REPRESENTATION THEORY OF HEREDITARY ARTIN ALGEBRAS OF FINITE
REPRESENTATION TYPE

SHIPING LIU AND GORDANA TODOROV

ABSTRACT. Let H be a hereditary artin algebra of finite representation type. We first determine all
hammocks in the Auslander-Reiten quiver I'y,oqpy of modH, the category of finitely generated left
H-modules. This enables us to obtain an effective method to construct I'y,oqg by simply viewing the
ext-quiver of H. As easy applications, we compute the numbers of non-isomorphic indecomposable
objects in mod H and the associated cluster category %, as well as the nilpotencies of the radicals of
mod H, D®(mod H) and €.

INTRODUCTION

Since Gabriel’s pivotal work on representations of quivers; see [I7], the representation theory of
hereditary artin algebras has been extensively studied over the past fifty years; see, for example, [13]
141 291 32 B5]. The representation type of such an algebra is finite precisely when its ext-quiver is
of Dynkin type; see [2, 14, [I7]. In this case, the information on the module category is encoded in
its Auslander-Reiten quiver. In the linearly oriented A,-case, the Auslander-Reiten quiver has a wing
shape; see [28, (2.6)] and [32] (3.3)]. In all other cases, the Auslander-Reiten quiver has only been
roughly described; see [2, (VIIL.1.15)] and [28 (1.13)].

The main objective of this paper is to provide an effective method to construct the Auslander-Reiten
quiver simply by viewing the ext-quiver of the algebra. This enables us to compute the number of non-
isomorphic indecomposable objects in the module category and the associated cluster category, and also
the nilpotency of the radicals of the module category, its bounded derived category and the associated
cluster category. More details are outlined below.

In this introduction, H denotes a hereditary artin algebra with a Dynkin extension quiver Qp; see
. Let modH be the category of finitely generated left H-modules and ['y,0qg be its Auslander-
Reiten quiver; see (1.5). Tt is well-known that every 7-orbit in I'yoqp is finite and contains a projective
module and an injective module; see [29, (1.8)], and also [I4, (1.9)]. Moreover, I'moan embeds as a
convex valued translation quiver in the repetitive quiver ZAg, where Ay is the full valued subquiver
of I'yoan generated by the projective modules; see [28, (1.13)], and also [2, (VIIL.1.15)]. Thus, in order
to describe the precise shape of I'yoqp, it suffices to determine the injective module and the number
of modules in the 7-orbit of any projective module.

For giving a combinatorial criterion for a finite translation quiver to be the Auslander-Reiten quiver
of a finite dimensional algebra over an algebraically closed field, Brenner introduced the notions of
hammocks and hammock functions; see [10]. We adapt and extend these notions to the artin setting;
see and . After a thorough study of the valued translation quivers of tree type in Section
2, we describe all the hammocks in 'y oqp; see (4.2.4). This allows us to determine which injective
module lies in the 7-orbit of any given projective module; see, for example, (4.2.5), (4.2.6) and (4.2.7).

To study representations of a valued graph, Dlab and Ringel defined a Coxeter transformations as a
product of all reflections in the corresponding rational vector space; see [13, Page 8]. Alternatively, for
any hereditary artin algebra, Auslander and Platzeck defined the Coxeter transformation as an special
automorphism of the Grothendieck group of the module category; see and [29, Section 2]. Since
Qp is of Dynkin type, the Coxeter transformation Cy for H is of finite order |Cx|; see [29, (4.1)], called
the Cozxeter order. The Coxeter order has been computed for each Dynkin diagram with a particular
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orientation; see [2| Pages 289, 290]. We show that |C| is independent of the orientation of Qm, so
it is explicitly given no matter how Qg is oriented; see (4.4.2)). Further, we shall pair the 7-orbits
of projective modules in I'yoqp in such a way that the sum of the numbers of modules in the paired
T-orbits is equal to |Cy; see (4.4.1), while the difference equals the difference of the numbers of arrows
in two reduced walks in Q@ between the corresponding vertices; see . So, the number of modules
in any 7-orbit is expressed in terms of |Cy| and the number of arrows in a specific reduced walk in Q.
This ultimately completes the picture of I'yoqm in terms of Qg ; see .

Since H is of finite representation type, it is interesting to compute the number of non-isomorphic
indecomposable H-modules. Since the center k of H is a field; see [29, (3.1)], modH is equivalent to the
representation category of a k-linear species of Qg ; see [I3], Theorem C]. Hence, this number coincides
with the number of positive roots of Qg; see [14], [17], which can be found in [I2]. However, we directly
obtain this number from our results, that is, half of |Cy| multiplied by the number of non-isomorphic
simple H-modules; see (4.6.1)).

A well-known result of Auslander says that an artin algebra A is representation-finite if and only if
the radical of modA is nilpotent; see [2], (V.7.7)] and [34] (1.1)]. In this case, it is interesting to compute
the nilpotency of rad (mod A), namely the least integer r for which rad"(modA) = 0. Using preprojective
partitions, Zacharia proved that |Cg| — 2 is the maximal length of chains of irreducible maps in mod A
with a non-zero composite; see [35 (4.11)], and consequently, rad(modH) is of nilpotency |Cr| — 1.
Alternatively, using some nice properties of I'noqzr; see (3.2.1), we show that the radicals of mod H and
D®mod H) have the same nilpotency |C| — 1; see (4.6.4) and (4.6.5).

In order to categorify Fomin and Zelevinsky’s cluster algebra associated with a finite acyclic unvalued
quiver [16], Buan, Marsh, Reineke, Reiten and Todorov introduced the associated cluster category, which
is an orbit category of the bounded derived category of finite dimensional representations of the quiver;
see [7]. The same construction yields the cluster category €y associated with H. We show that the
radical of €y is also of nilpotency |Cg| — 1, and the number of non-isomorphic indecomposable objects
in €y is half of |Cy| 4+ 2 multiplied by the number of non-isomorphic simple H-modules; see ,
which coincides with the number of cluster variables of the cluster algebra associated with Qp; see [15]
(5.9.1)]. Finally, we want to express our gratitude to Platzeck and Zacharia for some helpful discussions.

1. PRELIMINARIES

The objective of this section is to lay the foundation for this paper. Besides fixing some terminology
and notation, we shall collect and also prove some results in the general context, which are needed later.
Throughout this paper, R denotes a commutative artinian ring. All algebras are R-algebras, and all
categories are additive R-categories whose morphisms are composed from right to left.

1.1. QUIVERS. We start with laying the combinatorial foundation. Let @ = (Qo, Q1) be a quiver, where
Qo is the set of vertices and @7 is the set of arrows from a vertex, called the start point, to another
vertex, called the end point. An arrow « from z to y is usually represented graphically as z — y, and
we write z = s(a) and y = e(a). Given z € Qo, write T for the set of vertices y such that there exists
an arrow x — y, and x~ for the set of vertices z such that there exists an arrow z — x. We call z a
source or sink if x~ or 1 is empty, respectively. With each vertex = € Qq, one associates a trivial path
g, of length 0 with s(e,) = e(e,) = x. A path of length r > 0 is a sequence ) = «;. - - - a1, where o; € Q1
such that e(a;) = s(ai+1) for 1 <4 < r; and in this case, write s(n) = s(a1) and e(n) = e(a,). In the
sequel, the length of a path n will be written as I(n). A non-trivial path 7 is called an oriented cycle if
s(n) = e(n), and an oriented cycle of length 2 is called a 2-cycle. Two paths 7, are called parallel if
s(n) = s(¢) and e(n) = e({). A subquiver @’ of Q is called full if it contains all arrows z — y in @ with
z,y € Q', and convez if it contains all paths z ~ y in Q with z,y € Q’.

For each arrow o : x — y in @, one introduces its formal inverse a~! with s(a™!) = e(a) and
e(a™t) = s(a). The formal inverses of arrows will be called inverse arrows. A trivial walk of length 0 is
a trivial path. A walk of length ¢(> 0) is a sequence w = ¢ci—1 - - - ¢1, where ¢; is an arrow or an inverse
arrow such that e(c¢;) = s(c;41) for 1 <4 < ¢. In this case, we write s(w) = s(c1) and e(w) = e(et),
and call w a walk from s(w) to e(w). Note that w™! = ¢ -+ ¢, Y ¢, is a walk from y to x, and the
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number of arrows in w~! is the number of inverse arrows in w, while the number of inverse arrows in
w™! is the number of arrows in w. A walk in w in Q is called reduced if w is trivial or w = crer_1 ... 1
such that ¢; 11 # c[l for all 1 < i < t. One says that Q is a tree if, for any x,y € Qq, there exists at
most one reduced walk from x to y. The following notation is important for later purposes.

Notation 1.1.1. Let @ be a connected tree with x,y € Qo. In case x = y, put at(z,y) = a~(z,y) = 0.
Otherwise, there exists a unique reduced w = ¢;---¢; from = to y, where each ¢; is an arrow or an
inverse arrow in (). Then we denote by a®(z,y) the number of indices 4 such that ¢; is an arrow; and
by a~(z,y) the number of indices j such that ¢; is an inverse arrow.

We define the opposite quiver Q°P of Q by (Q°P)o = Qo and (Q°P); ={a°:y >z |a:z—y € Q1}.
The trivial paths in @ are identified with the trivial paths in Q°P. And a non-trivial walk w in @ from
z to y induces a non-trivial walk w® in Q°P from x to y so that the number of arrows in w® is the
number of inverse arrows in w, and the number of inverse arrows in w® is the number of arrows in w.

1.2. VALUED QUIVERS. Let ZT denote the set of positive integers. A walued quiver is a pair (Q,v),
where @ = (Qo, Q1) is a quiver without multiple arrows and v is the valuation, that is a map
v:Q1 = ZT X ZT :a v(a) == (va,vl);

see, for example, [2, Page 69], and compare [19, Page 287]. The valuation v(«) of an arrow « is called
trivial if v(a) = (1,1). In a graphic representation of a valued quiver, we will omit the trivial valuations.
In case @ has no loop, we will write v(a) = (vay,vy,) for an arrow @ :  — y. And in case @ has no
2-cycle, we will write v(a) = (vgy, vys) for an arrow a : @ — y. A full valued subquiver of a valued
quiver (Q,v) is a full subquiver of @ with the valuation obtained by restricting v. In order to define
the opposite valued quiver, we write (a,b)° = (b,a) for any pair (a,b) € ZT x Z7.

Definition 1.2.1. Let (Q,v) be a valued quiver. Its opposite valued quiver (Q°P,v°) is defined by
(1) Q°P is the opposite quiver of Q;
(2) v° is defined by v°(a®) = v(a)®, for any arrow « in Q.

1.3. VALUED GRAPHS. We denote by N the set of non-negative integers. The following definition is
slightly modified from the one given in [2] Page 241]; compare [I4, Page 1].

Definition 1.3.1. A valued graph is a triplet (Ag, A1,v), where
(1) Ag is a set of vertices;

(2) A; is a set of edges between vertices, containing no loop or multiple edge;
(3) v is the valuation, that is a function

v:Agx Ay = N:(2,y) = v(x,y) = vy
such that vgy # 0 if and only if vy, # 0 if and only if there exists an edge between = and y.

In the sequel, a valued graph (Ag, A1, v) will be written as (A,v), where A = (Ap, A;); or simply
as A. If e is an edge between x and y such that v, = vy, = 1, then we say that e is trivially valued
with trivial valuation (1,1). One says that A is simply laced if every edge in A is trivially valued. In
this paper, we shall only consider valued graphs with a planar representation defined as follows.

Notation 1.3.2. Let (A, v) be a planar valued graph such that every vertex is incident to at most one
non-trivially valued edge. Consider an edge e between vertices z and y. If e is trivially valued, then it
is represented by a blank line between x and y. Otherwise, e is represented by a horizontal line i — j
labeled with the pair (vyy,vy,) or y — x labeled with the pair (vyg,vgy). In either case, the pair is
called the wvaluation of e in the respective representation.

Remark 1.3.3. In contrast to the valuation of an arrow in a valued quiver, the valuation of a non-
trivially valued edge in a valued graph depends on how the edge is written, namely, which vertex is on
the left and which is on the right.

Now, we introduce valued graph isomorphisms, which we cannot find in any existing literature.
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Definition 1.3.4. Let (A,v) and (A’,v') be valued graphs. We define a valued graph isomorphism
¢ (A,v) = (A",v") to be a bijection ¢ : Ag — A such that U;(Wp(y) = gy, for all z,y € Ay.

Remark 1.3.5. Let ¢ : (A,v) — (A’,v’) be a valued graph isomorphism. Then, for x,y € Ag, there
exists an edge e between z and y in A if and only if there exists an edge ¢’ between ¢(z) and ¢(y) in
A’. And if e is written as ¥ — y with valuation (a,a’), then e’ can be written as ¢(z) — ¢(y) with
valuation (a,a’) or as p(y) — ¢(x) with valuation (d’, a).

Definition 1.3.6. Let (A,v) be a valued graph. The weight of z € A is defined by w(z) := 3 5 vay-

The following statement follows immediately from the definition a valued graph isomorphism.

Lemma 1.3.7. Let ¢ : (A,v) — (A",v) be a valued graph isomorphism. Given any verter x in A, we
have w(z) = w(p(z)).

For later reference, we introduce the following definition; see [2, Page 242].

Definition 1.3.8. A valued graph is called a Dynkin diagram if it is isomorphic to one of the following
canonical Dynkin diagrams:

A, : 1 2 n, where n > 1.
(172)

B, : 1 2 3 n, where n > 2.
(2,1)

C, : 1 2 3 n, where n > 3.

2
D, : 1 3 4 n, where n > 4.
4
E,: 1 2 3 5 6 n, where n =6,7,8.
(1,2)
Fy : 1 2 3 4.
GQ : 1 @ 2.

It is important for us to relate the valued quivers without 2-cycles to the valued graphs.

Definition 1.3.9. Let (Q,v) be a valued quiver without 2-cycles. The underlying valued graph (Q, v)
of (@,v) is a valued graph defined in the following way.

(1) The graph Q@ is obtained by forgetting the orientation of the arrows in Q.

(2) Given vertices z,y in @, we define the valuation v, by

0, if @ has no arrow x — y or y — x;
Ugy = { Ugy, if Q contains an arrow from x to y with valuation (vyy, vye);
Ugy, if Q contains an arrow from y to x with valuation (vyz, vgy).

Remark 1.3.10. Let @ be a valued quiver without 2-cycles. An arrow x — y with valuation (a, b)jn
Q induces an edge x* — y with valuation (a,b), or equivalently, y — x with valuation (b,a) in Q.

(1,3)

. = . (1,3) (3,1)
Example 1.3.11. If Q is 1 —2<—3, then @ is 1

2 — 3, or equivalently, 3 —2 1.

The following statement is evident.

Lemma 1.3.12. Let (Q,v) be a valued quiver without 2-cycles. Then (Q,v) and (Q°P,v°) have the
same underlying valued graph.
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In the sequel, a valued quiver will be called a (canonical) Dynkin quiver if it admits no 2-cycle and
its underlying valued graph is a (canonical) Dynkin diagram.

1.4. VALUED TRANSLATION QUIVERS. A walued translation quiver is a triplet (I',v,7), where (I",v) is
a valued quiver and 7 is a bijection, called the translation, from a subset I'y of I'g to another I'j such,
for any z € I'j, and any arrow y — z with valuation (Vya, U;I), that there exists an arrow 7z — y with
valuation (v, vy, ). In this case, we shall write 7= for the inverse of 7. The T-orbit of a vertex z is the
set of vertices 7°x with s € Z. A path x ~» y in I' is called sectional if it does not contain any subpath
of the form 7a — b — a; and in this case, we call x a sectional predecessor of y, and y a sectional
successor of x. Note that a trivial path in I' is sectional. A sectional path is called strictly sectional
if it meets any 7-orbit in I at most once. The following easy statement follows immediately from the
definition of a valued translation quiver, which will be used frequently.

Lemma 1.4.1. Let (I',v,7) be a valued translation quiver. Let x — y be an arrow in I' with valuation
(a,a’). If Tz and 7%y are defined, then I' contains an arrow T°x — 7%y with valuation (a,a’).

1.5. KRULL-SCHMIDT CATEGORIES. Let A be a Hom-finite Krull-Schmidt R-category. We write rad.A
for the Jaconson radical of A, and rad®A for the s-th power of radA for all s > 0. A subcategory B of
A is called convez provided that any sequence of morphisms Xg — X3 — -+ — X,._1 — X,. between
indecomposable objects in A lies entirely in B whenever X, X,. € B.

For our later purpose, we briefly recall the Auslander-Reiten theory in this general setting; see [3]
and [26]. Given indecomposable objects X,Y in A, we put kx = End4(X)/rad(End4(X)), that is
a division R-algebra; and irr(X,Y) = rad4(X,Y)/rad%(X,Y), that is a ky-kx-bimodule. Tt is well-
known that a morphism f : X — Y is irreducible if and only if f € rad4(X,Y)\rad%(X,Y). Write
dxy = dimy, irr(X,Y) and dYy, = dimirr(X,Y),, which are related by Bautista to minimal left
almost morphism and minimal right almost split morphisms as follows; see [3, (3.3), (3.4)].

Proposition 1.5.1. Let A be a Hom-finite Krull-Schmidt R-category, and let f : X — Y be an
irreducible morphism between indecomposable objects in A.

(1) If A has a minimal left almost split morphism g : X — M, then dxvy is the multiplicity of Y as a
direct summand of M.

(2) If A has a minimal right almost split morphism h: N —'Y, then d'yy is the multiplicity of X as a
direct summand of N.

The following definition unifies the notions of almost split sequences in abelian categories and almost
split triangles in triangulated categories; see [26], (1.3)], and compare [21], (2.7)].

Definition 1.5.2. Let A be a Hom-finite Krull-Schmidt R-category. A sequence X . Y -2 7 of
morphisms in A with Y # 0 is called almost split if f is minimal left almost split and a pseudo kernel
of g, while g is minimal right almost split and a pseudo cokernel of f.

The Auslander-Reiten quiver of A is a valued translation quiver I’4 defined as follows; [26, (2.1)].
The vertex set of Iy is a complete set of representatives of isomorphism classes of indecomposable
objects in A. Given vertices X,Y in Iy, there exists an arrow X — Y in I’y if and only if there exists
an irreducible morphism f : X — Y in A; and in this case, the valuation of X — Y is (dxy,d y).
The translation 7,, called the Auslander-Reiten translation, is defined in such a way that X = 7,7 if
and only if A has an almost split sequence X —Y — 7.

To conclude this subsection, we recall the construction of an orbit category of A; compare [II, (2.1)].

Definition 1.5.3. Let A be a Hom-finite Krull-Schmidt R-category with an action by a group G. The
orbit category A/G is defined as follows.

(1) The objects of A/G are those of A.

(2) Given objects X, Y, one has Hom 4/¢(X,Y) = @gec Hom4 (X, g-Y).

(3) Given morphisms u = (ug)geq : X =Y and v = (vg)geq : Y — Z in A/G, where uy : X — g-Y
and vy : Y — g-Z are morphisms in A, one has vu = (wg)geq, Where wy =37 (f-vn)uy.
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The action of a group G on A is called free provided that ¢g- X 2 X for any non-identity g € G and
any indecomposable X in A; and locally bounded provided that Hom4(X, g -Y) # 0 for all but finitely
many g € G and all objects X,Y in A; see [4], (1.3)].

Proposition 1.5.4. Let A be a Hom-finite Krull-Schmidt R-category with a free and locally bounded
action by a group G. Then A/G is a Hom-finite Krull-Schmidt R-category, whose indecomposable
objects are those of A. Moreover, if X,Y € A are indecomposable, then

(1) rad}y,(X,Y) = ©gecrady(X,g-Y), for s > 0;

(2) XY in A/G if and only if X 2 g-Y in A for some g € G.

Proof. First of all, a direct sum in A is a direct sum in A/G. And since the action of G is locally
bounded, A/G is a Hom-finite additive R-category. Let X,Y € A be indecomposable. Consider a
morphism u = (ug)gec : X = Y in A/G, where u, € Hom4(X, g-Y). Suppose that uy € rad4(X, f-Y)
for some f € G. Then, u has an inverse (U;l)geg 1Y — X in A/G, where u;l =0forallg(# 1) €@,
and uj:,ll = fL u;lz Y — f~'- X. Suppose now that u, € rad 4(X,g-Y) for all g € G. Given any
v = (vg)gec 1 Y = X in A/G, we have vu = ((vu)g)geq, Where (vu)g =3, (fon)uy € rada(X, g-X)
for all ¢ € G. Let e be the identity of G. Then, 1y — vu = (wy)geq, where w, = 1x — (vu)., and
wy = —(vu)y for all g(# e) € G. Since w, is invertible, as seen previously, so is 1x — vu. Hence,
u € rad 4,¢(X,Y). This shows that rady,q(X,Y) = Ggeqrada(X,g-Y).

Since G acts freely on A, rad 4,6 (X, X) = rad 4 (X, X) @ (D (2e)eq Hom4 (X, g-X)). So, End 4,¢(X)
is local. Since a non-zero object in A is non-zero in A/G, an object is indecomposable in A if and only if
it is indecomposable in A/G, and consequently, A/G is Krull-Schmidt. Now, by induction, we easily see
that Statement (1) for all s > 0. Finally, X =Y in A/G if and only if Homy,¢(X,Y) # rady,q(X,Y),
if and only if Hom4(X,g-Y) # rada(X,g'Y) for some g € G, if and only if X 2 ¢g-Y in A for some
g € G. The proof of the proposition is completed.

1.6. MODULE CATEGORY. Let A be an artin algebra. We denote by modA the category of finitely
generated left A-modules, and by rad(modA) the Jacobson radical of modA. The maps in rad(modA)
are called radical maps. Given a module M in modA, we shall write rad M, topM and socM for the
radical, the top and the socle of M respectively. The Auslander-Reiten quiver I'y,q4 of modA carries
the essential information of the finite powers of rad(modA). The Auslander-Reiten translations 7, and
7~ of I'moda are given by DTr and TrD, respectively; see [2, Page 22]. Besides the Auslander-Reiten
quiver, the ext-quiver of A; see [2 Page 69] also plays an important role in our study.

Definition 1.6.1. Let A be an artin algebra, and let Sy, ..., S,, be the non-isomorphisc simple modules
in modA. The ext-quiver of A is a valued quiver @, defined in the following way.

(1) The vertex set is (Qa)o = {1, ...,n}.

(2) The arrow set is (Qa)1 = {i — j | Ext;(S;i, S;) # 0}.

(3) The valuation for an arrow ¢ — j in Q4 is the pair (d;;, d;

zj)? where dij = dimEndA(Sj)EXt/ll(Si,Sj)
and dj; = dim Ext} (S, Sj)End,(s,)-

In the study of the Auslander-Reiten quiver ['yoq4, sectional paths play an important role; see
[6, 23] 24], 20]. The following statement tells us when we can extend a sectional path in I'noda.

Proposition 1.6.2. Let A be an artin algebra, and let Xg — X1 — -+ — X1 = X, be a non-trivial

sectional path in the Auslande-Reiten quiver I'modqa-

(1) Suppose that Xq is projective. If Y — X is an arrow in I'moas with Y # X1, then Y is not
injective, and consequently, I'moda contains a sectional path Xo — -+ = X1 — Xs = 7Y,

(2) Suppose that X, is injective. If Xo — Y is an arrow in I'nmoas with Y # Xi, then Y is not
projective, and consequently, I'moda contains a sectional path 7,Y — Xo — X5 — - = X,.

Proof. We shall only prove Statement (1). Let Y — X be an arrow in I'neqa with Y # X ;. Suppose

that Y is injective. Then, we have an irreducible epimorphism fs : Y — X,. Since Y # X, 1, there

exists an irreducible map (fs,9) : Y ® X1 — X,; see [3l, (3.2)]. So, modA has an almost split sequence
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fs
w
(hvuvfs—l) g

0 7, X YOZPD X1 X 0.
Since f, is an irreducible epimorphism, so is fs_1 : 7,Xs = Xs_1. If s > 1, then 7, X # X _o, and
we similarly obtain an irreducible epimorphism fs_o : 7,X5_1 — Xs_2. Continuing this process, we
obtain an irreducible epimorphism f; : 7, X7 — Xy, absurd. The proof of the proposition is completed.

It is well-known that A is representation-finite if and only if rad(modA) is nilpotent; see [2 (V.7.7)]
and [34, (1.1)]. To compute the nilpotency of rad(modA), one introduces the notion of depth for maps
in terms of the radical series of modA.

Definition 1.6.3. Let A be an artin algebra. The depth of a map f: M — N in modA is defined by
dp(f) :==sup{s e N| f e rad®(M, N)}.

Remark 1.6.4. If M, N € modA are indecomposable, then a map f : M — N is irreducible if and
only if dp(f) = 1.

The following statement relates maps of finite depth in modA to paths in I'oq4-

Lemma 1.6.5. Let A be an artin algebra. Consider a radical map f: M — N between indecomposable
modules in modA. If dp(f) = t, then there exists a chain of irreducible maps between indecomposable
modules M 1% My — - — M4 Ity N in modA such that dp(fi--- f1) =t

Proof. Assume that dp(f) =t > 0. Since f € rad’(M, N), we may write f = >% | fit--- fi1, where
the f;; are radical maps between indecomposable modules in modA. Since f ¢ rad'*' (M, N), there

exists some 1 < s < p such that fy - fo1 ¢ rad™ (M, N). Thus, fs1,..., fs are irreducible such that
dp(fst - -+ fs1) = t. The proof of the lemma is completed.

1.7. HAMMOCKS. Let A be an artin algebra with S a simple module in modA. For any module M
in modA, we write £g(M) for the multiplicity of S as a composition factor of M. For convenience of
reference, we state the following well-known statement; see, for example, [2| Page 45].

Lemma 1.7.1. Let A be an artin algebra. Consider a simple module in mod A with projective cover P
and injective envelope I. If M € modA, then £s(M) is equal to the length of the right End 4 (P)-module
Homx (P, M), as well as the length of the left End s (I)-module Hom (M, I).

Recall that A is of directed representation type if I'yoq4 is finite and contains no oriented cycle. The
following definition is due to Brenner; see [10].

Definition 1.7.2. Let A be an artin algebra of directed representation type. Consider a simple module
S in the Auslander-Reiten quiver I'nodqa.

(1) The hammock associated with S is the full valued translation subquiver Hg of I'noqa generated by
the modules M of which S is a composition factor.
(2) The canonical hammock function associated with S is the function hg : Hg = N: M — £g(M).

The following statement explains in particular the terminology of a hammock.

Proposition 1.7.3. Let A be an artin algebra of directed representation type. Consider a simple module
S with projective cover P and injective envelope I, where S, P, I € I'nyodqa-

(1) Every module in the hammock Hg is a successor of P and a predecessor of I.

(2) If M is a sectional successor of P or a sectional predecessor of I in I'moaa, then M € Hg.

Proof. Tt is clear that P,I € Hg. Consider a module M € Hg. By Lemmal[I.7.1] we have non-zero maps
f:P— Mandg: M — I. Since A is representation-finite, I',0q4 contains paths P ~» M and M ~ [
see [2 (V.7.8)]. We claim that Hg contains a path P ~» M. Since I'yoqm is finite without oriented
cycles, we have a maximal length [, of paths P ~~ M in I'y0qn. We may assume that [y, > 0. Then, f
factors through the minimal right almost split map for M. Thus, Hg contains an arrow N — M. Since
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Iy < Iy, by the induction hypothesis, Hg contains a path P ~» N, and hence, a path P ~» M. Our
claim holds. Dually, Hg contains a path M ~» I. This establishes Statement (1). Next, if M is sectional
successor of P or a sectional predecessor of I in I'yoqa, then Hom (P, M) # 0 or Hom 4 (M, I) # 0; see
[20, (13.4)] and also [2, (VIL.2.4)]. So, M € Hg; see (|1.7.1]). The proof of the proposition is completed.

2. VALUED TRANSLATION QUIVERS WITH SECTIONS

The notion of sections is useful in describing Auslander-Reiten components without oriented cycles
for artin algebras; see [24] [25]. The objective of this section is to further investigate valued translation
quivers with sections, by studying the repetitive quiver ZA of a valued quiver A without oriented cycles.
The sectional paths in ZA are precisely described in terms of the reduced walks in A; see and
(2.1.6). In case A is a tree, a sectional path in ZA is the only path between its end-points, and any two
parallel paths have the same length; see . Finally, we shall consider additive functions on stable
valued translation quivers with sections. These results will be applied to preprojective and preinjective
components of hereditary artin algebras in the next two sections.

2.1. REPETITIVE QUIVER. A valued translation quiver (I', v, 7) is called stable if 7z and 7~z are defined
for all x € I'y. In her classification of self-injective algebras of finite representation type, Riedtmann
introduced a canonical way to construct a stable translation quiver by “knitting” repetitively a tree;
see [31]. This has been generalized to “knit” any valued quivers without oriented cycles.

Definition 2.1.1. Let (A, v) be a valued quiver without oriented cycles. The repetitive quiver ZA of
A is a stable valued translation quiver defined as follows:
(1) The vertex set is (ZA)g = {(s,z) | s € Z; x € Ag}.

)
(2) The arrow set is (ZA); = {(s, ) (o0, (s,y) and (s,y) Lo, (s+l,z)|s€Z;a:x—ye A}
)

(3) The translation 7 : (ZA)y — (ZA)g is defined by 7(s,xz) = (s — 1, z), for all (s,x) € Z x Ay.
(4) The valuation ¥ is such that 9((s,«)) = v(a) and 0((s, @)*) = v(«)®, for all @« € Ay and s € Z.

Remark 2.1.2. Since A contains no oriented cycles, it is evident that ZA contains no oriented cycles.
We denote by P(ZA) the set of paths in ZA, and by W(A) the set of walks in A.

Proposition 2.1.3. Let ZA be the repetitive quiver of a valued quiver A without oriented cycles.
Setting 7(s,a) = a and 7(s,a)* = a~t, we obtain a length-preserving map 7 : P(ZA) — W(A) such
that w(n - &) = w(n) - (), for alln, & € P(ZA).

Proof. Given a trivial path e, ) with (s,z) € (ZA)o, we set m(e(s,+)) = x. Consider a path n = §v,
where v,d are arrows in ZA. Assume that v = (s,a) for some s € Z and o : * — y in A;. Then
§ = (s,a)* or § = (s,3) for some §:y — 2z in A;. This yields a walk 7(§) - m(7) = a o in the first
case and a path 7(d) - 7(y) = Sa in the second case. In any case, we set w(n) = 7w(d) - w(y) € W(A).
Similarly in case v = (s, @), we set w(n) = 7(d) - 7(y) € W(A). By induction, 7 extends to a map
7w P(ZA) = W(A). Tt is easy to see that 7(n - &) = w(n) - w(£), for all n,& € P(ZA). The proof of the
proposition is completed.

In the sequel, the map 7 : P(ZA) — W(A) defined above will be called the covering map, which
can be used to determine sectional paths in ZA as shown below.

Lemma 2.1.4. Let ZA be the repetitive quiver of a valued quiver A without oriented cycles. Then a
path n in ZA is sectional if and only if m(n) is a reduced walk in A, where 7 is the covering map.

Proof. Let n € P(ZA). If n is not sectional, then it contains a subpath (s — 1, a)*(s, a) or (s, ®)(s, a)*,
for some s € Z and o € A;. This yields a subwalk a~la or aa™t of 7(n). So, 7(n) is not reduced. If
m(n) is not reduced, then we similarly show that 7 is not sectional. The proof of the lemma is completed.

The following statement says that 7 is indeed a covering map, which we do not rigorously define.

Lemma 2.1.5. Let ZA be the repetitive quiver of a valued quiver A without oriented cycles, with paths
n,& such that m(n) =7(§), where 7 is the covering map. If s(n) =s(&) or e(n) =e(§), thenn =¢&.
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Proof. Consider only the case where s(n) = s(§) = (t,z) =: &, for some t € Z and = € Aj. Since 7
preserves the length, it is easy to see that the statement holds if I(n) = 0 or 1. Suppose that I(n) > 2.
Write 7 = 7’4 and £ = £'§, for some arrows 4 : & — ¢ and 0 : Z — 2, and some paths n’, £’ such that

s(n’) = g and s(¢') = z. Then, n(n) - () = 7(n) = 7(§) = 7(¢') -7(8). Since 7(5) and 7~r(5) are

arrows or inverse arrows in A, we have 7(¥) = m(0) and w(n’) = w(&’). As seen above, ¥ = 4. Then
s(n") = s(¢&’). By the induction hypothesis, n’ = £¢’. Hence, n = £. The proof of the lemma is completed.

We precisely describe the sectional paths in ZA in terms of reduced walks in A as follows.

Lemma 2.1.6. Let A be a valued quiver without oriented cycles, and let w = ¢y -+ - coc1 be a reduced
walk in A, where ¢; is an arrow or an inverse arrow from x;_1 to x;, such that the edge x;_1 — x; in

A has valuation (vi,v}), fori=1,...,t. Then, ZA contains a sectional path

(0,20) — (r1,21) — -+ —— (1, 21),

where 1; s the number of inverse arrows in the subwalk of w from xzg to x;, and (ri—1,z;-1) = (v, 2;)
has valuation (v;,v}), fori=1,...,t.

Proof. Observe that rg = 0. We may assume that ¢ > 0 and that ZA contains a desired sectional path
(xg,70) = -+ — (rt—1,x4—1). Suppose first that A has an arrow z;_1 — ;. Then, its valuation is
(vg,v}); see (1.3.10) and 7; = r;_;. By definition, ZA has an arrow (ry_1,x¢—1) — (r¢, ¥;) with valuation
(vg,v;). Suppose now that A has an arrow z;_; < ;. Then, its valuation is (v}, v;); see and
re =r4—1 + 1. Thus, ZA has an arrow (r;—1,2¢—1) — (r¢, ¥¢) with valuation (v, v;). Since xy # 4—a,
we obtain a desired sectional path as stated in the lemma. The proof of the lemma is completed.

The following easy statement is useful for inductive arguments.

Lemma 2.1.7. Let (I',v,7) be a stable valued translation quiver. If I' contains a non-sectional path
¢ :x ~y, then it contains a path & : x ~ Ty with 1(§) =1(¢) — 2.

Now, we state some nice properties of repetitive quivers of valued trees.

Proposition 2.1.8. Let ZA be the repetitive quiver of a valued tree A with translation 7.

(1) If n: & ~ ¢ is a sectional path in ZA, then it is the only path from & to j.

(2) Any two parallel paths n: &~ § and  : & ~ § in ZA have the same length.

Proof. Consider the covering map « : P(ZA) — W(A). Let n: & ~» ¢ and { : & ~ § be paths in ZA.

(1) If £(n) = 0, then clearly £ = n. Assume that ¢(n) > 0. Write n = an’, where & : Z — ¢ is an
arrow and 7 : & ~ % is a sectional path with I(/) = I(n) — 1. Consider the arrow § : 7§ — % in ZA. If
¢ is not sectional then, by Lemma Z.A contains a path &' : & ~ 77, and a path BE' TX e TY — 2.
By the induction hypothesis, n’ = 8¢’, and consequently, n = &3¢’, a contradiction to 1 being sectional.
Thus, £ is sectional. By Lemma both 7(n) and 7(¢) are reduced walks in A from 7(Z) to 7 (7).
Since A is tree, 7(n) = 7(£), and by Proposition n=~¢.

(2) By Statement (1), we may assume that 1 and ' are non-sectional. By Lemma[2.1.7] there exist
paths € : & ~ 7 and & : & ~ 7§, where 7 is the translation of ZA, such that I(§) = I(n) — 2 and
1(¢") = 1(n') — 2. By the induction hypothesis, 1(§) = I(£’). Therefore, I(n) = I(n’). The proof of the
lemma is completed.

2.2. SECTIONS. In the existing literature, sections are defined only for connected valued translation
quivers; see [25] (2.1)]. We shall drop this restriction in order to include the Auslander-Reiten quiver
of the bounded derived category of a simple artin algebra; see . Throughout this subsection, I
denotes a valued translation quiver with translation 7.

Definition 2.2.1. Let I" be a valued translation quiver with translation 7. A valued subquiver A of
I' is called a section if the following conditions are satisfied:

(1) A is connected and convex in I.

(2) A contains no oriented cycle.

(3) A meets every 7-orbit in I" exactly once.
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The following statement says that ZA; is essentially the only valued translation quiver which is not
connected and contains sections.

Lemma 2.2.2. Let I' be a valued translation quiver with translation T, containing a non-trivial section
A. Then, v+ and x~ are non-empty for all x € I'y. And consequently, I' is connected.

Proof. Let x € I'y. Then x = 73y for some y € Ag and s € Z. Since A is non-trivial and connected,
we may assume that it contains an arrow y — z. Being stable, I' contains arrows 7%y — 7%z and
75tz — 79y. Thus, 1 and 2~ are non-empty. The proof of the lemma is completed.

Let A be a section in I'. By definition, every vertex in I" is uniquely written as 7"« with r € Z and
x € Ag. We shall say that A is a leftmost section if all vertices in I'" are of the form 77"z with » > 0
and xz € Ag; and a rightmost section if all vertices in I" are of the form 7"z with r > 0 and x € Ay.

Proposition 2.2.3. Let I' be a valued translation quiver with translation T, containing a section A.
(1) If x > y is an arrow in I', then y € A implies x or 7~x € A; and x € A implies y or Ty € A.

(2) There exists a valued translation quiver embedding ¢ : I' — ZA, sending 75z to (—s,x).

(3) If A is leftmost or rightmost, then it is the unique leftmost or rightmost section in I', respectively.

Proof. Statements (1) and (2) are quoted from [25] (2.2), (2.3)], and Statement (2) follows immediately
from the definitions. The proof of the proposition is completed.

In view of Proposition ), we will see that valued translation quivers with sections inherits
many nice properties of repetitive quivers. We will also need the following notion.

Definition 2.2.4. Let I" be a valued translation quiver with a vertex x. A section A in I' is called an
x-source section if every vertex in A is a successor of x in A; and an x-sink section if every vertex in A
is a predecessor of x in A.

Given a vertex z in I', we denote by Suc(z) and Pred(z) the full valued translation subquivers of I’
generated by the successors of z and by the predecessors of x, respectively.

Lemma 2.2.5. Let I' be a valued translation quiver with a vertex x.

(1) If A is an z-source section in I', then it is unique in I' and a leftmost section in Suc(z).
(2) If X' is an x-sink section in I', then it is unique in I' and a rightmost section in Pred(x).

Proof. We shall only prove Statement (1). Let A be an z-source section in I'. Then, A C Suc(z).
Thus, A is a section in Suc(z). Suppose that I' contains a path z ~ y. Then, y = 7"z for some r € Z
and z € Ag. If r < 0, then I' contains a path x ~» y ~~ z. Since A is convex in I', both y and 7"y
belong to A, a contradiction. Thus, » > 0. That is, A is a leftmost section in Suc(z), which is unique
by Lemma [2.2.3] Thus, A is the unique z-source section in I'. The proof of the lemma is completed.

The following statement is important for our investigation in the next section.

Proposition 2.2.6. Let ZA be the repetitive quiver of a connected valued tree A with a vertex (r,x).
Then the sectional successors of (r,x) in ZA generate an (r,x)-source section in ZA; and the sectional
predecessors of (r,x) in ZA generate an (r,x)-sink section in ZA.

Proof. We shall only prove the first part of the statement. Let {2 be the full valued subquiver of ZA
generated by the sectional successors of (r,x) in ZA. It is easy to see that every vertex in {2 is a
successor of (r,x) in 2. In particular, 2 is connected and contains no oriented cycle. Now, suppose
that ZA contains a path (s,y) ~ (s',y') ~ (¢, z), where (s,y), (¢,2) € 29. Then, ZA contains sectional
paths ¢ : (r,z) ~ (s,y) and £ : (r,z) ~ (t,2). By Lemma [2.1.8] (r,z) ~ (s,y) ~ (s',y) ~ (¢,2)
coincides with &. Thus, (r,z) ~ (s,y) ~ (s',9’) is sectional, and (s',y') € 2. So, £ is convex in ZA.

Consider finally any y € Ag. Since A is connected, by Lemma ZA has a sectional path
(ryz) ~ (s0,y) with sg € Z. So, (s9,y) € §2. Suppose that (to,y) € ZA for another ¢ty € Z, say so < to.
Then, ZA contains a path (so,y) ~ (to,y) and a sectional path (r,z) ~ (to,y). By Lemma [2.1.8] the
path (r,z) ~ (s0,y) ~ (to,y) is sectional. So, sg = tg. Therefore, 2 meets every 7-orbit in ZA exactly
once. Thus, {2 is a (r, x)-source section in ZA. The proof of the proposition is completed.
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2.3. ADDITIVE FUNCTIONS. In the study of Auslander-Reiten components of artin algebras, a powerful
tool is additive functions on translation quivers; see, for example, [10, 19, [33]. We shall need it to
describe hammocks for hereditary artin algebras of finite representation type.

Definition 2.3.1. Let (I', 7, v) be a valued translation quiver. A function f : I'g — Z is called additive
on I' provided, for any x € I'g with 72 defined, that f(r2) + f(z) = >_ .- vy, f(y), where the sum is
zero in case x~ is empty.

Proposition 2.3.2. Let (I',7,v) be a stable valued translation quiver with a finite section A. Given
re € Z with x € Ay, there exists a unique additive function f on I' such that f(x) = r, for all x € Ag.
Proof. It suffices to establish the existence of f. We start with setting f(z) = r, € Z, for all x € Ay.
Given s € Z, the vertices 7°x with © € A( generate a section 7°A in I'. We shall first define f on
TA. Being finite without oriented cycles, A contains a sink vertex x;. By Lemma 1), x7 C Ap.
Put f(rx1) = dez; Uy f(y) — f(z1). Clearly, the vertices in {721} U (Ao\{z1}) generate a section
A(l), on which f is defined. Suppose that f is defined on a section AW generated by the vertices in
{ra1,..., 72} U (Ao\{21,...,2;}) for some i > 1. If Ag = {z1,...,2;}, then AW = 7A. Otherwise,
A is non-trivial and there exists z; 11 € Ao\{z1,...,2;} such that A® contains no arrow Tit1 — Y
with y € A\{xy,...,2;}. Suppose that AW contains an arrow Ziy1 — T2; for some 1 < j < 4. Since
z; = (); see m[), I' contains a path x;11 — 72; ~» x;, and hence, 7x; € A, absurd. Thus, ;41 is a

sink in A, By Lemma 2.2.3'{ 1),z C AW Define f(rai41) = Zme;rl Vg 1y f(Y) — f(@is1). Then,
f is defined on the section A i+1) generated by the vertices in {7z1,...,7z;11} U (Ao\{z1,...,Tit1})-
By induction, we may define f on 7A. Repeating this process, we may define f on 7°A for all s > 0.
Dually, considering sources in sections, we define f on 77°A for all s > 0. This yields a desired additive
function f on I'. The proof of the proposition is completed.

3. HEREDITARY ARTIN ALGEBRAS

The main objective of this section is to study the preprojective and preinjective components of
a connected hereditary artin algebra. Although they have already been well studied; see [2] Section
VIII.1] and [32], Pages 80 - 81], we shall further study them in terms of the ext-quiver of the algebra.
In case the ext-quiver is a tree, a sectional path in the preprojective component is the unique path
between the end-points, two parallel paths have the same length, and every projective module is the
source of a source section, which is explicitly described in terms of reduced walks in the ext-quiver;
see and . Finally, we shall show that the Coxeter transformation is compatible with the
derived Auslander-Reiten translation; see .

Throughout this section, H stands for a connected hereditary artin algebra with ext-quiver Qg , and
modH for the category of finitely generated left H-modules. We simply write 7 for the Auslander-Reiten
translation 7,, of the Auslander-Reiten quiver I'yoqr. And we associate a simple module S;, a projective
module P; and an injective module I; in I'yoqm with each i € (Qp)o such that topP; 2 S; & socl;.

3.1. PREPROJECTIVE AND PREINJECTIVE COMPONENTS. The following result is probably well-known.
We sketch a proof for the first statement and refer to [2, Page 267] for a proof for the second.

Lemma 3.1.1. Let H be a hereditary artin algebra with ext-quiver Qg . Consider the simple modules

S, the projective modules P; and the injective modules I; in I'noqm associated with i € Q.

(1) Ifi is a vertex in Qm, then Endy (P;) = Endy (I;) = Endg(S;) and £s,(P;) = s, (I;) = 1.

(2) There exists an arrow i — j in Qu if and only if there exists an irreducible map f : P; — P;, or
equivalently, an trreducible map g : I; — I;, in modH.

Proof. Fix i € (Qu)o. Since I; is not a direct summand of the injective module I;/S;, we have
Homp (S, I;/S;) = 0. Thus, we deduce from Lemma that ¢g,(I;) = 1. Since S; = socl;, every
non-zero map in Endg(S;) induces a non-zero map in Endg(7;). Consider a non-zero map f : I; — I;.
Since Im(f) is injective, f is invertible. Since Hompy (S;, I;/S;) = 0, we see that f is induced from a
non-zero map g : S; — S;. Thus, Endgy (I;) = Endg(S;). The proof of the lemma is completed.
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Since Qg is connected, by Lemma [3.1.1(2), the projective modules in I'poqm lie in the same con-
nected component Py, called the preprojective component; and the injective modules lie in the same
connected component g, called the preinjective component. The following statement is reformulated
from Proposition 1.15 in [2 Chapter VIII] and its dual statement. Since our valuation for I'neqm is
different from that given in [2] Page 225], we include a detailed proof for the preinjective component.

Theorem 3.1.2. Let H be a connected hereditary artin R-algebra with ext-quiver Qg . Consider the

projective modules P; and the injective modules I; in I'noam associated with i € Qp .

(1) The projective modules P; with i € Qg generate a leftmost section Ay in the preprojective compo-
nent Py . Moreover, there exists a valued quiver isomorphism Q3F — Ap, sending i to P;.

(2) The injective modules I; with i € Qu generate a rightmost section Xy in the preinjective component
Fu. Moreover, there exists a valued quiver isomorphism Q3f — Xn, sending i to I;.

Proof. We shall only prove Statement (2). We write r(V') for the R-length of an R-module V, and
put kyy = Endg(M)/rad(Endg(M)) for M € mpoam- Let Xy be the full valued subquiver of .y
generated by the I; with i € Qg. Set S; = socl; for i € Q. By Lemma 2), Qg contains an arrow
i — j if and only if X contains an arrow I; — I;; and in this case, the valuation for i — j is (dij, d};),
where dij = dimEndH(Sj) EXt}g(SZ, S]) and d;] = dim EXt}LI(S“ Sj)EndH(Si)' ThUS,

d}; - Lr(End g (S;)) = Cr(Exty(S;, ;) = dij - Lr(End g (S;)).

On the other hand, we see from Proposition m that I; — I; has valuation (dy, r,, d’IJ,Ii)7 where
dp,r; = dimy, irr(l;, ;) and dy ; = dimirr(Ij,Ii)kIj. Since k7, = Endg(S;) and k7, = Endg(S;) by
Lemma (1)7 dy, 1, Lr(Endp(S;)) = Ca(lre(I;, 1)) = di, 1, - Lr(Endp (S;)).

Now since 1;/S; is injective, by Proposition 1.15(b) in [2, (IIL.1.15)], d;; is the multiplicity of I; as
a direct summand of I;/S;. And since the canonical projection ¢ : I; — I;/S; is minimal left almost
split, dr, s, is the multiplicity of /; as a direct summand of I;/S;; see (|1.5.1)). So, d}; = d, 1,. Hence,

d/Ij,Ii . KR(EHdH(SJ)) = de7Ii . ER(EndH(SZ)) = d;] KR(EndH(SZ)) = dij . KR(EHCIH(SJ))

Thus, d’Ij 1, = dij. This proves the second part of Statement (2). In particular, X'y is connected.
Being injective, the I; lie in pairwise distinct 7-orbits in 'y oqz. Note that the irreducible maps between
the modules I; are all epimorphisms. Thus, since Endg (I;) is divisible; see , X' has no oriented
cycle. Hence, Yy is a section in #y, which is clearly rightmost. The proof of the theorem is completed.

In the sequel, we shall call the underlying valued graph Qy; of Qg the ext-graph of H. Moreover, Ag
will be called the projective section in Py, and Xy called the injective section in Zg. The following
well-known statement is a consequence of Theorem and well-known; see [2] (V.7.5), (VIIL.1.9)].

Corollary 3.1.3. Let H be a connected hereditary artin algebra. Consider modules M, N in I'yoqm with
M in the preinjective component Sy or N in the preprojective component Py . Then, every non-zero
radical map f : M — N is a sum of composites of irreducible maps between modules in I'yodm -

We shall need the following easy statement.

Lemma 3.1.4. Let H be a hereditary artin algebra. Consider an arrow M — N in I'yoqm-

(1) If I'moan contains T"M for some r > 0, then it contains an arrow 7"M — 7"N.

(2) If I'moan contains T~ "N for some r > 0, then it contains an arrow 7—"M — 77"N.

Proof. We shall only prove Statement (1). Assume that 7"M € I'y,oqp for some r > 0, but 7"N & I'noan -
Then, 75N is projective for some 0 < s < r. Since 7°M € I'oam, by Lemma I'noay contains an
arrow 7°M — 7°N. Since H is hereditary, 7°M is projective, and hence, 7"M & I'oqm, absurd. Thus,
T"N € I'modar- S0, I'moag contains an arrow 7"M — 7"N. The proof of the lemma is completed.

The following statement describes in terms of Qg the sectional paths in I'yoqpg, which start with a
projective module or end with an injective module.

Lemma 3.1.5. Let H be a hereditary artin algebra with ext-quiver Q. Consider the projective modules
P; and the injective modules I; in I'ynoqn associated with i € Q. And let w = ¢ - - - cacy be a non-trivial
reduced walk in Qm, where c; is an arrow or inverse arrow from i;_1 to i;, for j=1,...,t.
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(1) The preprojective component Py of I'moan contains a sectional path

Py —1""P, — - — 1 P, | — TP,
where r; is the number of arrows in the subwalk of w from iy to i;, for j=1,...,t.
(2) The preinjective component FLr of I'moam contains a sectional path
750, —= T, — - — T, —1;,,
where s; is the number of arrows in the subwalk of w from i; to iy, for j =0,1,...,t —1.

Proof. We shall only prove Statement (1). Since w is reduced, the P;; with 0 < j < ¢ lie in
pairwise distinct 7-orbits in &Pg. Set rg = 0. Assume that &gy contains a desired sectional path

Py, —---—=717"-1F;, . Assume first that Qm contains an arrow 4,1 — ;. Then r, = r;_; +1

and by Theorem 1), £y contains an arrow P;, — P;,_,. By Lemma [3.1.4(2), &y contains an
B

arrow 7 "t-1P;, 771, Since ry_1 + 1 = rq, it follows from Lemma ) that &y contains a
sectional path Py — - —77""1F;, |

Assume now that Qg contains an arrow i;_1 < 4;. Then r; = r;_1 and %y contains an arrow
P, — P;,. We claim that &y contains an arrow 7~ "-1P;, | — 7 "P;,. This is the case if r,_; = 0.
Otherwise, 2y has an arrow P;, — 7~ F;,_,. Since 7'~ "-1(r=P;, ) =77 "-1F;, |, by Lemma 1),
Py contains an arrow 717"-1P; — 77"t-1P;, . By Lemma 1), 71=T-1P; is not injective. Since
ry = 1r4_1, there exists an arrow 7~ "-1P;,  — 7 "tP; in g. This establishes our claim. Hence, #g
contains a sectional path P;, — --- —> 77 "-1P;, | — 7~ "tP;,. The proof of the lemma is completed.

t—1°
— 77 "th;,.

t—1

The following statement is crucial for us to study hammocks in the next section.

Proposition 3.1.6. Let H be a connected hereditary artin algebra.
(1) The preprojective component Py contains a P-source section for every projective module P in Py .
(2) The preinjective component Sy contains an I-sink section for every injective module I in Iy .

Proof. We shall only prove Statement (1). Consider a module P in the projective section Ay in Py.
Let X be the full valued subquiver of &y generated by the successors M of P in &y such that 7M is
not a succesor of P. Then, X is contains no oriented cycle and meets any 7-orbit in &y at most once.
Given P’ € A, since the ext-quiver of H is connected, we deduce from Lemma [3.1.5(1) that there
exists a minimal s > 0 such that 77%P’ is a successor of P in Zy. Then 775P’ € X. Hence, X meets
every 7T-orbit in &y exactly once. Finally, suppose that &y contains a path n : M ~ L ~» N with
M,N € Y. Then, &£y contains a path P ~» M ~» L. Assume that L ¢ ¥. Then, &y contains a path
P ~ L. Since H is hereditary, L ~» N contains no projective module. Hence, &y contains a path
P ~s 7L ~ 7N, a contradiction. Therefore, X is convex in &y. In particular, every module in X is a
succesor of P in Y. Hence, X' is a P-source section in &Zy. The proof of the proposition is completed.

3.2. TREE TYPE. We shall say that H is of tree type or Dynkin type if Qg is a tree or a Dynkin quiver,
respectively. These hereditary algebras have the following important properties.

Proposition 3.2.1. Let H be a connected hereditary artin algebra of tree type. Consider the prepro-
jective component Py and the preinjective component Ly of I'moam -

(1) Ifn,¢ are parallel paths in Py or Sy, then l(n) =1(C); and n = ¢ in case 1 is sectional.

(2) The P-source section in Py with P projective is generated by the sectional successors of P in Py.
(3) The I-sink section in Sy with I injective is generated by the sectional predecessors of I in Iy.

Proof. (1) Let Ay be the projective section in &Zy. By Proposition 2), Py embeds in ZAy as
a full valued translation subquiver. In particular, a (sectional) path in &Py gives rise to a (sectional)
path in ZAg. Since Ay is a tree; see (3.1.2), we see that Statement (1) follows from Proposition

(2) Given P € Ap, by Proposition [3.1.6], &y contains a P-source section X. Clearly, every module
in X is a sectional successor P. Suppose that &y contains a sectional path n : P ~» M. By Lemma
M = 77°N for some N € Y. Then, &y contains a path ¢ : P ~» N ~» M. By Statement (1),
¢ =mn. So, ( is sectional, and hence, M = N € Y. The proof of the proposition is completed.

The following statement will enable us to define extended hammocks in the next section.
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Lemma 3.2.2. Let H be a connected hereditary artin algebra of tree type. Consider a sectional path
P = M, M, . M;_4 M; in I'woan, where P is a projective module with top S, and
M;_1 — M; with 1 < i <t has valuation (d;,d). Then bs(M;)=d,---d}, fori=1,...,1.

Proof. By Lemma 1), £s(My) = 1. Suppose that ¢ > 0. Consider a minimal right almost split
map f : L — M,;. Since P % M, the Endy(P)-linear map f, : Hompy(P,L) — Hompg (P, M;) is an
epimorphism. We claim that it is an isomorphism. If M; is projective, then f is a monomorphism, and
so is f.. Otherwise, we have an exact sequence

0 — > Homp (P, 7M;) —> Homy (P, L) —> Homy (P, M;) — 0.

Since the path stated in the lemma is sectional, by Lemma 1), £y contains no path from P to
7M;. Hence, Homp (P, 7M,;) = 0; see (3.1.3). This establishes our claim. Therefore, ¢g(M;) = £s(L);
see . On the other hand, by Proposition L= Mtd_;1 @®Ly---&® L,, where Ly ..., L, with
r > 0 are modules in &Py different from M;_ ;. By Lemma 1), £y contains no path from P to
L;, and hence, Homp (P, L;) = 0 and {g(L;) = 0, for j = 1,...,r. By the induction hypothesis, we see
that £g(M;) = €s(L) = djls(Mi—1) = d} - - - d}. The proof of the lemma is completed.

3.3. COXETER TRANSFORMATION. Let us recall Auslander and Platzeck’s Coxeter transformation of
the Grothendieck group Ko(modH). Consider the simple modules S;, the projective modules P;
and the injective mdoules in I'yoqp associated with i € (Qm)o = {1,...,n}. For any module M in
modH, one defines its dimension vector to be dimM := (¢g,(M),...,Ls,(M)) € Ko(modH). Since
{dimP;,...,dimP,} and {dimI,...,dimI,} are bases for Ko(modH); see [29, (2.1)], one may intro-
duce the following definition; see [29, Section 2], and compare [13, Page §].

Definition 3.3.1. Let H be a hereditary artin algebra. The Coxeter transformation of the Grothendieck
group Ko(modH) is the unique automorphism

Cy : Ko(modH) — Ko(modH) defined by Cy(dimP;) = —dimI;, for i =1,...,n.

An important property of the Coxeter transformation Cy of Ko(modH) is its compatibility with the
Auslander-Reiten translation 7 of I'noam; see [29] (2.2)], and also [2, (VII1.2.2)]. We shall extend this to
the bounded derived category D®(mod H) of mod H, which is a Hom-finite Krull-Scmidt R-category. It is
well-known; see [5, (7.3)], [18] (3.6)] and [30, (1.3.3)] that D®(mod H) has almost split triangles as defined
in [I8, (3.1)]. Note that a sequence of morphisms L* —= M* —= N* in D®(modH) with M* # 0 is an
almost split sequence if and only if it embeds in an almost split triangle L' — M* —> N* — L'[1];
see [26, (6.1)]. Thus, the Auslander-Reiten quiver I'pimoarry of DP(modH) as defined in Subsection
1.5 coincides with that defined by Happel in the algebraically closed setting; see [I8] (3.7)].

Given M € modH and s € Z, we write M|[s] for the stalk complex concentrated in degree —s where
the component is M. Then, the indecomposable objects in D®(modH) are the stalk complexes M|s],
where s € Z and M is an indecomposable module in mod H; see [22] (3.1)]. Thus, we may choose the
vertices in I'po(moarr) to be the stalk complexes M]ls] with M € I'nmoan and s € Z. We write 7, for
the Auslander-Reiten translation of I'pe(moearr). On the other hand, given a complex M* in D*(modH),
Happel defined its dimension vector by

dimM*:= 3" _,(-1)*dimM°® € Ko(modH),

which is invariant on isomorphism classes in D’(modH); see [I8] (2.2)]. As shown below, the Coxeter
transformation of Ko(modH) is compatible with the Auslander-Reiten translation of I'pe(mod a)-

Proposition 3.3.2. Let H be a hereditary artin algebra. Consider the Coxeter transformation Cy of
Ko(modH) and the Auslander-Reiten translation 7, of I'pbmoarry- Then, dim! (M[s]) = Cf (dimM[s]),
for all M € I'yoqm and s,t € Z.

Proof. We shall only show that dim7,(M]s]) = Cy (dimM][s]), for M € I'noan and s € Z. Suppose
first that M is not projective. Then, dim7M = Cy(dimM); see [29, (2.2)], and also [2, (VIIL.2.2)].
Since 7, commutes with the shift functor [1], we have 7,(M[s]) = (7, M)[s] = (TM)]s]; see [B (7.2)],
and also [18]. By definition, dimN[s] = (—1)°dim N for any N € modH. Thus,
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dimr, (M([s]) = dim (7 M)[s] = (=1)*dim7M = (-1)*Cy (dim M) = C ((—1)*dim M) = Cp (dim M [s]).
Suppose now that M = P, the projective cover of a simple module S in I'yoqg. By definition,
Cy(dimP) = —dimI, where [ is the injective envelope of S. Moreover, 7, (P[0]) = I[—1]; see [5 (7.2)],
and also [18]. This yields
dim 7, (P[s]) = dim (r,, P[0])[s] = dim[s — 1] = (~1)*Cy; (dim P) = Cy ((—1)*dim P) = Cyy (dim P[s]).
The proof of the proposition is completed.

4. MAIN RESULTS

The objective of this section is to study the module category of a hereditary artin algebra of finite
representation type with a connection to the derived category and the associated cluster category.
We first determine all the hammocks in the Auslander-Reiten quiver; see (4.2.4]). This leads to a
description of the precise shape of the Auslander-Reiten quiver in terms of the ext-quiver of the algebra;
see . As applications, we obtain the number of non-isomorphic indecomposable objects in the
module category and the associated cluster category; see and . Moreover, the radicals
of the module category, the bounded derived category and the associated cluster category all have the
same nilpotency; see (4.6.4]), (4.6.5)), and (4.6.6).

It is well-known that a hereditary artin algebra is connected of finite representation type if and
only if its ext-graph is a Dynkin diagram; see [2 (VIIL.5.4)]. In the algebraically closed case, this is
equivalent to the ext-graph being A, (n > 1), D, (n > 4) or E,(n = 6,7,8); see [2, (VIIL5.5)].

Throughout this section, H stands for a hereditary artin algebbra with a Dynkin ext-quiver Qg,
and modH for the category of finitely generated left H-modules. Let I'moan and I'pemoar) be the
Auslander-Reiten quivers of modH and D®(modH), respectively. We shall simply write 7 for the
Auslander-Reiten translation 7, of I'mean, and 7, for the Auslander-Reiten translation of I'po(meda)-
With each vertex i € Qy, we associate a simple module S;, a projective module P; and an injective
module I; in I'yoqg such that topP; = 5; = socl;.

4.1. THE CANONICAL EMBEDDING. Since H is of finite representation type, it is well-known that I'yoqp
coincides with its preprojective component &y, and its preinjective component .y ; see, for example,
[2, (VIIL.3.13)]. The following statement provides a rough description of the shape of I'yoan-

Proposition 4.1.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the
projective modules P; in I'yoqp associated with vertices © € Q. Then there exists a valued translation
quiver embedding ¢ : I'moan — ZQ3 : 77 "P; — (r,1), with a convezx image in ZQ3F . Moreover, ¢ maps
the P;-source section in I'yoam onto the (0,1)-source section in ZQ})}), for every vertex i € Qg .

Proof. Let Ay be the projective section in I'yoqm. Then, there exists valued translation quiver
embedding ¢ : I'moag — ZAg : 77 "P; — (r, P;), whose image is convex in ZAg; see [28, (1.13)]. Since
Ap = Q7 see (3.1.2), we have a valued quiver isomorphism 0 : ZAy — ZQ3Y : (r, P;) > (r,4). This
yields an embedding ¢ = 0 04 : I'moan — ZQ3} : 7~ "P; +— (r,1), whose image is convex in ZQjy .

Fix i € (Qu)o. The P;-source section A; in I'yoam is generated by the sectional successors of P; in
I'hodm; see , and the (0, 7)-source section £2; in ZQy} is generated by the sectional successors of
(0,7) in ZQ4r; see . In particular, ¢ maps to 4; into {2;. Let (r,j) € £2;. Since X; is a section in
I'wodm , there exists some s > 0 such that 77°P; € A;. Thus, (s, j) € £2;. Since {2; is a section in ZQ}},
we have s = r. So, 77" P; is a preimage of (r,j) in A;. The proof of the proposition is completed.

The following statement is due to Happel in the algebraically closed case; see [I8] (4.5)].

Theorem 4.1.2. Let H be a hereditary artin algebra of Dynkin type. Then

(1) I'moan embeds in I'pomodr) as a convex valued translation subquiver;

(2) I'poamoary = ZAg, where Ay is the projective section in I'modn -

Proof. Tt is well-known that there exists a full convex embedding of modH in D®(modH), sending a
module M to the stalk complex M[0]. By Theorem 7.2(1) in [5], this induces a convex valued translation
quiver embedding of I'noar in I'po(modn)- Next, in view of Theorem 7.2 in [5], we may apply Happel’s
argument in [I8] (4.5)] to show that I'psmoarry = ZA k. The proof of the theorem is completed.
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4.2. HAMMOCKS. Since I'yoqm is finite and contains no oriented cycle, we may study hammocks in
I'hodH; see . Given a vertex (s, k) in ZQyr, by Proposition ZQ3P contains an (s, k)-source
section Ajj generated by the sectional successors of (s, k). And by Lemma Ag ) is a leftmost
section in Suc(s, k), the full valued translation subquiver of ZQ;} generated by the successors of (s, k).
By Proposition [2.3.2] we may introduce the following definition.

Definition 4.2.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider a vertex
k € Qm and the (0, k)-source section A in ZQ;F. The extended hammock function hy associated with
k € Qg is the unique additive function on Suc(0, k) such, for any vertex (r,i) € A, that

(1) hg(r,i) = 1if (r,d) = (0,k);

(2) hg(r,i) =dj---dj if A contains a path (0,k) = (ro,i0) —= (r1,91) —> -+ —> (1, 4¢) = (r, i), where

the arrow (r;_1,7;-1) — (r;,4;) has valuation (d;,d}), for j =1,...,t.

The following statement says in particular that an extended hammock function is indeed an extension
of Brenner’s canonical hammock function; see (|1.7.2)).

Lemma 4.2.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the projective
modules P; and the simple modules S; in I'moqg associated with i € Q. Let hy, be the extended hammock
function associated with some k € Q. If (r,i) € Suc(0, k) such that 7~"P; € I'moan, then

hk(s’j) = Esk (Tispj)’
for any predecessor (s, j) of (r,4) in Suc(0, k).
Proof. By Proposition we have a canonical embedding ¢ : I'moan — ZQp : 77 "P; — (r,4).
Recall that ¢ has a convex image I' in ZQ;7, and maps the Pj-source section X in I'yeam onto the
(0, k)-source section A in ZQyP. Assume that (r,7) € Suc(0,k) such that 77"P; € I'moqm, that is,
(r,i) € I'. Since I is convex in ZQy}, we see that 775P; € I'yoqm, for any predecessor (s, j) of (r,7) in
Suc(0, k). Therefore, it suffices to show that hy(r,i) = £s, (T77F;).

By Proposition the paths in ZQ;F from (0,k) to (r,4) have the same length, written as [, ;.
Since hi(0,k) = 1 = g, (Py); see , we may assume that [,; > 0. Suppose first that (r,7) € A.
Then, A contains a non-trivial sectional path (0, k) = (rg,ig) — (r1,41) —> -+ —> (14, 4) = (1,4),
where (rj_1,4;-1) — (rj,i;) has valuation, say (d;,d}), for j = 1,...,t. Since p(¥) = A, we
have a sectional path P, = 77"°FP;) — 717" "'P;, — .-+ —> 71 "*P;, =77 "F; in Y, where the arrow
T77i1P;._, — 77 "iP;; also has valuation (d;,dj), for j = 1,...,t. In view of Lemma and Defini-
tion [4.2.1] we see that (s(77"F;) = d} - d) = hy(r,i).

Assume now that (r,i) ¢ A. Since A is a leftmost section in Suc(0, k); see (2.2.5), we see that
(r —1,4) € Suc(0,k). Let (sj,k;) — (r,i) with valuation (n;,nj), j = 1,...,p, be the arrows in ZQy;
ending with (r,7). Since I' is convex in ZQy’, we see that (r — 1,4), (s, k;) € Suc(0,k) N I'. Since
lr—1i < ls;k; < lpi for 1 < j < p, by the induction hypothesis, hx(r — 1,i) = £s, (r1="P;) and
hi(sj,k;) = €s, (T17%P;) for 1 < j < p. Since 77% P, — 77"P; and (s;,k;) — (r,i) have the same
valuation (n;, n3)7 for j=1,...,p, we deduce from Proposition an almost split sequence

0——=71"P ——= @, (1759, )" TP 0
in modH. Since {s, and h;, are additive, we obtain

ls, (T7"P;) = ?:1 nils, (T7%Py;) — s, (r17"P;) = 5?:1 nhi (s, ki) — hi(r —1,4) = hg(r,9).

The proof of the lemma is completed.

Given a vertex k in Q, we shall write H, for the hammock Hg, , where Sy, is the simple module in
I'oam associated with k.

Lemma 4.2.3. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qg . Consider the projective
modules P; and the injective modules I; in I'moqy associated with i € Qg . Let Hy be the hammock and
hy the extended hammock function associated with some k € Q. Assume that (r,i) € Suc(0,k) such
that hi(s,7) > 0 for all proper predecessors (s, j) of (r,i) in Suc(0, k).
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(1) If hy(r,3) > 0, then 77"P; € Hy,.
(2) If (r — 1,i) € Suc(0,k) such that T'="P, = I, for some vertex | € Qu, then hy(r,i) = —1 in case
I =k, and otherwise, hy(r,i) = 0.
Proof. Consider the canonical embedding ¢ : I'moanr — ZQyf, which has a convex image I' in ZQy} .
Let X be the Pg-source section in I'moam, and A the (0, k)-source section in ZQZIP. Furthermore, let
(85, kj) = (r,9) with valuation (nj,n}), j = 1,...,p, be the arrows in ZQ;;’ ending with (r,7). Given a
vertex (s, j) € Suc(0, k), denote by I ; the length of paths in ZQ;} from (0, k) to (s,7). In case l,; <1,
we have (r,i) € A, and consequently, 77"P; € Hy; see and (r — 1,7) & Suc(0,k); see .
Thus, the two statements hold in this case. Consider the case where I, ; > 1.
Suppose first that (r — 1,i) € Suc(0, k) such that 71="P; = I;, for some vertex | € Q. Writing
S; = socl;, we have a short exact sequence

OHSIHTI_TPi$MHO7

where g is minimal left almost split. By the assumption on (r,¢) stated in the lemma, hy(s;,k;) > 0,
for all 1 < 57 < p. We may assume that there exists some 0 < t < p such that (sj,kj) e I if and
only if 1 < j <t. Given t < j < p, in view of the induction hypothesis, we see that hi(s;, k;) = 0.
Since 717TP; — 7% P, and (r — 1,4) — (s, k;) have the same valuation (n},n;) for 1 < j <, by
Proposition 1), M = @;zl(T_siij)”;'. Since hy and {g, are additive, by Lemma we obtain
hie(r, i) = 325y nhi(s5, k) —h(1—r,8) = 35 nlils, (T70Py)) —Ls, (7' 7"P;) = Ls, (M) — s, (7' 7"P,).

If I = k, then £g, (¢s, (T17"P;) = 1; see (3.1.1). Thus g, (M) = 0, and hence, hy(r,i) = —1. If | # k,
then £g, (S;) = 0. Thus lg, (M) = £s, (T17"P;), hence, hi(r,i) = 0. Statement (2) holds in this case.

Suppose now that hy(r,i) > 0. If (r,4) € A, then 77"P; € X' C Hy; see . Otherwise, since A is
a leftmost section of Suc(0, k); see (2.2.5)), (r — 1,4) € Suc(0,k) and hi(r — 1,7) > 0 by the assumption
on (r,i). Since hy is additive and hy(r,7) > 0, we may assume that hy(s1, k1) > 0. By the induction
hypothesis, 77.P, € Hy. Since I' is convex in ZQs¥, we see that 71 7"P; € I'yoan. Since hg(r,i) > 0,
as has been shown, 717"P; is not injective. Then, 77"P; € I'moqn with hy(r,i) > 0. By Lemma m
T7"P; € Hy. Statement (1) holds in this case. The proof of the lemma is completed.

The following statement describes all the hammocks in I'y,,qp and tells us an injective module lies
in the 7-orbit of which projective module.

Theorem 4.2.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the
projective modules P; and the injective modules I; in I'moqg associated with vertices i € Qg . Let Hy
be the hammock and hy, the extended hammock function associated with some vertex k € Q. Then,
(1) I = 7175P;, , where (si,ix) € Suc(0,k) such that hy(sg,ir) = —1, and hi(s,j) > 0 for all proper
predecessors (s,7) of (sk,ix) in Suc(0, k);
(2) Hy is generated by the modules 77 "P; € I'moam, where (r,i) lies in the convex hull of (0,k) and
(sk — 1,4x) in ZQy and hy(r,i) > 0.
Proof. Consider the canonical embedding ¢ : I'moanr — ZQjy, which has a convex image I" in ZQ}r .
By Proposition 1) and Lemma we easily deduce Statement (2) from Statement (1). So,
we only prove Statement (1). Suppose first that (sg,ix) € Suc(0, k) such that hg(sg,ix) = —1 and
hi(s,7) > 0 for all proper predecessors (s, j) of (sk,ir) in Suc(0, k). By Proposition and Lemma
2.2} (sk,ix) is not in the (0, k)-source section A in ZQy7. By Lemma 2.2.5(1), (sx — 1,ix) € Suc(0, k).
ince hy is additive, we deduce from the assumption on (sg,ix) that h(sy — 1,4x) > 0. By Lemma
2.3(1), 7175 P;, € Hy. If 7175 P, is not injective, then 775 P;, € I'noam, and hence, hg(sy,ix) > 0;
see (4.2.2)), a contradiction. Thus, 717 P;, is injective, and by Lemma 2), 7175 p, = I4.
Suppose conversely that I = 77 "*P;,, where (ry,ix) € Z X (Qm)o. Since I is a succesor of Py
in I'moam by Proposition ), (riyik) € Suc(0,k) N I'. Put s =, + 1. We claim hg(s,j) > 0,
for any proper predecessor (s,j) of (sk,ix) in Suc(0,%). Indeed, if (s,j) is a predecessor of (ry,ix)
in Suc(0, k), then hg(s,j) > 0 by Lemma Otherwise, (s — 1,j) is a predecessor of (ry,ix) in
Suc(0, k). By Lemma T175P; € I'moam. If T'7°P; is not injective, then 77°P; € 'moam, and by
Lemma [4.2.2] hy(s,5) > 0. Suppose that 71=P; = I, for some | € (Qu)o. Since (s,j) # (s, ix), we

| >~

ﬁ
&



18 SHIPING LIU AND GORDANA TODOROV

have (s —1,j) # (ry,i). Thus, [ # k, and by Lemma [£.2.3)(2), hy(s,j) = 0. This establishes our claim.
In particular, by Lemma 2), hi(Sk,ix) = —1. The proof of the theorem is completed.

Theorem [£.2:4) allows us to determine an injective module lies in which T-orbit of a projective module.
For our later purpose, we shall provide an example for each of the types A,, D, and Eg; see (1.3.8)).

Lemma 4.2.5. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the projective
modules P; and the injective modules I; in I'noqn associated with i € Qg. If QH = A, withn > 1,
then Iy = =" nP,, where r1 5, is the number of arrows in the reduced walk in Qu from 1 to n.

Proof. Let Qg = A, with n > 1. Given i € (Qp)o, write 71; = a(1,4), the number of arrows in the
reduced walk in Qg from 1 to 7, that is the number of inverse arrows in the reduced walk in Q7 from
1 to i. In particular, 717 = 0. If n = 1, then I; = 77"1P;. Suppose that n > 2. By Lemma 1)

and Proposition [2.2.6 the (0, 1)-source section in ZQF is (r11,1) — (r1,2,2) —> -+ —> (11,5, n).

Consider the extended hammock function hy associated with the vertex 1. Since ZQyy is trivially
valued, by Definition hi(r1,,4) = 1 for ¢ = 1,...,n. Since h;y is additive, we can depict its
valuation on the convex hull of (0,1) and (ry,, + 1,n) in ZQj as follows:

1 -1,
SN S
1 0
7

A

1 0
NS
1 0
where the source is (0,1) and the sink is (r1, + 1,n). By Theorem 1), I = 7=™»P,. The proof
of the lemma is completed.

Lemma 4.2.6. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the projective
modules P; and the injective modules I; in I'moam associated with i € Qu. If Qi = Dy, with n > 4,
then I} = 727"P) in case n is even; and I, = 137 """12P, in case n is odd, where r1,2 15 the number of
arrows in the reduced walk in Qg from 1 to 2.

Proof. Assume that Qi = D,, with n > 4. For i € (Qg)o, write r1; = a™(1,7), the number of arrows in
the reduced walk in Qp, that is the number of inverse arrows in the reduced walk in Q77 from 1 to .
In particular, 717 = 0. By Lemma M(l) and Proposition [2.2.6} the (0, 1)-source section in ZQ5y is

(r1a,1) —=(r13,3) —= (11,4,4) —= -+ —= (r1,0, 7).

i

(r1.2,2)
Consider the extended hammock function hy associated with the vertex 1. Since ZQjy is trivially
valued, hq(r1,,7) =1 for i = 1,2,...,n. Consider first the case where n is even. Since h; is additive,

its valuation on the convex hull of (0,1) and (n — 1,1) in ZQ}} can be depicted as follows:

1 0
SN N
1 1 0
AINAN S
1 1 1 .
A A A *0
7 A 7 A 7 4 4 RN
1 1 1 D 1 0
ANAN A T AN AN
1-1-1->0=>1->1 = >1=>1-1->0-=0
NN T N N /N
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where the source is (0,1) and the sink is (n — 1,1). By Theorem [4.2.4(1), I; = 72~"P;. Suppose next
that n is odd. Since hy additive, the valuation of hy on the convex hull of (0,1) and (re +n —2,2) in
ZQ3?P can be depicted as follows :

0
AN
0
1 )

1
1/ \1/
SN NS
.41 . .41'-. 7 A
1 1 1 1 0
SN NS T A NN
l1—1—1—0—1—1" > "> >1—-=0—-1—-1—-0->-1,
T NS NS

AN ON S
1 0 1 ' 0 1 0

where the source is (0,1) and the sink is (r; 2 +n —2,2). By Theorem 1), [ = 7727 3Py The
proof of the lemma is completed.

Lemma 4.2.7. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qg . Consider the projective
modules P; and the injective modules I; in I'moam associated with i € Qu. If Qi = Eg, then I =
771673 Pg, where rq ¢ is the number of arrows in the reduced walk in Qp from 1 to 6.

Proof. Assume that Qy = Eg. Given i € (Qp)o, let r1,; be the number of arrows in the reduced walk
in Qp, that is, the number of inverse arrows in the reduced walk in Q7 from 1 to i. In particular,
r1,1 = 0. By Lemma M(l) and Proposition m the (0, 1)-sourced section in ZQ;} is

(r1,1,1) — (r1,2,2) — (r1,3,3) —> (11,5,5) —> (r1,6,6).
(r1,4,4)

Consider the extended hammock function h; associated with the vertex 1. Since ZQ})}D is trivially
valued, hi(r1;,4) =1 for i = 1,...,6. So, its valuation on the convex hull of (0,1) and (r¢ + 4,6) in
ZQj} can be depicted as follows:

1 0 0 1 -1,
N N N SN A
1 1 0 1 0
NSNS NS NS
l1-1-a—-0=>1-1-1-=0-=0
S \O/ \1/ \1/ \O/

1
NN NS NS
1 0 0 1 0

where the source is (0,1) and the sink is (r1,6 + 4, 6). By Theorem 1), I} = 77673 P5. The proof
of the lemma is completed.

4.3. PI-PERMUTATION AND PI-INDICES. By Proposition I'moarr is finite and convexly embeds in
ZQ3P in such a way that every module lies in the 7-orbit of a projective module. We need to determine
the number of modules and the injective module lying in the 7-orbit of a projective module. For this
purpose, we introduce the notions of the pi-permutation and the pi-index function in the following
well-known statement; see [29] (1.8)].

Lemma 4.3.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the projective
modules and the injective modules I; in I'moam associated with vertices i € Q. Then there exists a
permutation p of (Qm)o, called the pi-permutation, and a function m : (Qu)o — N, called the pi-index
function, such that 7~ P, = Ly, for every vertex i in Qp .
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The following statement is important in our investigation, where a™ (i, ;) denotes the number of
arrows in the reduced walk in Qg from i to j; see (1.1.1]).

Lemma 4.3.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the pi-
permutation p and the pi-index function m for (Qu)o- If i,j are vertices in Qy, then

m(i) —m(j) = a*(p(d), p(5)) — a™ (4, 5).
Proof. Consider the projective modules P; and the injective modules I; in I'yoqm associated with
i € Qu. By Proposition we have a canonical embedding ¢ : I'moan — ZQj} , sending 77 "P; to
(r,i). Write 7, , = a®(p,q) for p,q € (Qu)o. Fix some vertices i,j € Qp. Observe that 7; ; is the
number of inverse arrows in the reduced walk in Q7F from i to j. By Lemma 6(2), ZQ; contains a
sectional path from (0,7) to (r; , ), and hence, a sectional path from (m(j) —r; ;,) to (m(j), ).

On the other hand, since r,;) ,(;) is the number of arrows in the reduced walk in Qg from p(i) to
p(j), by Lemma 2), I'modr contains a sectional path from 77¢®.r0)1,;y to I,;). By definition,
I = 7=m@OP, and I = 77mU)P;. Thus, I'yean contains a sectional path from 77e(.0() =P to
7~mU)P;, which induces a sectional path in ZQgF from (m(i) — 1,z p(j),%) to (m(j), j). By Proposition
- 2.2.6, both (m(j) — ri;,%) and (m(i) — 74z;),p(5), ) belong to the (m(j),)-sink section in ZQy, and
consequently, m(i) — (), 5y = M(j) — 74j. The proof of the lemma is completed.

Next, we shall show that the pi-permutation of (Qp)o is of order at most two. For doing this, we
shall extend it to an automorphism of the ext-graph @y in the following statement.

Proposition 4.3.3. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Then the pi-
permutation p of (Qu)o induces a valued graph automorphism of Q, called the pi-automorphism and
denoted again by p.

Proof. Let p be the pi-permutation of (Qg)o and m the pi-index function on (Qp)o. Consider the
projective modules P; and the injective modules I; in I'yoqn associated with i € (Qu)o. Let Ay be
the projective section generated by the P;, and Yy the injective section generated by the I;, in I'yoqs.
We first construct a valued graph isomorphism p* : Ay — Xy, sending P; to I (i)

Fix 4,7 € (Qmu)o. Suppose that Ay contains an edge P, — P; with valuation (d,d’). We claim
that X contains an edge I,;) — I,(;) with valuation (d,d’). First, assume that Ay contains an arrow
P; — Pj, whose valuation is then (d,d’); see . Note that 7~™Op, = (i) and T_m(j)Pj =1,
By Lemma (2), I'moam contains an arrow 7~ ™P; — T p(j)» Whose valuation is (d,d’); see l)
So, m(j) < m(i). If m(j) = m(i), then Xy contains an arrow I,y — I,(;) with valuation (d,d’), and
hence, Ly contains an edge I,;) — I,;) with valuation (d,d’). If m(j) < m(i), then I'moan contains
an arrow I,(;) — 7~™@~1P; with valuation (d’,d). Since H is hereditary, =™ 1P, is injective, and
hence, 7~ -1p; = o(i)- By definition, m(i) = m(j) + 1, and hence, Xy has an arrow I,;) — I,
with valuation (d’,d). So, Xy contains an edge I,y — I, with valuation (d',d), that is, an edge
I,iy — I,(;) with valuation (d,d’). Next, assume that Ay contains an arrow P; — P;, whose valuation

is then (d’, d); see (|1.3.10). As has been shown, Y contains an edge I,jy — I,(;) with valuation (d’, d),

that is, an edge I,Gy — I,(;) with valuation (d,d’). This establishes our claim.
Suppose, on the other hand, that Xy contains an edge I p(i) — o). We shall show that Ap contains

an edge P,» — Pj. Note that P, = 7] p(i) and Pj =7 m 1 o(j)- Assume first that Yy contains an
arrow I,(;y — I,(j). By Lemma [3.1.4(2), I'moa contains an arrow P; — 7™, ;). So, m(i) < m(j).

If m(i) = m( /), then Xy contains an arrow P; — P;, and hence, Ay contains an edge P, — P;. If
m(i) < m(j), then Iyoqm contains an arrow 7m0 )HI o) — Pi. Since H is hereditary, 741,
projective. Then m(j) = m(i)+ 1, and hence, Xy contains an arrow P; — P;. So, Ay contains an edge
P; — Pj. In case Yy contains an arrow I,y — I,@;), by a similar argument, Ap contains an edge

P, — P;. Thus, we have a valued graph isomorphism p* : Ay — Yy, sending P; to I (i)
Finally, the valued quiver isomorphisms stated in Theorem 2| induce a valued graph isomorphism
Qsp — Ay sending i to P;, and a valued graph isomorphism fH — @,3" sending I; to i. Composing
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these two isomorphisms with p*, we obtain a valued graph automorphism QH — QH , sending 7 to
p(i). This induces a desired valued graph automorphism p : Qy — Qy, sending i to p(i). The proof of
the proposition is completed.

We collect some easy properties of the pi-automorphism in the following statement.

Lemma 4.3.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qp, and let p be the
pi-automorphism of Qp.
(1) If i is a vertex in Qu of weight 3, then p(i) =
(2) If i — j is a non-trivially valued edge in Qy, then p(i) =i and p(j) = j.
(3) If i — j — k is a reduced walk in Qp, where j has only two neighbors i and k, such that p(i) =

and p(j) = j, then p(k) = k.
Proof. (1) Being a Dynkin diagram, @ has at most one vertex of weight 3; see . And by Lemma
w(i) = w(p(7)) for any vertex i in Q. Thus, if w(i) = 3, then p(i) =1

(2) Let i — j be an edge in Q with a non-trivial valuation (d;;, d ) Since Qp is a Dynkin digram,
this is the only non-trivially valued edge, and moreover, d;; # d;;; see (1.3.8)). Since p is a valuded graph
automorphism, p(i), p(j) € {4,7} and d() ) = di;j. If p(i) = j, then p(j) = 1. S0, dj; = dy(i)e(j) = dij,
a contradiction. Thus, p(i) =i and p(j ) J

(3) Let i — j — k be a reduced walk in @, where j has only two neighbors i and k. If p(j) = 7,
then j — p(k) is an edge in Qp, and hence, p(k) € {i, k}. If p(i) = 4, then p(k) = k. The proof of the
lemma is completed.

We are ready to determine the order of the pi-automorphism for every Dynkin type. In particular,
the pi-automorphism is the identity for all non-simply laced types.

Theorem 4.3.5. Let H be a hereditary artin algebra of Dynkin type, and let p be the pi-automorphism
p of the ext-graph Q.

(1) If Qy is of type Ay, Go, Fy, E7, Eg, B,,(n>2), C,(n>3) or D, (n>4 even), then p is the identity.
(2) If Qy is of type Ay (n >2), Dy (n > 5 odd) or Eg, then p is of order 2.

Proof. We may assume that Q is a canonical Dynkin diagram as stated in Definition m The
theorem holds trivially in case @y = A;. We shall proceed case by case for all other cases.

1) Suppose that Qy = G2 or By. Then it contains only one edge, which is non-trivially valued. By
Lemma [£.3.4(2), p is the identity.

2) Suppose that Q = F;. By Lemma 2), p(2) = 2 and p(3) = 3. And by Lemma 3),
p(4) = 4. Thus, p(1) = 1. Therefore, p is the identity.

3) Suppose that @y is E7 or Eg. Since 3 is the only vertex of weight 3, by Lemma4.3.4(1), p(3) =
Thus, {p(2),p(4),p(5)} C {2,4,5}. Since w(4) = 1, we have p(4) = 4. If p(2) = 5, thenp()zﬁ
contradiction to Lemma [1.3.7] for p(6) = 2. Thus, p(2) = 2, and consequently, p(1) = 1 and p(5) = 5.
Since each of the vertices 5,6,7 has at most two neighbors, we deduce from 3 that p(i) = ¢ for

all vertices ¢ > 5. So, p is the identity.

4) Suppose that Qy = B, or C,, with n > 3. By Lemma 2), p(1) = 1 and p(2) = 2. Since
every vertex i with 1 < i < n has exactly two neighbors, we easily deduce from Lemma 3) that
p(i) =i for all 3 <1i < n. So, p is the identity.

5) Suppose that Qy = D,, with n > 4 even. By Lemma I, = 727"P;. Using the same
argument there, we can show that Iy = 727"P,. Thus, p(1) = 1 and p(2) = 2. Since 3 is of weight 3,
by Lemma 1), p(3) = 3. Then p(4) = 4. Since every vertex ¢ with 4 < ¢ < n has exactly two
neighbors, by Lemma u3 =1 for all 4 < i < n. So, p is the identity.

6) Suppose that Q, = A, Wlth n > 2. By Lemma I = 77" P, with 71, > 0. So, p(n) = 1.
Since every vertex i with 1 < ¢ < n has two neighbors, p(1) = n. Since n — 1 is the only neighbor of n,
we have p(2) =n — 1. Similarly, p(i) =n+ 1 — ¢ for all 1 < i < n. Hence, p is of order 2.

7) Suppose that @y = D,, with n > 5 odd. by Lemma 1), p(3) = 3. Since 77°P, = I; for
some s > 0; see ([4.2.6)), p(2) = 1. Since the vertex 4 has two neighbors, p(2) = 1, and hence, p(4) = 4.
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Since every vertex ¢ with 3 < i < n has only two neighbors, by Lemma 3), p(i) =i for 5 <i<n.
So, p is of order 2.

8) Suppose Qy = Eg. By Lemma 1), p(3) = 3. Since the vertex 4 has only one neighbors,
p(4) = 4. By Lemma [4.2.7, 7='Ps = I; for some ¢t > 0. So, p(6) = 1. Then p(1) = 6. Now, p(2) =5
and p(5) = 2. So p is of order 2. The proof of the theorem is completed.

4.4. COXETER ORDER. In case H is of finite representation type, it is well-known that the Coxeter
transformation Cy of Ko(modH) is of finite order; see [29] (4.1)]. We call this finite order the Cozxeter
order and write as |Cy|. The following statement reinforces this fact in particular,.

Proposition 4.4.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver Q. Consider the
Auslander-Reiten translation 7, of I'psmoam), the pi-permutation p and the pi-index function m for

(Qm)o- Then, the Coxeter transformation Cg for H is of finite order |Cy| such, for any i € Qm, that
|Cx| =m(i) + m(p(i)) +2 and T;‘CH‘PZ- = B;[2].

Proof. First, we claim that a:= m; + m,;) is a constant, for all i € (Qm)o. Fix 4,j € (Qu)o. By
Lemma m(i) = m(j) — 7ij + Tp@i),p(j), Where 7, 4 is the the number of arrows in the reduced
walk in Qg from p to g. Since p? = id by Theorem m(p(i)) = m(p(j)) — (i), p(j) + Ti.;- Thus,
m(i) + m(p(i)) = m(j5) + m(p(j)). This establishes our claim.

Now, since TP = I by definition and 7, T, = Py(i)[1]; see [I8, (4.3)] and [3l (7.2)], we
obtain 7> MOV P, = 7= (r=(mOp;) = P, [1]. This yields

7= (@042) p, = (n(p)H) (=) py = = (ne@D (P, 1)) = Pray [1][1] = Bi[2).
It remains to show that Cp is of order a + 2. Given i € (Qp)o, from Proposition we see that
Cy“*(dim P) = dim7, “F)P; = dim P;[2] = (—1)*dim P; = dim P;.

Since {dimP;,...,dimP,} is a basis for Ky(modH), CI;(GH) = id. Consider now an integer t with
1 <t<a+1=m(1)+m(p(l)) +1. Suppose first that ¢ < m(1). Then, 7,'Py = 77'P; € I'moan
with 77tP; 2 P;. Since the modules in I'yoqm are determined by their composition factors; see [2,
(IX.2.3)], dim7*P; # dimP;. That is, Cgt(diimPl) # dim P;. Suppose now that m(1) + 1 < ¢. Then
0<t—(m(1)+1) <m(p(1)). Therefore,

tp, = T;(tf(mu)ﬂ))(Tg(mu)ﬂ)Pl) _ T;(tf(m(l)Jrl))(Pp(l)[l]) = M[1],

D
where M = T_(t_(m(l)“‘l))Pp(l) € Imodn- Applying again Proposition we see that
Cy'(dimPy) = dim 7 *Py = dim M[1] = — dimM # dim P;.
So, Cy is indeed of order a + 2. The proof of the proposition is completed.
The Coxeter orders are given for each canonical Dynkin diagram with a particular orientation in [2]
Pages 289-290]. The following statement says that they are independent of the orientation.

Proposition 4.4.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qg . Then the Cozeter
order |Cyg| for H is independent of the orientation of Qu and given by the following table:

QH An Bn Cn Dn Eﬁ ]E’? E8 IE‘4 GZ
[Cul | n+1[2n [ 2n [2(n—1)| 12 [18 [ 30 | 12| 6

Proof. Assume that @ is a canonical Dynkin diagram; see . Consider the pi-permutation p and
the mi-index function m for (Qg)o. Suppose first that Qy = A,, with n > 1. In view of Lemma m
we see that 77" 7P, = I and 77"'P; = I,,, where 7; ; is the number of arrows in the reduced walk in
Qp from i to j. Thus, m(n) =1, and m(1) = r,.1. Since 7,1 is also the number of inverse arrows in
the reduced walk in Qy from 1 to n, we have m(1) + m(n) = n — 1. Since p(1) = n, from Propsoition
[4.4.7] we deduce that |[Cy|=(n—1)+2=n+1.

Suppose now that Qy # A,. Then, @y contains a vertex s, which is of weight 3 or incident to
a non-trivially valued edge. By Lemma p(s) = s, and by Proposition |Cr| = 2m(s) + 2.
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Let hs be the extended hammock function on Suc(0,s). By Theorem 4(1), m(s) is such that
hs(m(s)+1,s) = —1 and h4(s,j) > 0 for all proper predecessors (s, j) of (m ( )+1,s)in Suc(O s).

Let H' be a heredltary artin algebra with Q. = Qp. Consider the pi-permutation p’ and the
pi-index function m’ for (Qu+)o = (Qm)o. Let Al be the extended hammock function on Sucy- (0, s),
the full subquiver of ZQ}}, generated by the successors of (0,s). Since p/(s) = s, as previously seen,
|Crr| = 2m/(s) + 2, where m/(s) is such that hl(m’(s) + 1,s) = —1 and h/(s,j) > 0 for all proper
predecessors (s, 7) of (m/(s) +1,s) in Sucgy (0, s).

By Proposition and Lemma the vertices of the (0, s)-source section A in ZQ;F are (r;,1),
where i € (Qm)o, and r; is the number of inverse arrows in the reduced walk in Q}’Ip, that is, the
number of arrows in the reduced walk in Qg, from s to i. Since A is a leftmost section in Suc(0, s); see
(2.2.5)), the vertices of Suc(0,s) are (r; + p,i) with p > 0 and ¢ € (Qg)o. Similarly, the vertices of the
(0, s)-source section A’ in ZQph are (r},i) with i € (Qp)o = (Qy)o and r} the number of arrows in the
reduced walk in Qg from s to 4, and those of Sucg(0,s) are (r; + p,i) with i € (Qp)o and p > 0.

Fix 4,7 € Q. By Lemma E A contains an arrow (r;, 1) — (5, J ) if and only if Q (that is Q)
contains an edge i — j if and only if A’ contains an arrow (r/,i) — (v’ 7%,7); and in this case, the arrows
(riyi) — (rj,j) and (r},4) — (r}, ) have the same valuation as i — j. So, we have a valued quiver
isomorphism f : A — A’, sending (r;,4) to (r},i). Clearly, f extends to a valued translation quiver
isomorphism f : Suc(0,s) = Sucy (0, s), sending (r; +p, ) to (r;+p,4), for all p > 0. Since r, =7, =0,
we have f(p,s) = (p,s) for allp> 0.

By Deﬁnltlonu 4.2.1) bl (rl, i) = hl(f(ri i) = hs(rs, i) for all (r;, i) € Ag. Since hy and b, are additive,
R.(ri+p) = hs(ri+p, )for allp >0andi € (Qp)o. In particular, b, (m(s)+1,s) = hs(m(s)+1,s) = —1.
If (r] + p,i) is a proper predecessor of (m;(s) + 1,s) in ZQyp, then (r; + p,4) is a proper predecessor
of (m;(s) +1,s) in ZQ;F, and hence, h)(r] + p,i ) hs(r; + p,i) > 0. Therefore, m’(s) = m(s), and
consequently, |Cy/| = |Cgl|. Thus, |Cy| is independent of the orientation of Q. Using the Coxeter
orders given in [2| Pages 289-290], we obtain the table stated in the proposition. The proof of the
proposition is completed.

Remark 4.4.3. As in the first part of the proof of Proposition [£.4:2] one can also use hammocks and
hammock functions to explicitly compute the Coxeter order case by case.

4.5. SHAPE OF THE AUSLANDER-REITEN QUIVER. Applying our previous results, we can describe the
precise shape of I'yoqp in terms of Qg in the following statement.

Theorem 4.5.1. Let H be a hereditary artin algebra with a canonical Dynkin ext-quiver Q. Let P;
be the projective modules and I; are the injective modules in I'noan associated with i € (Qu)o. Then
r—mi)p, = o(i)s and there exists a conver embedding I'noan — ZQIO}J, sending 7" P; to (r,i), where p
is the pi-permutation of (Qu)o and m is the pi-index function on (Qm)o given case by case as follows.
(1) If Qy = A, withn > 1, then p(i) =n+1—1i and m(i) = a*(1,i) +a=(1,n+ 1 —1), fori € (Qu)o-
(2) If Qy = Eg, then p = (16)(25) and m(i) =5 — a*(i,3) + a*(p(i),3) fori € (Qu)o-

(3) If Qg = Dy (n > 5 odd), then p = (12) and m(i) = n — 2 for all 3 < i < n. Moreover,

m(l) = (n—2)—a*(1,3) +a"(2,3) and m(2) = (n — 2) +a™(1,3) —a™(2,3).

(4) If Qy = Go, Fy, Er, Eg, B, (n > 2), C, (n > 3) or D, (n > 4 even), then we have p(i) = i and

m(i) = L|Cy| — 1 for all i € Qu, where |Cy| is the Coxeter order for H.

Proof. By Proposition we have a canonical embedding ¢ : I'moan — ZQyf : 7~ "P; — (r, 1), which
has a convex image in ZQ;7. By Lemma TmO P = I, for all i € (Qu)o. Write r;; = a™(i, ),
for i, € (Qm)o.

(1) Suppose that Qi = A,, with n > 1. As seen in the proof of Theorem m p(i) =n+1—1 for
all € (Qm)o. Moreover, by Lemma 7-"n P, = I,. Thus, m(n) =ry,. Given i € (Qm)o, in view
of Lemma we see that m(i) = m(n) —ripn + Tnt1-i1 =T1n — Tin + Tndblein = T1,i + Tntl—i1-

(2) Suppose that @y = Eg. In view of the proof of Theorem we see that p = (16)(25). In
particular, p(3) = 3. Since |C'H| = 12; see (4.4.2)), we deduce from Proposition [4.4.1] that m(3) = 5.
Given i € Qp, by Lemma m(i) =5 — 753+ Tpei,3-
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(3) Suppose that Qy = D,, with n > 5 odd. In view of the proof of Theorem @ we see that
p = (12). In particular, p(i) = i for all 3 < i < n. Since |Cy| = 2(n — 1); see ([£.4.2)), we deduce from
Proposition[d.4.1|that m(i) = n—2, for 3 <i < n. Moreover, by Lemma[t.3.2 m(1) = (n—2)—r13+ra3
and m(2) = (n —2) +ri13 —ro3.

(4) Suppose that Qy = Ga, F4, E7, Eg, B, (n > 2), C,(n > 3) or D,,(n > 4 even). By Theorem
[4.3.5(1), we have p(i) = i, and by Proposition [£.4.1] |Cp| = 2m(i) + 2, for all i € Q. The proof of the
theorem is completed.

Example 4.5.2. Let H be a hereditary artin algebre with ext-quiver

!

QHZ 1 2 3

5
Since Qg is of type Eg, by Theorem 2), we have p(1) = 6; p(2) = 5; p(3) = 3; p(4) = 4; p(5) =2
and p(6) = 1. Moreover, m(1) = m(2) = 4; m(3) = m(4) = 5; m(5) = m(6) = 6. Thus, I'noan is of the
following shape:

T P6 2P6 r‘Pﬁ 4P6 _5P6

/\/\/\/\/\/\/

7 P5 7P 7P 7 'P5 TP

\/\/\/\/\/\/

Py — Py —> 7 Py—>7P3 =17 Py—>72Py >7 Py —>7Py—>7Py>7"Py — [, —> I3

NSNS\ SN SN S

TP 2P, T3P,

\/\/\/\/\

1,2
Example 4.5.3. Let H be a hereditary artin algebra with ext-quiver Qg : 1 2 2 3 4.

Since Qp = F4, by Theorem M(Zl), p(i) =i and m(i) = 5, for all 1 < i < 4. Thus, I'yean is of the
following shape

NN NN NS
VAT AT AT AT,
NN N

The following statement is interesting in its own right.

Proposition 4.5.4. Let H be a hereditary artin algebra of Dynkin type. If P is a projective module
and I is an injective module in I'yoqm, then I is a successor of P in I'yodm -

Proof. Let P be a projective module and I an injective module in ['y,0qg. By Proposition [3.1.6
I'oam contains a P-source section A. Then I = 7°M for some M € A and s € Z. If s > 0, then
771 = 7°7'M € I'yoan, which gives a contradiction since 771 = 0. Thus, s < 0, and consequently, I
is a successor of P. The proof of the proposition is completed.
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4.6. APPLICATIONS. Our first application is to compute the number of non-isomorphic indecomposable
modules in modH. Applying a series of results in [29] and [I3], we see that this number was given case
by case in [I3] and [I7], and also by the number of positive roots of Dynkin diagrams; see [14}, [I7], which
was given in [I2]. However, using our previous results, we obtain this number in a direct and easy way.

Theorem 4.6.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qg and Cozxeter order
|Cy|. Then, the number of non-isomorphic indecomposable modules in modH is equal to

1
~n|Cyl,
2n| |

where n is the number of non-isomorphic simple modules in modH .

Proof. Consider the pi-permutation p and the pi-index function m for (Qg)o = {1,...,n}. Let P; be the
projective module and I; the injective module in I'y,0qp associated with ¢ € (Qp)o. Since r—m(i) = (i)
the 7-orbit of P; contains exactly m(i) + 1 modules. Let ¢ be the number of modules in I'yoqm. Since

the P; generate a section in I'modm, we see that ¢ = > (m(i) + 1). And since p is a permutation,

t =31 (m(p(i) + 1). Applying Proposition [4.4.1]yields 2t = 37" | (m(i) + m(p(i)) + 2) = n|Cx|. The
proof of the theorem is completed.

Now, we shall compute the nilpotency of the radical of modH. This has been essentially done by
Zacharia using preprojective partitions; see [35, Section 4]. However, we shall provide an alternative
approach. Since Qy is a Dynkin diagram, by Propositions and any two parallel paths in
I'moan and I'po(moed fry have the same length. So we may introduce the following definition.

Definition 4.6.2. Let H be a hereditary artin algebra of Dynkin type.

(1) If I'yoam contains a path from M to N, then we define the distance between M and N, written as
dist(M, N), to be the length of any path from M to N in I'yoqn-

(2) If I'pb(moan) contains a path from M" to N°, then we define the distance between M" and N°,
written as dist(M", N*), to be the length of any path from M" to N° in I'po(medn)-

The following statement allows us to easily determine the depth of any map in mod H.
Lemma 4.6.3. Let H be a hereditary artin algebra of Dynkin type. If f : M — N is a non-zero map
with M, N € I'moan, then dp(f) = dist(M, N).

Proof. Let f : M — N be a non-zero map with M, N € @' ,qg. Since H is representation-finite,
f & rad®(M, N) for some s > 0; see [2, (V.7.6)]. Thus, dp(f) =t < co. If t =0, then M = N and
dist(M, N) = 0. Otherwise, by Lemma o contains a path from M to N of length t. Hence,
dist(M, N) = t. The proof of the lemma is completed.

We are ready to provide a new proof for Zacharia’s theorem as follows; see [35] (4.11)].
Theorem 4.6.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver Qg and Coxeter order
|C|. Then, the radical of modH is nilpotent of nilpotency |Cr| — 1.

Proof. Given i € (Qm)o = {1,...,n}, consider the simple module S; € I'noqm with a projective cover
m; : P, — S; and an injective envelope t; : S; — I;, where P;, I; € I'moqn- Applying Theorem 2.7 in
[11] followed by Lemma we see that the nilpotency of rad(modH) is equal to
sup{dp(t171),...,dp(tn7n)} + 1 = sup{dist(P1, I1),...,distP,, I,)} + 1.
Thus, it suffices to show that dist(P;, ;) = |Cx| — 2, for any i € (Qg)o. In fact, since I'yoqm is a
convex valued translation subquiver of I'ps(medm); see 7 we have dist(M[0], N[0]) = dist(M, N),
for all M, N € I'moar. And since 7 I;[0] = P;[1]; see [5, (7.2)], we deduce

dist(P;[0], P;[1]) = dist(P;]0], I;[0]) + dist(Z;[0], P;[1]) = dist(P;, I;) + 2.
As a consequence, we obtain
dist(P;[0], P;[2]) = dist(P;[0], P;[1]) + dist(P;[1], P;[2]) = 2dist(F;[0], P;[1]) = 2(dist(P;, I;) + 2).
On the other hand, by Proposition dist(P;[0], P[2]) = dist(5[0], 7,191 P;[0]) = 2|Cy|. That is,
|Cy| = dist(P;, I;) + 2. The proof of the theorem is completed.
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Next, we shall study the radical of the bounded derived category D?(modH). Being a triangulated
category, D®(modH) coincides with its projectively stable category and its injectively stable category;
see [27, (2.4)]. Since Db(modH) has almost split triangles, the Auslander-Reiten translation 7, of
I’ po(mod iy induces an auto-equivalence 7, : D’(modH) — Db(mod H); see [27, (4.10)].

Theorem 4.6.5. Let H be a hereditary algebra of Dynkin type with Coxeter order |Cy|. Then the
radical of D*(mod H) is nilpotent of nilpotency |Cyg| — 1.

Proof. Write 2 = DP(modH). Since modH is a convex subcategory in 2, by Theorem m
rad!“#1=2(2) #£ 0. Suppose that rad”(2) # 0 with r > 0. Then, radl, (M, N[s]) # 0, for some
M,N € I'moag and s € Z. Write M = 77tP for some ¢t > 0, where P is a projective module in
I'modarr- Applying the equivalence 7, we obtain rad?,(P[0], (1, N[0])[s]) # 0. Since P is projective,
(1, N[0])[s] = L[0] for some L € I'moars. Then, rad”(P,L) # 0, and by Theorem [£.6.4] r < |C| — 2.
So, rad(2) is nilpotent of nilpotency |Cy| — 1. The proof of the theorem is completed.

We conclude with the cluster category associated with H. Let 2°(H) be a skeleton of D*(modH),
containing the complexes in I'pomodn)- Then, P*(H) is a Hom-finite Krull-Schmidt R-category, which
has almost split sequences. Note that the Auslander-Reiten quiver I'gs g of P*(H) coincides with
I'po(modr), and its Auslander-Reiten translation 7, extends to an automorphism of 2bH). Thus, we
have an automorphism F = 7! o [1] of Z°(H) such, for any indecomposable objects M*,N* € 2°(H),
that FP(M*) 22 M* for all p # 0 and Homg gy (M*, FP(N*)) = 0 for all but finitely many p € Z. Thus,
the action of the group F generated by F on 2°(H) is free and locally bounded. As did in [7], we define
the cluster category associated with H to be the orbit category

2°(H)|F =: €u,
which is Hom-finite and Krull-Schmidt; see

Theorem 4.6.6. Let H be a hereditary artin algebra of Dynkin type with Coxzeter order |Cyl|, and let
@n be the cluster category associated with H.

(1) The radical of €n is nilpotent of nilpotency |Cr| — 1.

(2) The number of non-isomorphich indecomposable objects in €y is equal to

Sn(ICrl +2),

where n is the number of non-isomorphic simple modules in modH .

Proof. First, Statement (1) follows immediately from Proposition 1) and Theorem Let
Py, ..., P, be the projective modules and I, ..., I, the injective modules in I',,qyg with topP; = socl;.
Recall that F' =7, o [1], where 7,, is the Auslander-Reiten translation for 2°(H). Given p € Z, write
SP) = {Mlp] | M € I'moarr} U{Pi[p +1],..., Pu[p + 1]} and T®) = FP(S©)). Since 7, I; = P[1],
we obtain F(I;) = P;[2] for 1 < i < n. Thus, T = F(S©®). In general, 7® = FP(S(©) for all
p € Z. Since F = {F? | p € Z}, we see that S is a complete set of representatives of the F-orbits of

non-isomorphic indecomposable objects in 2°(H). Now, Statement (2) follows from Proposition m
and Theorem The proof of the theorem is completed.

Remark 4.6.7. The number given in Theorem [4.6.6/(2) coincides with the number cluster variables in
the cluster algebra associated with Qp; see [15, (5.9.1)].
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