofold. As to Koszul theory, not only our Koszul
algebras have infinitely many graded simple modules, the classical Koszul duality
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of Beilinson, Ginzburg and Soergel is extended to a 2-real-parameter family of pairs
of mutually quasi-inverse equivalences. And under a weaker hypothesis, we obtain
two equivalences of bounded derived categories, one for finitely piece-supported
graded modules and one for finite dimensional graded modules. In contrast to their
sophisticated technique of spectral sequences, our tool is elementary: a local version
of the Acyclic Assembly Lemma and an existent technique of functor extension.

As to representation theory, we obtain a new class of Koszul algebras and a
stronger version of the Extension Conjecture for finite dimensional Koszul algebras
with a noetherian Koszul dual. The Koszul functors yield an explicit graded pro-
jective resolution and a graded injective co-resolution for every finite dimensional
graded modules over a Koszul algebra. This could make finite dimensional Koszul
algebras a testing class for other homological conjectures such as the Finitistic Di-
mensional Conjecture. In the locally bounded Koszul case, we obtain an existence
theorem for almost split triangles in the bounded derived category of finite di-
mensional graded modules, and describe the Auslander-Reiten translations and the
Serre functors in terms of the derived Koszul functors. This will stimulate future
study on graded Auslander-Reiten components of a hereditary or radical squared
zero algebra, as did in the ungraded setting; see [3, 4].

In order to outline the content section by section, we let A be a graded al-
gebra defined by a locally finite quiver with homogeneous relations, and denote
by GModA the category of unitary graded left A-modules, whose subcategories of
finitely piece-supported modules, of piecewise finite dimensional modules and of fi-
nite dimensional modules are written as GMod%, gmodA and gmodb/l, respectively.

In Section 1, we lay the foundation for this paper. In Section 2, we introduce
linear projective n-presentations and colinear injective n-copresentations; see (2.4)
and prove that A is quadratic if and only if every graded simple A-module admits a
linear projective 2-presentation; see (2.6). In particular, a Koszul algebra; see (2.8)
is always quadratic; compare [5, (2.3.3)].

In Section 3, we give a combinatorial description of the local Koszul complexes
and the quadratic dual A' in case A is quadratic; see (3.2) and (3.8). This enables
us to describe linear projective resolutions and colinear injective coresolutions for
graded simple modules in terms of subspaces of A'; see (3.10) and (3.11). And we
show that A is Koszul if and only if its quadratic dual or opposite algebra is Koszul
if and only if every graded simple module has a colinear injective coresolution; see
(3.12); compare [5, (2.2.1), (2.9.1)]. As applications, we obtain a sufficient condition
for a quadratic special multi-serial algebra to be Koszul; see (3.14) and establish a
stronger version of the Extension Conjecture; see, for definition, [16, (2.6)] for finite
dimensional Koszul algebras with a noetherian Koszul dual; see (3.15).

In Section 4, we first develop a homotopy theory for double complexes over a
concrete additive category A, including a local version of the Acyclic Assembly
Lemma; see (4.1); compare [33, (2.7.3)]. Then, we formalize a technique of ex-
tending a functor from A into the complex category C(B) of a concrete additive
category B to a functor from C(A) into C(B); see (4.6). Then, we show that the ex-
tended functor descends to categories derived from suitable subcategories of C(A);
see (4.9). This is the key ingredient for constructing the derived Koszul functors.

In Section 5, we describe the generalized Koszul dualities. First in case A is
quadratic, we construct two Koszul functors from GModA to C'(GModA'); see (5.1).
They extend to two complex Koszul functors from C(GModA) to C(GModA'),
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which induce a 2-real-parameter family of pairs of derived Koszul functors between
categories derived from subcategories of C'(ModA) and those derived from subcate-
gories of C(ModA'); see (5.7). In case A is Koszul, derived Koszul functors in
each pair are mutually quasi-inverse; see (5.16), and one of the pairs is the classical
Koszul duality; see [5, (2.12.1)] and [26, Theorem 30]. In case A and A' are locally
bounded on opposite sides, the Koszul functors induce two triangle-equivalences
D(GMod) 2 DY(GMod™') and D?(gmod®d) 2 D?(gmod®"); see (5.17).

In Section 6, we study almost split triangles in bounded derived categories of
graded A-modules in case A is Koszul. In fact, the indecomposable images of
complexes in C?(gmod?A") under the complex Koszul functors fit into almost split
triangles in D®(gmodA); see (6.1). And every derived-indecomposable complex in
C?(gmod¥) is the ending (respectively, starting) term of an almost split triangle in
D’(gmodA) if and only if A' is locally right (respectively, left) bounded; see (6.2).
In case A is locally bounded, Db(gmodb/l) has almost split triangles on the right
(respectively, left) if and only if A' is locally right (respectively, left) bounded. In
case A and A" are both locally bounded, the Auslander-Reiten translations and the
Serre functors for D¥(gmod?) are composites of derived Koszul functors; see (6.4).

1. PRELIMINARIES

The objective of this section is to fix some terminology and notation, which will
be used throughout the paper, and collect some preliminary results.
1) LINEAR ALGEBRA. Throughout this paper, k& denotes a commutative field, and
all tensor products will be over k. Given a set S, the k-vector space spanned by S
will be written as kS. We write Modk for the category of k-vector spaces and modk
for the category of finite dimensional k-vector spaces. We shall make a frequent use
of the exact functor D = Homy(—, k) : Modk — Modk, which restricts to a duality
D : modk — modk. The following statement is well-known.

1.1. LEMMA. Given any k-vector spaces U, V; M, N, we have a k-linear map
p : Homy (U, M) ® Homy(V,N) - Homp(U®V,M @ N) : f@ g+ p(f ®g),
which is natural in all variables, such that p(f @ g)(u®@v) = f(u) @ g(v) foru e U
and v € V. And p is an isomorphism in case U, M € modk or V, N € modk.
REMARK. We shall identify f ® g with p(f ® g) in case p is an isomorphism.
Since V@k =2V = Homy (k, V'), we immediately obtain the following consequence.
1.2. COROLLARY. Given U € modk and V € Modk, we have
(1) a natural k-linear isomorphism o : DUQV — Homg(U,V) : f@v +— o(f @v),
where o(f @ v)(u) = f(u)v, foru € U and v € V;
(2) a natural k-linear isomorphism ¢ : DV @ DU - D(VRU): f@g— o(f®yg),
where o(f @ g)(v@u) = f(v)g(u), foruec U andv e V.

The following statement will be needed for our later investigation.

1.3. LEMMA. Let f : U — M and g : N — V be morphisms in modk. Then, we
obtain a commutative diagram with vertical isomorphisms

Ue DV —12% . Mo DN

eU,V\L \LOZ\/I,N

D D
p(v ® Uy 29221 (N @ D).
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Proof. Composing the canonical k-linear isomorphism U ® DV — D2?U ® DV
with the k-linear isomorphism D?U ® DV — D(V ® DU) as stated in Corollary
1.2(2), we obtain a k-linear isomorphism 6y v : U ® DV — D(V ® DU) such that
Ouv(u®)ve) = (w)eE(u), forueU;veV; e DV and £ € DU. Now, it is
routine to verify the commutativity of the diagram stated in the lemma commutes.
The proof of the lemma is completed.

2) QUIVERS. Throughout this paper, @ = (Qo, Q1) denotes a locally finite quiver,
where (g is a set of vertices and )7 is a set of arrows such that at most finitely
many arrows start or end at any given vertex. Given an arrow « : x — y, we write
x = s(a) and y = e(w). For each z € Qo, one associates a trivial path €, with
s(eg) = e(ez) = x. A path of positive length n is a sequence p = a, - - - oy, with
a; € @, such that s(a;11) = e(ay), for i = 1,...,n — 1. In this case, we call oy
the initial arrow; and a,,, the terminal arrow, of p. Fix x,y € Qo and an integer
n > 0. We shall denote by Q(x,y) the set of paths from z to y in @ and by @,, the
set of all paths of length n in Q. Moreover, put Q,(z,y) = @, N Q(z,y) and write
Qn(z,—) = Ungan(x,Z) and Qn(—,z) = UzGQan(Z»x)~

The opposite quiver Q° of @ is a quiver defined in such a way that (Q°)y = Qo
and (Q°)1 ={a°:y > x| a:x — y € Q1}. A non-trivial path p = ay, -3
in Q(z,y), where o; € @1, corresponds to a non-trivial path p° = af---a2 in
Q°(y,x). For convenience, we identify the trivial path at a vertex x in @ with the
trivial path at x in Q°.

3) ALGEBRAS DEFINED BY QUIVERS WITH RELATIONS. In this paper, an algebra
does not necessarily have an identity, and an ideal in an algebra is always two-sided.

Let Q@ = (Qo, Q1) be a locally finite quiver. Write k@ for the path algebra of @
over k. An ideal in kQ is called a relation-ideal if it is contained in (kQ*)?, where
kQT is the ideal in kQ generated by the arrows. A non-zero element p € kQ(z,y)
with 2,y € Qo is called monomial if p = Ap with A € k and p € Q(z,y), and
polynomial otherwise. An element in kQ, with n > 0 is called homogeneous; and
quadratic if n = 2.

Let A = kQ/R, where R is a relation-ideal in kQ. Given z,y € Qo and
n > 0, we write R(z,y) = RN kQ(z,y) and R,(z,y) = RN kQ,(x,y), and
put R,(x,—) = U,eq,Rn(z, 2) and R,(—,y) = Uzeq,Rn(z,y). Furthermore, set
R(z,—) = Up>oRu (7, —) and R(—,y) = Up>0Rn(—,y). An element p = 25:1 Aipi
in R(x,y) is called a relation for A if the p; are pairwise distinct paths such that
Yiex Aipi € Rforany 0 # X C {1,...,s}; and in this case, the A;p; are called the
summands of the relation p.

The algebra A is called graded or quadratic if R is generated by some homogeneous
relations or by some quadratic relations, respectively. Moreover, we say that A is
locally left bounded if the Ae, are all finite dimensional; locally right bounded if
the e, A are all finite dimensional, and locally bounded if it is locally left and right
bounded; compare [6, (2.1)]. Furthermore, A is called special multi-serial provided,
for any arrow « in @1, that there exists at most one arrow 8 in @ such that fa ¢ R,
and at most one arrow 7 such that ay ¢ R; see [15].

Finally, let us fix some notation for 4. Write 4 = v+ R € A for v € kQ, and
e, = &, for x € Qo. Then, {e, |z € Qo} is a complete orthogonal set of idempotents
in A. The opposite algebra of A is given by A° = kQ°/R°, where R° = {p° | p € R}.
We write 7° = ~° + R° for v € kQ, but e, = ¢, + R° for z € Qp.
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4) ALMOST SPLIT TRIANGLES. In this paper, all categories are additive k-categories,
in which morphisms are composed from the right to the left. A full subcategory
of a category is called strictly full if it is closed under isomorphisms. All functors
between additive k-categories are k-linear. Let A be a triangulated k-category with
translation functor [1]. An almost split triangle in A is an exact triangle

x 1oy 2oz 0. xp

with f minimal left almost split and g minimal right almost split; see [14]. In
this case, X is called the starting term, and Z the ending term, of the almost splt
triangle, and we write X =77 and Z = 77 X.

An object in A is called strongly indecomposable if it has a local endomorphism
algebra. We say that A has almost split triangles on the right (respectively, left)
if every strongly indecomposable object in A is the ending (respectively, starting)
term of an almost split triangle; and in this case, 7 (respectively, 77) is called
the right (respectively, left) Auslander-Reiten translation. And we say that A has
almost split triangles if it has almost split triangles on both sides.

Let now A be Hom-finite and Krull-Schmidt. A functor S : A — A is called a left

(respectively, right) Serre functor if there exists a binatural k-linear isomorphism
Homy(X,Y) = DHomy(SY, X) (respectively, Hom4(X,Y) = DHomy(Y,SX))
for any X,Y € A; see [30, (I.1)]. As shown by Reiten and Van den Bergh, A has
almost split triangles on the right (respectively, left) if and only if it admits a right
(respectively, left) Serre functor S; and in this case, 7X = S(X)[—1] (respectively,
7-X = S(X)[1]) for any indecomposable object X € A. Moreover, A has almost
split triangles if and only if it admits a right Serre equivalence, or equivalently, a
left Serre equivalence; see [30, (1.2.3)].
6) DERIVED CATEGORIES. Let A be a strictly full additive subcategory of an
abelian k-category 2(. We denote by C(.A) the complex category of A, whose full
subcategories of bounded complexes, of bounded-below complexes and of bounded-
above complexes are written as C?(A), C*(A) and C~(A) respectively. Given
x€{0,b,+,—}, we denote by K*(A) the (x)-homotopy category and by D*(A) the
(x)-derived category of A.

A strictly full additive subcategory o7 of C(2) is called derivable if it is closed
under shifts. In this case, & is closed under mapping cones. Thus, the quotient
category K(«7) of &/ modulo the null-homotopic morphisms is a full triangulated
subcategory of K(21); see [27, (II.1.7)], in which the quasi-isomorphisms form a
localizing class compatible with the triangulation; see [27, (II1.3.1.2)]. Therefore,
the localization D() of (&) at quasi-isomorphisms is a triangulated category;
see [27, (I1.1.6.1)], which we call the category derived from <.

2. LINEAR PROJECTIVE N-PRESENTATIONS AND QUADRATIC ALGEBRAS

The main objective of this section to introduce linear projective n-presentations
and colinear injective n-copresentations for graded modules and show that a graded
algebra is quadratic if and only if every graded simple module admits a linear
projective 2-presentation.

We start with some preliminaries on graded modules. Throughout this section
let A = kQ/R be a graded algebra, where @ is a locally finite quiver and R is a
homogeneous relation-ideal in k. Then A is a positively graded k-algebra with
grading A = @;>04;, where 4; = {¥ | v € kQ;}. Moreover, A° is also positively
graded with grading A° = @;>047, where A7 = {7° | v € kQ;}.
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A left A-module M is called unitary if M = @yeq,e.M and graded provided
M = @®;czM;, where the M, are k-vector spaces such that A;M; C M;;; for
i,j € Z. Let M be a unitary graded left A-module. Then M = @ 1)ezxq,M:i(),
where M;(x) = e, M; is called the (i, x)-piece of M. The elements in M; are called
homogeneous of degree i and those in M;(x) are called pure.

Let N be also a unitary graded left A-module. A A-linear morphism f : M — N
is graded if f(M;) C N; for all i € Z. In this case, we write f; : M; — N; and
fiaw + Mij(x) — N;(z) for the k-linear maps obtained by restricting f. In the
sequel, we shall identify f with a family of k-linear maps f; » : M;(z) — gi(z) with
(1,2) € Z x Qo such that uf; z(m) = fit;,(um), for all u € e, Aje, and m € M;(z).

The unitary graded left A-modules together with the graded A-linear morphisms
form an abelian k-category GModA, in which the morphism spaces will be written
as GHom, (M, N). A module M € GModA4 is called bounded-below if M; = 0 for
i < 0; bounded-above if M; = 0 for i > 0; finitely piece-supported if M;(x) = 0 for
all but finitely many (i,x) € Z x Qo; and piecewise finite dimensional if M;(x) is
finite dimensional for all (i,z) € Z x Qy. We write GMod™, GMod A, GModX,
gmod A and gmod? for the subcategories of GModA of bounded-below modules,
of bounded-above modules, of finitely piece-supported modules, of piecewise finite
dimensional modules and of finite dimensional modules, respectively.

Let M € GModA. Given s € Z, the grading s-shift M(s) of M is defined by
M(s); = Msy; for all ¢ € Z. In particular, M(s);(x) = Ms4i(z), for (i,z) € Z X Q.
Given a morphism f: M — N in GModA, the grading s-shift f(s) of f is defined
by f(s)i = fits : Mits — Niys for all i € Z. Moreover, given V' € Modk, we have
MRV =@cz(M; ® V) € GModA. Note that (M ® V);(z) = M;(z) ® V for all
(i,x) € Z X Qq. Tt is evident that (M ®@ V)(s) = M(s) @ V.

In the study of graded A-modules, an important role will be played by a con-
travariant functor ® : GModAd — GModA° introduced in [18, (2.2)]. Given
M € GMod4, we have DM = ®ez.peq, D(M_;(x)) such that (u° - ¢)(v) = p(uv),
for p € D(M_;(x)); u € egAdjey and v € M_;_;j(y). So (DOM); = Breq, D(M_;(z))
and (OM);(z) = D(M_;(z)). Given a morphism f : M — N in GMod4, we have a
morphism D(f) : O©N — DM such that D(f); , = D(f-i ), for all (i,z) € Z x Qo.
For convenience, we quote the following statement from [18, (2.2.1), (2.2.2)].

2.1. PROPOSITION. Let A = kQ/R be a graded algebra with Q a locally finite quiver.

(1) If M € GModA and s € Z, then D(M(s)) = (DM ){(—s).
(2) If M € GModA and V € modk, then D(M @ V) =DM @ DV.
(3) The functor © restricts to a duality © : gmodA — gmod A°.

Let M € GModA. A A-submodule N of M is graded if N = @;cz(M; N N).
In this case, if m = Z(i,z)GZXQg m; e € N with m; , € M;(x), then m;, € N for
any (i,x) € Z x Q. The quotient M/N is graded as M/N = @®;cz(M; + N)/N.
Recall that the graded radical radM of M is the intersection of all graded maximal
submodules of M, the graded socle socM of M is the sum of all graded simple
submodules of M, and the graded top topM of M is the quotient M /radM. Note
that rad(44) = @;>14; =: rad4 and radM = (radA)M; see [18, (2.6.2)], and
socM = {m € M | (radA)m = 0}; see [18, (2.9.1)]. Further, one says that M
is finitely generated (in degree s) ift M = Amq + - -+ + Amy, where mq,...,m; are
homogeneous (of degree s); and finitely cogenerated (in degree s) if socM is finitely
generated (in degree s) and graded essential in M.
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Let a € Qo. Put P, = Aeq = @i>0die, € gmodA, which is generated in degree
0 by eq. We denote by GProjA and gprojA the strictly full additive subcategories
of GModA generated by Py(—s) @ V with (s,a) € Z x Qo and V € Modk, and by
P,(—s) with (s,a) € Z x Qo, respectively. Then, GProjA contains only graded pro-
jective modules, and gproj/ is generated by all finitely generated graded projective
modules in GModA4; see [18, (2.3.2), (2.12.2)].

On the other hand, we write P? = A%, € gprojA° and I, = DP? € gmodA.
Then, I, = @;>0(la)—i with (I4)—; = Peecq,(la)—i(z) and (I,)—i(z) = D(ezA7eq),
for i > 0 and = € Qp. Note that I, is co-generated in degree 0 by eX, where
e* € D(egA°e,) such that e (e,) = 1. We denote by GInjA and ginjA the strictly
full additive subcategories of GModA generated by I,(s) ® V with (s,a) € Z X Qo
and V € Mod k and by I,(s) with s € Z, respectively. Then, GInjA contains only
graded injective modules, and ginjA is generated by all finitely cogenerated graded
injective modules in GMod4; see [18, (2.4.2), (2.12.2)].

Let M € gmodA. A graded projective cover over gprojA for M is an epimorphism
f+ P — M with P € gprojA such that Ker(f) C radP; and a graded injective
envelope over ginjA is monomorphism ¢: M — I with I € ginjA and socI C Im(g).
The following definition; see [18, (2.7.1), (2.10.1)] is important for constructing
graded projective covers and graded injective envelopes.

2.2. DEFINITION. Let A = kQ/R be a graded algebra with @ a locally finite quiver.
A set {my,...,m,} of pure elements in a module M € GModA is called a top-basis
for M provided that M = Amq + -+ + Am,. and {my + radM, ..., m, + radM } is
a k-basis of topM; and a soc-basis for M provided that socM has {mi,...,m,} as
a k-basis and is graded essential in M.

The following statement follows from the results stated in [18, (2.8.2), (2.11.2)].

2.3. PROPOSITION. Let A = kQ/R be a graded algebra with Q a locally finite quiver.

Given s € Z, a module M in gmodA has

(1) a graded projective cover f: Py (—s) @ --- @ P, (—s) = M, sending eq, to m;, if
and only if {my,...,m,} with m; € Ms(a;) is a top-basis for M;

(2) a graded injective envelope g : M — Io,(s) @ --- @ Iq,(s), sending m; to e , if
and only if {m1,...,m,} with m; € M_4(a;) is a soc-basis for M.

We are ready to introduce the main notions of this section.

2.4. DEFINITION. Let A = kQ/R be a graded algebra with @ a locally finite quiver.
Consider a module M € gmodA and an integer n > 0.
(1) In case M is finitely generated in degree s, an exact sequence

p-n " pion P14 po 2y 0

in gmodA is called a linear projective n-presentation of M if P~% € gprojA is
generated in degree s + i, for i = 0,...,n, and Ker(d=") C rad P~".
(2) In case M is finitely cogenerated in degree —s, an exact sequence

0 1 n
0 ML top L m
in gmod/ is called a colinear injective n-copresentation of M if I' € ginjA is
cogenerated in degree —s — 4, for ¢ = 0, ..., n, and socI™ C Im(d").

The following statement is important for our later investigation.

2.5. LEMMA. Let A = kQ/R be a graded algebra with @ a locally finite quiver.
Given a module M € gmodA, a sequence
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PO 0

in gmodA is a linear projective n-presentation of M if and only if

—n _a " —n+1 —1 d—!
pmnl.p P

0 oM 24 pp op-1 ppl-n 24 5p-n

is a colinear injective n-copresentation of D M.

0 ©d7!

Proof. By Proposition 2.1(2), we have a duality © : gmod4 — gmodA°. Thus, one
of the two sequences stated in the lemma is exact if and only if the other one is exact.
Moreover, P~" is generated in dgeree s+i if and only if P~* = &7_, P, (—s—1) with
a; € Qo if and only if DP~* 2 ®7_,I,. (s +1) if and only if D P~ is cogenerated in
degree —s — 4. Finally, Ker(d=") C radP~" if and only if d~" is right minimal if
and only if Dd™ is left minimal if and only if soc(DP~") C Im(Dd~ ™). The proof
of the lemma is completed.

Given u € e, A4y, the right multiplication by u yields a graded A-linear mor-
phism Plu] : P,(—s) — Py(—t) : v — vu. Note that this notation does not distin-
guish Plu] from its grading shifts. It is known that every graded simple module
in GMod4 is isomorphic to S, (s) for some (s,a) € Z x Qo; see [18, (2.5.1)]. The
following statement is the promised characterization of quadratic algebras.

2.6. THEOREM. Let A = kQ/R be a graded algebra with Q a locally finite quiver.
Then A is a quadratic algebra if and only if every graded simple A-module admits
a linear projective 2-presentation.

Proof. Tt suffices to show, for any a € Qo, that R(a,—) is generated by qua-
dratic relations if and only if S, admits a linear projective 2-presentation. Write
Qi(a,—)={a;:a—b;|i=1,...,r}. Then, {ay, - ,a&,} is a top-basis for rad P,.
Since @; € (radP,)1(b;), by Proposition 2.3(1), we obtain a projective presentation

d—l
Pl=P(-1)® - &P, (-1)—=P, S, 0

of S, over gprojA, where d; ! = (P[ay],- -+ , P[a,]) with Ker(d;!) C rad P, .

Suppose that R(a,—) is generated by quadratic relations. Since @ is locally
finite, R(a, —) has a minimal generating set {p1,...,ps}, where p; € kQz(a,c;)
with ¢; € Qo. Write p; = Yi_, vijas, where 7,5 € kQ1(bi,¢j), for j = 1,....s.
Considering 7;; € Py, (—1)2(c;), we have morphisms P[y;;] : Pe(—2) = Py,(—1) in
gprojA, for 1 <i <rand 1< j <s. Putting d;? = (P[y;;])rxs, we claim that S,
admits a linear projective 2-presentation

Pa

4-2 -1 ;
P(-2)® - &P (~2) —> P (-1)&--- @& P, (—1) —> P, =2 S, 0.
Set u; = dg?(ec;) = (Jujs---,9rj) € Ker(dg')a, for j =1,...,s. Since radP;*

is generated in degree 2, the ui,...,us are top-elements of Ker(d,'). Consider

v=(01,...,6.) € Ker(d;"'). To show that v € Z;Zl Auy, since Ker(dy!) is graded,
we may assume that 6; € kQ,(b;,c), where ¢ € Qo and p > 1, for i = 1,...,7.
Then, >._, d;a; € Ryy1(a,c). Since R(a, —) is generated by the p;, we may write
DimiGioy = 305 gwipg + 2o = 3y (305w + i),
where w; € kQp_1(cj,c) and 1; € Rp(b;, ¢). Therefore, 6; = Z?ﬂ%‘%’j + n;, for
i=1,...,r. This yields v = Z;lejuj. Further, assume that Y ;_, Aju; = 0 with
Aj € k. Then 3271 N\ = 0. Since R C (kQ™)?, we have Y 7_; Ajyi; = 0, for
i =1,...,r, and hence, E;zl Ajp; = 0. By the minimality, Ay = --- = A; = 0.
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This shows that {u1,...,us} is a top-basis for Ker(d;'). By Proposition 2.3, d 2
co-restricts to a graded projective cover of Ker(d;!). This establishes our claim.
Conversely, suppose that S, admits a linear projective 2-presentation

p2 4 p1 4 po_ 4 g 0.

By the uniqueness of graded projective cover, we may assume that d° = p, and
d='=d;!. Being generated in degree two, P~2 = P, (-2) @ --- @ P, (—2) where
Cly...5Cs € Qo. Then uj:= d_Q(ecj) € Ker(d,')a(cj) C ec;Aiey, @ - D e Mrey,,
which can be written as u; = (315, ..., Jrj), where v;; € kQ1(b;, ¢;). By Proposition
2.3(1), {u1,...,us} is a top-basis for Ker(d;!). By the definition of d2, we see that
nj = Y1 1 Vi € Ra(a,c;), for j=1,...,s.

Suppose that p € Ry(a,c), for some n > 2 and ¢ € Q. Then, p = >\, v
for some 7y; € kQ,_1(b;,c). Observing that (31,...,%,.) € Ker(d;!), we may write

(’7)/1,...,’71») = Zj‘:l 5]‘Uj, for some (Sj S an_Q(Cj,C). SO, Yi = 0; + ijl 5]")/1']‘,

where 0; € R,_1(b;,c), for i = 1,...,r. If n = 2, since Ri(—,c) = 0, we have
Vi = 251 05z, for i = 1,...,7, and consequently, p = 3°7_, §;7;. By induction
on n, we see that p € Z‘;:l(kQ)nj. This shows that R(a,—) is generated by the
quadratic relations 71, ...,ns. The proof of the proposition is completed.

More generally, we have the notions of linear projective resolution and colinear
injective coresolution.

2.7. DEFINITION. Let A = kQ/R be a graded algebra with @ a locally finite quiver.
Given a module M € gmodA, a graded projective resolution

—n d 7 1-n -1 a! 0
ii s pm . p P P 0
of M over gprojA is called linear if P~™ is generated in degree s + n with s a
constant, for all n > 0. And a graded injective coresolution
0 7O d' It . -1 d" n

of M over ginjA is called colinear if I™ is cogenerated in degree t — n with ¢ a
constant, for all n > 0.

The following definition of a Koszul algebra is essentially the same as the classical
one; see [5, (1.2.1)] and [26, (5.4)].

2.8. DEFINITION. Let A = kQ/R be a graded algebra with @ a locally finite quiver.
We call A a Koszul algebra if every graded simple A-module admits a linear projec-
tive resolution over gprojA.

REMARK. (1) By Theorem 2.6, a Koszul algebra is quadratic; compare [5, (2.3.3)].
(2) It is clear that A is Koszul if and only if S, admits a linear projective resolution
over gproj/, for every a € Q.

EXAMPLE. Given a locally finite quiver @), the path algebra kQ is Koszul. Indeed,
every S, with a € @y admits a linear projective resolution

Plail, - ,Pla,
e 0= Py (- 1) @ - @ By (—1) DD 0,

where a; : a — b;, i = 1,...,r are the arrows in Q1(a, —).

3. LocAL KOSZUL COMPLEXES AND KOSZUL DUALS

Throughout this section, let 4 = kQ/R be a quadratic algebra, where @ is a
locally finite quiver. First, we give a combinatorial description of the local Koszul
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complexes and the quadratic dual A Then, we describe linear projective resolu-
tions and colinear injective coresolutions of graded simple modules in terms of the
subspaces of A'. This leads to a number of equivalent conditions for A to be Koszul.
As applications, we obtain a new class of Koszul algebras and a stronger version of
the Extension Conjecture for certain finite dimensional Koszul algebras.

Let us start with some notation and terminology. Given an arrow « : y — z in
@, we have a k-linear derivation 0, : kQ) — kQ, sending a path p to d if p = ad, and
to 0 if « is not a terminal arrow of p. In particular, d, vanishes on kQ)y and sends
kEQp to kQp,—1 for any n > 0. Fix a € Qg and n > 0. Given a € Q1(y, ), we have
a graded A-linear morphism P[a] : Py(—n) — P,(1 — n), the right multiplication
by @, and a k-linear map 0, : kQn(a,x) = kQn—1(a,y). Since Q is locally finite,
for any z,y € Qo, we have a morphism

07" (y, x) :Zate(yng)P[éz] ® 0 : Po(—1) @ kQp(a, ) = Py (1—n) @ kQr—1(a, y)

in gprojA. The following statement is useful for later calculation.

3.1. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
Ifuepw<_n>7 NS anfl(a’vy) and C € le(:U,fE), then aa_n(y7x)(u®<-6) = u<®5
Proof. Let § € kQ,—1(a,y) and { € kQ1(y,z). Then, 0,(¢0) = 9,(¢) ¢ for any
a€ Q1. Write ¢ =3 5.0, (,.0) 288, where Ag € k. For any u € Py(—n), we have
Oy, z)(u® (o) = Za,ﬂte(y,w) Aol ® 04 (B0) = Zate(yw) A ® 5 = ul ® 9.
The proof of the lemma is completed.

Fix a,z € Qo. For n = 0,1, we put R™ (a,z) = kQ,(a,z); and for any integer
n > 2, we define R" (a, z) = No<j<n—2 kQn—2—;(—, ) -Re-kQ;(a, —). In particular,
R®(a,z) = Ra(a, x). Moreover, set R (a, —) = @,cq, R™ (a, ).

3.2. LEMMA. Let R be a quadratic ideal of kQ, where Q is a locally finite quiver.
Consider a,z € Qo with Q1(—,x)={a; :y; = x|i=1,...,7} and an integer n > 1.
(1) Ify € R™(a,z) and o € Q1 (y, x), then du(y) € R™ Y (a,y); and consequently,
v =31_1 i, for some v; € R"=V(a,y;).
(2) Ifp=>Y"1_, Cipi withp; € R Y(a,y;) and ¢; € kQ1(yi,x), then p € R™ (a,x)
if and only if p € Ra(—,x) - kQn—2(a,—).
Proof. Let v € R™(a,z) and a € Qi(y,x). Since 04(y) € kQn_1(a,y), we may
assume that n > 3. For any 0 < j < n — 3, we may write v =Y_._, 3;(;p;0;, where
Bi € Q1(—,2); G € kQn_3—;(—,v:); pi € R2; §; € kQj(a,—). Assume that 3; = « if
and only if 1 <4 < s. Then, da(y) = > i, Cipidi € kQn_3—j(—,y) - Ra - kQj(a, —).
So, Da(y) € R™ Y(a,y). The first part of Statement (1) is established, and the
second part follows immediately from it. Moreover, Statement (2) follows directly
from the definition of R(™(a,x). The proof of the lemma is completed.

Fix a € Qo. For n > 0, put ;" = @, Pu(—n) ® R™(a,z) € gprojA. Given
n>1and x,y € Qp, by Lemma 3.2(1), we get a graded A-linear morphism
" (W,7) = Y neq (ya) P1A) © 0o+ Po(—n) ® R™ (a,2) = Py(1—n) ® R~V (a,y).

Write K17 = @ye0, Py(1 —n) ® R™ Y (a,y) and consider the graded A-linear
morphism 9; " = (0;™(Y, ) (y,2)eQox Qo : Ka™ — KL™™. We obtain a sequence

. —-n 9, " 1—-n —1 a‘:l
K : K: K s K

a

KO — =0

in gprojA, which is a complex as shown below, called the local Koszul complex at
a; compare [5, (2.6)].
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3.3. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
If a€Qo, then K, is a complex such that Ker(9,;™) Cradk, ", for all n > 0.
Proof. Fix n > 1. By definition, K™ is generated in degree n. Let w e (K, ™),
be such that 9;"(w) = 0. Then, w=3}" o € ®7, where v, € R™(a,z). By
Lemma 3.2(1), vz = >_5cq, (—») Bs With d5 € R™ 1V (a,—). And by Lemma 3.1,
M (W) = Y c0uBen(—x) B ® 83 = 0. Since the 3 are k-linearly independent,
0g =0 for all B € Q1(—, ). Thus, w = 0. This shows that Ker(9,") C radC;".

Next, let u € Py(—n) and £ € R™ (a,2). We may assume that & = pd, where
§ € kQn_2(a,z) and p € Ro(z,x). Write p = >7_, ¢ with v; € kQ1(y;, ) and
Gi € kQ1(2, ;). By Lemma 3.1, (9100, ™) (u®¢&) = u(>;_; % (;®6) = up®s = 0.
The proof of the lemma is completed.

Observe that K0 = P, ® ke, for any a € Qq. Thus, we have a graded projective
cover 0% : K — S, sending e, @ £, to e, + radP,.

3.4. PROPOSITION. Let A = kQ/R be a quadratic algebra with Q a locally finite
quiver. If a € Q¢ and n > 0, then S, has a linear projective n-presentation over
gprojA if and only if the following sequence is exact:

Cp 0" g S0ty 0
Kr—K, K, Ky Se 0.
Proof. Since K™ is generated in degree n, it suffices to show the necessity. Let
pr 4 pion ppo g 0
a

be a linear projective n-presentation of S, over gprojA. Then, there exists a graded
A-linear isomorphism f° : P° — K9 such that d° = %0 90. Assume that we have
a commutative diagram with vertical isomorphisms

d()

d-P dar-r

p—r L5 piop PO Sa 0
| |
—p aa—p 1—p ai—p 0 82
K77 2s KL - K0 S, 0

for some 1 < p < n. Then, f'7P 0 d~P co-restricts to a graded projective cover of
Ker(917P). We shall obtain an isomorphism f~7: P~P — K P in gproj/ such that
fl7Pod™P = ;P o f~P. This amounts to show that 9,7 co-restricts to a graded
projective cover of Ker(d}~?), that is, Ker(9}7?) C Im(9,?) by Lemma 3.3.

Since P~7 is generated in degree p, by Proposition 2.3(1), Ker(d:7) has a top-
basis TP~! contained in (K177),. Choose a k-basis {p1,...,p:} of R?P~V(a,—),
where p; € R?~Y(a,y;). Then, K177 = ®%_ Py,(1 —p) @ kp;. Consider ueT?~".
Then, u € (K}7P),(2) = ®_ e.d1e,, @ kp;, for some z € Q. Write u = Z;Zl uj,
where u; = ¥; ® p; with v; € kQ1(y;,2), for j = 1,...,t. Now, choose a k-
basis {£1,...,&} of RV (a,—), where & € R™ V(a,z;). By Lemma 3.2(2),
Pi = oi_1Gij &, where (5 € kQq(wi,y;). Thus, u = Y77, Zz-zl ¥ ® i€ This
yields 9, "(u) = Zle(ZEﬂ 7;Ci;) ®& = 0. As a consequence, Z;ZﬁjCz’j =0, and
hence, n; = Z;Zl'ngj € Ro(xy,2), fori =1,...,s. Put w = Z;Zl v;p;, where
v € kQ1(y;, 2) and p; € RP~V(a,y;). Since w = 37 1;&, where 1; € Ro(w;, 2)
and & € kQ,_1(a,z;), by Lemma 3.2(2), w € R®)(a,z2). So, e, ®w € K;? and
0, 7(e; ®w) = 8(;”(2:;:1@ ® vip;) = Z;:l'_yj ®p; = Z;:luj = u. This shows
that Ker(d1~P) C Im(9,P). The proof of the proposition is completed.
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As an immediate consequence, we obtain the following statement, which genera-
lizes the result stated in [5, (2.6.1)].

3.5. THEOREM. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
Then A is Koszul if and only if IC;, is a graded projective resolution of S, fora € Q.

Next, we shall define the quadratic dual of A by @Q°; compare [5, 21, 26]. We
need some notation. Let n > 0. Given £ € Q,, let £&* € D(kQ,,) such, for any
1 € Qn, that £*(n) = 1if n = & and £*(n) = 0 otherwise. Given v = > A& € kQ,,
with A\; € k and & € Q,, we write v* = > \;&F. This yields a k-isomorphism
Yt kQS — D(kQy) : v° — v

If £ € kQp(z,y), then the restriction of £* to kQ,, (z, y) is also written as £*. Since
Q is locally finite, {£* | £ € Qn(x,y)} is the dual basis of Q,(x,y) in D(kQ,(z,v)).
For a subspace U of kQ,,(z,y), we denote by U+ the subspace of D(kQ,(z,y)) of
k-linear functions vanishing on U. The following statement is evident.

3.6. LEMMA. Let @ be a locally finite quiver with x,y,z € Qo and s,t > 0.
(1) IfE€kQs(z,y) and C€Q1(y, 2), then (C€)*(n) = §*(9¢(n)), for all n€ kQs1.
(2) If€ € kQs(x,y) and ¢ € kQy(y, 2), then (C€)* (v6) = (¥ (7)€" () for all & € kQs
and v € kQq.
(3) IfU and V are k-vector subspaces of kQs(z,y), then (U+V)t =U+NV+ and
Unv)yt=vu++v*
Let R be a quadratic ideal in kQ. The quadratic dual of R is the ideal R' in kQ°
generated by the R} (y,z) with z,y € Qo, where R)(y,z) stands for the k-subspace
of kQS(y, x) of elements p° with p € kQ2(z,y) such that p* € Ra(z,y)*.

3.7. DEFINITION. Let A = kQ/R be a quadratic algebra, where @ is a locally finite
quiver. Then A= kQ°/R' is called the quadratic dual of A.

The quadratic dual of a quadratic ideal in k£Q is described explicitly as follows.

3.8. LEMMA. Let R be a quadratic ideal in kQ, where Q is a locally finite quiver.
If o € kQu(z,y) with n >0, then 0° € R.(y,z) if and only if * € R (x,y)*.
Proof. Fix 0 € kQ,(x,y) with z,y € Qo and n > 0. We only need to consider the
case where n > 3. By definition, we have R (z,y) = ﬂ?;ozR("’j)(m, y) where

RO (2,9)=3" 4 peook@n—2—(b,y) - Ra(a,b) - kQ;(z,a);
and R (y, x) :Z?:_(?R!n,j (y,x) where

RiL,j(y’ T) = Za,berkQ?(aa ) - R!z(ba a)- kQ?L—2—j(ya b).

For the necessity, we may assume that 0 = v°1°6°, where § € kQ,—2—;(b,y),
v € kQj(z,a), and n € kQ2(a,b) such that n° € Ri(b,a), for some a,b € Qo
and 0 < j < n —2. Given w € R"™(z,y), we may write w = >_;_, §;1;7;, for
some y; € ij(x,ai), S Rg(ai,bi) and §; € k‘n_]’_QQ(bi,y), where ai,bi S QO.
Since n* € Ry(a,b)t, we see that n*(n;) = 0, for i = 1,...,s. By Lemma 3.6(1),
o (w) = (6m7)* (w) = Y271 6*(8:) n*(n:) v*(:) = 0. That is, o* € R™ (z,y)*.

Conversely, since R (z,y)*+ = Z;:OQ R9) (z,9)+; see (3.6), we may assume
that 0 # o* € R(P)(z,)* for some 0 < p < n — 2, and show that ¢° ER;)p(y,x).
Write o = 22:1 oi, where 0; € kQn_a—p(b;,y) - kQ2(a;, b;) - kQp(z,a;). By Lemma
3.6(1), o € (kQn—p—2(bj,y) - kQa(aj,bj) - kQp(x,a;))*t for j # i, and hence,
or € RP)(z,y)L, for i = 1,...,t. So, we may assume that o = §;(;v1, for some
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61 € an_p_g(bl,y), <1 € kQQ(al,bl) and Y1 € ka( ) Since o* 75 O7 by
Lemma 3.6(1), d7 and ~§ are non-zero. Hence, 67(v1) = ~vf(p1) = 1, for some
V1 € kQn_2—p(b1,y) and p1 € kQp(x, a1).

Choose a basis {p1,...,pry Pril,---,Pst of kQ2(ay,br), where {p1,...,p-} is a
basis of Ra(ai,b1). There exists a basis {n1,..., %, 0r41,---,Ms} of kQ2(a1,by)
such that {n7,...,n5,n51,...,n;} is the dual basis of {p1,...,pr, pre1,---,ps},
and hence, {n°, ;,...,n°} is a basis of R)(b1,a1). Writing ¢; = > 5=1Ajn; where
Aj €k, we get 0% =377 Aj(01mm1)* € (Qu-2-p(b1,y) - Ra(a1,b1) - kQp(x,a1)) ™.
In view of Lemma 3.6(1), we see that

0= 0" (vipipn) = D521 Aj(Gmym)*(vipipnn) = 37521 Aot (v1)ns (pi)vs (1) = A
for ¢ = 1,...,r. Therefore, c* = Z;:r—i—l Aj(61m;7)*, and consequently, we have
0% =i AINGOY € R, ,(y,x). The proof of the lemma is completed.

The following statement in particular justifies the terminology of quadratic dual;
compare [5, (2.8.1)].

3.9. PROPOSITION. Let A = kQ/R be a quadratic algebra with Q a locally finite
quiver. Then A" and A° are quadratic with (A')' = A and (A°)' = (/1!)0.

Proof. Clearly, A° and A" are quadratlc with (4")" = k((Q°)°)/(R")' = kQ/(R")"
and (A4°)' = k((Q°)°)/(R")° = kQ/(R")°. Let y,p € kQo(x,y) with z,y € Q. It is
easy see that (v°)*(p°) = p*(7) = 7" (p).

Now, v € (R")5(x,y) if and only if (7°)*(p°) = 0 for all p° € Ri(y,x),
equivalently, p* () = 0, for all p* € Ra(x,y)", that is, v € Ra(x,y). This implies
that (R')' = R, and hence, (4')' = kQ/R = A.

Next, v € (R°)4(w,y) if and only if, (v°)*(p°) = 0 for all p° € Ry(y, =), if and
only if v*(p) = 0, for all p € Ry(z,y), or equivalently, 7° € Ri(y,r), that is,
v € (R)$(x,y). This implies that (R°)' = (R')°. Now, (4°)' = kQ/(R')° = (4')°.
The proof of the proposition is completed.

We shall give an alternative description of the local Koszul complexes in terms of
A'. We need to fix some notation. Write ' = v°+R' for v € kQT, but e, = £, + R
for z € Qp. Then A' = G%zo/l!m where A!n ={7'|v € kQ,} for n > 0. Given any
z € Qo, we shall write P} = A'e,, and S, = P! /rad P}, and I, = ©((A")€,).

Fix a € Qp. Given n € Z, we set Py ™ =Bueq, Pe(—n) @ D(eaAle,) € gprojA.
Given a€Q1(y, x), we have a morphism P[a] : Py(—n) — Py(1 —n) in gproj, that
is the right multiplication by @; and a k-linear map P[a'] : eqA;,_1e, — eaAbeq,
that is the right multiplication by &'. Thus, we obtain a graded A-linear morphism

Pla] ® DP[@'] : Po(—n) @ D(e ALes) — Py(1 —n) @ D(eaA)_qey).

Write PL™" = ®yeq, Py(1— n>®D(ea/In 1€y) and consider the graded morphism

6" = LacquynFlal®DPla &']) (2.9)€Qox Qo : Pa™ — Pa~". We obtain a sequence
Vil 0= 1
P plon Pl 2P0 0

P, ;

a -

in gprojA, which is a complex as shown below.

3.10. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
Then KC, =2 P,, for all a € Q.

Proof. Fix a,x € Qo and n > 0. Then, D(kQ,(a,z)) = {v* | v € kQn(a,x)} and
ealler = {7 =7° + R' | v € kQn(a,z)}. By Lemma 3.8, v* € R (a, z)* if and
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only if 4° € R!,(x,a). Therefore, we obtain a k-bilinear form
(—,—): R™ (a,z) x ea/llnegg — k(5,7 — 7(6),

which is non-degenerate on the right. If § € R(™ (a,z) is non-zero, then v*(8) # 0,
that is, (6,7') # 0, for some v € kQn(a,r). Hence, (—,—) is non-degenerate.
This yields a k-isomorphism ¢” : R (a,z) — D(e,Aes) : 6 — (5,—). Given
o € Q1(y,z) and n > 0, we claim that the following diagram commutes:

R (a,2) —2> R=(q,y)

) o

DP[a'] |

D(eaAher) —— D(eaAl_1ey).
Indeed, for any p € R (a,z) and ¢ € kQ,_1(a,y), by Lemma 3.6(2), we have
DP[a](2(p))(C) = 62()(C'a) = (a0)*(p) = C*(Bu(p)) = 62 (Pu() ().
Thus, the above commutative diagram commutes. It is now easy to see that the

graded A-linear isomorphisms ®zcq,(id ® ¢7) with n € Z gives rise to a complex
isomorphism K, = P;. The proof of the lemma is completed.

Next, we shall consider colinear injective coresolutions of graded simple mo-
dules. Given u € e, A;_sep, the right multiplication by u°® yields a morphism
Plu°] : P2(—t) = P2(—s) in gprojA°®. Then, Ifu] = D(P[u°]) : Is(s) — Ip(t) is
a morphism in ginjA. Note that this notation does not distinguish I[u] from its
grading shifts. For simplicity, we put A = (4')° = kQ/(R")°. Write § = » + (R")°
for v € kQt and e, = &, 4+ (R")° for x € Q. In this way, A = ®,>0A,, where
Ay = {7 |7 € kQ,} for all n > 0.

Fix a € Qo. Given n € Z, we set I7 = Pre,la(n) @ em/l!nea € ginjA. Forn >0
and o € Q1(x,y), we have a morphism I[a] : I, (n — 1) — I,(n) in ginjA. And the
left multiplication by @ yields a k-linear map P.(a') : e, A}, _jeq — ez A} e, This
yields a graded A-linear morphism

Ia)® PL(@") : Iin — 1) @ e, A

Write Zp ™! = @yeq,ly(n — 1) ® ey‘/l!n—l

Ao =X aecqr ey 1A ® PXa")) (zy)eoxqo : Lo~ — I7. We obtain a sequence

!
n—1

ea = I(n) @ ex Al eq.

e, and consider the graded morphism

dfll 1 n—1 da n
Ia . Ia Ia

I 0 70

a
in ginjA, which is a complex as shown below.

3.11. PROPOSITION. Let A = kQ/R be a quadratic algebra with Q a locally finite
quiver. If a € Qo, then Z; is a complex, and it is a graded injective coresolution of
Sq if and only if S, admits a colinear injective coresolution over ginjA.

Proof. By Proposition 3.9, (4°)' = (4')° = A = {§ | v € kQ}, where § = v + (R')°
for v € kQ. Fix a € Qp. As stated in Lemma 3.10, we have a complex

. A -1 ' 50
Po: o —=Po" ——Pg P Pro 0 e

where P = ®req, PO(—n) @ D(eqAnes); PL "= Dyeqo Py (1 —m) @D(eaAn_16y)
and 07" = (3 e, (2, Pl0°] @ DP[A])(y,2)eQoxq, for all n > 1.

First, we show that ®(P,.)=Z;. Given any n > 0, since @ is locally finite, e,4,
is finite dimensional. By Proposition 2.1, D(Pa") = @ueq,lo(n) ® D?(eadnes)
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and D(0™") = (I[a] ® D*P[&])(y,2)eoxq,- Moreover, since A = (4')°, we have a
k-linear isomorphism o7 : Calnes — e,;/l!nea, sending 4 — 7'. Composing this
with the canonical k-isomorphism ¢ : D2(ea/inex) — egAnes, we obtain a k-linear
isomorphism 07 = ¢ 0" : D2(egAne,) — e Al eq. Tt is easy to verify that
. n—1 R g,nfl
D%(eqApn_16y) ——> e, 16, ——> e, A\ _jeq

D?P[a]i iP[al chi(-!)

~ ) ~ o |
2 x x !
D?(egAney) ——— egdne, ———e, A e,

commutes for every a € Q1(z,y). This yields a complex isomorphism ©(P,.) =Z;,
given by @aeo, (id ® 07) : Bpeqole(n) @D (egdnes) = Breoylu(n) @ e, Al e, with
n € Z. So, I, is a complex. Since Z]' is co-generated in degree —n, we see that T
is a colinear injective coresolution if it is a graded injective co-resolution of Sj,.

Suppose that S, has a colinear injective coresolution Z* over ginjA. In view of
Lemma 2.5, we see that ©(Z*) is a linear projective resolution of S over gprojA°. By
Theorem 3.5 and Lemma 3.10, D(Z°) = P,.. Hence, Z* = D%(Z") 2 D(P).) = Z;.
The proof of the proposition is completed.

Given M, N € GModA, we write GExt’; (M, N) for the n-th graded extension
group in GModA; see [20, Section II1.5]. The following statement includes the
classical results stated in [5, (2.2.1), (2.10.2)].

3.12. THEOREM. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
The following statements are equivalent.

(1) The algebra A is Koszul.

(2) The opposite algebra A° is Koszul.

(3) The quadratic dual A' is Koszul.

(4) FEvery graded simple A-module has a colinear injective coresolution over ginjA.

Proof. By Lemma 2.5, Statements (2) and (4) are equivalent. By Proposition 3.9,
if Statement (1) implies (4), then Statements (1) and (2) are equivalent; and if
Statement (1) implies (3), then Statements (1) and (3) are equivalent. Thus, it
suffices to show that Statement (1) implies Statements (3) and (4).

Assume that A is Koszul. Fix a € Q. Since A° is quadratic; see (3.9), by The-
orem 2.6, SO has a linear projective 2-presentation over gprojA°. And by Lemma
2.5, we may assume that S, has a colinear injective (n — 1)-copresentation

0 1

0 S, 4 g0 ¢

over ginjA, for some n > 3. Denote by ¢ : I"~! — C™ the cokernel of d"~!.
Given any b € Qo and p € Z, since socI"™! C Ker(c"), it is well-known that

GExt’ (Sp(p), Sa) = GHomy (Sp(p), C™); see [20, (II1.6.4)]. Since A is Koszul, S},
has a linear projective resolution

cei s Pty pl-i p1 Py Sp 0.

over projA. So, GHom 4 (Sy(p), C™) =2 GExt’ (Sp, So(—p)) = GHom (P ™", So(—p)).
Since P~™ is finitely generated generated in degree n and S,(—p) is generated in
degree p, we deduce that GHom 4 (Sp(p), C™) = 0 for all but finitely many b € Qg
and for all p # n. Hence, soc C™ is finitely generated in degree —n. Since I" ! is
bounded above, so is C". Hence, socC™ is graded essential in C"; see [18, (2.9.2)].
That is, C™ is finitely cogenerated in degree —n. By Proposition 2.3(2), there

Il . In72 dni; [nfl
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exists a graded injective envelope ¢ : C™ — I™, where I™ € ginjA is cogenerated
in degree —n. Thus, S, has a colinear injective n-copresentation over ginjA. By
induction, Statement (4) holds. It remains to show that Statement (3) holds.

Since A is quadratic, A' is quadratic with (A4')' = 4; see (3.9). By Lemma 3.10,
the local Koszul complex at a of A' is isomorphic to the complex

n -1

P, P ¢ PL P ¢ P 0 e

where 1" = ®ycq, PH{—n)@D(€a Anes) and P =ycq, PU1-n)&D(ea 16,
-

and 07" = (3. 1c0, (2,4 Pl0] ® DP[A])(y,2)eQox Qo Fix n > 0. We claim that

—n—1
(T) EBZEQO eb/l,!sflez ® D<ea/1n+1€z) L&b) @wEQOebALex ® D(ea/lnew)
iy SyeqoesAisrey ® Dleadn_1ey)

is exact for any (s,b) € ZxQq, where E;ﬁs’b = (Zate(x,y)P[@!]Q@DP[d])(y,I)EQOXQO.

If s < 0, then eyALe, = 0, and (1) is evidently exact. In case s = 0, it becomes

—n

0—— eb/lz)eb ® D(eqAnep) AL Dyeo eb/l!ley ® D(egAn—1ey),

where £, % = (£, (y,b))yeq, With £, (y,0) = > e, (b P[a'] ® DP[a]. Consider
0 # f € D(eqAnep). Since n > 0, there exist 5 € Q1(b,y) and u € e, A,,_1€, with

y € Qo such that f(uf) # 0, that is, (DP[B))(f)(u) £ 0. So, (DPB))() # 0.
Now, ¢ % (y,b)(ey ® f) = Zate(bw)d! ® (DP[a])(f), which is non-zero. Thus, £

’» “n,b ’ “n,b
is a monomorphism. That is, the sequence () is exact in this case.
Let s > 0. By Theorem 3.5 and Lemma 3.10, Sj, has a linear projective resolution
Py, which is exact in degree —s. Writing P, * = @peq,Pu(—5) ® D(eb/l!sew), and
restricting it to the (n + s, a)-piece, we obtain an exact sequence

—s—1

(i) 69yEQo eaAnfley ® D(eb/l!5+1ey) m @zereaAnez & D(eb/l;ez)
e
LA G9z€QoeaAn+1€z & D(ebA!s—16Z)a
where gb_,}:i’,a = (Xacqi@nPle] ® DP[a'])(2.4)eQoxQo- ApPPlying D to the se-

quence (1), by Lemma 1.3, we obtain an exact sequence isomorphic to (f). This
proves our claim. Thus, P, is a graded projective resolution of S!. By Theorem
3.5, A' is Koszul. The proof of the theorem is completed.

REMARK. In case A is Koszul, one calls A' the Koszul dual of A.

ExaMpPLE. Consider 4 = kQ/(kQ%)?, where Q is a locally finite quiver. Then
A" = kQ°P, which is Koszul. By Theorem 3.12, A is Koszul.

We shall conclude this section with two applications. Some quadratic algebras
are known to be Koszul, such as symmetric algebras and exterior algebras; see [5,
page 476], and monomial quadratic algebras; see [21, (2.19)]. Using our description
of the local Koszul complexes, we will provide a new class of Koszul algebras.
For this purpose, we introduce a condition () for a quadratic special multi-serial
algebra A = kQ/R as follows:

Let Y7, AiBia; be a polynomial relation in Ry (z, 2) with a4, 8; € Q1 and \; € k
such that (8; ¢ Ra(—,b) for some ¢ € Q1(z,b) and 1 <i < s. If v € Q1(a, ), then
a7y is a summand of a relation in Rs(a, —), for all 1 < j < s with j # 1.
REMARK. A quadratic special multi-serial algebra A satisfies the condition (x) if
and only if A° satisfies its dual, which is left for the reader to formulate explicitly.
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3.13. LEMMA. Let A = kQ/R be a quadratic special multi-serial algebra with Q a
locally finite quiver, satisfying the condition (x). Consider a polynomial relation
Soi_  NiBic; € Ro(x, 2) with \; € k, a; € Q1(z,y;) and B; € Q1(yi, z), such that
(1 & Ry for some ¢ € Q1(z,—). If £ € R Y(a,x) with n > 1 then, for each
2 < i < s, there exists some 1; € kQn(a,y;) such that ;€ +n; € R(™) (a,yi) and
Bini € Ra(—,2) - kQn_1(a, —).

Proof. Let € € R V(a,z). If n = 1, then we take 7; = 0, for 2 < i < 5. Assume
that n > 2. Choose a k-basis {¢1,...,&} of R (a, —), where & € R"=2)(a, b;).
By Lemma 3.2, we may write £ = 23:1 0;&; for some o; € kQ1(b;, ).

Fix 1 < i < s. If a;0;5 € Ra(bs,y) for all 1 < j < t, then ;¢ € RM™ (a,y,);
see (3.2), and set 7; = 0. Otherwise, let J; be the set of j € {1,...,t} such that
a;0; ¢ Ro(bj,y;). Fix j € J;. Since A is special multi-serial, o; = \;60; + 0;, where
)\j € k and Gj, 6]‘ € Ql(bj,:c) such that )\jaif)j ¢ Rg(bj,yi) and Oti(sj € RQ(bj,yi)- By
the condition (x), there exists a polynomial relation w; = Aja;0; + Z;’Zl Ajia05
in Ro(bj,y;), where \j; € k; 05 € Q1(bj,cj1) and oy € Qi(cji, ). Again since
A is special multi-serial, oy # «a; for 1 < 1 < r;. Since fio; ¢ Ra(z,z2), we
have fB;ay € RQ(le,Z) for 1 <1 < r;. By the induction hypothesis, we have
Njt € kQn-1(a,c;) such that §; = Aju6& + nj1 € R("_l)(a,cjl) and ayn; lies
in Ro(—, i) - kQn—2(a,—), for 1 <I<r;. Set n; = ZjeJi;lngTjailgjl €kQnla,y;).
Then, 51771' = ZjEJ;ISISTj Oéiﬂjléjl ERQ(*,Z) ~an_1(a,—). Consider Xi = Oéi§+’f7@‘.
Then x; = @€ + 3¢ ja<i<r, @it€jt With €& € R™D(a, —). On the other hand,
we can verify that

Xi =2 e r (Wit ai0;) &+ 501060565+ e rin<i<r, @it € Ra(—,4:) kQn—2(a, —).
Thus, x; € R(”)(a7 yi) by Lemma 3.2. The proof of the lemma is completed.

The following is the promised new class of Koszul algebras.

3.14. THEOREM. Let A = kQ/R be a quadratic special multi-serial algebra with Q
a locally finite quiver. If the condition (x) or its dual is satisfied, then A is Koszul.
Proof. By Theorem 3.12, we only need to consider the case where the condition (x)
is satisfied. By Theorem 3.5, it amounts to show, for any a € Qo, that IC;, is exact
in degree —n for all n > 1. By Theorem 2.6 and Proposition 3.4, we may assume
n > 2. By Lemma 3.3, it suffices to prove that Ker (9;™) C Im (9, !). For this
purpose, we recall that ;" = @,ecq, Py(—n) @ R™(a,y).

Consider 0 # u € Ker(9,; ™) C radK_, ™. Since 9, ™ is graded, we may assume that
U € Dyego Py(—n)m (b) @ R™ (a,y) = ByegoepAm—ney @ R™(a,y), for some be Q)
and m > n. Let s(> 1) be minimal such that we can write u = Y_;_, 6;®p;, for some
0, € Qum—n(y1,b) and p; € R(”)(a,yl). Then, 61,...,0 are k-linearly independent
in ey Ay _n. Choose a k-basis {¢1,...,&} of R~V (a, —), where ¢; € RV (a, ;).
And since A is special multi-serial, ey A,,—,,—1 has a k-basis {71, ..., 7.}, where 7; is
a path in Qm_n_l(zi, b) with z; € Qo. Then, P = 23:1% fj with Clj S le(xj, yl);
see (3.2) and 6, = 22:1 704 with 65 € kQ1(y1, ), for I =1,...,s. We shall divide
our argument into several statements.

(1) For any 1 < j <t, we have Y ;_, 0:Cj = > i1 > 1_1 Mi0uCi; = 0.

Since u = Y513, 01 © (3¢5, we have 9, (u) = Y0, (31, Q1) ® &5 = 0;
see (3.1). Since the &; are linearly independent, Y ;_,0,(;=>"1_ >, 7:01(; =0
for 1 < j <t. This establishes Statement (1).
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(2) If m =n+1, then u € Im(9,; " 1).

Let m =n+1. Then eyA,,—p—1 = epAg = kep. In particular, r = 1 and 71 = &p.
By Statement (1), >, 6uCj = >y (>, 0uCij) € Ra(w;,b), for j =1,... t.
Set x1 =Y 1— dupr = Yy (35—, 0uGiy)é; € Ra(—,21) - kQn—1(z;,—). By Lemma
3.2(2), x1 € R"Y(a,z) such that 9;" (i @ xi) = >.p_, 0 ® p = u. This
establishes Statement (2).

Now, assume that m > n + 2. Since 6;; € kQ1(yi,2;) and 1; € Qum—n—1(z,b) is
non-trivial, §; = Z:Zl N:031. Since A is special multi-serial, we may assume that d;
is monomial, for i = 1,...,r;l =1,...,s. We need to consider another derivation
0% : kQ — kQ for any « € (@1, which sends a path p to n if p = na; and 0 if « is
not an initial arrow of p.

(3) If 614G ¢ Ra(zj,2:), then (i has a summand M\jjoy;, where \j; € k and
ag; € Qi(zj,y1), such that A\jjd;0u; is a summand of a polynomial relation in Rs.

Suppose that 0;pCpq & Ra(xq,2;) for some 1 < i <11 < p <51 < g <t
Then, d;;, is a non-zero monomial in kQ1(yp, z;) and (,, has a non-zero summand
ApgQipg, Where ayy € k and ay,q € Q1(24,Yp), such that A\pydipapg & Ra(zg,2:). By
Statement (1), we may write > ;_; 0;(q = Z;‘i:1 vijwjkj, where r; € Qu;(zq,—)
with n; some non-negative integer, w; € Ry and v; € kQm-—n—n;—1(—,b).

Assume, for each 1 < j < d, that either n; > 0 or 9%r¢(w;) =0. Applying 9%«
to the above equation, we obtain Y_;_; i) € Ry, (—,b), where \; =9%4((,) €k.
Since A\, = Apq # 0, contrary to 01,...,0, being k-linearly independent. Thus, we
may assume that n; = 0 and a,, is the initial arrow of a monomial summand of
w1 € Ro(xq,—). Since A is special multi-serial with A\pgd;,(cpg & Ra(xq, 2i), We see
that Apqdip(apq) is a summand of wy, which is a polynomial relation in Rs(xzg, 2;).
This establishes Statement (3).

(4) For each 1 < i < r, there exists some element x; € R("H)(a,zi) such that

9" M i @ xi) = 20=y 0 © pu.

Fix 1 <i<r. Iff0;1 =0foralll =1,...,s, then we take y; = 0. Otherwise,
denote by L the set of I € {1,...,s} such that 7;6;4 # 0; and for [ € L, denote by
Ji the set of j € {1,...,t} such that 6;;(;; ¢ Ra(z;, 2:).

Fix (j,1) € LxJ;. Since A is special multi-serial, we write (;; = oy;+07;, where oy,
is such that d;01; € Ra(z;,2) and «y; is a monomial such that d;;0u; & Ra(xj, 2;).
By Statement (3), we have a polynomial relation w;; = ;055 + Z;’;l YiB; in
Ry (x5, 2;), where Blpj € Ql(xj,cfj) with cf] € Qoand ~} € le(cfj, 2;) is monomial.
Since 7); is a non-trivial path with 7,6, # 0, we have 73,75, = 0 for all 1 < p < r;;. By
Lemma 3.13, there exists {; € kQn(a, c};) such that p;; = B1&§; + & € R™(a,cb)

) €
and "/Z{lpj € Ro(—, %) - kQn-1(a,—), for each 1 < p < ry;.
Put x; = > e 0up + ZleL;jeJl;lgpgm'yﬁp]lgjv where py, pJ; € R™(a,—). Since
pL= Z;:lglj &;, a routine verification shows that

— P ¢D
Xi=1erjen( Wi+ 0001)85 + D ier, 00,0058 + i jensi<p<n, Vil

Since 6;:¢1; € Ra(x;,2) for (1,7) € L x Ji, we get x; € Ro(—,2;) - kQn—1(a,—).
By Lemma 3.2(2), x; € R (a, ), and hence, 7; ® ¢; € K;"~'. Further, since
775 = 0 for (1,j) € Lx Jyand 1 < p < 15, and 7:64 = 0 for | ¢ L;, we deduce that
A" Mm@ xi) = ZleLﬁiSil Qp=Y1_, ;05 @ pr. This establishes Statement (4).

Finally, w = Y7_, 7 ® x; € K;" 1 is such that 9, " Y(w) = Y}_, 0, ® p = u.
The proof of the theorem is completed.
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ExaMPLE. Consider the quadratic special biserial algebra A = kQ/R, where

B 3.~
Q: 1-%-90- x5 0.4

and R = (Ca, 67,76 + n¢). Clearly, S has a linear projective 2-presentation
a; o' a
Py(—2) @ k{Ca) — Po(—1) @ k{a) —— P, @ k(e1) —= S —— 0.
Note that Ker(8; ) = k(67 ® a), which is generated in degree 4. Thus, S; has
no linear projective resolution. So, A is not Koszul. In fact, A does not satisfy
condition (*) or its dual.

Finally, applying the description of the linear projective resolutions and the
colinear injective coresolutions for graded simple modules, we obtain a stronger
version of the Extension Conjecture for certain finite dimensional Koszul algebras.

3.15. THEOREM. Let A = kQ/R be a finite dimensional Koszul algebra such that A'
is left or right noetherian. If ExtY(S,,S,) # 0 with a € Qq, then Ext’(S,,S,) # 0
for every integer n > 1.
Proof. Let Exth(Sa, Sa) # 0 for some a € Q. Then @ has a loop ¢ at a. Suppose
first that A' is left noetherian. Since A is finite dimensional, A;e, = 0 for some
t > 0. By Proposition 3.11 and Theorem 3.12, S} has a graded injective coresolution
T; with I = @,c,IL(n) ® ez Ayeq, for n € Z. In particular, I = 0 for n > t.
Consider M@ = A'(")" € gmodA' for i > 1. Since A' is left noetherian, by
Proposition 2.3, M) has a minimal graded projective resolution

pst. . pmi__ o ... o p-Li_ _pOi____

over gprojA'. For any s € Z, we have GHom 4 (P~ S}(s)) = GExt}, (M ¥, S.(s)),
which is a subquotient of GHom 41 (M), Z7(s)). Thus GHom 4 (P~ S\(s)) = 0.
That is, P.(s) is not a direct summand of P~™? for all n > t and all s € Z.
Forgetting the gradation, we see that P“’ is a projective resolution of M) over
projA' such that P! is not direct summand of P~™" for all n > t. In other words,
P*%is an e,-bounded projective resolution of Al(ﬁl)i over proj/l!; see, for definition,
[16], for every i > 1. If &' is nilpotent, as argued in the proof of [16, (1.6)], we
conclude that &' € [A'A"] + ZG#EQOA!%A!, where [A', A'] is the commutator

group of A'. This implies that ¢'e rad®A', contrary to R' being generated in degree
2. Thus, 0 # (5)" € eq A’ eq for every n > 0. By Lemma 3.10, S, admits a linear
projective resolution P;, which is defined by P;" = Gzeq,Pe(—n) @ D(ea/l!nem)
for n > 1. Since eqA' e, # 0, we see that P,(—n) is a direct summand of P?, for
n > 1. That is, GExt{ (S, Se{—n)) # 0, and hence, Ext’; (S,, S,) # 0 for n > 1.

Suppose now that A' is right noetherian. Then, (4')° is left noetherian. By
Theorem 3.12 and Proposition 3.9, A° is a finite dimensional Koszul algebra with
(A°)' = (A")°. Since 0° is a loop in Q° at a, Ext},(S9,S°) # 0, for every n > 1.
Since A is finite dimensional, we have a duality © : mod?° — mod¥. Therefore,
Ext’i (Sa, Sa) # 0, for every n > 1. The proof of the theorem is completed.

REMARK. Note that special multiserial algebras defined by finite quivers are left
and right noetherian; see [15, 18]. Thus, the Extension Conjecture holds for finite
dimensional Koszul algebras with a special multiserial Koszul dual.
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ExaMPLE. Consider the special multi-serial algebra A = kQ/R, where

N6 B
Q- 064%3 2 %19 a
¢ v
and R = (a® + Bv,aB,v8,va,n0,02). Satisfying the condition (x), 4 is Koszul;

see (3.14). Note that A' = kQ°/R', where R' = {(a°)? — 7°B°,7°6°,0°¢°), which
is noetherian. By Theorem 3.15, Exty(S1,S1) # 0 and Exty (S, S4) # 0 for ¢ > 1.

4. DOUBLE COMPLEXES AND EXTENSION OF FUNCTORS

The main objective of this section is to formalize a technique of extending a
functor from an additive category to a complex category to the complex category,
which has been already used in various settings; see, for example, [3, 5, 31]. This
technique is essential for us to construct derived Koszul functors. An additive k-
category is called concrete if the objects are equipped with a k-vector space structure
and morphisms are k-linear maps.

Throuout this section, A, B,C stand for concrete additive k-categories. Let
(X', dy) be a complex over A. Given n € Z, we shall write X*[n] for the n-shift
of X* and H"(X") for its n-th homology group. The twist complez t(X") of X* is
defined by ¢(X")" = X" and dyy., = —dX; see [3]. This induces an automorphism
t of C(A), called the twist functor. And for a morphism f*: X* — Y" in C(A), we
shall write Cy- for its mapping cone; see [27, (II1.1.5)].

First, we develop a homotopy theory of double complexes. Let (M* v, h*)

P UM M
be a double complex over A, where v'; is the vertical differential and A’ is the

horizontal one. Given 4, j € Z, we call (M**,v*) and (M*7, h:7) the i-th column
and the j-th row of M* respectively. A double complex morphism f*: M™ — N*
consists of morphisms f#/ : M*/ — N%J in A with 4,j € Z making

il
it N©It

ig+1 i3
M 1%
Rt
piv NI N Nty
M fiod /
hid it1,5
Y U VSR

commute for all 4,5 € Z, that is, f>* : M» — N®» and f* : M9 — N*J are
complex morphisms, for all 4,5 € Z. The double complexes over A together these
morphisms form an additive k-category written as DC(A).

Now, assume that A has countable direct sums. Given M € DC(A), its total
complez T(M*) € C(A) is defined by T(M*)" = @;ez M*"~% and

darey = (A3 (6,9) Griyezxz - Bier M " — @jez MIH T,
where dg o) (5,7): M=t — MInHI=0 g defined such that dippen (150) = Vb
ey (i+1,2) = hy ™" and dy /e (j,i) =0if j ¢ i or i+1. And given a morphism
fr:M*—N"in DC(A), we define its total morphism T(f*) :T(M™)—=T(N*) by
T(f™)" = (T (f")n(j7i))(j,z‘)erZ P @iez MU = @y N,

where T(f")"(j,i) : M®"~% — N?"J is such that T(f")"(i,i) = f>*~% and
T(f*)"(j,i) = 0 for all j # i. This yields clearly a functor T : DC(A) — C(A).

We shall study when the total complex of a double complex is acyclic. Consider
a double complex M € DC(A). Given n € Z, the n-diagonal of M** consists of the
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objects M*"~¢ with i € Z. We shall say that M* is n-diagonally bounded (respec-
tively, bounded-above, bounded-below) if M*"~%* = 0 for all but finitely many (re-
spectively, positive, negative) integers i. Moreover, M is called diagonally bounded
(respectively, bounded-above, bounded-below) if it is n-diagonally bounded (respec-
tively, bounded-above, bounded-below) for every n € Z. We obtain a local version
of the well-known Acyclic Assembly Lemma,; see [33, (2.7.3)] as follows.

4.1. PROPOSITION. Let A be a concrete additive k-category with countable direct
sums. If M € DC(A) and n € Z, then H*(T(M*)) =0 in case

(1) M* is n-diagonally bounded-below with H"=I(M*7) = 0 for all j € Z; or

(2) M* is n-diagonally bounded-above with H"~*(M%*) = 0 for all i € Z.

Proof. Let (M*;v", k™) € DC(A) such that Statement (1) holds, say M*"~¢=0, for
all ¢ < ¢, where t is some negative integer. Consider ¢ = (¢;n—i)icz € Ker(d’.ﬂE(M..))
with ¢; ,—i € M*"~% Then, v*" " (¢; ) + K17 (¢, _s41) = 0, for i € Z.
We may assume that ¢; ,—; = 0 for i > 0. Then, h®"(co,) = v (c1 p—1) = 0.
Since HO(M*™) = 0, we have co ., = h™"(z_1,,), for some x_1,, € M~1". So

W= o — 07 (@o10)) = A (o) + 0% (com) = 0.

Since H71(M*"*1) = 0, we see that c_1 41 — v V" (z_1n) = K™ 2" (2 _5,41)
for some x_9 41 € M~2" "1 Continuing this process, we get x; ,_1_;, € M"" "1~
such that ¢; i = V""" Nz 1) + RV (g y), for i = —1,-2,... L.
Since M'=bn=t1 = 0, we see that v'™ 1" (2;_1 ,—¢) = 0 = ¢4—1 —14+1. Setting
T = (Tin—1-i)iez With z; ,_1_; =0fori > 0ori < t—1, we obtain ¢ = d%&\})(:ﬂ)
The proof of the proposition is completed.

Given a double complex (M, v k'), we define its horizontal shift M*[1] to be

VUM M
(X, 07, hy) with X7 = M ol = —ithd and bl = —hi T for all 4, j € Z.
Moreover, a morphism f** : M — N is called horizontally null-homotopic if there
exist morphisms u*7 : M*/ — N*~1J such that u'*7 o hl:J 4 hI=b7 o uhd = I
and v’ 1 oI + w0 i =0, for all i, j € Z.
4.2. LEMMA. Let A be a concrete additive k-category with countable direct sums.
(1) If M € DC(A), then T(M*[1]) = T(M*)[1].
(2) If f~: M**— N** is horizontally null-homotopic, then T(f*) is null-homotopic.
Proof. Statement (1) can be shown by a routine verification. Let f*: M™ — N*
be horizontally null-homotopic. Then, there exist u*/ : M%J — N?=1J such that
[l =uthd o hid 4 himbI o uhd and vl M w4+ ubI Tyl = 0, for all 4,5 € Z.
Given n € Z, set h™ = (h"(j,1))(jyezxz : ®iezM"" ™" — ®jezN?"7, where
h™(n —i,i) = ub"~% and h"(j,i) = 0 for j # n —i. It is easy to verify that
T(f*)" =h"tlo A ey d%&\l,..) o h™. The proof of the lemma is completed.
Given a morphism f** : M — N in DC(A). We define its horizontal cone Hy--
to be the double complex (H**,v™*, h™*) with H» = M*+t1J ¢ N*J and

i+l _pitlg
Vi — ( Unr 0 ) pid — ( hy 0 )
= ij ) = g pid )
0w f i

Observe that the j-th row of Hy~ is the mapping cone of f*7 : M*J — N*J. In
a similar fashion, we may define the vertical cone Vi of f* in such a way that its
i-th column is the mapping cone of f**: M%* — N%*. By a routine verification, we
can verify the following statement.
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4.3. LEMMA. Let A be a concrete additive k-category having countable direct sums.
If f*: M — N* is a morphism in DC(A), then T(Hy+) = Crgey = T(Vje).
The following statement tells us when the total morphism of a double complex
morphism is a quasi-isomorphism.
4.4. LEMMA. Let A be a concrete additive category having countable direct sums.
Consider a morphism f* : M — N** in DC(A) such that fo : M% — N® is a
quasi-isomorphism, for every i € Z. If M and N°° are diagonally bounded-above,
then T(f*) is a quasi-isomorphism.
Proof. Assume that M* and N** are diagonally bounded-above. Then, the vertical
cone Ve of f* is also diagonally bounded-above. Given i € Z, since f*": M — N
is a quasi-isomorphism, its cone is acyclic, that is, the i-th column of V;- is acyclic.
By Proposition 4.1, T(V-) is acyclic. By Lemma 4.3, C'r¢s-) is acyclic, and hence,
T(f") is a quasi-isomorphism. The proof of the lemma is completed.
Now, suppose that B has countable direct sums. Consider a functor
F:A—-CB):M— F(M);f— F(f).
In order to extend F to C(A), we first construct a functor FP¢ : C(A) — DC(B).
Given a complex M* € C(A), applying F' component-wise yields a double complex

F(dj )7+
_—

F(M) : > F(M)iH! F(MF)+ s
(71)id§r(Mi) (71)i+1d;(1\4i+1)

. F(di)? . .
o — F(M?)7 F(MlJrl)J - ...

whose i-th column is t'(F(M?)"), that is the i-th twist of F(M*)". And given a
morphism f*: M*— N*in C(A), we obtain a commutative diagram

o F(NDIFL
F(fH)7te
F(M?)i+1 (=1)"d%, wiy
i Ny F(diy)? ; .
(1) dF(J\li)] Py F(N)? N F(N*1)7,
. F(di,)? ) A/Zl)j
F(M’L)j F(Mz+1)j F(f

fori,j € Z. So, F(f*) = (F(f%)?)i jez : F(M")" — F(N")"is a morphism in DC(B).
4.5. PROPOSITION. Let A, B be concrete additive k-categories such that B has coun-
table direct sums. Then every functor F : A — C(B) induces a functor
FPC . C(A) = DC(B): M"+— F(M")"; f +— F(f7)".
(1) If M is a complex in C(A), then FPC(M*) = FPC(M")[1].
(2) If f*is a morphism in C(A), then FPC(C-) = Hppe(pvy; and in case f° is
null-homotopic, FPC(f) is horizontally null-homotopic.
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Proof. Statement (1) and the first part of Statement (2) can be shown by a
routine verification. Let f°: M*® — N° be a null-homotopic morphism in C(A
with morphisms u’ : M* — N*~! in A such that f' = u't!o dlif + dfvfl ou,
for all i € Z. Therefore, F(f") = F(u") o F(di )7 + F(d'"')7 o F(u')7, for
all j € Z. Since F(u')" : F(M*) — F(N*=1)" is a complex morphism, we see that
(—1yfxuwf+1odgmﬂ)+(—1ydguw,wozmuwf::o,ﬁmzﬂyjezz.Thatm,Pﬂx%fj
is horizontally null-homotopic. The proof of the proposition is completed.

Originally formulated for module categories in [3, (3.7)], the following statement
can be routinely verified using Lemmas 4.2 and 4.3 and Proposition 4.5.

4.6. PROPOSITION. Let A and B be concrete additive k-categories such that B has
countable direct sums. Then, every functor F : A — C(B) extends to a functor
FC =To FPY: C(A) — C(B) with the following properties.
(1) If M is an object in A, then FE(M) = F(M).
(2) If M" is a complex in C(A), then FE(M*[1]) = FC(M")[1].
(3) If f* is a morphism in C(A), then FE(Cs+) = Cpesey; and in case f* is null-
homotopic, FC(f°) is null-homotopic.

As shown below, this extension of functors is compatible with the composition

of functors. This is essential for our later investigation.

4.7. PROPOSITION. Let A, B and C be concrete additive k-categories such that B and
C have countable direct sums. If F: A — C(B) and G : B — C(C) are functors,
then (G€ o F)¢ = G¢ o F°.

Proof. Consider functors F': A — C(B) and G : B — C(C). We obtain a composite
functor G€ o F : A — C(C), which extends to a functor (G o F)¢ : C(A) — C(C).
Fix M* € C(A) and n € Z. By definition, we have

(G o F)C(M)" = @iz GE(F(M*))"™" = @ pyezxz G(F(MH)P)" P,
Writing (GCF)Y(M")" ! = &(; pyezxzG(F(M7)4)" 174 we can routinely verify
that the differential dizc, gy : (GCoF)C(M)™ = (GY o F)C(M")"+! is given
by the matrix (d(GCoF)C(M )(] 4;9,D)) (j,q5i,p)cz4, Where

d{geor)cm (G, @ 6p) : GIE(M)P)" 7P — G(F(M7)T)"Hi=I7a
is defined by

(—1)"trdy, ;{qu), J=149=0p;
o V'G(dp )" 7P, G=ta=p+1;
d{geopyeards 46 p) = 1 2( e Z) Jonasy
G(F(dy)P) 7P, j=i+1,q=p;
0, otherwise.

On the other hand, we have
GC(FC(M-))n _ @sEZG(FC(M.)S)n78 — ®(i,s)eZ><Z G(FMi)sfi)nfs.

Writing GC(FY(M*))"+! = @(j t)EZXZG(F(Mj)t*j)”“*t, we can routinely verify
that the differential dg.c(pc(ppy) - GOFC(M))" — GE(FC(M*))"+! is given by
the matrix (dGC(FC(M ))(],t,z, 5))(]’,1&;1’,5)624, where

dgsepoay) (U tiiss)  GIE(M') )" = G(F(M)'=7)m i
is given by
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(=1dGparyeyy =87 =15
n . . 1 dszl ns7 t=s+1,j =i
dge(pory (7,66 8) = » ) A =
0’ otherwise.

Setting p = s — i, we see that
GOFO(M))" = © s pyezs GIE(M)P)"=1% = (G FYC(M)",
And setting ¢ =t — j, we see that
Asorenr : GEUFC)™ - GEFOM )™ = @ gezxaGR(MI)1)+1=i=

is given by the matrix (d™(j, ¢;,p)) 74 » Where

(4:455,p)€
d"(j,q;4,p) : G(F(M')P)" =77 — G(F(M7)®)r+1=I

is such that d"(j, ¢;i,p) = dgC(FC(M'))(j7q +Jii,p +i) = d(GCOF) (M -)(qu§iap)~

This shows that (G¢ o F)¢(M*) = (G€ o FE)(M*). And given a morphism f* in

C(A), we verify in a similar manner that (G€oF)C (f*) = (G€oF)(f*). The proof

of the proposition is completed.

Now, we show how to extend functorial morphisms.
4.8. LEMMA. Let A, B be concrete additive k-categories such that B has countable
direct sums. Given functors F,G : A — C(B), any functorial morphismn: F — G
extends to functorial morphisms nP¢: FP¢ — GPC and n®: F¢ — G°.
Proof. Let n = (n;,)mea : F — G be a functorial morphism between two functors
F,G: A— C(B). Fix a complex M* € C(A). Given 4,j € 7Z, since n;, is natural
in M, we obtain a commutative diagram

i G

s
F(M?)itt ]( D'y, iy
o G(di,)? ) )
(—1)? dJF(MI)[ 0l G(M?*)I (dar) G(Mi+1)i.
—

F(dyy)’

F(M’L)j F(MiJrl)j 771]»,141

This yields a morphism 7’ | = (nﬂii)idez . FPC(M*) — GPY(M) in DC(B).
Applying T, we obtain a morphism 7,,. = T(n’ ) : FC(M*) — G°(M*) in C(B).
Clearly, n° . and 7, . are natural in M*. Thus, we have desired functorial morphisms

nPC = (TIJ\/I’)M cc(a) and n¢ =(n,,+)amreca)- The proof of the lemma is completed.

Even if F : A — C(B) is exact, the extended functor F'¢ does not necessarily
send all acyclic complexes to acyclic ones. So it only descends to categories derived
from some suitable derivable subcategories of C'(A).

4.9. THEOREM. Let A, B be concrete additive k-categories such that B has countable
direct sums. Consider an exact functor F : A — C(B) such that FC sends a
derivable subcategory o/ of C(A) into a derivable subcategory B of C(B).

(1) If FPC sends complexes in < to diagonally bounded-below double complexes,
then FC sends acyclic complezes in </ to acyclic ones.
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(2) If F© sends acyclic complexes in < to acyclic ones, then it induces a diagram

o —> K(o) — D()

Fci | |
B — K(#) — D(2),
which is commutative with FX and FP being triangle-exact.

Proof. (1) Suppose that FP¢sends complexes in &/ to diagonally bounded-below
double complexes. Let M* be an acyclic complex in &/. Since F is exact, F'(M")
has exact rows. By Proposition 4.1, T(F(M")"), that is F¢(M"), is acyclic.

(2) By Proposition 4.6, we have a triangle-exact functor FX : (&) — K(%)
making the left square of the diagram stated in Statement (2) commute. Suppose
that F¢ sends acyclic complexes in &7 to acyclic ones. It is well-known that there
exists a triangle-excat functor FP : D(&/) — D(%) making right square of the
diagram commute. The proof of the theorem is completed.

5. GENERALIZED KOSZUL DUALITIES

The main objective of this section is to describe the generalized Koszul dualities,
that is a 2-real-parameter family of pairs of mutually quasi-inverse equivalences
between categories derived from graded modules over a Koszul algebra and over
its Koszul dual, and one of the pairs is the classical Koszul duality of Beilinson,
Ginzburg and Soergel; see [5, (2.12.1)] and [26, Theorem 30].

Throughout this section, 4 = kQ/R stands for a quadratic algebra, where Q is
a locally finite quiver. We recall and introduce some notation. Given u € ey A e,
with r € Z and z,y € Q¢ and M € GModA, the right multiplication by v yields a
graded A-linear morphisms Plu] : Py(n) — Py(n + r), while the left multiplication
by u yields a k-linear map M (u) : M, (x) = My4+,(y), for every n € Z. For each
z € Qo, we write P! = A'e, and I = D(Ae,), where A = (4')° = kQ/(R")°.

Now, we define two Kozsul functors. The first is the so-called right Koszul
functor F : GModA — C(GModA') defined as follows; compare [3, (3.1)]. Given
M € GModA4, as will be shown below, we have a complex F(M)* € C(GModA')
such, for all n € Z, that F(M)"=®,eq, Pin) ® M, (z) and

Ay = (Zate(x,y)P[d!] ® M(Q))(y.0)eQoxqo : F(M)" — F(M)"
with P[a'] @ M (@) : Pi(n) ® My(z) — Py(n+1) ® My11(y), for every a € Q1(z,y).
And given a morphism f : M — N in GModA, we have a complex morphism
F(f) : F(M) — F(N) such, for all n € Z, that
F()" = ©2cqo(id ® fna) : Bacqo Pa(n) ® Ma(z) = Saeqy Poln) © Nn(x),
where f,, , : M, (z) — N, (z) is the k-linear map obtained by restricting f.

The second is the so-called left Koszul functor G : GModA — C(GModA') defined
as follows. Given M € GModA, we will have a complex G(M)* € C(GModA'") such,
for all n € Z, that G(M)" = @,cq, . (n) @ M, (z) and

Bty = (Ccor o 1181 M(@))gm1c00x0 : GO — GOM)™1
with I[a'] @ M (@) : I.(n) ® M, (z) — I?L(n +1) @ My41(y), for every a € Q1(z,y).
And given a morphism f: M — N in GMod4, we will have a complex morphism
G(f) : G(M) — G(N)* such, for all n € Z, that
G()" = aeQy ([ ® fuz) : Bueqoly(n) @ Mu(x) = Breqoly(n) @ Nu().
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5.1. PROPOSITION. Let A = kQ/R be a quadratic algebra with Q a locally finite
quiver. The above construction yields exact functors F : GModA — C(GMod/l!)
and G : GModA — C(GModA").

Proof. Fix M € GModA. For n € Z, write F(M)" = @,cq,Pr{n) ® M,(z) and
F(M)'? = @.eqoPiin + 2) ® Myua(2) with dT}J{z\Z)O A%y = (42 2) (2,2)€Q0x Qo>
where d  : Pi(n) @ My (z) — Pin+2) ® My, 42(2). Fix (z,2) € Qo x Qo. Write
Q2(x,2) = {a1f1,...,asBs}, where g, 5; € Q1. In view of the definition of F, we
see that d2t! =7 | P[Bla}] ® M(& ;).

As seen in the proof of Lemma 3.8, we have k-bases {p1, ..., pry Pr41,-- -, ps} and
{1y oy Dy g1y« -5 Ms } Of kQ2(x, 2) such that {p1,...,p,} is a basis of Ry(z, 2);
{n°4 1, .., m2} is a basis of Ry(z,z) and {n},...,n:} is the dual basis of {p1,..., ps}.
Then, p; =0 for 1 <i < r, and 77;- = 0 and for r < j < s. By Corollary 1.2, we
have a k-linear isomorphism o : D(kQ2(z, 2)) ® kQ2(z, 2) — Endg (kQ2(x, 2)). We
easily see that o(>°7_, ()" ® a;8;) =id = o(3°;_1nf ® p;). Thus,

S (aafi)* @ aiffi = i 1mF @ pi.

Applying the k-linear isomorphism D(kQq(x,z)) — kQ39(z,x) : & — £°, we
obtain Y7, (;3;)° ®@ ;i = >.;_1n5 @ p;. And applying the tensor product of the
canonical projections kQs(z, z) — e, Aze, and kQ3(z, z) — ez Abe., we obtain

iy Bl @ aifl = 3001, 71 © pi.

Finally, we have a k-isomorphism e, Abe, — Hom (P} (n—2), P:(n)) : u — Plul;
see [18, (2.3.3)], and a k-linear map e, Ase, — Homy (M,,—2(2), M, (x)) : u — M (u).
This yields a k-linear map

¥ i e Aye, ® egAze, — Homy (PL(n—2), Ph(n)) @ Homy (M, _o(z), My (2)),
sending 7' ® p to P[7'] ® M(p). Applying it to the above equation, we obtain
S PlBia] @ M(aiB) = S, Pl  M(pi) = 0.

Therefore, d;@b)oaﬂ}zj@) = 0. That is, F(M)" € C(GModA"). Given a morphism
f M — N, it is easy to verify that F(f)" o dj{.@b) = d;a,) o F(f)»~1, for n € Z.
Thus, we have a morphism F(f)" : F(M)" — F(N). So F is a functor, which is
exact the tensor product is over a field. The proof of the proposition is completed.

Let M* be a complex and f*: M* — N*a morphism in C(GModA). Given i € Z,
restricting M* and f* to the degree i, we obtain a complex M, and a morphism
fi+ M; — N; in C(Modk). Note that H"(M*) = @;czH"(M; ), for n € Z. And f*
is a quasi-isomorphism if and only if so is f; for every i € Z. A similar consideration
is given to a double complex M* and a morphism f** in DC(GModA) so that
T(M*); = T(M;") and T(f*"); = T(f;*), for all i € Z.

Given s € Z, the grading s-shift M*(s) of M" is defined by (M*(s))" = M"(s)
and dyj. ., = di(s) for all n € Z. In view of the above consideration, we see that
H™(M*(s))=H"(M") for all n € Z. And it is clear that t(M*(s)) = t(M")(s), where
t is the twist functor. The following statement follows from a routine verification.

5.2. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
Given any M € GModA and s € Z, we have F(M)'[s] = t*(F(M(s))(s)) and
G(M)'[s] = £(G(M(s)) (s)).

In view of Proposition 4.6, we can extend the two Koszul functors as follows.
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5.3. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.
(1) The right Koszul functor F extends to FC : C(GModA) — C(GModA'), called
the right complex Koszul functor such, for any M* € C(GModA), that
FOM)" = &(i)ezx o Pa{n—1) @ M._;(z); n € Z.
(2) The left Koszul functor G extends G€ : C(GModA) — C(GModA'), called the
left complex Koszul functor such, for any M* € C(GModA), that
GUM )" = Bi ) enxqola(n—1i) © My,_(z); n € Z.
We compose Koszul functors and complex Koszul functors as follows.

5.4. LEMMA. Let A = kQ/R be a quadratic algebra with @ a locally finite quiver.

(1) The functor F€o G : GModA — C(GModA) is such, for M € GModA, that
(]:COg)(M)n = @Qiez;a,06Qo Pal{n—1i) ® (I:!v)’ﬂ(a’) ® Mi(z); n € Z.

(2) The functor G€ o F : GModA — C(GModA) is such, for M € GModA, that
(GC o F)Y(M)" = Pictir.acqola(n—i) @ (P)n(a) @ My(x); n € Z.

Proof. We only verify Statement (1). Consider a module M € GModA. By

definition, (F% G)(M)" = FY(G(M)') = T(F(G(M)’)"). Thus, for any integer n,

we have (FC0 G)(M)" = ®;ez F(G(M)H)"~. Since G(M)! = @,eq, I (i) ® M;(z),

we see from the definition of F that

F(G(M)')"™" = Baeqo Paln—1)® G(M);,_;(a) = Ba,zeqo Paln—1)@(I; )n(a) O M; ().

The proof of the lemma is completed.

The above two composite functors are extended as follows.

5.5. LEMMA. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.

Consider a complex M* € C(GModA) and an integer n.

(1) The functor (F% G)¢ : C(GModA) — C(GModA) is such, for n € Z, that
(FOG) UM )" = @i jeziaweqo Paln—i—j) ® (I )n-i(a) ® Mj(z).

(2) The functor (G€ o F)© : C(GModA) — C(GModA) is such, for n € Z, that
(G o F)UM)" = @i jeziameq Loln—i—j) @ (Py)n-i(a) @ Mj(a).

Proof. We shall only verify Statement (1). Let M* € C(GModA). By definition,

(F9G)9(M") = T((FC 0 G)(M?)). So (F 0 G)(M)" = @iez (FT G)(M')"~",

for any n € Z. In view of Lemma 5.4, we see that
(FCoG) (M) = @jeziameqoPa(n—i—j) @ (I)n—i(a) ® M} ().

This implies Statement (1). The proof of the lemma is completed.

Next, we show that the complex Koszul functors descend to categories derived
from some subcategories of C(GModA). To introduce these subcategories, we will
view a complex M" of graded modules M' = ;e M ; as a bigraded k-vector spaces

M; with i,j € Z.

5.6. DEFINITION. Let A = kQ/R be a quadratic algebra with @ a locally finite

quiver. Given p,q € R with p > 1 and ¢ > 0, we denote

(1) by Cf,(GModA) the full subcategory of C(GModA) of complexes M* such that
M; =0for i+pj > 0ori—gqj < 0;in other words, M" concentrates in a
lower triangle formed by two lines of slopes —% and %, respectively;
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(2) by C (GModA) the full subcategory of C(GModA) of complexes M* such that
M; =0 for i + pj < 0 or i — qj > 0; in other words, M" concentrates in a
upper triangle formed by two lines of slopes —% and %, respectively;

(3) by Cf, (gmodA') and C;,(gmodA) the full subcategories of Cjf,(GModA) and
C,l,(GModA) respectively of piecewise finite dimensional modules.

REMARK. (1) Taking p = 1 and q = 0, we recover the categories C*+(A) and CT(A)

defined in [5, (2.12)]; see also, [26, (2.4)].

(2) The categories Cp%q(GModA) are pairwise distinct derivable subcategories of

C(GMod™A) containing C*(GMod™4), and the C,] (GModA) are pairwise distinct

derivable subcategories of C(GMod*1) containing C*(GMod ™).

Let 2 = GModA or gmodA. In the sequel, we shall denote by K, () and
K, (2) the quotient categories modulo null-homotopic morphisms of C)f () and
C, () respectively; and by D} () and D] () the localizations at quasi-isomor-
phisms of K}, () and K, (A) respectively.

5.7. THEOREM. Let A = kQ/R be a quadratic algebra with Q a locally finite quiver.

Consider p,q € R withp > 1 and g > 0.

€ 1g compiex osSzZutL functor mauces a commutative aragram
1) The right lex Koszul tor FC ind tative di

Ct,(GModA) — K} (GModA) — Dt (GModA)
]:pcq\L j/]:’fq i/}-fi)q

(GModA') — K| (GModA") —= D] (GModAY).

+
C q+1,p—1 q+1,p—1

g+1,p—1
(2) The left complex Koszul functor G€ induces a commutative diagram

C(GModA) —— K1 (GModA) —— D/l (GModA)

56| sk, lst,

cr (GModA') — K * (GModA') — D} (GModAY).

q+1,p—1 q+1,p—1 q+1,p—1
(3) In the above two statements, GModA and GModA' can be replaced simul-
taneously by gmodA and gmod A’ respectively.

Proof. Note that K?(GProjA) and K?(GInjA) are full triangulated subcategories
of D*(GModA), and K°(gprojA) and K®(ginjA) are full triangulated subcategories
of D¥(gmodA); see [33, (10.4.7)]. Consider M €C},(GModA). There exist s,t € Z
such that M} = 0 when i + pj>s or i — qj <t. Fix n,m € Z. By Lemma 5.3,

]:C(M)?n = Di<ntm;zeQo (Pa!c)n+m—i ® M, _;(z).

Fix some i < n+m. If n+ (¢+ 1)m < ¢, then i — ¢(n — i) < t; and if
n—(p—1)m > s, then i +p(n —i)>s. Thus, FE(M*)? =0 in case n+(q+1)m < t
or n —(p —1)m > s. That is, FE(M*)" € C;]:-l,p—l(GMOdA!)' This yields a functor
ES : Cf (GModA) — qulm_l(GModA!). Furthermore, the n-diagonal of F(M*)
consists of F(M")" ™ = @yeq, Pi{n—i) ® Mi_.(r) with i € Z. Since M!_, =0
for i < (ng +t)(1 + ¢)~', we see that F(M")" is diagonally bounded-below. By
Theorem 4.9, .7-;,% induces a commutative diagram as stated in Statement (1).

Similarly, G¢ restricts to a functor ng :CJ,(GModA) — Cqﬁrl’pfl(GMod/l!).

Let N* € C(GModA') be acyclic. Fix m € Z. Then GE(N*),, = T(G(N");,). Since
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G is exact, G(N*)" has acyclic rows, and so does G(N*);,. Given n € Z, in view of
Lemma 5.3, the n-diagonal of G(N*);, consists of

g(Ni)Z_i = Dzeqo (I!z)’ﬂ+m*i ® erz—z(x)ﬂ € Z.
If i < n+m, then G(N)"~¢ = 0. That is, G(N*)",, is diagonally bounded-below. By
Proposition 4.1, GE(N*),, is acyclic. Hence, GE(N") is acyclic. Thus, G induces a
commutative diagram as stated in Statement (2); see (4.9).

Finally, assume that M* € Cp{q(gmod/l). Fix n,m € Z and y € Qg. Then,
FOM )y, (y) = Biez; veqoeyAnym—iea @ M;,_(x). Clearly, FA(M")}, (y) # 0 only
if (gn+1t)(¢+1)"! <i < n+m. Hence, F(M*)" (y) is a finite direct sum of finite
dimensional k-spaces. So, FE(M") € C(gmodA'). As seen above, FE(M*) lies in
C’qll’p_l(gmod/l!). This yields a functor 7, : ¥, (gmodA) — C'qT+17p_1(gmodA!).
Similarly, we obtain a functor G§, : C.f (gmodA) — C’qﬁ_l’p_l(gmod/l!). The rest
of the proof of Statement (3) are similar to those of the first two statements. The
proof of the theorem is completed.

REMARK. (1) In case p = 0 and ¢ = 1, Theorem 5.7 has been established for
positively graded quadratic categories; see [26, Proposition 20].

(2) In the sequel, we shall call 72 and G the right and the left derived Koszul
functors, respectively.

We shall show that the complex Koszul functors always descend to bounded
derived category of finitely piece-supported graded modules.

5.8. THEOREM. Let A =kQ/R be a qudratic algebra with Q a locally finite quiver.
(1) The Koszul functor F: GModA — C(GModA") induces a commutative diagram

CY(GMod) — K(GMod) — D¥(GMod™A)

R
C(GProjA") — K’(GProjA') —= D¥(GModA").
(2) The Koszul functor G: GModA— C(GModA") induces a commutative diagram

C*(GModA) —= K*(GMod) — Db(GMod™)

oo o) o}
CY(GInjA') —— K¥(GInjA') — D¥(GModA").

(3) In the above two statements, GMod, GProjA', GInjA' and GModA' can be
replaced simultaneously by gmodlf/l, gproj/l!, ginj/l! and gmod/l!7 respectively.

Proof. Let M* € C*(GMod“), say M; #0onlyif —s <i<sand -t <j <t
for some s,¢ > 0. By Lemma 5.3, FE(M")" = @(i,z)erQOPg!c<n—i> ®@ M} _.(x),
for all n € Z. Since M:_, # 0 only if —s —t < n < s + ¢, the complex F(M")
is bounded. And since the M' are finitely piece-supported, M _.(x) # 0 only for
finitely many (i,2) with —s < i < s and = € Q. Thus, FE(M") € C*(GProjA").
So, we have a functor F€: C*(GModA) — C®(GProjA') which, as seen in the
proof of Theorem 5.7, induces a commutative diagram as stated in Statement (1).
Similarly, Statement (2) holds.

Now, suppose that M* e C®(gmod™). Since the M’ _,(z) are finite dimensional,
FE(M") € C*(gprojA). Hence, we have a functor F€: C?(gmod) — C?(gprojA')
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which, as seen in the proof of Theorem 5.7, induces a commutative diagram as
stated in Statement (1) with GMod4, GProjA' and GModA' replaced by gmod™,
gproj/lI and gmod/ll, respectively. The proof of the theorem is completed.

In the locally bounded cases, the Koszul functors induce derived functors between
bounded derived categories of finitely piece-supported graded modules.

5.9. THEOREM. Let A =kQ/R be a qudratic algebra with Q a locally finite quiver.

(1) If A" is locally left bounded, the right Koszul functor F: GModA— C(GMod/l!)
induces a commutative diagram of functors

CY(GMod%) — K(GMod%) —— D?(GMod™)

]-'bcl/ F{‘\L FE\L

CY(GProjA') —= K¥(GProjA') — D*(GMod™").

(2) If A" is locally right bounded, the left Koszul functor G: GModA— C(GModA')
induces a commutative diagram of functors

CY(GMod%) —= Kb(GModd) — D?(GMod™)

gy J/ gx i gf’i
C¥(GInjA') —— K®(GInjA") —— D(GMod™").

(3) In the above two statements, we can simultaneously replace GMod¥%, GMod'
GProjA' and GInjA' by gmod, gmod®', gprojA' and ginjA', respectively.
Proof. Let A' be locally left bounded. Then, the P! with x € Qq are all finite
dimensional. Hence, GProjA' € GModA' and gprojd' C gmod'. Therefore,
K"(GProjA') and K®(gprojA') are full triangulated subcategories of D*(GMod')
and Db(gmodb/l!), respectively. Now, by the argument used in the proof of Theorem
5.8, we can prove the three statements stated in the theorem. The proof of the

theorem is completed.
REMARK. In the sequel, we shall call 7 and GP the right and the left bounded
derived Koszul functors, respectively.

Next, we shall show that all derived Koszul functors are triangle equivalences in

the Koszul case. We start with the following important property of Koszul functors;
see [5, (1.2.6)] and [26, Theorem 30].

5.10. LEMMA. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Given a € Qq, the graded simple A'-module S! has F(I,)" as a linear projective
resolution and G(P,)" as a colinear injective coresolution.

Proof. Fix a € Q. Since A' is Koszul; see (3.12), S! has a colinear injective
coresolution Z7,; see (3.11). Since (AN = A; see (3.9), by definition, G(P,)" = 7.
Next, by Lemma 3.10, Sfl has a linear projective resolution P, as follows:

n it 671

P pi!—n e 73;1 PO, 0 e

where P," =@z, Pa(—n) ® D(eq Anes) and 7?;7" =®yeqoPy(1—n)@D(eaAn_1ey)
with /™" = (Zate(%y)P[d!] 024 Dp[d])(y,x)EQoXQg'

On the other hand, F(I,)™ = @eq,PH{—n) ® D(esASe,), for all n € Z.
In particular, F(I,)~" = P,", for all n < 0. Fix some integer n > 1. Write
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F(I )" = @yeqo Pyl — n) @ D(eyA;_eq). Since I,(@) = DPg(a°) for any
a € Q1(z,y), we see that d}‘?} )= (Zate(%y) Pla']® DP(a°))(y,2)eQox Qo

Consider the k-linear isomorphism 07 : e, Aqe, — e Ae, : & — £°, which in-
duces a k-linear isomorphism DO? : D(ey Ay eq) — D(eqAnes). Given a € Q1(z,y),
since 0 o Pla] = P9 (a°)of; !, we have DP[a]o D6} = D6, 'oDPg(a°). Thus, the
graded A-linear isomorphisms @,cq,(id ® DY) with n € Z give rise to a complex
isomorphism F(I,)° = P;,. The proof of the lemma is completed.

More generally, applying the left Koszul functor and the right complex Koszul
functor yields graded projective resolutions for any graded modules.

5.11. LEMMA. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Given M € GModA, we have a natural quasi-isomorphism 1, (FC€oG) (M) — M.
Proof. Consider M € GModA. By definition, (F€o G)(M)'=T(F(G(M)')"). Given
n € Z, by Lemma 5.4(1), the n-diagonal of F(G(M)")" consists of

FIGM)')'™" = @apeqoPaln — i) ® (I)n(a) ® My(2); i € Z,
and so, (F'€ o G)(M)" = ®icz;a.0e00 Pa(n—1) ® (I})n(a) ® M;(z). In particular,
(F€o G)(M)™ = 0 for n > 0. We divide the rest of the proof into two statements.

STATEMENT 1. If n <0, then H*((F€0 G)(M)") = 0.

Fix an integer n < 0. For any i € Z, recall that the i-th column of F(G(M)*)" is
t(F(G(M))) = Duequt'(F(IL{(1))") ® M;(z), where t is the twist functor. In view
of Lemmas 5.2 and 5.10, we see that

H" 7 (E(F (L (1)) ZH ™ (E(F(L(0)"(4))) = B*(F(L)[i) = B (F(1,)") = 0.
So, H* *(t(F(G(M)'))) = @peqH" " (E(F(1,(7))")) ® Mi(z) = 0. Fix p € Z.
Consider the double complex F(G(M)");,, whose i-th column is t'(F(G(M)")"),
with H* " (¢ (F(G(M)")")p) = 0, and whose n-diagonal consists of

F(GM) )" = Baneqo Aprn—ica ® D(ead_ney) @ M;(z); i € Z.

So, F(G(M)),, is n-diagonally bounded-above. In view of Lemma 4.1, we see that
H"((FC0G)(M);) = H"(T(F(G(M)");)) = 0. Therefore, H*((F0G)(M)") = 0.
This establishes Statement (1).

It remains to show that HO((F% G)(M)") is naturally isomorphic to M. Recall
that A' = {7 |~ € kQ}, where 7' = 1° + R'; and A = kQ/(R")° = {¥|~ € kQ},
where 7 = v + (R )°. Observe that the 1-diagonal of F(G(M)")" is null. Since
(ILoM)(a&') = I.(&') ®idys for a € Q1(a, ), the O-diagonal and the (—1)-diagonal
of F(G(M)")* are illustrated as

Do o Po(—i) @ (1})o(b) @ M;(b)
69aﬂcEQopa< > (I'z

where v =71 = (v~

)—1(a)@M;(z )H@cerP< i—1)®@(1)o(c) ® Miyi(c),
“1(0,0,%)) (b.a,0)€Q0x Qo x Qo With

V=i =1(b, 0, 2) > 0c (o) (1) 'Pla) ® IL(a') ®@id, if b= x;
if b # x,
and hb~i=1 = (ph i1 c,a,x))(car)erxQono with
i,—i—1 _ Za€Q1(;C,a)ld®I[ ]®M(O_Z), ifC:CL;
h (c:0,2) { 0, if ¢ # a.
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In particular, (FoG)(M) ™= ®icz.a.0eqo Pa{—i—1) @ (I})_1(a) ® M;(x), where
(IL)_1(a) = D(e4Are,) has a k-basis {3*| 8 € Q1(x,a)}, that is the dual basis of
{318 € Q1(x,a)}. Moreover, (FCoG)(M)° = D) ezx Qo Po(—1) @ (1} )0 (b) ® M;(b),
where (I})o(b) = D(esAges) has a k-basis {&;}.

STATEMENT 2. There exists a natural graded A-linear epimorphism

Myt (FG)(M)° — M: D (i by ez Qo i ® € @ M HZiEZ;beQO(_l)L;DUi,bmi,ba
such that n° od=! = 0, where d=" is the differential of degree —1 of (F€oG)(M)".

The existence and the naturalness of of 7,, are evident. Let w € (F% G)(M)~!.
We may assume that w € Py(—i—1) ® I'(i)_;_1(a) ® M;(x) for some i € Z and
a,z € Q. Further, we may assume that w = u0®35®m07 for some ug € P,{—i—1),
Bo € Q1(z,a) and mgy € M;(x). Write P, = Ae,. For a € Q1 (z,a), since (@')° = 4,
we obtain I.(a') = DP,(a) and I.[a'] = DP[a]. Thus, I.(a')(83)(es) = B5(a)
and I[a'](8%)(eq) = B2 (). Hence, IL(a")(35) = 1[a'](8) = é% in case o = By; and
otherwise, I'.(a")(3) = I[a'](83) = 0. This yields

A7 W) = ()" he, wa (Pl © I(a) ©id)(uo © B ® mo)
Y00 () (id @ I[a'] © M(a))(uo @ B @ mo) (*)
= (=1)"(upBo) ® &% @ mo + ug ® &% ® (Bomo).

Since ug € Py(—i—1) and uofy € P,(—i), we obtain
- D Ly B (0G4 o
(muod M) (w) = (=1)"2 T (ugfomo) + (=1)" 2 (uoBomo) = 0.
This establishes Statement 2.

To conclude, we need to verify that Ker(d~!') C Im(n,,). Fix w € Ker(n,,).

Since 7,, is graded, we may assume that there exists (p,a) € Z x Qg such that

w € (FCo G)(M)p(a) = izpweqaPul~i)p @ (I)o(x) ® Mi(z),
where e, Pp(—1), = e, A,—;e,;. Then, we may find some i, < --- < iy < i; = p and
T1,...,2s € Qo such that w = 3%, 7; ® é;, ® mj, where 7; € Qp—;(2;,a) such
that the 7; are pairwise distinct and m; € M;, (x;). In particular, v; = &4. We
shall proceed by induction on the minimal integer n, for which w can be written
in this form and n,, = Z;Zl(p — ij).

If n, = 0, then s = 1 and m; = +7,,(w) = 0, and hence, w = 0. Suppose
that n, > 0. Since v; # 71 = &4, we may write v; = 0;5; with §; € Q1(z;,y;)
and 0; € Qp—i,-1(yj,a), for 2 < j < 5. Set 0 = Z;ZQ(—l)iﬂﬁj ® 8% ® m;, where
0j € Py, (—i;j—1),. In view of the equations (), we obtain

d o) = Y5,((=1)%(;8) @e;, @mj + (-1)%0; @ &, ® (B my))
= whea®e® (—m)+ 35,008, @ (=1)¥(8;my),
Put ' =d ' (0) ~w =ea ® &} @ (—m1) + 35,0 ® €; @ (—1)4(5; m;). Then,

W' € Ker(n,,) with n, < n,. Thus &’ € Im(d~!), and hence, w € Im(d~!). The
proof of the lemma is completed.

Similarly, applying the right Koszul functor and the left complex Koszul functor
yields graded injective coresolutions for bounded-above graded modules.

5.12. LEMMA. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Given M € GMod ™A, we have a natural quasi-isomorphism ¢, : M — (G0 F)(M)".
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Proof. Let M € GMod ™A, say M; = 0 for all ¢ > r, where r € Z. By definition,
(G0 F)(M) = T(G(F(M)*)"). Given any n € Z, by Lemma 5.4(2), we see that
the n-diagonal of G(F(M)*)* consists of

GIF(M))"" = ®pacqole(n —i) @ ex A eq @ Mi(a); i € Z,
and so, (G0 F)(M')" = @iz n.acqole(n — i) @ ey AL eq @ M;(a). In particular,
G(F(M)")" is diagonally bounded-above and (G%o F)(M)" = 0 for n < 0.

STATEMENT 1. Consider t/(G(F(M)')"), the i-th column of G(F(M)")". Given
any n € Z, we have H* (£ (G(F(M)")")) = @ucg, H*(G(P))) @ M;(a).

Indeed fix n,i € Z. Then, F(M)" = ©queq, Pi(i) @ M;(a). It follows easily that
t(G(F(M))) = ®acqot (G(PHi)") ® M;i(a). In view of Lemma 5.2, we see that

HY U (G(Py(i)))) = H' U (E(G(Pa(i) (i) = H'(G(P,)'[i]) = H (G(Pa)).
This establishes Statement 1.

STATEMENT 2. If n > 0, then H*((G¢o F)(M)") = 0.

Fix n > 0. By Statement (1) and Lemma 5.10, H*~*(+*(G(F(M)*)*)) = 0 for all
i € Z. Since G(F(M)*)" is diagonally bounded-above, we deduce from Lemma 4.1
that H*((GCoF)(M)') = H*(T(G(F(M)*)")) = 0. This establishes Statement 2.

It remains to construct a natural graded isomorphism M — H?((G% F)(M)").
Note that (G%F)(M)° = @icz: acqy La(—i) @ eq Ayeq @ Mi(a). Given (i,a) € Zx Qo,
we shall construct a morphism fi : M — I,(—i) ® eq Aleq © M;(a) in GModA. For
this, we shall first define a k-linear map f} ; : Mj — Io(—i); ® ealyeqa @ M;(a) for
every j € Z, where I,(—i); = D(A;_,e,). Indeed, we set f;] =0for j >i Fixj
with j <i. We have a k-linear map

fm- : Mj — Homy (A7_eq, ealbeq @ Mi(a)) : w — w;yj(w),
where 9, ;(w) sends 7° to e, @ Jw, for all v € kQ;_;(—,a). Since A7_je, is finite
dimensional, in view of Corollary 1.2(1), we have a k-linear isomorphism
H(iw. : D(A7_jeq) ® ealbeq ® Mi(a) — Homy,(47_;¢€q, ealbea @ Mi(a)).

Now, put fi ;= (6% ;)" ol My — Io{~i); ® eaAbea ® M;(a), which can be
computed in the following way.

STATEMENT 3. Let {¥9,...,75} with v, € kQi—j(—,a) be a k-basis of A7_eq
with dual basis {777, ..., 79*}. Then fi [(w) =370 _ | 79* ® eq @F,w, for w € M;.

Indeed, every 7° € A7_je, is written as 3° = Y/ A\3? with A, € k. Given
w € M, by the definition given in Corollary 1.2(1), we obtain

O i (o1 Ty ® €a @T,w)(7°) = €a @ (i Ae¥9)w = 95 (w) (7°).
Thus, 607, ;30 _ 179" @ eq @F,w) = ., ;(w). This establishes Statement 3.

STATEMENT 4. Given (i,a) € Z x Qq, there exists a natural graded A-linear
morphism fi : M — I,(—i) @ eq A, @ M;(a) such that (fi); = 273” forall j € Z.

Given a € Q1 and j < i, it is easy to see that we have a commutative diagram

i i

Wi 0
M; — Hom((Pfl’)i_j, eaAéJea ® M;(a)) -~ Ia<_7;>j ® eaAE)ea ® M;(a)

M (&) \LHom(P(‘j(a”),eaA!Oea®M,i(a)) i[a(—i)(&)(&id@id
Mj i1 = Hom((Pg)i—j—1, € Apea ©Mi(a)). <= To(=i) 11 © ea Ajeq ©M;(a)
Therefore, fi is a graded A-linear morphism. Similarly, one can verify that f! is

natural in M. This establishes Statement 4.
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Fix i € Z. Given a € Qo, by Statement 4, we obtain a natural graded A-linear
morphism g : M — I,(—i)®e, Apeq ® M;(a) with (g2); = (—1) g 4 j» which will
be written as gfw-, for all j € Z. Let w =3 . jez Wa,j € M With wy ; € e M.
If go(wjz) = g, ;(wjz) # 0 for some a € Qo, then f; ;(w;.) # 0. Hence, j <,
and by Statement 3, kQ;_;(z,a) # 0. Since @ is locally finite, g} (w) = 0 for all
but finitely many a € QQg. Hence, we have a graded A-linear morphism

gi = (gé)aEQo M — g(}—(M)Z)iz = DaecQolal~1) ® eaAé)ea ® M;(a)
such that g% = (gfz’j)aer P M = @acoy(Ia(—1)); ® eaApeq @ My(a), for all j € Z.
STATEMENT 5. We have a natural graded A-linear monomorphism

G = (9")iez : M — (G F)(M)° = @icz, G(F(M)") ™",

Indeed, observe that G(F(M)")~" =0, for all i > 7. Let w =Y, ,w; € M with
wj € Mj. If g'(w;) = > aco gi(w;) = gi ;(w;) # 0 for some i, then j < 4, and
hence, j <i < r. As a consequence, g*(w) = 0 for all but finitely many i € Z. Thus,
we obtain a graded A-linear morphism ¢,, = (¢°)iez : M — (G% F)(M)°, which is
clearly natural in M. Assume that ¢, (w) = 0, for some w € M; with j € Z. In
particular, g’ (w) = 0, that is, gj(w]) = Zaer giyj (w) = 0. Thus, gij(w) =0, and
hence, fg](w) =0, for all @ € Q. Since {e,} is a basis of A]_;e,, by Statement
3, e2* ® e, ®eqw = 0, and hence, e,w = 0, for all a € Q. That is, w = 0. This
implies that ¢,, is a monomorphism. Statement 5 is established.

Observe that the (—1)-diagonal of G(F(M)*)* is null, while the 0-diagonal and
the 1-diagonal can be illustrated as follows:

. hb Tt .
Db eQo Ib<_2> ®ebAE)eb ®M’L(b) > @a,xEQOIx<_Z>®exA!1€a ®Mi+1(a)

T,U'H»l,—ifl

Beeqolo{—i—1)@eAbe. M1 (c),
where b~ = (hi’ﬂ.(a, z,b))a,0,beq, with

i—i weo (v id®@ Pla'l® M(a), ifb=ux;
h (a,x,b)z{ozewm '] ® M(a) o

and v"TH T = (0L (g,2,0)) g g ey With

vi+1,—i—1(a T C) _ Za€Q1(w,a)(_1)i+1[[&]®Pa! (@I)®id7 if ¢ = a;
" 0, if ¢ # a.

STATEMENT 6. We have d°o (,, = 0, where d° denotes the differential of degree
0 of the complex (G€o F)(M)".
Indeed, it amounts to show, for any ¢ € Z, that the diagram

oo Baeqoh’ (a,z,) v
Br ol (—1)®ep Ao @M; (1) —————> Daw Qo (—1)Res A1e, @M y1(a)

(gi)merT
M

i+1)
:

(g a€Qq

Ba GQO[C!I‘<77:7 ®eqdpea®@M;i1(a),

is anti-commutative, or equivalently, the diagram
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ShY " a,,2); .
— s Da,z erIw<_Z>j ®ea:A!1€a ®Mi+1(a)

Dz €Q0193<_i>j ®69€Ag)ea: ®Mz(x)
T@’le’ﬂfl(a,x,a)j
(gt

(gé,j)wEQoT

9a'j JacQ .
Mj 7% Da EQOIa<_Z_1>j 029 ea/lé)ea ® Mi+1(a)
is anti-commutative for all i, j € Z, where I.(—i); = D(A7_;e;). This is evident
in case j > 1. Fix some i > j and a,xz € Qg. Then, we have a k-isomorphism
05 : D(A7_je.) @ ealieq ® M1 (a) — Homy, (A5_ €., exieq @ Miy1(a)) as stated
in Corollary 1.2(1). Consider a € Qi1(z,a) and w € M;. We choose a k-basis
{0%,...,09} for A7_je,. By Statement 3, we obtain

(id® Plat] @ M(a))(g: ;(w)) = (1) 3, 6% @ a' @ ad,uw.

p=1"p

As a consequence, we see that
. . _ _ . = (i—1)i _ =
0;[(id @ Pla'] @ M(a)(g; ; (w)](67) = (=1) = (& ® adyw), p=1,...,s.
On the other hand, for any k-basis {77,...,77} of A7,;_,eq, by Statement 3,
_ N ; i(it1) Y Y o
(Ila] @ Py(a') ®id)(gi (w)) = (=1) 72 X4, (75 o P[a°)) ® &' @ 4w
And hence, for any 1 < p < s, we obtain
0:[(Ila) @ Pu(a') @ id) (955 (w)] (65) = (1) 7= S 35* (3pa°) - (@' @7,w).
Fix1<p<s If 5;; a® =0, then 6451, = 0. In this case, we see trivially that
g:[(ide PlaleM(a))(g; . (w))](65) = (-1)'0; [(I[a]@ P (@) @id) (g5 (w))] (67)-
If 69 a° # 0, then A9 ,_je, has a basis {77,...,77}, where 7} = 69 a°. Noting
that 41 = &dp, we obtain

03 (Ila) @ Pa(a’)@id) (g5 5 (w))) (67)

i(i+1)
2

(-1 (a'® ad, w)
(—1)'05((i[d@P[a'|eM(a))(g5 . (w)))(55)-
(-1)i(id ® Pla'] ® M(&))(g% ,(w)). Now, it

7,z

Thus, (I[a] @ P(a') @ id)(g]5 (w))
is easy to see that

This establishes our claim. Thus, Statement 6 holds.

To conclude, we shall show that Ker(d®) C Im((,,). Letw =Y, ., w' € Ker(d?),
where W' € G(F(M)H) ™" = @eeq, [(—1) @ e.Aje. @ M;(c). Note that w? = 0 for all
i > r. We proceed by induction on the maximal integer n,, < r such that w* = 0 for
all i <mny,. If n, =7, thenw =0 € Im((,,). Assume that n,, < r and write n = n,,.
Since d°(w) = 0, we have v~ "(w") = —h"~ 117" (w"~1) = 0. By Statement 1,

H"(t"(G(F(M)")))) = Beeqo H(G(Pa)) @ Ma(c).
By Lemma 5.10, w™ € Soc(G(F(N)")™"). Thus, w" =3 (o, €0 ®ec @ uc, where

(n=1)n

ue € My(c) = ecMy,. Put u=(=1)"=2 3 o uc € My. Then, ¢, (u) =3, u,

where u® = ¢*(u) = g%, (u) € G(F(M)")~". And by Statement 3, we get

u" = Zc,aer (-1 (nil)ngg,n(wC) = Zc,aer € ReaQeqwe = Zcer ecr ®ecQue.
Put v = w — (,(u) = 35w — u’) € Ker(d?). If i < n, then g/ (u) = 0, and

hence, w* — u* = 0. Since u"” = w™, we have n, < n,. Thus, v € Im((,,), and

hence, w € Im((,,). The proof of the lemma is completed.

As a consequence, we obtain the following interesting statement.
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5.13. COROLLARY. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Then every finite dimensional graded A-module admits a graded projective resolution
over gproj/A and a graded injective co-resolution over ginjA.
Proof. We shall only prove the first part of the statement. Let M € gmod. By
Lemmas 5.11 and 5.5, we obtain a quasi-isomorphism 7, : (F % G)(M)" — M such
that (FC o G)(M)" = & »yezxqoPaln — i) ® (IL)n—i(a) ® M;(z), for all n € Z.
Since M is finite dimensional, (F% G)(M)™ € gprojA and (FS G)(M)™ = 0 for
n > 0. That is, (F¢ o G)(M)" is a graded projective resolution of M over gprojA.
The proof of the corollary is completed.

More generally, applying the left complex Koszul functor and the right complex
Koszul functor yields graded projective resolutions for complexes in CII 4(GModA).

5.14. LEMMA. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Consider M* € C’IIQ(GMOdA), where p,q € R with p > 1 and ¢ > 0. Then, we have
a natural quasi-isomorphism n§. : (F€0 G)¢(M*) — M-
Proof. Consider the functor % G : Mod A — C(Mod A) and the embedding functor
k:ModA — C(ModA). In view of Lemma 5.11, we obtain a functorial morphism
n = (M) MeModa : F€oG — k. By Lemma 4.8, it extends to a functorial morphism
n¢: (F€ G)¢ - k¢ = ide(Moda) such that n§. =T(ny.) : (FCG)Y (M) — M-,
where 1y = (70,:)ijez 1 (FEoG) (M) — k(M")". We claim that n§. =T(n},.) is a
quasi-isomorphism, or equivalently, T(n;,-)s is a quasi-isomorphism for any s € Z.
Now T(ns-)s =T((my)s), where ()5 = ((my:)s)ijez : (FCoG) (M), — k(M)
For any i € Z, by Lemma 5.11, (1" ) E((FCoG)(M?))s— tH(k(M?)), is a quasi-

isomorphism. On the other hand, x(M"); is clearly diagonally bounded-above.
And given n € Z, by Lemma 5.4(1), the n-diagonal of (F“oG)(M")* consists of
(FEoG) (M) = @jeziameqoPa{n—i—j) ® (I)n—i(a) ® Mi(z); i € Z
As a consequence, the n-diagonal of (F G)(M"); consists of
(FCoG)(M")2 ™" = @jeziaweqo Ants—i—j€a @ (Iy)n—i(a) ® Mj(z); i € Z.

Let t € Z be such that M} = 0 fori—qj > t. Fixany i > (¢(n+s)+t)(¢g+1)"". If
j>n+s—i, then A,4_;—; = 0; otherwise, sz =0sincei—qj>i—q(n+s—i)>t.
So (F%G)(M"); is n-diagonally bounded-above. Hence, (F“oG)(M"); is diagonally
bounded-above. By Lemma 4.4, T((n},-)s) is a quasi-isomorphism. This proves our
claim. The proof of the lemma is completed.

Applying the right complex Koszul functor and the left complex Koszul functor
yields injective coresolutions for complexes of bounded-above graded modules.

5.15. LEMMA. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver. For
M* € C(GMod ), we have a natural quasi-isomorphism ;. : M*— (G0 F)C(M").
Proof. Consider the embedding functor x : GMod ™4 — C(GModA) and the functor
GCo F : GMod A — C(GModA). In view of Lemma 5.12, we have a functorial
morphism ¢ = ((i)) premod—a : K — G oF which, by Lemma 4.8, extends to a
functorial morphism (¢ : idgyoqn = K¢ — (G% F)C.

Let M* € C(GMod™A). Then, (G F)Y(M*) = T((G%F)(M")"). By Lemma 4.8,
(G =T(Giy): M — (G0 F)C (M) with Gy = (¢ Jigez : k(M) — (G F)(M.
It is evident that x(M*)" is diagonally bounded-above. Given n € Z, by Lemma
5.4(2), we deduce that the n-diagonal of (G0 F)(M*)" consists of
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(G F)NM)'™" = ®jena0eqole(n—i—j) @ ex d,_seq @ Mi(a); i € Z.
Since A, _, = 0 for i > n, we see that (G F)(M') is n-diagonally bounded-
above. So (G% F)(M") is diagonally bounded above. Further for any i € Z, by
Lemma 5.12, (3, : t/(k(M?)") = t1((G% F)(M?)") is a quasi-isomorphism. Thus,
by Lemma 4.4, ({;. is a quasi-isomorphism. The proof of the lemma is completed.

We are ready to prove the main result of this section, which includes the classical
Koszul duality of Belinson, Ginzburg and Soergel; see [5].

5.16. THEOREM. Let A = kQ/R be a Koszul algebra, where Q is a locally finite

quiver. Consider p,q € R with p > 1 and g > 0.

(1) The right derived Koszul functor f;fq:Dp{q(GMod/l)ﬁDqT_*_Lp_l(GModA!) and
the left derived Koszul functor G2, - DqTJerfl(GMod/l!) — D} (GModA)
are mutually quasi-inverse.

(2) The left derived Koszul functor ggq:D;Q(GModA)—>Dq¢+17p_1(GMod/1!) and
the right derived Koszul functor F2, , :Dqﬂ_l,p_l(GModA!)—>DpT,q(GM0dA)
are mutually quasi-inverse.

(3) In the above two statements, GModA and GModA' can be simultaneously re-
placed by gmodA and gmod/l!, respectively.

Proof. Recall that C’p%q(GMod/l) C C(GMod™). By Lemmas 5.15 and 5.14, we

have natural quasi-isomorphisms ¢§.: N* — (G%% F)C(N*) for N* € C,(GModA),

and 1§ 1 (F%G)C (M) — M- for M€ C,, ,_,(GModA'). And by Proposition 4.7,

(G0 F)U(NY) = (Ggh1p-10Fpg) (V) and (FCoG) M) = (Fy, 0 G 1) (M),

This gives rise to natural isomorphisms (. : N* — (G2, , ;0 F2)(N*) for N* in

D}, (GModA) and nh. :(F2, 0GP, , )(M)— M for M"in D/, ,_,(GModA").

So, ‘F;?q and g£_17p_1 are mutually quasi-inverse. This establishes Statement (1).

Similarly, we can prove Statement (2). Finally using the same argument, we deduce

Statement (3) from Theorem 5.7(3). The proof of the theorem is completed.

REMARK. Taking p =1 and g = 0, Theorem 5.16(1) and (2) have been established

in [5, (2.12.1)] with a sophisticated proof, while Theorem 5.16(3) has been proved

for a positively graded Koszul category in [26, Theorem 30].

We shall show that the bounded derived Koszul functors are also triangle equiv-
alences in the locally bounded case,

5.17. THEOREM. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.

(1) If Ais locally right bounded and A" is locally left bounded, then the derived Koszul
functors FP: D(GMod"A) — D(GMod"') and GP: D(GModA") — D(GMod)
are mutually quasi-inverse.

(2) If A is locally left bounded and Ais locally right bounded, then the derived Koszul
functors GP: D(GMod") — D(GMod') and FP: D(GModA') — D(GMod™)
are mutually quasi-inverse.

(3) In the above two statements, GMod™ and GMod™A' can be simultaneously re-
placed by gmodbA and gmodb/l!, respectively.

Proof. Suppose that A is right locally bounded and A" is left locally bounded. Since

A" is Koszul with (/1!)! = A, by Theorem 5.9, we obtain triangle exact functors

FP: D*(GMod®A) — DP(GMod®A') and GP: D*(GMod®A') — D*(GMod®). As

argued in the proof of Theorem 5.16, we see that they are mutual quasi-inverse.
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This establishes Statement (1). Similarly, one can verify Statements (2) and (3).
The proof of the theorem is completed.

REMARK. In case A is of finite dimensional and A' is left noetherian, Beilinson,
Ginzburg and Soergel established Theorem 5.17(3); see [5, (2.12.6)].

6. GRADED ALMOST SPLIT TRIANGLES

The objective of this section is to study almost split triangles in derived categories
of graded modules over a Koszul algebra. We shall show that the Auslander-Reiten
translations and the Serre functors are related to derived Koszul functors.

Throughout this section let A = kQ/R be a Koszul algebra, where @ is a locally
finite quiver. It is known that gprojA4 and ginjA are Hom-finite and Krull-Schmidt,
and so are K°(gprojA) and K®(ginjA); see [18, (2.12.2), (4.1.1)]. Moreover, there
exists a Nakayama functor v : gproj4d — GModA', which restricts to an equivalence
v : gprojA — ginj/A such that v(Py(s) @ V) = I,(s) ® V, for (s,z) € Z x Qo and
V € modk; see [18, (3.2.1)]. Applying v componentwise, we obtain a triagnle-
equivalence v : K%(gprojA) — K°(ginjA); see [18, (4.1.1)].

First, by making use of the derived Koszul functors, we may describe some almost
split triangles in D’(gmodA) in terms of bounded complexes of finite dimensional
graded A'-modules ; compare [3, (5.2)].

6.1. PROPOSITION. Let A = kQ/R be a Koszul algebra with @ a locally finite quiver.
If M* € D(gmod®A") with FP(M*) or GP(M") indecomposable, then we have an al-
most split triangle GP(M*)[-1] — N* — FP(M") — GP(M") in D’(gmodA).
Proof. Consider a complex M* € Cb(gmodb/ll). By Theorem 5.8 and Lemma 5.3,
FC(M*) € C¥(gprojA') such that FO(M*)" = Di,wyezx Qo Pa{n—1i) @ M} _(z), for
all n € Z. Then, vFO(M" )" & ®; »yezxqolain—i) ® M} _;(z) = GE(M")", for all
n € Z. That is, GE(M*) = vFC(M"). In particular, FX(M") is indecomposable
in K°(gprojA) if and only if G¥(M") is indecomposable in K®(ginjA). If FP(M")
or GP(M*) is indecomposable in D?(gmodA), then FX(M") is indecomposable in
K"%(gprojA). And in this case, by Theorem 4.1.2 in [18], we obtain a desired almost
split triangle in D?(gmodA). The proof of the proposition is completed.

REMARK. Our terminology of left and right Koszul functors is explained by the
almost split triangle stated in Proposition 6.1.

ExaMPLE. Let 4 = kQ/R be a Koszul algebra with a € Q. It is well known that
S, is indecomposable in D?(gmodA); see [27, (I11.3.4.7)]. If I} or P, is finite dimen-
sional, by Lemma 5.10, FP(I}) = S, or GP(P!) = S, in Db(gmodA) respectively,
and by Proposition 6.1, there exists an almost split triangle in D®(gmodA) ending
or starting with S, respectively.

In case A' is locally bounded, we shall establish the existence of almost split trian-
gles in Db(gmodA) for bounded complexes of finite dimensional graded A-modules
and describe the Auslander-Reiten translates in terms of derived Koszul functors.
For this purpose, we call a bounded complex over gmodA derived-indecomposable
if it is indecomposable in D?(gmodA).

6.2. THEOREM. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.

(1) Bvery derived-indecomposable complex M* in C*(gmod®A) is the ending term of
an almost split triangle in D®(gmodA) if and only if A" is locally right bounded:;
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and in this case, TM* = GP(GP(M"))[—1].

(2) Every derived-indecomposable complex M in C*(gmod®A) is the starting term
of an almost split triangle in D®(gmodA) if and only if A" is locally left bounded ;
and in this case, T~ M* = FP(FP(M"))[1].

Proof. We shall only prove Statement (1). Given a € Q, by Lemma 3.10, S, has a

minimal graded projective resolution P; with P;™ = ®,ecq, Pu(—n) @ D(e, Al e,),

for all n € Z. If S, is the ending term of an almost split triangle in D®(gmodA),

then P; is finite; see [19, (5.2)]. Then, ea/li1 = 0 for all but finitely many n > 0.

So, eqA' is finite dimensional. This establishes the necessity of Statement (1).

Suppose that A' is locally right bounded. Then ginjA' C gmod%'. Consider

a derived-indecomposable complex M* € C?(gmod?). In view of Theorem 5.9(3),

GCE(M*) e C¥(ginjA'), and by Theorem 5.8(3), FE(GC(M*)) € Cb(gprojA). Thus, by

Lemma 5.14(2) and Proposition 4.7, FP(GP(M*))=M" in D°(gmodA). Observing

that GP(M") e Ct(gmod™'), we deduce from Proposition 6.1 an almost split triangle

GP(GP(M)[-1] N M GP(GP(M*)) in DbgmodA). The proof of

the theorem is completed.

EXAMPLE. Let A = kQ, where Q is a locally finite quiver. Then A' = kQ°/R',

where R' is the ideal in kQ° generated by the paths of length two. Clearly, A s

locally bounded. By Theorem 6.2, every derived-indecomposable bounded complex

over gmodb/l is the starting term, as well as the ending term, of an almost split
triangle in D?(gmodA).

To conclude, we concentrate on the bounded derived category Db(gmodb/l).

6.3. PROPOSITION. Let A = kQ/R be a Koszul algebra with Q a locally finite quiver.
Then D*(gmod®) is Hom-finite and Krull-Schmidt.

Proof. Let M € gmod. By Corollary 5.13, M admits a graded projective resolu-
tion over gprojA. Given any N € gmod*, since GHom 4 (P, N) is finite dimensional
for P € gproj4; see [18, (2.12.1)], GExt" (M, N) is finite dimensional for all n € Z.
Thus, D®(gmod™) is Hom-finite and Krull-Schmidt; see [17, Corollary B]. The
proof of the lemma is completed.

Finally, we find conditions for Db(gmodb/l) to have almost split triangles and
describe the Serre functors in terms of the derived Koszul functors.

6.4. THEOREM. Let A = kQ/R be a locally bounded Koszul algebra, where Q is a

locally finite quiver.

(1) There exist almost split triangles in Db(gmodb/l) on the right if and only if A' is
right locally bounded; and in this case, GP o GP : D’(gmod?) — DP(gmod)
is a right Serre functor.

(2) There exist almost split triangles in Db(gmodb/l) on the left if and only if A' is
left locally bounded; and in this case, FP o FP : D*(gmodd) — DP(gmod™)
is a left Serre functor.

(3) There exist almost split triangles in Db(gmodb/l) if and only if A is locally
bounded. In this case, GPo GP: D*(gmod®d) — D?(gmod®A) is a right Serre
equivalence and FPo FP: D¥(gmod™) — D¥(gmod) is a left Serre equivalence.

Proof. Since A is locally bounded, gprojA and ginjA are subcategories of gmodb/l.

Now, using the same argument for proving Theorem 6.2(1), we can establish State-
ment (1). And Statement (2) can be shown in a similar fashion. Finally, Statement
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(3) is an immediate consequence of the first two statements. The proof of the
theorem is completed.

REMARK. Let 4 = kQ/(kQ*")?, where @ is a locally finite quiver without in-
finite paths. Then, A and A' = kQ are locally bounded. Hence, Db(gmodb/l)
and D’(gmod®kQ) are equivalent and have almost split triangles; see (5.17) and
(6.4). One could describe the Aulsander-Reiten components of gmod®kQ, and this
would yield a description of the Auslander-Reiten components for D?(gmod®kQ)
and D’(gmod®A), as is done in the ungraded case; see [3, 4].
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