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Abstract. Let H be a hereditary artin algebra of finite representation type. We first determine all

hammocks in the Auslander-Reiten quiver ΓmodH of modH, the category of finitely generated left

H-modules. This enables us to obtain an effective method to construct ΓmodH by simply viewing the
ext-quiver of H. As easy applications, we compute the numbers of non-isomorphic indecomposable

objects in modH and the associated cluster category CH , as well as the nilpotencies of the radicals of

modH, Db(modH) and CH .

Introduction

Since Gabriel’s pivotal work on representations of quivers; see [17], the representation theory of
hereditary artin algebras has been extensively studied over the past fifty years; see, for example, [13,
14, 29, 32, 35]. The representation type of such an algebra is finite precisely when its ext-quiver is
of Dynkin type; see [2, 14, 17]. In this case, the information on the module category is encoded in
its Auslander-Reiten quiver. In the linearly oriented An-case, the Auslander-Reiten quiver has a wing
shape; see [28, (2.6)] and [32, (3.3)]. In all other cases, the Auslander-Reiten quiver has only been
roughly described; see [2, (VIII.1.15)] and [28, (1.13)].

The main objective of this paper is to provide an effective method to construct the Auslander-Reiten
quiver simply by viewing the ext-quiver of the algebra. This enables us to compute the number of non-
isomorphic indecomposable objects in the module category and the associated cluster category, and also
the nilpotency of the radicals of the module category, its bounded derived category and the associated
cluster category. More details are outlined below.

In this introduction, H denotes a hereditary artin algebra with a Dynkin extension quiver QH ; see
(1.6.1). Let modH be the category of finitely generated left H-modules and ΓmodH be its Auslander-
Reiten quiver; see (1.5). It is well-known that every τ -orbit in ΓmodH is finite and contains a projective
module and an injective module; see [29, (1.8)], and also [14, (1.9)]. Moreover, ΓmodH embeds as a
convex valued translation quiver in the repetitive quiver Z∆H , where ∆H is the full valued subquiver
of ΓmodH generated by the projective modules; see [28, (1.13)], and also [2, (VIII.1.15)]. Thus, in order
to describe the precise shape of ΓmodH , it suffices to determine the injective module and the number
of modules in the τ -orbit of any projective module.

For giving a combinatorial criterion for a finite translation quiver to be the Auslander-Reiten quiver
of a finite dimensional algebra over an algebraically closed field, Brenner introduced the notions of
hammocks and hammock functions; see [10]. We adapt and extend these notions to the artin setting;
see (1.7.2) and (4.2.1). After a thorough study of the valued translation quivers of tree type in Section
2, we describe all the hammocks in ΓmodH ; see (4.2.4). This allows us to determine which injective
module lies in the τ -orbit of any given projective module; see, for example, (4.2.5), (4.2.6) and (4.2.7).

To study representations of a valued graph, Dlab and Ringel defined a Coxeter transformations as a
product of all reflections in the corresponding rational vector space; see [13, Page 8]. Alternatively, for
any hereditary artin algebra, Auslander and Platzeck defined the Coxeter transformation as an special
automorphism of the Grothendieck group of the module category; see (3.3.1) and [29, Section 2]. Since
QH is of Dynkin type, the Coxeter transformation CH for H is of finite order |CH |; see [29, (4.1)], called
the Coxeter order. The Coxeter order has been computed for each Dynkin diagram with a particular
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orientation; see [2, Pages 289, 290]. We show that |CH | is independent of the orientation of QH , so
it is explicitly given no matter how QH is oriented; see (4.4.2). Further, we shall pair the τ -orbits
of projective modules in ΓmodH in such a way that the sum of the numbers of modules in the paired
τ -orbits is equal to |CH |; see (4.4.1), while the difference equals the difference of the numbers of arrows
in two reduced walks in QH between the corresponding vertices; see (4.3.2). So, the number of modules
in any τ -orbit is expressed in terms of |CH | and the number of arrows in a specific reduced walk in QH .
This ultimately completes the picture of ΓmodH in terms of QH ; see (4.5.1).

Since H is of finite representation type, it is interesting to compute the number of non-isomorphic
indecomposable H-modules. Since the center k of H is a field; see [29, (3.1)], modH is equivalent to the
representation category of a k-linear species of QH ; see [13, Theorem C]. Hence, this number coincides
with the number of positive roots of QH ; see [14, 17], which can be found in [12]. However, we directly
obtain this number from our results, that is, half of |CH | multiplied by the number of non-isomorphic
simple H-modules; see (4.6.1).

A well-known result of Auslander says that an artin algebra Λ is representation-finite if and only if
the radical of modΛ is nilpotent; see [2, (V.7.7)] and [34, (1.1)]. In this case, it is interesting to compute
the nilpotency of rad(modΛ), namely the least integer r for which radr(modΛ) = 0. Using preprojective
partitions, Zacharia proved that |CH | − 2 is the maximal length of chains of irreducible maps in modΛ
with a non-zero composite; see [35, (4.11)], and consequently, rad(modH) is of nilpotency |CH | − 1.
Alternatively, using some nice properties of ΓmodH ; see (3.2.1), we show that the radicals of modH and
Db(modH) have the same nilpotency |CH | − 1; see (4.6.4) and (4.6.5).

In order to categorify Fomin and Zelevinsky’s cluster algebra associated with a finite acyclic unvalued
quiver [16], Buan, Marsh, Reineke, Reiten and Todorov introduced the associated cluster category, which
is an orbit category of the bounded derived category of finite dimensional representations of the quiver;
see [7]. The same construction yields the cluster category CH associated with H. We show that the
radical of CH is also of nilpotency |CH | − 1, and the number of non-isomorphic indecomposable objects
in CH is half of |CH | + 2 multiplied by the number of non-isomorphic simple H-modules; see (4.6.6),
which coincides with the number of cluster variables of the cluster algebra associated with QH ; see [15,
(5.9.1)]. Finally, we want to express our gratitude to Platzeck and Zacharia for some helpful discussions.

1. Preliminaries

The objective of this section is to lay the foundation for this paper. Besides fixing some terminology
and notation, we shall collect and also prove some results in the general context, which are needed later.
Throughout this paper, R denotes a commutative artinian ring. All algebras are R-algebras, and all
categories are additive R-categories whose morphisms are composed from right to left.

1.1. Quivers. We start with laying the combinatorial foundation. Let Q = (Q0, Q1) be a quiver, where
Q0 is the set of vertices and Q1 is the set of arrows from a vertex, called the start point, to another
vertex, called the end point. An arrow α from x to y is usually represented graphically as x → y, and
we write x = s(α) and y = e(α). Given x ∈ Q0, write x+ for the set of vertices y such that there exists
an arrow x → y, and x− for the set of vertices z such that there exists an arrow z → x. We call x a
source or sink if x− or x+ is empty, respectively. With each vertex x ∈ Q0, one associates a trivial path
εx of length 0 with s(εx) = e(εx) = x. A path of length r > 0 is a sequence η = αr · · ·α1, where αi ∈ Q1

such that e(αi) = s(αi+1) for 1 ≤ i < r; and in this case, write s(η) = s(α1) and e(η) = e(αr). In the
sequel, the length of a path η will be written as l(η). A non-trivial path η is called an oriented cycle if
s(η) = e(η), and an oriented cycle of length 2 is called a 2-cycle. Two paths η, ζ are called parallel if
s(η) = s(ζ) and e(η) = e(ζ). A subquiver Q′ of Q is called full if it contains all arrows x→ y in Q with
x, y ∈ Q′, and convex if it contains all paths x y in Q with x, y ∈ Q′.

For each arrow α : x → y in Q, one introduces its formal inverse α−1 with s(α−1) = e(α) and
e(α−1) = s(α). The formal inverses of arrows will be called inverse arrows. A trivial walk of length 0 is
a trivial path. A walk of length t(> 0) is a sequence w = ctct−1 · · · c1, where ci is an arrow or an inverse
arrow such that e(ci) = s(ci+1) for 1 ≤ i < t. In this case, we write s(w) = s(c1) and e(w) = e(ct),
and call w a walk from s(w) to e(w). Note that w−1 = c−11 · · · c

−1
t−1c

−1
t is a walk from y to x, and the
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number of arrows in w−1 is the number of inverse arrows in w, while the number of inverse arrows in
w−1 is the number of arrows in w. A walk in w in Q is called reduced if w is trivial or w = ctct−1 . . . c1
such that ci+1 6= c−1i for all 1 ≤ i < t. One says that Q is a tree if, for any x, y ∈ Q0, there exists at
most one reduced walk from x to y. The following notation is important for later purposes.

Notation 1.1.1. Let Q be a connected tree with x, y ∈ Q0. In case x = y, put a+(x, y) = a−(x, y) = 0.
Otherwise, there exists a unique reduced w = ct · · · c1 from x to y, where each ci is an arrow or an
inverse arrow in Q. Then we denote by a+(x, y) the number of indices i such that ci is an arrow; and
by a−(x, y) the number of indices j such that cj is an inverse arrow.

We define the opposite quiver Qop of Q by (Qop)0 = Q0 and (Qop)1 = {αo : y → x | α : x→ y ∈ Q1}.
The trivial paths in Q are identified with the trivial paths in Qop. And a non-trivial walk w in Q from
x to y induces a non-trivial walk wo in Qop from x to y so that the number of arrows in wo is the
number of inverse arrows in w, and the number of inverse arrows in wo is the number of arrows in w.

1.2. Valued quivers. Let Z+ denote the set of positive integers. A valued quiver is a pair (Q, v),
where Q = (Q0, Q1) is a quiver without multiple arrows and v is the valuation, that is a map

v : Q1 → Z+ × Z+ : α 7→ v(α) := (vα, v
′
α);

see, for example, [2, Page 69], and compare [19, Page 287]. The valuation v(α) of an arrow α is called
trivial if v(α) = (1, 1). In a graphic representation of a valued quiver, we will omit the trivial valuations.
In case Q has no loop, we will write v(α) = (vxy, v

′
xy) for an arrow α : x → y. And in case Q has no

2-cycle, we will write v(α) = (vxy, vyx) for an arrow α : x → y. A full valued subquiver of a valued
quiver (Q, v) is a full subquiver of Q with the valuation obtained by restricting v. In order to define
the opposite valued quiver, we write (a, b)◦ = (b, a) for any pair (a, b) ∈ Z+ × Z+.

Definition 1.2.1. Let (Q, v) be a valued quiver. Its opposite valued quiver (Qop, vo) is defined by

(1) Qop is the opposite quiver of Q;
(2) vo is defined by v◦(α◦) = v(α)◦, for any arrow α in Q.

1.3. Valued graphs. We denote by N the set of non-negative integers. The following definition is
slightly modified from the one given in [2, Page 241]; compare [14, Page 1].

Definition 1.3.1. A valued graph is a triplet (∆0,∆1, v), where

(1) ∆0 is a set of vertices ;
(2) ∆1 is a set of edges between vertices, containing no loop or multiple edge ;
(3) v is the valuation, that is a function

v : ∆0 ×∆0 → N : (x, y) 7→ v(x, y) := vxy

such that vxy 6= 0 if and only if vyx 6= 0 if and only if there exists an edge between x and y.

In the sequel, a valued graph (∆0,∆1, v) will be written as (∆, v), where ∆ = (∆0,∆1); or simply
as ∆. If e is an edge between x and y such that vxy = vyx = 1, then we say that e is trivially valued
with trivial valuation (1, 1). One says that ∆ is simply laced if every edge in ∆ is trivially valued. In
this paper, we shall only consider valued graphs with a planar representation defined as follows.

Notation 1.3.2. Let (∆, v) be a planar valued graph such that every vertex is incident to at most one
non-trivially valued edge. Consider an edge e between vertices x and y. If e is trivially valued, then it

is represented by a blank line between x and y. Otherwise, e is represented by a horizontal line i j

labeled with the pair (vxy, vyx) or y x labeled with the pair (vyx, vxy). In either case, the pair is

called the valuation of e in the respective representation.

Remark 1.3.3. In contrast to the valuation of an arrow in a valued quiver, the valuation of a non-
trivially valued edge in a valued graph depends on how the edge is written, namely, which vertex is on
the left and which is on the right.

Now, we introduce valued graph isomorphisms, which we cannot find in any existing literature.
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Definition 1.3.4. Let (∆, v) and (∆′, v′) be valued graphs. We define a valued graph isomorphism
ϕ : (∆, v)→ (∆′, v′) to be a bijection ϕ : ∆0 → ∆′0 such that v′ϕ(x)ϕ(y) = vxy, for all x, y ∈ ∆0.

Remark 1.3.5. Let ϕ : (∆, v) → (∆′, v′) be a valued graph isomorphism. Then, for x, y ∈ ∆0, there
exists an edge e between x and y in ∆ if and only if there exists an edge e′ between ϕ(x) and ϕ(y) in
∆′. And if e is written as x y with valuation (a, a′), then e′ can be written as ϕ(x) ϕ(y) with

valuation (a, a′) or as ϕ(y) ϕ(x) with valuation (a′, a).

Definition 1.3.6. Let (∆, v) be a valued graph. The weight of x ∈ ∆0 is defined by w(x) :=
∑
y∈∆0

vxy.

The following statement follows immediately from the definition a valued graph isomorphism.

Lemma 1.3.7. Let ϕ : (∆, v)→ (∆′, v′) be a valued graph isomorphism. Given any vertex x in ∆, we
have w(x) = w(ϕ(x)).

For later reference, we introduce the following definition; see [2, Page 242].

Definition 1.3.8. A valued graph is called a Dynkin diagram if it is isomorphic to one of the following
canonical Dynkin diagrams:

An : 1 2 · · · n, where n ≥ 1.

Bn : 1
(1,2)

2 3 · · · n, where n ≥ 2.

Cn : 1
(2,1)

2 3 · · · n, where n ≥ 3.

2

Dn : 1 3 4 · · · n, where n ≥ 4.

4

En : 1 2 3 5 6 · · · n, where n = 6, 7, 8.

F4 : 1 2
(1,2)

3 4.

G2 : 1
(1,3)

2.

It is important for us to relate the valued quivers without 2-cycles to the valued graphs.

Definition 1.3.9. Let (Q, v) be a valued quiver without 2-cycles. The underlying valued graph (Q, v)
of (Q, v) is a valued graph defined in the following way.

(1) The graph Q is obtained by forgetting the orientation of the arrows in Q.
(2) Given vertices x, y in Q, we define the valuation vxy by

vxy =


0, if Q has no arrow x→ y or y → x;

vxy, if Q contains an arrow from x to y with valuation (vxy, vyx);
vxy, if Q contains an arrow from y to x with valuation (vyx, vxy).

Remark 1.3.10. Let Q be a valued quiver without 2-cycles. An arrow x→ y with valuation (a, b) in
Q induces an edge x y with valuation (a, b), or equivalently, y x with valuation (b, a) in Q.

Example 1.3.11. If Q is 1
(1,3)// 2 3,oo then Q is 1

(1,3)
2 3, or equivalently, 3 2

(3,1)
1.

The following statement is evident.

Lemma 1.3.12. Let (Q, v) be a valued quiver without 2-cycles. Then (Q, v) and (Qop, v◦) have the
same underlying valued graph.
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In the sequel, a valued quiver will be called a (canonical) Dynkin quiver if it admits no 2-cycle and
its underlying valued graph is a (canonical) Dynkin diagram.

1.4. Valued translation quivers. A valued translation quiver is a triplet (Γ , v, τ), where (Γ , v) is
a valued quiver and τ is a bijection, called the translation, from a subset Γ ′0 of Γ 0 to another Γ ′′0 such,
for any x ∈ Γ ′0 and any arrow y → x with valuation (vyx, v

′
yx), that there exists an arrow τx→ y with

valuation (v′yx, vyx). In this case, we shall write τ− for the inverse of τ . The τ -orbit of a vertex x is the
set of vertices τsx with s ∈ Z. A path x y in Γ is called sectional if it does not contain any subpath
of the form τa → b → a; and in this case, we call x a sectional predecessor of y, and y a sectional
successor of x. Note that a trivial path in Γ is sectional. A sectional path is called strictly sectional
if it meets any τ -orbit in Γ at most once. The following easy statement follows immediately from the
definition of a valued translation quiver, which will be used frequently.

Lemma 1.4.1. Let (Γ , v, τ) be a valued translation quiver. Let x→ y be an arrow in Γ with valuation
(a, a′). If τsx and τsy are defined, then Γ contains an arrow τsx→ τsy with valuation (a, a′).

1.5. Krull-Schmidt categories. Let A be a Hom-finite Krull-Schmidt R-category. We write radA
for the Jaconson radical of A, and radsA for the s-th power of radA for all s ≥ 0. A subcategory B of
A is called convex provided that any sequence of morphisms X0 → X1 → · · · → Xr−1 → Xr between
indecomposable objects in A lies entirely in B whenever X0, Xr ∈ B.

For our later purpose, we briefly recall the Auslander-Reiten theory in this general setting; see [3]
and [26]. Given indecomposable objects X,Y in A, we put kX = EndA(X)/rad(EndA(X)), that is
a division R-algebra; and irr(X,Y ) = radA(X,Y )/rad2

A(X,Y ), that is a kY -kX -bimodule. It is well-
known that a morphism f : X → Y is irreducible if and only if f ∈ radA(X,Y )\rad2

A(X,Y ). Write
dXY = dim kY irr(X,Y ) and d′XY = dim irr(X,Y )kX , which are related by Bautista to minimal left
almost morphism and minimal right almost split morphisms as follows; see [3, (3.3), (3.4)].

Proposition 1.5.1. Let A be a Hom-finite Krull-Schmidt R-category, and let f : X → Y be an
irreducible morphism between indecomposable objects in A.

(1) If A has a minimal left almost split morphism g : X → M, then dXY is the multiplicity of Y as a
direct summand of M .

(2) If A has a minimal right almost split morphism h : N → Y, then d′XY is the multiplicity of X as a
direct summand of N .

The following definition unifies the notions of almost split sequences in abelian categories and almost
split triangles in triangulated categories; see [26, (1.3)], and compare [21, (2.7)].

Definition 1.5.2. Let A be a Hom-finite Krull-Schmidt R-category. A sequence X
f // Y

g // Z of
morphisms in A with Y 6= 0 is called almost split if f is minimal left almost split and a pseudo kernel
of g, while g is minimal right almost split and a pseudo cokernel of f.

The Auslander-Reiten quiver of A is a valued translation quiver ΓA defined as follows; [26, (2.1)].
The vertex set of ΓA is a complete set of representatives of isomorphism classes of indecomposable
objects in A. Given vertices X,Y in ΓA, there exists an arrow X → Y in ΓA if and only if there exists
an irreducible morphism f : X → Y in A; and in this case, the valuation of X → Y is (dXY , d

′
X,Y ).

The translation τA , called the Auslander-Reiten translation, is defined in such a way that X = τAZ if
and only if A has an almost split sequence X // Y // Z.

To conclude this subsection, we recall the construction of an orbit category of A; compare [1, (2.1)].

Definition 1.5.3. Let A be a Hom-finite Krull-Schmidt R-category with an action by a group G. The
orbit category A/G is defined as follows.

(1) The objects of A/G are those of A.
(2) Given objects X,Y , one has HomA/G(X,Y ) = ⊕g∈G HomA(X, g ·Y ).
(3) Given morphisms u = (ug)g∈G : X → Y and v = (vg)g∈G : Y → Z in A/G, where ug : X → g ·Y

and vg : Y → g ·Z are morphisms in A, one has vu = (wg)g∈G, where wg =
∑
fh=g(f ·vh)uf .
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The action of a group G on A is called free provided that g ·X 6∼= X for any non-identity g ∈ G and
any indecomposable X in A; and locally bounded provided that HomA(X, g · Y ) 6= 0 for all but finitely
many g ∈ G and all objects X,Y in A; see [4, (1.3)].

Proposition 1.5.4. Let A be a Hom-finite Krull-Schmidt R-category with a free and locally bounded
action by a group G. Then A/G is a Hom-finite Krull-Schmidt R-category, whose indecomposable
objects are those of A. Moreover, if X,Y ∈ A are indecomposable, then

(1) radsA/G(X,Y ) = ⊕g∈G radsA(X, g ·Y ), for s ≥ 0;

(2) X ∼= Y in A/G if and only if X ∼= g · Y in A for some g ∈ G.
Proof. First of all, a direct sum in A is a direct sum in A/G. And since the action of G is locally
bounded, A/G is a Hom-finite additive R-category. Let X,Y ∈ A be indecomposable. Consider a
morphism u = (ug)g∈G : X → Y in A/G, where ug ∈ HomA(X, g·Y ). Suppose that uf 6∈ radA(X, f ·Y )
for some f ∈ G. Then, u has an inverse (u−1g )g∈G : Y → X inA/G, where u−1g = 0 for all g (6= f−1) ∈ G,

and u−1f−1 = f−1 · u−1f : Y → f−1 ·X. Suppose now that ug ∈ radA(X, g ·Y ) for all g ∈ G. Given any

v = (vg)g∈G : Y → X inA/G, we have vu = ((vu)g)g∈G, where (vu)g =
∑
fh=g(f ·vh)uf ∈ radA(X, g·X)

for all g ∈ G. Let e be the identity of G. Then, 1X − vu = (wg)g∈G, where we = 1X − (vu)e, and
wg = −(vu)g for all g ( 6= e) ∈ G. Since we is invertible, as seen previously, so is 1X − vu. Hence,
u ∈ radA/G(X,Y ). This shows that radA/G(X,Y ) = ⊕g∈G radA(X, g ·Y ).

Since G acts freely on A, radA/G(X,X) = radA(X,X)⊕(⊕g (6=e)∈G HomA(X, g ·X)). So, EndA/G(X)
is local. Since a non-zero object in A is non-zero in A/G, an object is indecomposable in A if and only if
it is indecomposable in A/G, and consequently, A/G is Krull-Schmidt. Now, by induction, we easily see
that Statement (1) for all s ≥ 0. Finally, X ∼= Y in A/G if and only if HomA/G(X,Y ) 6= radA/G(X,Y ),
if and only if HomA(X, g · Y ) 6= radA(X, g ·Y ) for some g ∈ G, if and only if X ∼= g · Y in A for some
g ∈ G. The proof of the proposition is completed.

1.6. Module category. Let Λ be an artin algebra. We denote by modΛ the category of finitely
generated left Λ-modules, and by rad(modΛ) the Jacobson radical of modΛ. The maps in rad(modΛ)
are called radical maps. Given a module M in modΛ, we shall write radM , topM and socM for the
radical, the top and the socle of M respectively. The Auslander-Reiten quiver ΓmodΛ of modΛ carries
the essential information of the finite powers of rad(modΛ). The Auslander-Reiten translations τΛ and
τ−
Λ

of ΓmodΛ are given by DTr and TrD, respectively; see [2, Page 22]. Besides the Auslander-Reiten
quiver, the ext-quiver of Λ; see [2, Page 69] also plays an important role in our study.

Definition 1.6.1. Let Λ be an artin algebra, and let S1, ... , Sn be the non-isomorphisc simple modules
in modΛ. The ext-quiver of Λ is a valued quiver QΛ defined in the following way.

(1) The vertex set is (QΛ)0 = {1, ... , n}.
(2) The arrow set is (QΛ)1 = {i −→ j | Ext1Λ(Si, Sj) 6= 0}.
(3) The valuation for an arrow i −→ j in QΛ is the pair (dij , d

′
ij), where dij = dimEndΛ(Sj)Ext1Λ(Si, Sj)

and d′ij = dim Ext1Λ(Si, Sj)EndΛ(Si).

In the study of the Auslander-Reiten quiver ΓmodΛ, sectional paths play an important role; see
[6, 23, 24, 20]. The following statement tells us when we can extend a sectional path in ΓmodΛ.

Proposition 1.6.2. Let Λ be an artin algebra, and let X0 → X1 → · · · → Xs−1 → Xs be a non-trivial
sectional path in the Auslande-Reiten quiver ΓmodΛ.

(1) Suppose that X0 is projective. If Y → Xs is an arrow in ΓmodΛ with Y 6= Xs−1, then Y is not
injective, and consequently, ΓmodΛ contains a sectional path X0 → · · · → Xs−1 → Xs → τ−

Λ
Y.

(2) Suppose that Xs is injective. If X0 → Y is an arrow in ΓmodΛ with Y 6= X1, then Y is not
projective, and consequently, ΓmodΛ contains a sectional path τ

Λ
Y → X0 → X1 → · · · → Xs.

Proof. We shall only prove Statement (1). Let Y → Xs be an arrow in ΓmodΛ with Y 6= Xs−1. Suppose
that Y is injective. Then, we have an irreducible epimorphism fs : Y → Xs. Since Y 6= Xs−1, there
exists an irreducible map (fs, g) : Y ⊕Xs−1 → Xs; see [3, (3.2)]. So, modΛ has an almost split sequence
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0 // τ
Λ
Xs

(h,u,fs−1)// Y ⊕ Z ⊕Xs−1


fs
w
g


// Xs

// 0.

Since fs is an irreducible epimorphism, so is fs−1 : τ
Λ
Xs → Xs−1. If s > 1, then τ

Λ
Xs 6= Xs−2, and

we similarly obtain an irreducible epimorphism fs−2 : τΛXs−1 → Xs−2. Continuing this process, we
obtain an irreducible epimorphism f1 : τΛX1 → X0, absurd. The proof of the proposition is completed.

It is well-known that A is representation-finite if and only if rad(modΛ) is nilpotent; see [2, (V.7.7)]
and [34, (1.1)]. To compute the nilpotency of rad(modΛ), one introduces the notion of depth for maps
in terms of the radical series of modΛ.

Definition 1.6.3. Let Λ be an artin algebra. The depth of a map f : M → N in modΛ is defined by

dp(f) := sup{s ∈ N | f ∈ rads(M,N)}.

Remark 1.6.4. If M,N ∈ modΛ are indecomposable, then a map f : M → N is irreducible if and
only if dp(f) = 1.

The following statement relates maps of finite depth in modΛ to paths in ΓmodΛ.

Lemma 1.6.5. Let Λ be an artin algebra. Consider a radical map f : M → N between indecomposable
modules in modΛ. If dp(f) = t, then there exists a chain of irreducible maps between indecomposable

modules M
f1−→M1 → · · · →Mt−1

ft−→ N in modΛ such that dp(ft · · · f1) = t.

Proof. Assume that dp(f) = t > 0. Since f ∈ radt(M,N), we may write f =
∑p
i=1 fit · · · fi1, where

the fij are radical maps between indecomposable modules in modΛ. Since f /∈ radt+1(M,N), there
exists some 1 ≤ s ≤ p such that fst · · · fs1 /∈ radt+1(M,N). Thus, fs1, . . . , fst are irreducible such that
dp(fst · · · fs1) = t. The proof of the lemma is completed.

1.7. Hammocks. Let Λ be an artin algebra with S a simple module in modΛ. For any module M
in modA, we write `S(M) for the multiplicity of S as a composition factor of M . For convenience of
reference, we state the following well-known statement; see, for example, [2, Page 45].

Lemma 1.7.1. Let Λ be an artin algebra. Consider a simple module in modΛ with projective cover P
and injective envelope I. If M ∈ modΛ, then `S(M) is equal to the length of the right EndΛ(P )-module
HomΛ(P,M), as well as the length of the left EndΛ(I)-module HomΛ(M, I).

Recall that Λ is of directed representation type if ΓmodΛ is finite and contains no oriented cycle. The
following definition is due to Brenner; see [10].

Definition 1.7.2. Let Λ be an artin algebra of directed representation type. Consider a simple module
S in the Auslander-Reiten quiver ΓmodΛ.

(1) The hammock associated with S is the full valued translation subquiver HS of ΓmodΛ generated by
the modules M of which S is a composition factor.

(2) The canonical hammock function associated with S is the function hS : HS → N : M 7→ `S(M).

The following statement explains in particular the terminology of a hammock.

Proposition 1.7.3. Let Λ be an artin algebra of directed representation type. Consider a simple module
S with projective cover P and injective envelope I, where S, P, I ∈ ΓmodΛ.

(1) Every module in the hammock HS is a successor of P and a predecessor of I.
(2) If M is a sectional successor of P or a sectional predecessor of I in ΓmodΛ, then M ∈ HS .
Proof. It is clear that P, I ∈ HS . Consider a module M ∈ HS . By Lemma 1.7.1, we have non-zero maps
f : P →M and g : M → I. Since Λ is representation-finite, ΓmodΛ contains paths P  M and M  I;
see [2, (V.7.8)]. We claim that HS contains a path P  M . Since ΓmodH is finite without oriented
cycles, we have a maximal length lM of paths P  M in ΓmodH . We may assume that lM > 0. Then, f
factors through the minimal right almost split map for M . Thus, HS contains an arrow N →M . Since
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lN < lM , by the induction hypothesis, HS contains a path P  N , and hence, a path P  M . Our
claim holds. Dually, HS contains a path M  I. This establishes Statement (1). Next, if M is sectional
successor of P or a sectional predecessor of I in ΓmodΛ, then HomΛ(P,M) 6= 0 or HomΛ(M, I) 6= 0; see
[20, (13.4)] and also [2, (VII.2.4)]. So, M ∈ HS ; see (1.7.1). The proof of the proposition is completed.

2. Valued translation quivers with sections

The notion of sections is useful in describing Auslander-Reiten components without oriented cycles
for artin algebras; see [24, 25]. The objective of this section is to further investigate valued translation
quivers with sections, by studying the repetitive quiver Z∆ of a valued quiver ∆ without oriented cycles.
The sectional paths in Z∆ are precisely described in terms of the reduced walks in ∆; see (2.1.4) and
(2.1.6). In case ∆ is a tree, a sectional path in Z∆ is the only path between its end-points, and any two
parallel paths have the same length; see (2.1.8). Finally, we shall consider additive functions on stable
valued translation quivers with sections. These results will be applied to preprojective and preinjective
components of hereditary artin algebras in the next two sections.

2.1. Repetitive quiver. A valued translation quiver (Γ , v, τ) is called stable if τx and τ−x are defined
for all x ∈ Γ 0. In her classification of self-injective algebras of finite representation type, Riedtmann
introduced a canonical way to construct a stable translation quiver by “knitting” repetitively a tree;
see [31]. This has been generalized to “knit” any valued quivers without oriented cycles.

Definition 2.1.1. Let (∆, v) be a valued quiver without oriented cycles. The repetitive quiver Z∆ of
∆ is a stable valued translation quiver defined as follows:

(1) The vertex set is (Z∆)0 = {(s, x) | s ∈ Z; x ∈ ∆0}.
(2) The arrow set is (Z∆)1 = {(s, x)

(s,α)−−−→ (s, y) and (s, y)
(s,α)∗−−−−→ (s+ 1, x) | s ∈ Z; α : x→ y ∈ ∆1}.

(3) The translation τ : (Z∆)0 → (Z∆)0 is defined by τ(s, x) = (s− 1, x), for all (s, x) ∈ Z×∆0.

(4) The valuation ṽ is such that ṽ((s, α)) = v(α) and ṽ((s, α)∗) = v(α)◦, for all α ∈ ∆1 and s ∈ Z.

Remark 2.1.2. Since ∆ contains no oriented cycles, it is evident that Z∆ contains no oriented cycles.

We denote by P(Z∆) the set of paths in Z∆, and by W(∆) the set of walks in ∆.

Proposition 2.1.3. Let Z∆ be the repetitive quiver of a valued quiver ∆ without oriented cycles.
Setting π(s, α) = α and π(s, α)∗ = α−1, we obtain a length-preserving map π : P(Z∆) → W(∆) such
that π(η · ξ) = π(η) · π(ξ), for all η, ξ ∈ P(Z∆).

Proof. Given a trivial path ε(s,x) with (s, x) ∈ (Z∆)0, we set π(ε(s,x)) = x. Consider a path η = δγ,
where γ, δ are arrows in Z∆. Assume that γ = (s, α) for some s ∈ Z and α : x → y in ∆1. Then
δ = (s, α)∗ or δ = (s, β) for some β : y → z in ∆1. This yields a walk π(δ) · π(γ) = α−1α in the first
case and a path π(δ) · π(γ) = βα in the second case. In any case, we set π(η) = π(δ) · π(γ) ∈ W(∆).
Similarly in case γ = (s, α)∗, we set π(η) = π(δ) · π(γ) ∈ W(∆). By induction, π extends to a map
π : P(Z∆)→W(∆). It is easy to see that π(η · ξ) = π(η) · π(ξ), for all η, ξ ∈ P(Z∆). The proof of the
proposition is completed.

In the sequel, the map π : P(Z∆) → W(∆) defined above will be called the covering map, which
can be used to determine sectional paths in Z∆ as shown below.

Lemma 2.1.4. Let Z∆ be the repetitive quiver of a valued quiver ∆ without oriented cycles. Then a
path η in Z∆ is sectional if and only if π(η) is a reduced walk in ∆, where π is the covering map.

Proof. Let η ∈ P(Z∆). If η is not sectional, then it contains a subpath (s− 1, α)∗(s, α) or (s, α)(s, α)∗,
for some s ∈ Z and α ∈ ∆1. This yields a subwalk α−1α or αα−1 of π(η). So, π(η) is not reduced. If
π(η) is not reduced, then we similarly show that η is not sectional. The proof of the lemma is completed.

The following statement says that π is indeed a covering map, which we do not rigorously define.

Lemma 2.1.5. Let Z∆ be the repetitive quiver of a valued quiver ∆ without oriented cycles, with paths
η, ξ such that π(η) = π(ξ), where π is the covering map. If s(η) = s(ξ) or e(η) = e(ξ), then η = ξ.
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Proof. Consider only the case where s(η) = s(ξ) = (t, x) =: x̃, for some t ∈ Z and x ∈ ∆0. Since π
preserves the length, it is easy to see that the statement holds if l(η) = 0 or 1. Suppose that l(η) ≥ 2.

Write η = η′γ̃ and ξ = ξ′δ̃, for some arrows γ̃ : x̃ → ỹ and δ̃ : x̃ → z̃, and some paths η′, ξ′ such that
s(η′) = ỹ and s(ξ′) = z̃. Then, π(η′) · π(γ̃) = π(η) = π(ξ) = π(ξ′) · π(δ̃). Since π(γ̃) and π(δ̃) are

arrows or inverse arrows in ∆, we have π(γ̃) = π(δ̃) and π(η′) = π(ξ′). As seen above, γ̃ = δ̃. Then
s(η′) = s(ξ′). By the induction hypothesis, η′ = ξ′. Hence, η = ξ. The proof of the lemma is completed.

We precisely describe the sectional paths in Z∆ in terms of reduced walks in ∆ as follows.

Lemma 2.1.6. Let ∆ be a valued quiver without oriented cycles, and let w = ct · · · c2c1 be a reduced
walk in ∆, where ci is an arrow or an inverse arrow from xi−1 to xi, such that the edge xi−1 xi in

∆ has valuation (vi, v
′
i), for i = 1, . . . , t. Then, Z∆ contains a sectional path

(0, x0) // (r1, x1) // · · · // (rt, xt),

where ri is the number of inverse arrows in the subwalk of w from x0 to xi, and (ri−1, xi−1)→ (ri, xi)
has valuation (vi, v

′
i), for i = 1, . . . , t.

Proof. Observe that r0 = 0. We may assume that t > 0 and that Z∆ contains a desired sectional path
(x0, r0) → · · · → (rt−1, xt−1). Suppose first that ∆ has an arrow xt−1 → xt. Then, its valuation is
(vt, v

′
t); see (1.3.10) and rt = rt−1. By definition, Z∆ has an arrow (rt−1, xt−1)→ (rt, xt) with valuation

(vt, v
′
t). Suppose now that ∆ has an arrow xt−1 ← xt. Then, its valuation is (v′t, vt); see (1.3.10) and

rt = rt−1 + 1. Thus, Z∆ has an arrow (rt−1, xt−1) → (rt, xt) with valuation (vt, v
′
t). Since xt 6= xt−2,

we obtain a desired sectional path as stated in the lemma. The proof of the lemma is completed.

The following easy statement is useful for inductive arguments.

Lemma 2.1.7. Let (Γ , v, τ) be a stable valued translation quiver. If Γ contains a non-sectional path
ζ : x y, then it contains a path ξ : x τy with l(ξ) = l(ζ)− 2.

Now, we state some nice properties of repetitive quivers of valued trees.

Proposition 2.1.8. Let Z∆ be the repetitive quiver of a valued tree ∆ with translation τ .

(1) If η : x̃ ỹ is a sectional path in Z∆, then it is the only path from x̃ to ỹ.
(2) Any two parallel paths η : x̃ ỹ and ζ : x̃ ỹ in Z∆ have the same length.

Proof. Consider the covering map π : P(Z∆)→W(∆). Let η : x̃ ỹ and ζ : x̃ ỹ be paths in Z∆.
(1) If `(η) = 0, then clearly ξ = η. Assume that `(η) > 0. Write η = α̃η′, where α̃ : z̃ → ỹ is an

arrow and η′ : x̃ z̃ is a sectional path with l(η′) = l(η)− 1. Consider the arrow β̃ : τ ỹ → z̃ in Z∆. If

ξ is not sectional then, by Lemma 2.1.7, Z∆ contains a path ξ′ : x̃ τ ỹ, and a path β̃ξ′ : x̃ τ ỹ → z̃.
By the induction hypothesis, η′ = β̃ξ′, and consequently, η = α̃β̃ξ′, a contradiction to η being sectional.
Thus, ξ is sectional. By Lemma 2.1.4, both π(η) and π(ξ) are reduced walks in ∆ from π(x̃) to π(ỹ).
Since ∆ is tree, π(η) = π(ξ), and by Proposition 2.1.5, η = ξ.

(2) By Statement (1), we may assume that η and η′ are non-sectional. By Lemma 2.1.7, there exist
paths ξ : x̃  τ ỹ and ξ′ : x̃  τ ỹ, where τ is the translation of Z∆, such that l(ξ) = l(η) − 2 and
l(ξ′) = l(η′) − 2. By the induction hypothesis, l(ξ) = l(ξ′). Therefore, l(η) = l(η′). The proof of the
lemma is completed.

2.2. Sections. In the existing literature, sections are defined only for connected valued translation
quivers; see [25, (2.1)]. We shall drop this restriction in order to include the Auslander-Reiten quiver
of the bounded derived category of a simple artin algebra; see (4.1.2). Throughout this subsection, Γ
denotes a valued translation quiver with translation τ .

Definition 2.2.1. Let Γ be a valued translation quiver with translation τ . A valued subquiver ∆ of
Γ is called a section if the following conditions are satisfied:

(1) ∆ is connected and convex in Γ .
(2) ∆ contains no oriented cycle.
(3) ∆ meets every τ -orbit in Γ exactly once.
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The following statement says that ZA1 is essentially the only valued translation quiver which is not
connected and contains sections.

Lemma 2.2.2. Let Γ be a valued translation quiver with translation τ , containing a non-trivial section
∆. Then, x+ and x−are non-empty for all x ∈ Γ 0. And consequently, Γ is connected.

Proof. Let x ∈ Γ 0. Then x = τsy for some y ∈ ∆0 and s ∈ Z. Since ∆ is non-trivial and connected,
we may assume that it contains an arrow y → z. Being stable, Γ contains arrows τsy → τsz and
τs+1z → τsy. Thus, x+ and x−are non-empty. The proof of the lemma is completed.

Let ∆ be a section in Γ . By definition, every vertex in Γ is uniquely written as τ−rx with r ∈ Z and
x ∈ ∆0. We shall say that ∆ is a leftmost section if all vertices in Γ are of the form τ−rx with r ≥ 0
and x ∈ ∆0; and a rightmost section if all vertices in Γ are of the form τ rx with r ≥ 0 and x ∈ ∆0.

Proposition 2.2.3. Let Γ be a valued translation quiver with translation τ , containing a section ∆.

(1) If x→ y is an arrow in Γ , then y ∈ ∆ implies x or τ−x ∈ ∆; and x ∈ ∆ implies y or τy ∈ ∆.
(2) There exists a valued translation quiver embedding φ : Γ → Z∆, sending τsx to (−s, x).
(3) If ∆ is leftmost or rightmost, then it is the unique leftmost or rightmost section in Γ , respectively.

Proof. Statements (1) and (2) are quoted from [25, (2.2), (2.3)], and Statement (2) follows immediately
from the definitions. The proof of the proposition is completed.

In view of Proposition 2.2.3(2), we will see that valued translation quivers with sections inherits
many nice properties of repetitive quivers. We will also need the following notion.

Definition 2.2.4. Let Γ be a valued translation quiver with a vertex x. A section ∆ in Γ is called an
x-source section if every vertex in ∆ is a successor of x in ∆; and an x-sink section if every vertex in ∆
is a predecessor of x in ∆.

Given a vertex x in Γ , we denote by Suc(x) and Pred(x) the full valued translation subquivers of Γ
generated by the successors of x and by the predecessors of x, respectively.

Lemma 2.2.5. Let Γ be a valued translation quiver with a vertex x.

(1) If ∆ is an x-source section in Γ , then it is unique in Γ and a leftmost section in Suc(x).
(2) If Σ is an x-sink section in Γ , then it is unique in Γ and a rightmost section in Pred(x).

Proof. We shall only prove Statement (1). Let ∆ be an x-source section in Γ . Then, ∆ ⊆ Suc(x).
Thus, ∆ is a section in Suc(x). Suppose that Γ contains a path x y. Then, y = τ rz for some r ∈ Z
and z ∈ ∆0. If r < 0, then Γ contains a path x  y  z. Since ∆ is convex in Γ , both y and τ ry
belong to ∆, a contradiction. Thus, r ≥ 0. That is, ∆ is a leftmost section in Suc(x), which is unique
by Lemma 2.2.3. Thus, ∆ is the unique x-source section in Γ . The proof of the lemma is completed.

The following statement is important for our investigation in the next section.

Proposition 2.2.6. Let Z∆ be the repetitive quiver of a connected valued tree ∆ with a vertex (r, x).
Then the sectional successors of (r, x) in Z∆ generate an (r, x)-source section in Z∆; and the sectional
predecessors of (r, x) in Z∆ generate an (r, x)-sink section in Z∆.

Proof. We shall only prove the first part of the statement. Let Ω be the full valued subquiver of Z∆
generated by the sectional successors of (r, x) in Z∆. It is easy to see that every vertex in Ω is a
successor of (r, x) in Ω . In particular, Ω is connected and contains no oriented cycle. Now, suppose
that Z∆ contains a path (s, y) (s′, y′) (t, z), where (s, y), (t, z) ∈ Ω0. Then, Z∆ contains sectional
paths ζ : (r, x)  (s, y) and ξ : (r, x)  (t, z). By Lemma 2.1.8, (r, x)  (s, y)  (s′, y′)  (t, z)
coincides with ξ. Thus, (r, x) (s, y) (s′, y′) is sectional, and (s′, y′) ∈ Ω . So, Ω is convex in Z∆.

Consider finally any y ∈ ∆0. Since ∆ is connected, by Lemma 2.1.6, Z∆ has a sectional path
(r, x) (s0, y) with s0 ∈ Z. So, (s0, y) ∈ Ω . Suppose that (t0, y) ∈ Z∆ for another t0 ∈ Z, say s0 ≤ t0.
Then, Z∆ contains a path (s0, y)  (t0, y) and a sectional path (r, x)  (t0, y). By Lemma 2.1.8, the
path (r, x) (s0, y) (t0, y) is sectional. So, s0 = t0. Therefore, Ω meets every τ -orbit in Z∆ exactly
once. Thus, Ω is a (r, x)-source section in Z∆. The proof of the proposition is completed.
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2.3. Additive functions. In the study of Auslander-Reiten components of artin algebras, a powerful
tool is additive functions on translation quivers; see, for example, [10, 19, 33]. We shall need it to
describe hammocks for hereditary artin algebras of finite representation type.

Definition 2.3.1. Let (Γ , τ, v) be a valued translation quiver. A function f : Γ 0 → Z is called additive
on Γ provided, for any x ∈ Γ 0 with τx defined, that f(τx) + f(x) =

∑
y∈x− v

′
yxf(y), where the sum is

zero in case x− is empty.

Proposition 2.3.2. Let (Γ , τ, v) be a stable valued translation quiver with a finite section ∆. Given
rx ∈ Z with x ∈ ∆0, there exists a unique additive function f on Γ such that f(x) = rx for all x ∈ ∆0.

Proof. It suffices to establish the existence of f . We start with setting f(x) = rx ∈ Z, for all x ∈ ∆0.
Given s ∈ Z, the vertices τsx with x ∈ ∆0 generate a section τs∆ in Γ . We shall first define f on
τ∆. Being finite without oriented cycles, ∆ contains a sink vertex x1. By Lemma 2.2.3(1), x−1 ⊆ ∆0.
Put f(τx1) =

∑
y∈x−1

v′x1,yf(y) − f(x1). Clearly, the vertices in {τx1} ∪ (∆0\{x1}) generate a section

∆(1), on which f is defined. Suppose that f is defined on a section ∆(i) generated by the vertices in

{τx1, . . . , τxi} ∪ (∆0\{x1, . . . , xi}) for some i ≥ 1. If ∆0 = {x1, . . . , xi}, then ∆(i) = τ∆. Otherwise,

∆ is non-trivial and there exists xi+1 ∈ ∆0\{x1, . . . , xi} such that ∆(i) contains no arrow xi+1 → y

with y ∈ ∆\{x1, . . . , xi}. Suppose that ∆(i) contains an arrow xi+1 → τxj for some 1 ≤ j ≤ i. Since
x−j 6= ∅; see (2.2.2), Γ contains a path xi+1 → τxj  xj , and hence, τxj ∈ ∆, absurd. Thus, xi+1 is a

sink in ∆(i). By Lemma 2.2.3(1), x−i+1 ⊆ ∆(i). Define f(τxi+1) =
∑
y∈x−i+1

v′xi+1,yf(y)− f(xi+1). Then,

f is defined on the section ∆(i+1) generated by the vertices in {τx1, . . . , τxi+1} ∪ (∆0\{x1, . . . , xi+1}).
By induction, we may define f on τ∆. Repeating this process, we may define f on τs∆ for all s > 0.
Dually, considering sources in sections, we define f on τ−s∆ for all s > 0. This yields a desired additive
function f on Γ . The proof of the proposition is completed.

3. Hereditary artin algebras

The main objective of this section is to study the preprojective and preinjective components of
a connected hereditary artin algebra. Although they have already been well studied; see [2, Section
VIII.1] and [32, Pages 80 - 81], we shall further study them in terms of the ext-quiver of the algebra.
In case the ext-quiver is a tree, a sectional path in the preprojective component is the unique path
between the end-points, two parallel paths have the same length, and every projective module is the
source of a source section, which is explicitly described in terms of reduced walks in the ext-quiver;
see (3.1.5) and (3.2.1). Finally, we shall show that the Coxeter transformation is compatible with the
derived Auslander-Reiten translation; see (3.3.2).

Throughout this section, H stands for a connected hereditary artin algebra with ext-quiver QH , and
modH for the category of finitely generated left H-modules. We simply write τ for the Auslander-Reiten
translation τ

H
of the Auslander-Reiten quiver ΓmodH . And we associate a simple module Si, a projective

module Pi and an injective module Ii in ΓmodH with each i ∈ (QH)0 such that topPi ∼= Si ∼= socIi.

3.1. Preprojective and preinjective components. The following result is probably well-known.
We sketch a proof for the first statement and refer to [2, Page 267] for a proof for the second.

Lemma 3.1.1. Let H be a hereditary artin algebra with ext-quiver QH . Consider the simple modules
Si, the projective modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH .

(1) If i is a vertex in QH , then EndH(Pi) ∼= EndH(Ii) ∼= EndH(Si) and `Si(Pi) = `Si(Ii) = 1.

(2) There exists an arrow i → j in QH if and only if there exists an irreducible map f : Pj → Pi, or
equivalently, an irreducible map g : Ij → Ii, in modH.

Proof. Fix i ∈ (QH)0. Since Ii is not a direct summand of the injective module Ii/Si, we have
HomH(Si, Ii/Si) = 0. Thus, we deduce from Lemma 1.7.1 that `Si(Ii) = 1. Since Si ∼= socIi, every
non-zero map in EndH(Si) induces a non-zero map in EndH(Ii). Consider a non-zero map f : Ii → Ii.
Since Im(f) is injective, f is invertible. Since HomH(Si, Ii/Si) = 0, we see that f is induced from a
non-zero map g : Si → Si. Thus, EndH(Ii) ∼= EndH(Si). The proof of the lemma is completed.
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Since QH is connected, by Lemma 3.1.1(2), the projective modules in ΓmodH lie in the same con-
nected component PH , called the preprojective component; and the injective modules lie in the same
connected component IH , called the preinjective component. The following statement is reformulated
from Proposition 1.15 in [2, Chapter VIII] and its dual statement. Since our valuation for ΓmodH is
different from that given in [2, Page 225], we include a detailed proof for the preinjective component.

Theorem 3.1.2. Let H be a connected hereditary artin R-algebra with ext-quiver QH . Consider the
projective modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH .

(1) The projective modules Pi with i ∈ QH generate a leftmost section ∆H in the preprojective compo-
nent PH . Moreover, there exists a valued quiver isomorphism Qop

H → ∆H , sending i to Pi.

(2) The injective modules Ii with i ∈ QH generate a rightmost section ΣH in the preinjective component
IH . Moreover, there exists a valued quiver isomorphism Qop

H → ΣH , sending i to Ii.

Proof. We shall only prove Statement (2). We write `R(V ) for the R-length of an R-module V, and
put kM = EndH(M)/rad(EndH(M)) for M ∈ ΓmodH . Let ΣH be the full valued subquiver of IH

generated by the Ii with i ∈ QH . Set Si = socIi for i ∈ QH . By Lemma 3.1.1(2), QH contains an arrow
i→ j if and only if ΣH contains an arrow Ij → Ii; and in this case, the valuation for i→ j is (dij , d

′
ij),

where dij = dimEndH(Sj) Ext1H(Si, Sj) and d′ij = dim Ext1H(Si, Sj)EndH(Si). Thus,

d′ij · `R(EndH(Si)) = `R(Ext1H(Si, Sj)) = dij · `R(EndH(Sj)).

On the other hand, we see from Proposition 1.5.1 that Ij → Ii has valuation (dIj,Ii, d
′
Ij,Ii

), where

dIj,Ii = dim kIi
irr(Ij , Ii) and d′Ij,Ii = dim irr(Ij , Ii)kIj. Since kIj

∼= EndH(Sj) and kIi
∼= EndH(Si) by

Lemma 3.1.1(1), d′Ij ,Ii · `R(EndH(Sj)) = `R(Irr(Ij , Ii)) = dIj ,Ii · `R(EndH(Si)).

Now since Ij/Sj is injective, by Proposition 1.15(b) in [2, (III.1.15)], d′ij is the multiplicity of Ii as
a direct summand of Ij/Sj . And since the canonical projection ϕ : Ij → Ij/Sj is minimal left almost
split, dIj,Ii is the multiplicity of Ii as a direct summand of Ij/Sj ; see ( 1.5.1). So, d′ij = dIj,Ii . Hence,

d′Ij,Ii · `R(EndH(Sj)) = dIj,Ii · `R(EndH(Si)) = d′ij · `R(EndH(Si)) = dij · `R(EndH(Sj)).

Thus, d′Ij,Ii = dij . This proves the second part of Statement (2). In particular, ΣH is connected.

Being injective, the Ii lie in pairwise distinct τ -orbits in ΓmodH . Note that the irreducible maps between
the modules Ii are all epimorphisms. Thus, since EndH(Ii) is divisible; see (3.1.1), ΣH has no oriented
cycle. Hence, ΣH is a section in IH , which is clearly rightmost. The proof of the theorem is completed.

In the sequel, we shall call the underlying valued graph QH of QH the ext-graph of H. Moreover, ∆H

will be called the projective section in PH , and ΣH called the injective section in IH . The following
well-known statement is a consequence of Theorem 3.1.2 and well-known; see [2, (V.7.5), (VIII.1.9)].

Corollary 3.1.3. Let H be a connected hereditary artin algebra. Consider modules M,N in ΓmodH with
M in the preinjective component IH or N in the preprojective component PH . Then, every non-zero
radical map f : M → N is a sum of composites of irreducible maps between modules in ΓmodH .

We shall need the following easy statement.

Lemma 3.1.4. Let H be a hereditary artin algebra. Consider an arrow M → N in ΓmodH .
(1) If ΓmodH contains τ rM for some r ≥ 0, then it contains an arrow τ rM → τ rN.
(2) If ΓmodH contains τ−rN for some r ≥ 0, then it contains an arrow τ−rM → τ−rN .

Proof. We shall only prove Statement (1). Assume that τ rM ∈ΓmodH for some r > 0, but τ rN 6∈ΓmodH .
Then, τsN is projective for some 0 ≤ s < r. Since τsM ∈ ΓmodH , by Lemma 1.4.1, ΓmodH contains an
arrow τsM → τsN . Since H is hereditary, τsM is projective, and hence, τ rM 6∈ ΓmodH , absurd. Thus,
τ rN ∈ ΓmodH . So, ΓmodH contains an arrow τ rM → τ rN . The proof of the lemma is completed.

The following statement describes in terms of QH the sectional paths in ΓmodH , which start with a
projective module or end with an injective module.

Lemma 3.1.5. Let H be a hereditary artin algebra with ext-quiver QH . Consider the projective modules
Pi and the injective modules Ii in ΓmodH associated with i ∈ QH . And let w = ct · · · c2c1 be a non-trivial
reduced walk in QH , where cj is an arrow or inverse arrow from ij−1 to ij, for j = 1, . . . , t.
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(1) The preprojective component PH of ΓmodH contains a sectional path

Pi0 // τ−r1Pi1 // · · · // τ−rt−1Pit−1
// τ−rtPit ,

where rj is the number of arrows in the subwalk of w from i0 to ij, for j = 1, . . . , t.

(2) The preinjective component IH of ΓmodH contains a sectional path

τs0Ii0 // τs1Ii1 // · · · // τst−1Iit−1
// Iit ,

where sj is the number of arrows in the subwalk of w from ij to it, for j = 0, 1, . . . , t− 1.

Proof. We shall only prove Statement (1). Since w is reduced, the Pij with 0 ≤ j ≤ t lie in
pairwise distinct τ -orbits in PH . Set r0 = 0. Assume that PH contains a desired sectional path
Pi0 // · · · // τ−rt−1Pit−1

. Assume first that QH contains an arrow it−1 → it. Then rt = rt−1 + 1

and by Theorem 3.1.2(1), PH contains an arrow Pjt → Pjt−1 . By Lemma 3.1.4(2), PH contains an
arrow τ−rt−1Pit→τ−rt−1Pit−1

. Since rt−1 + 1 = rt, it follows from Lemma 1.6.2(1) that PH contains a

sectional path Pi0 // · · · // τ−rt−1Pit−1
// τ−rtPit .

Assume now that QH contains an arrow it−1 ← it. Then rt = rt−1 and PH contains an arrow
Pit−1 → Pit . We claim that PH contains an arrow τ−rt−1Pit−1→ τ−rtPit . This is the case if rt−1 = 0.
Otherwise, PH has an arrow Pit → τ−Pit−1 . Since τ1−rt−1(τ−Pit−1) = τ−rt−1Pit−1 , by Lemma 3.1.4(1),
PH contains an arrow τ1−rt−1Pit → τ−rt−1Pit−1

. By Lemma 1.6.2(1), τ1−rt−1Pit is not injective. Since
rt = rt−1, there exists an arrow τ−rt−1Pit−1

→ τ−rtPit in PH . This establishes our claim. Hence, PH

contains a sectional path Pi0 // · · · // τ−rt−1Pit−1
// τ−rtPit . The proof of the lemma is completed.

The following statement is crucial for us to study hammocks in the next section.

Proposition 3.1.6. Let H be a connected hereditary artin algebra.

(1) The preprojective component PH contains a P -source section for every projective module P in PH .

(2) The preinjective component IH contains an I-sink section for every injective module I in IH .

Proof. We shall only prove Statement (1). Consider a module P in the projective section ∆H in PH .
Let Σ be the full valued subquiver of PH generated by the successors M of P in PH such that τM is
not a succesor of P . Then, Σ is contains no oriented cycle and meets any τ -orbit in PH at most once.
Given P ′ ∈ ∆H , since the ext-quiver of H is connected, we deduce from Lemma 3.1.5(1) that there
exists a minimal s ≥ 0 such that τ−sP ′ is a successor of P in PH . Then τ−sP ′ ∈ Σ . Hence, Σ meets
every τ -orbit in PH exactly once. Finally, suppose that PH contains a path η : M  L  N with
M,N ∈ Σ . Then, PH contains a path P  M  L. Assume that L 6∈ Σ . Then, PH contains a path
P  τL. Since H is hereditary, L  N contains no projective module. Hence, PH contains a path
P  τL τN , a contradiction. Therefore, Σ is convex in PH . In particular, every module in Σ is a
succesor of P in Σ . Hence, Σ is a P -source section in PH . The proof of the proposition is completed.

3.2. Tree type. We shall say that H is of tree type or Dynkin type if QH is a tree or a Dynkin quiver,
respectively. These hereditary algebras have the following important properties.

Proposition 3.2.1. Let H be a connected hereditary artin algebra of tree type. Consider the prepro-
jective component PH and the preinjective component IH of ΓmodH .

(1) If η, ζ are parallel paths in PH or IH , then l(η) = l(ζ); and η = ζ in case η is sectional.
(2) The P -source section in PH with P projective is generated by the sectional successors of P in PH .
(3) The I-sink section in IH with I injective is generated by the sectional predecessors of I in IH .

Proof. (1) Let ∆H be the projective section in PH . By Proposition 2.2.3(2), PH embeds in Z∆H as
a full valued translation subquiver. In particular, a (sectional) path in PH gives rise to a (sectional)
path in Z∆H . Since ∆H is a tree; see (3.1.2), we see that Statement (1) follows from Proposition 2.1.8.

(2) Given P ∈ ∆H , by Proposition 3.1.6, PH contains a P -source section Σ . Clearly, every module
in Σ is a sectional successor P . Suppose that PH contains a sectional path η : P  M . By Lemma
2.2.5, M = τ−sN for some N ∈ Σ . Then, PH contains a path ζ : P  N  M . By Statement (1),
ζ = η. So, ζ is sectional, and hence, M = N ∈ Σ . The proof of the proposition is completed.

The following statement will enable us to define extended hammocks in the next section.
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Lemma 3.2.2. Let H be a connected hereditary artin algebra of tree type. Consider a sectional path

P = M0
// M1

// · · · // Mt−1 // Mt in ΓmodH , where P is a projective module with top S, and

Mi−1 →Mi with 1 ≤ i ≤ t has valuation (di, d
′
i). Then `S(Mi) = d′i · · · d′1, for i = 1, . . . , t.

Proof. By Lemma 3.1.1(1), `S(M0) = 1. Suppose that t > 0. Consider a minimal right almost split
map f : L → Mt. Since P 6∼= Mt, the EndH(P )-linear map f∗ : HomH(P,L) → HomH(P,Mt) is an
epimorphism. We claim that it is an isomorphism. If Mt is projective, then f is a monomorphism, and
so is f∗. Otherwise, we have an exact sequence

0 // HomH(P, τMt) // HomH(P,L)
f∗ // HomH(P,Mt) // 0.

Since the path stated in the lemma is sectional, by Lemma 3.2.1(1), PH contains no path from P to
τMt. Hence, HomH(P, τMt) = 0; see (3.1.3). This establishes our claim. Therefore, `S(Mt) = `S(L);

see (1.7.1). On the other hand, by Proposition 1.5.1, L = M
d′t
t−1 ⊕ L1 · · · ⊕ Lr, where L1 . . . , Lr with

r ≥ 0 are modules in PH different from Mt−1. By Lemma 3.2.1(1), PH contains no path from P to
Lj , and hence, HomH(P,Lj) = 0 and `S(Lj) = 0, for j = 1, . . . , r. By the induction hypothesis, we see
that `S(Mt) = `S(L) = d′t`S(Mt−1) = d′t · · · d′1. The proof of the lemma is completed.

3.3. Coxeter transformation. Let us recall Auslander and Platzeck’s Coxeter transformation of
the Grothendieck group K0(modH). Consider the simple modules Si, the projective modules Pi
and the injective mdoules in ΓmodH associated with i ∈ (QH)0 = {1, . . . , n}. For any module M in
modH, one defines its dimension vector to be dimM := (`S1

(M), . . . , `Sn(M)) ∈ K0(modH). Since
{dimP1, . . . ,dimPn} and {dimI1, . . . ,dimIn} are bases for K0(modH); see [29, (2.1)], one may intro-
duce the following definition; see [29, Section 2], and compare [13, Page 8].

Definition 3.3.1. LetH be a hereditary artin algebra. The Coxeter transformation of the Grothendieck
group K0(modH) is the unique automorphism

CH : K0(modH)→ K0(modH) defined by CH(dimPi) = −dimIi, for i = 1, . . . , n.

An important property of the Coxeter transformation CH of K0(modH) is its compatibility with the
Auslander-Reiten translation τ of ΓmodH ; see [29, (2.2)], and also [2, (VIII.2.2)]. We shall extend this to
the bounded derived category Db(modH) of modH, which is a Hom-finite Krull-Scmidt R-category. It is
well-known; see [5, (7.3)], [18, (3.6)] and [30, (I.3.3)] that Db(modH) has almost split triangles as defined

in [18, (3.1)]. Note that a sequence of morphisms L. // M. // N. in Db(modH) with M. 6= 0 is an

almost split sequence if and only if it embeds in an almost split triangle L. // M. // N. // L.[1] ;

see [26, (6.1)]. Thus, the Auslander-Reiten quiver ΓDb(modH) of Db(modH) as defined in Subsection
1.5 coincides with that defined by Happel in the algebraically closed setting; see [18, (3.7)].

Given M ∈ modH and s ∈ Z, we write M [s] for the stalk complex concentrated in degree −s where
the component is M . Then, the indecomposable objects in Db(modH) are the stalk complexes M [s],
where s ∈ Z and M is an indecomposable module in modH; see [22, (3.1)]. Thus, we may choose the
vertices in ΓDb(modH) to be the stalk complexes M [s] with M ∈ ΓmodH and s ∈ Z. We write τ

D
for

the Auslander-Reiten translation of ΓDb(modH). On the other hand, given a complex M. in Db(modH),
Happel defined its dimension vector by

dimM
.
:=

∑
s∈Z(−1)sdimMs ∈ K0(modH),

which is invariant on isomorphism classes in Db(modH); see [18, (2.2)]. As shown below, the Coxeter
transformation of K0(modH) is compatible with the Auslander-Reiten translation of ΓDb(modH).

Proposition 3.3.2. Let H be a hereditary artin algebra. Consider the Coxeter transformation CH of
K0(modH) and the Auslander-Reiten translation τ

D
of ΓDb(modH). Then, dimτ t

D
(M [s]) = C t

H(dimM [s]),
for all M ∈ ΓmodH and s, t ∈ Z.

Proof. We shall only show that dimτ
D

(M [s]) = CH (dimM [s]), for M ∈ ΓmodH and s ∈ Z. Suppose
first that M is not projective. Then, dimτM = CH(dimM); see [29, (2.2)], and also [2, (VIII.2.2)].
Since τ

D
commutes with the shift functor [1], we have τ

D
(M [s]) = (τ

D
M)[s] = (τM)[s]; see [5, (7.2)],

and also [18]. By definition, dimN [s] = (−1)sdimN for any N ∈ modH. Thus,
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dimτ
D

(M [s]) = dim(τM)[s] = (−1)sdimτM =(−1)sCH (dimM) =CH ((−1)sdimM) =CH(dimM [s]).

Suppose now that M = P , the projective cover of a simple module S in ΓmodH . By definition,
CH (dimP ) = −dimI, where I is the injective envelope of S. Moreover, τ

D
(P [0]) = I[−1]; see [5, (7.2)],

and also [18]. This yields

dimτ
D

(P [s]) = dim(τ
D
P [0])[s] = dimI[s−1] = (−1)sCH (dimP ) =CH ((−1)sdimP ) =CH (dimP [s]).

The proof of the proposition is completed.

4. Main Results

The objective of this section is to study the module category of a hereditary artin algebra of finite
representation type with a connection to the derived category and the associated cluster category.
We first determine all the hammocks in the Auslander-Reiten quiver; see (4.2.4). This leads to a
description of the precise shape of the Auslander-Reiten quiver in terms of the ext-quiver of the algebra;
see (4.5.1). As applications, we obtain the number of non-isomorphic indecomposable objects in the
module category and the associated cluster category; see (4.6.1) and (4.6.6). Moreover, the radicals
of the module category, the bounded derived category and the associated cluster category all have the
same nilpotency; see (4.6.4), (4.6.5), and (4.6.6).

It is well-known that a hereditary artin algebra is connected of finite representation type if and
only if its ext-graph is a Dynkin diagram; see [2, (VIII.5.4)]. In the algebraically closed case, this is
equivalent to the ext-graph being An(n ≥ 1), Dn(n ≥ 4) or En(n = 6, 7, 8); see [2, (VIII.5.5)].

Throughout this section, H stands for a hereditary artin algebbra with a Dynkin ext-quiver QH ,
and modH for the category of finitely generated left H-modules. Let ΓmodH and ΓDb(modH) be the

Auslander-Reiten quivers of modH and Db(modH), respectively. We shall simply write τ for the
Auslander-Reiten translation τ

H
of ΓmodH , and τ

D
for the Auslander-Reiten translation of ΓDb(modH).

With each vertex i ∈ QH , we associate a simple module Si, a projective module Pi and an injective
module Ii in ΓmodH such that topPi ∼= Si ∼= socIi.

4.1. The canonical embedding. Since H is of finite representation type, it is well-known that ΓmodH

coincides with its preprojective component PH , and its preinjective component IH ; see, for example,
[2, (VIII.3.13)]. The following statement provides a rough description of the shape of ΓmodH .

Proposition 4.1.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the
projective modules Pi in ΓmodH associated with vertices i ∈ QH . Then there exists a valued translation
quiver embedding ϕ : ΓmodH → ZQop

H : τ−rPi 7→ (r, i), with a convex image in ZQop
H . Moreover, ϕ maps

the Pi-source section in ΓmodH onto the (0, i)-source section in ZQop
H , for every vertex i ∈ QH .

Proof. Let ∆H be the projective section in ΓmodH . Then, there exists valued translation quiver
embedding ψ : ΓmodH → Z∆H : τ−rPi 7→ (r, Pi), whose image is convex in Z∆H ; see [28, (1.13)]. Since
∆H
∼= Qop

H ; see (3.1.2), we have a valued quiver isomorphism θ : Z∆H → ZQop
H : (r, Pi) 7→ (r, i). This

yields an embedding ϕ = θ ◦ ψ : ΓmodH → ZQop
H : τ−rPi 7→ (r, i), whose image is convex in ZQop

H .
Fix i ∈ (QH)0. The Pi-source section ∆i in ΓmodH is generated by the sectional successors of Pi in

ΓmodH ; see (3.2.1), and the (0, i)-source section Ω i in ZQop
H is generated by the sectional successors of

(0, i) in ZQop
H ; see (2.2.6). In particular, ϕ maps to ∆i into Ω i. Let (r, j) ∈ Ω i. Since Σ i is a section in

ΓmodH , there exists some s ≥ 0 such that τ−sPj ∈ ∆i. Thus, (s, j) ∈ Ω i. Since Ω i is a section in ZQop
H ,

we have s = r. So, τ−rPj is a preimage of (r, j) in ∆i. The proof of the proposition is completed.

The following statement is due to Happel in the algebraically closed case; see [18, (4.5)].

Theorem 4.1.2. Let H be a hereditary artin algebra of Dynkin type. Then

(1) ΓmodH embeds in ΓDb(modH) as a convex valued translation subquiver ;

(2) ΓDb(modH)
∼= Z∆H , where ∆H is the projective section in ΓmodH .

Proof. It is well-known that there exists a full convex embedding of modH in Db(modH), sending a
module M to the stalk complex M [0]. By Theorem 7.2(1) in [5], this induces a convex valued translation
quiver embedding of ΓmodH in ΓDb(modH). Next, in view of Theorem 7.2 in [5], we may apply Happel’s
argument in [18, (4.5)] to show that ΓDb(modH)

∼= Z∆H . The proof of the theorem is completed.
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4.2. Hammocks. Since ΓmodH is finite and contains no oriented cycle, we may study hammocks in
ΓmodH ; see (1.7.2). Given a vertex (s, k) in ZQop

H , by Proposition 2.2.6, ZQop
H contains an (s, k)-source

section ∆s,k generated by the sectional successors of (s, k). And by Lemma 2.2.5, ∆s,k is a leftmost
section in Suc(s, k), the full valued translation subquiver of ZQop

H generated by the successors of (s, k).
By Proposition 2.3.2, we may introduce the following definition.

Definition 4.2.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider a vertex
k ∈ QH and the (0, k)-source section ∆ in ZQop

H . The extended hammock function hk associated with
k ∈ QH is the unique additive function on Suc(0, k) such, for any vertex (r, i) ∈ ∆, that

(1) hk(r, i) = 1 if (r, i) = (0, k);

(2) hk(r, i) = d′1 · · · d′t if ∆ contains a path (0, k) = (r0, i0) // (r1, i1) // · · · // (rt, it) = (r, i), where

the arrow (rj−1, ij−1) // (rj , ij) has valuation (dj , d
′
j), for j = 1, . . . , t.

The following statement says in particular that an extended hammock function is indeed an extension
of Brenner’s canonical hammock function; see (1.7.2).

Lemma 4.2.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules Pi and the simple modules Si in ΓmodH associated with i ∈ QH . Let hk be the extended hammock
function associated with some k ∈ QH . If (r, i) ∈ Suc(0, k) such that τ−rPi ∈ ΓmodH , then

hk(s, j) = `Sk(τ−sPj),

for any predecessor (s, j) of (r, i) in Suc(0, k).

Proof. By Proposition 4.1.1, we have a canonical embedding ϕ : ΓmodH → ZQop
H : τ−rPi 7→ (r, i).

Recall that ϕ has a convex image Γ in ZQop
H , and maps the Pk-source section Σ in ΓmodH onto the

(0, k)-source section ∆ in ZQop
H . Assume that (r, i) ∈ Suc(0, k) such that τ−rPi ∈ ΓmodH , that is,

(r, i) ∈ Γ . Since Γ is convex in ZQop
H , we see that τ−sPj ∈ ΓmodH , for any predecessor (s, j) of (r, i) in

Suc(0, k). Therefore, it suffices to show that hk(r, i) = `Sk(τ−rPi).
By Proposition 2.1.8, the paths in ZQop

H from (0, k) to (r, i) have the same length, written as lr,i.
Since hk(0, k) = 1 = `Sk(Pk); see (3.1.1), we may assume that lr,i > 0. Suppose first that (r, i) ∈ ∆.

Then, ∆ contains a non-trivial sectional path (0, k) = (r0, i0) // (r1, i1) // · · · // (rt, it) = (r, i),

where (rj−1, ij−1) → (rj , ij) has valuation, say (dj , d
′
j), for j = 1, . . . , t. Since ϕ(Σ ) = ∆, we

have a sectional path Pk = τ−r0Pi0 // τ−r1Pi1 // · · · // τ−rtPit = τ−rPi in Σ , where the arrow

τ−rj−1Pij−1
→ τ−rjPij also has valuation (dj , d

′
j), for j = 1, . . . , t. In view of Lemma 3.2.2 and Defini-

tion 4.2.1, we see that `S(τ−rPi) = d′1 · · · d′t = hi(r, i).

Assume now that (r, i) /∈ ∆. Since ∆ is a leftmost section in Suc(0, k); see (2.2.5), we see that
(r − 1, i) ∈ Suc(0, k). Let (sj , kj) → (r, i) with valuation (nj , n

′
j), j = 1, . . . , p, be the arrows in ZQop

H

ending with (r, i). Since Γ is convex in ZQop
H , we see that (r − 1, i), (sj , kj) ∈ Suc(0, k) ∩ Γ . Since

lr−1,i < lsj ,kj < lr,i for 1 ≤ j ≤ p, by the induction hypothesis, hk(r − 1, i) = `Sk(τ1−rPi) and
hk(sj , kj) = `Sk(τ−sjPkj ) for 1 ≤ j ≤ p. Since τ−sjPkj → τ−rPi and (sj , kj) → (r, i) have the same
valuation (nj , n

′
j), for j = 1, . . . , p, we deduce from Proposition 1.5.1 an almost split sequence

0 // τ1−rPi // ⊕pj=1(τ−sjPkj )
n′j // τ−rPi // 0

in modH. Since `Sk and hk are additive, we obtain

`Sk(τ−rPi) =
∑p
j=1 n

′
j `Sk(τ−sjPkj )− `Sk(τ1−rPi) =

∑p
j=1 n

′
jhk(sj , kj)− hk(r − 1, i) = hk(r, i).

The proof of the lemma is completed.

Given a vertex k in QH , we shall write Hk for the hammock HSk , where Sk is the simple module in
ΓmodH associated with k.

Lemma 4.2.3. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH . Let Hk be the hammock and
hk the extended hammock function associated with some k ∈ QH . Assume that (r, i) ∈ Suc(0, k) such
that hk(s, j) ≥ 0 for all proper predecessors (s, j) of (r, i) in Suc(0, k).



REPRESENTATION THEORY OF HEREDITARY ARTIN ALGEBRAS OF FINITE REPRESENTATION TYPE 17

(1) If hk(r, i) > 0, then τ−rPi ∈ Hk.

(2) If (r − 1, i) ∈ Suc(0, k) such that τ1−rPi = Il for some vertex l ∈ QH , then hk(r, i) = −1 in case
l = k, and otherwise, hk(r, i) = 0.

Proof. Consider the canonical embedding ϕ : ΓmodH → ZQop
H , which has a convex image Γ in ZQop

H .

Let Σ be the Pk-source section in ΓmodH , and ∆ the (0, k)-source section in ZQop
H . Furthermore, let

(sj , kj)→ (r, i) with valuation (nj , n
′
j), j = 1, . . . , p, be the arrows in ZQop

H ending with (r, i). Given a

vertex (s, j) ∈ Suc(0, k), denote by ls,j the length of paths in ZQop
H from (0, k) to (s, j). In case lr,i ≤ 1,

we have (r, i) ∈ ∆, and consequently, τ−rPi ∈ Hk; see (4.1.1) and (r − 1, i) 6∈ Suc(0, k); see (2.2.5).
Thus, the two statements hold in this case. Consider the case where lr,i > 1.

Suppose first that (r − 1, i) ∈ Suc(0, k) such that τ1−rPi = Il, for some vertex l ∈ QH . Writing
Sl = socIl, we have a short exact sequence

0 // Sl // τ1−rPi
g // M // 0,

where g is minimal left almost split. By the assumption on (r, i) stated in the lemma, hk(sj , kj) ≥ 0,
for all 1 ≤ j ≤ p. We may assume that there exists some 0 ≤ t ≤ p such that (sj , kj) ∈ Γ if and
only if 1 ≤ j ≤ t. Given t < j ≤ p, in view of the induction hypothesis, we see that hk(sj , kj) = 0.
Since τ1−rPi → τ−sjPkj and (r − 1, i) → (sj , kj) have the same valuation (n′j , nj) for 1 ≤ j ≤ t, by

Proposition 1.5.1(1), M ∼= ⊕tj=1(τ−sjPkj )
n′j . Since hk and `Sk are additive, by Lemma 4.2.2, we obtain

hk(r, i) =
∑t
j=1 n

′
jhk(sj , kj)−h(1−r, i) =

∑t
j=1 n

′
j `Sk(τ−sjPkj )−`Sk(τ1−rPi) = `Sk(M)−`Sk(τ1−rPi).

If l = k, then `Sk(`Sk(τ1−rPi) = 1; see (3.1.1). Thus `Sk(M) = 0, and hence, hk(r, i) = −1. If l 6= k,
then `Sk(Sl) = 0. Thus `Sk(M) = `Sk(τ1−rPi), hence, hk(r, i) = 0. Statement (2) holds in this case.

Suppose now that hk(r, i) > 0. If (r, i) ∈ ∆, then τ−rPi ∈ Σ ⊆ Hk; see (1.7.3). Otherwise, since ∆ is
a leftmost section of Suc(0, k); see (2.2.5), (r − 1, i) ∈ Suc(0, k) and hk(r − 1, i) ≥ 0 by the assumption
on (r, i). Since hk is additive and hk(r, i) > 0, we may assume that hk(s1, k1) > 0. By the induction
hypothesis, τ−s1Pk1 ∈ Hk. Since Γ is convex in ZQop

H , we see that τ1−rPi ∈ ΓmodH . Since hk(r, i) > 0,
as has been shown, τ1−rPi is not injective. Then, τ−rPi ∈ ΓmodH with hk(r, i) > 0. By Lemma 4.2.2,
τ−rPi ∈ Hk. Statement (1) holds in this case. The proof of the lemma is completed.

The following statement describes all the hammocks in ΓmodH and tells us an injective module lies
in the τ -orbit of which projective module.

Theorem 4.2.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the
projective modules Pi and the injective modules Ii in ΓmodH associated with vertices i ∈ QH . Let Hk
be the hammock and hk the extended hammock function associated with some vertex k ∈ QH . Then,

(1) Ik = τ1−skPik , where (sk, ik) ∈ Suc(0, k) such that hk(sk, ik) = −1, and hk(s, j) ≥ 0 for all proper

predecessors (s, j) of (sk, ik) in Suc(0, k);

(2) Hk is generated by the modules τ−rPi ∈ ΓmodH , where (r, i) lies in the convex hull of (0, k) and

(sk − 1, ik) in ZQop
H and hk(r, i) > 0.

Proof. Consider the canonical embedding ϕ : ΓmodH → ZQop
H , which has a convex image Γ in ZQop

H .

By Proposition 1.7.3(1) and Lemma 4.2.2, we easily deduce Statement (2) from Statement (1). So,
we only prove Statement (1). Suppose first that (sk, ik) ∈ Suc(0, k) such that hk(sk, ik) = −1 and
hk(s, j) ≥ 0 for all proper predecessors (s, j) of (sk, ik) in Suc(0, k). By Proposition 4.1.1 and Lemma
4.2.2, (sk, ik) is not in the (0, k)-source section ∆ in ZQop

H . By Lemma 2.2.5(1), (sk− 1, ik) ∈ Suc(0, k).
Since hk is additive, we deduce from the assumption on (sk, ik) that h(sk − 1, ik) > 0. By Lemma
4.2.3(1), τ1−skPik ∈ Hk. If τ1−skPik is not injective, then τ−skPik ∈ ΓmodH , and hence, hk(sk, ik) ≥ 0;
see (4.2.2), a contradiction. Thus, τ1−skPik is injective, and by Lemma 4.2.3(2), τ1−skPik = Ik.

Suppose conversely that Ik = τ−rkPik , where (rk, ik) ∈ Z × (QH)0. Since Ik is a succesor of Pk
in ΓmodH by Proposition 1.7.3(1), (rk, ik) ∈ Suc(0, k) ∩ Γ . Put sk = rk + 1. We claim hk(s, j) ≥ 0,
for any proper predecessor (s, j) of (sk, ik) in Suc(0, k). Indeed, if (s, j) is a predecessor of (rk, ik)
in Suc(0, k), then hk(s, j) ≥ 0 by Lemma 4.2.2. Otherwise, (s − 1, j) is a predecessor of (rk, ik) in
Suc(0, k). By Lemma 4.2.2, τ1−sPj ∈ ΓmodH . If τ1−sPj is not injective, then τ−sPj ∈ ΓmodH , and by
Lemma 4.2.2, hk(s, j) ≥ 0. Suppose that τ1−sPj = Il for some l ∈ (QH)0. Since (s, j) 6= (sk, ik), we
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have (s− 1, j) 6= (rk, ik). Thus, l 6= k, and by Lemma 4.2.3(2), hk(s, j) = 0. This establishes our claim.
In particular, by Lemma 4.2.3(2), hk(sk, ik) = −1. The proof of the theorem is completed.

Theorem 4.2.4 allows us to determine an injective module lies in which τ -orbit of a projective module.
For our later purpose, we shall provide an example for each of the types An, Dn and E6; see (1.3.8).

Lemma 4.2.5. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH . If QH = An with n ≥ 1,
then I1 = τ−r1,nPn, where r1,n is the number of arrows in the reduced walk in QH from 1 to n.

Proof. Let QH = An with n ≥ 1. Given i ∈ (QH)0, write r1,i = a(1, i), the number of arrows in the
reduced walk in QH from 1 to i, that is the number of inverse arrows in the reduced walk in Qop

H from
1 to i. In particular, r1,1 = 0. If n = 1, then I1 = τ−r1,1P1. Suppose that n ≥ 2. By Lemma 2.1.6(1)

and Proposition 2.2.6, the (0, 1)-source section in ZQop
H is (r1,1, 1) // (r1,2, 2) // · · · // (r1,n, n).

Consider the extended hammock function h1 associated with the vertex 1. Since ZQop
H is trivially

valued, by Definition 4.2.1, h1(r1,i, i) = 1 for i = 1, . . . , n. Since h1 is additive, we can depict its
valuation on the convex hull of (0, 1) and (r1,n + 1, n) in ZQop

H as follows :

1

��
−1,

1

��

??

0

??

??

��

??

1

??

��
0

??

1

??

0

??

where the source is (0, 1) and the sink is (r1,n + 1, n). By Theorem 4.2.4(1), I1 = τ−r1,nPn. The proof
of the lemma is completed.

Lemma 4.2.6. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH . If QH = Dn with n ≥ 4,
then I1 = τ2−nP1 in case n is even ; and I1 = τ3−n−r1,2P2 in case n is odd, where r1,2 is the number of
arrows in the reduced walk in QH from 1 to 2.

Proof. Assume that QH = Dn with n ≥ 4. For i ∈ (QH)0, write r1,i = a+(1, i), the number of arrows in
the reduced walk in QH , that is the number of inverse arrows in the reduced walk in Qop

H , from 1 to i.
In particular, r1,1 = 0. By Lemma 2.1.6(1) and Proposition 2.2.6, the (0, 1)-source section in ZQop

H is

(r1,1, 1) // (r1,3, 3) //

��

(r1,4, 4) // · · · // (r1,n, n).

(r1,2, 2)

Consider the extended hammock function h1 associated with the vertex 1. Since ZQop
H is trivially

valued, h1(r1,i, i) = 1 for i = 1, 2, . . . , n. Consider first the case where n is even. Since h1 is additive,
its valuation on the convex hull of (0, 1) and (n− 1, 1) in ZQop

H can be depicted as follows:
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−1,
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where the source is (0, 1) and the sink is (n − 1, 1). By Theorem 4.2.4(1), I1 = τ2−nP1. Suppose next
that n is odd. Since h1 additive, the valuation of h1 on the convex hull of (0, 1) and (r2 + n− 2, 2) in
ZQop

H can be depicted as follows :
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where the source is (0, 1) and the sink is (r1,2 +n− 2, 2). By Theorem 4.2.4(1), I1 = τ−r1,2−n+3P2. The
proof of the lemma is completed.

Lemma 4.2.7. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules Pi and the injective modules Ii in ΓmodH associated with i ∈ QH . If QH = E6, then I1 =
τ−r1,6−3P6, where r1,6 is the number of arrows in the reduced walk in QH from 1 to 6.

Proof. Assume that QH = E6. Given i ∈ (QH)0, let r1,i be the number of arrows in the reduced walk
in QH , that is, the number of inverse arrows in the reduced walk in Qop

H , from 1 to i. In particular,
r1,1 = 0. By Lemma 2.1.6(1) and Proposition 2.2.6, the (0, 1)-sourced section in ZQop

H is

(r1,1, 1) // (r1,2, 2) // (r1,3, 3) //

��

(r1,5, 5) // (r1,6, 6).

(r1,4, 4)

Consider the extended hammock function h1 associated with the vertex 1. Since ZQop
H is trivially

valued, h1(r1,i, i) = 1 for i = 1, . . . , 6. So, its valuation on the convex hull of (0, 1) and (r6 + 4, 6) in
ZQop

H can be depicted as follows:
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where the source is (0, 1) and the sink is (r1,6 + 4, 6). By Theorem 4.2.4(1), I1 = τ−r1,6−3P6. The proof
of the lemma is completed.

4.3. Pi-permutation and pi-indices. By Proposition 4.1.1, ΓmodH is finite and convexly embeds in
ZQop

H in such a way that every module lies in the τ -orbit of a projective module. We need to determine
the number of modules and the injective module lying in the τ -orbit of a projective module. For this
purpose, we introduce the notions of the pi-permutation and the pi-index function in the following
well-known statement; see [29, (1.8)].

Lemma 4.3.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the projective
modules and the injective modules Ii in ΓmodH associated with vertices i ∈ QH . Then there exists a
permutation ρ of (QH)0, called the pi-permutation, and a function m : (QH)0 → N, called the pi-index
function, such that τ−m(i)Pi = Iρ(i), for every vertex i in QH .
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The following statement is important in our investigation, where a+(i, j) denotes the number of
arrows in the reduced walk in QH from i to j; see (1.1.1).

Lemma 4.3.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the pi-
permutation ρ and the pi-index function m for (QH)0. If i, j are vertices in QH, then

m(i)−m(j) = a+(ρ(i), ρ(j))− a+(i, j).

Proof. Consider the projective modules Pi and the injective modules Ii in ΓmodH associated with
i ∈ QH . By Proposition 4.1.1, we have a canonical embedding ϕ : ΓmodH → ZQop

H , sending τ−rPi to
(r, i). Write rp,q = a+(p, q) for p, q ∈ (QH)0. Fix some vertices i, j ∈ QH . Observe that ri,j is the
number of inverse arrows in the reduced walk in Qop

H from i to j. By Lemma 2.1.6(2), ZQop
H contains a

sectional path from (0, i) to (ri,j , j), and hence, a sectional path from (m(j)− ri,j , i) to (m(j), j).
On the other hand, since rρ(i),ρ(j) is the number of arrows in the reduced walk in QH from ρ(i) to

ρ(j), by Lemma 3.1.5(2), ΓmodH contains a sectional path from τ rρ(i),ρ(j)Iρ(i) to Iρ(j). By definition,

Iρ(i) = τ−m(i)Pi and Iρ(j) = τ−m(j)Pj . Thus, ΓmodH contains a sectional path from τ rρ(i),ρ(j)−m(i)Pi to

τ−m(j)Pj , which induces a sectional path in ZQop
H from (m(i)− rρ(i),ρ(j), i) to (m(j), j). By Proposition

2.2.6, both (m(j) − ri,j , i) and (m(i) − rρ(i),ρ(j), i) belong to the (m(j), j)-sink section in ZQop
H , and

consequently, m(i)− rρ(i),ρ(j) = m(j)− ri,j . The proof of the lemma is completed.

Next, we shall show that the pi-permutation of (QH)0 is of order at most two. For doing this, we

shall extend it to an automorphism of the ext-graph QH in the following statement.

Proposition 4.3.3. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Then the pi-
permutation ρ of (QH)0 induces a valued graph automorphism of QH , called the pi-automorphism and
denoted again by ρ.

Proof. Let ρ be the pi-permutation of (QH)0 and m the pi-index function on (QH)0. Consider the
projective modules Pi and the injective modules Ii in ΓmodH associated with i ∈ (QH)0. Let ∆H be
the projective section generated by the Pi, and ΣH the injective section generated by the Ii, in ΓmodH .
We first construct a valued graph isomorphism ρ∗ : ∆H → ΣH , sending Pi to Iρ(i).

Fix i, j ∈ (QH)0. Suppose that ∆H contains an edge Pi Pj with valuation (d, d′). We claim

that ΣH contains an edge Iρ(i) Iρ(j) with valuation (d, d′). First, assume that ∆H contains an arrow

Pi → Pj , whose valuation is then (d, d′); see (1.3.10). Note that τ−m(i)Pi = Iρ(i) and τ−m(j)Pj = Iρ(j).

By Lemma 3.1.4(2), ΓmodH contains an arrow τ−m(j)Pi → Iρ(j), whose valuation is (d, d′); see (1.4.1).
So, m(j) ≤ m(i). If m(j) = m(i), then ΣH contains an arrow Iρ(i) → Iρ(j) with valuation (d, d′), and

hence, ΣH contains an edge Iρ(i) Iρ(j) with valuation (d, d′). If m(j) < m(i), then ΓmodH contains

an arrow Iρ(j) → τ−m(j)−1Pi with valuation (d′, d). Since H is hereditary, τ−m(j)−1Pi is injective, and

hence, τ−m(j)−1Pi = Iρ(i). By definition, m(i) = m(j) + 1, and hence, ΣH has an arrow Iρ(j) → Iρ(i)
with valuation (d′, d). So, ΣH contains an edge Iρ(j) Iρ(i) with valuation (d′, d), that is, an edge

Iρ(i) Iρ(j) with valuation (d, d′). Next, assume that ∆H contains an arrow Pj → Pi, whose valuation

is then (d′, d); see (1.3.10). As has been shown, ΣH contains an edge Iρ(j) Iρ(i) with valuation (d′, d),

that is, an edge Iρ(i) Iρ(j) with valuation (d, d′). This establishes our claim.

Suppose, on the other hand, that ΣH contains an edge Iρ(i) Iρ(j). We shall show that ∆H contains

an edge Pi Pj . Note that Pi = τm(i)Iρ(i) and Pj = τm(j)Iρ(j). Assume first that ΣH contains an
arrow Iρ(i) → Iρ(j). By Lemma 3.1.4(2), ΓmodH contains an arrow Pi → τm(i)Iρ(j). So, m(i) ≤ m(j).

If m(i) = m(j), then ΣH contains an arrow Pi → Pj , and hence, ∆H contains an edge Pi Pj . If

m(i) < m(j), then ΓmodH contains an arrow τm(i)+1Iρ(j) → Pi. Since H is hereditary, τm(i)+1Iρ(j) is

projective. Then m(j) = m(i) + 1, and hence, ΣH contains an arrow Pj → Pi. So, ∆H contains an edge
Pi Pj . In case ΣH contains an arrow Iρ(j) → Iρ(i), by a similar argument, ∆H contains an edge

Pi Pj . Thus, we have a valued graph isomorphism ρ∗ : ∆H → ΣH , sending Pi to Iρ(i).

Finally, the valued quiver isomorphisms stated in Theorem 3.1.2 induce a valued graph isomorphism

QH
op → ∆H sending i to Pi, and a valued graph isomorphism ΣH → QH

op
sending Ii to i. Composing
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these two isomorphisms with ρ∗, we obtain a valued graph automorphism QH
op → QH

op
, sending i to

ρ(i). This induces a desired valued graph automorphism ρ : QH→ QH, sending i to ρ(i). The proof of
the proposition is completed.

We collect some easy properties of the pi-automorphism in the following statement.

Lemma 4.3.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH , and let ρ be the
pi-automorphism of QH.

(1) If i is a vertex in QH of weight 3, then ρ(i) = i.

(2) If i j is a non-trivially valued edge in QH, then ρ(i) = i and ρ(j) = j.

(3) If i j k is a reduced walk in QH, where j has only two neighbors i and k, such that ρ(i) = i
and ρ(j) = j, then ρ(k) = k.

Proof. (1) Being a Dynkin diagram, QH has at most one vertex of weight 3; see (1.3.8). And by Lemma
1.3.7, w(i) = w(ρ(i)) for any vertex i in QH . Thus, if w(i) = 3, then ρ(i) = i.

(2) Let i j be an edge in QH with a non-trivial valuation (dij , dji). Since QH is a Dynkin digram,
this is the only non-trivially valued edge, and moreover, dij 6= dji; see (1.3.8). Since ρ is a valuded graph
automorphism, ρ(i), ρ(j) ∈ {i, j} and dρ(i)ρ(j) = dij . If ρ(i) = j, then ρ(j) = i. So, dji = dρ(i)ρ(j) = dij ,
a contradiction. Thus, ρ(i) = i and ρ(j) = j.

(3) Let i j k be a reduced walk in QH, where j has only two neighbors i and k. If ρ(j) = j,
then j ρ(k) is an edge in QH, and hence, ρ(k) ∈ {i, k}. If ρ(i) = i, then ρ(k) = k. The proof of the
lemma is completed.

We are ready to determine the order of the pi-automorphism for every Dynkin type. In particular,
the pi-automorphism is the identity for all non-simply laced types.

Theorem 4.3.5. Let H be a hereditary artin algebra of Dynkin type, and let ρ be the pi-automorphism
ρ of the ext-graph QH.

(1) If QH is of type A1, G2, F4, E7, E8, Bn(n≥2), Cn(n≥3) or Dn(n≥4 even), then ρ is the identity.

(2) If QH is of type An(n ≥ 2), Dn(n ≥ 5 odd) or E6, then ρ is of order 2.

Proof. We may assume that QH is a canonical Dynkin diagram as stated in Definition 1.3.8. The

theorem holds trivially in case QH = A1. We shall proceed case by case for all other cases.

1) Suppose that QH = G2 or B2. Then it contains only one edge, which is non-trivially valued. By
Lemma 4.3.4(2), ρ is the identity.

2) Suppose that QH = F4. By Lemma 4.3.4(2), ρ(2) = 2 and ρ(3) = 3. And by Lemma 4.3.4(3),
ρ(4) = 4. Thus, ρ(1) = 1. Therefore, ρ is the identity.

3) Suppose that QH is E7 or E8. Since 3 is the only vertex of weight 3, by Lemma 4.3.4(1), ρ(3) = 3.
Thus, {ρ(2), ρ(4), ρ(5)} ⊆ {2, 4, 5}. Since w(4) = 1, we have ρ(4) = 4. If ρ(2) = 5, then ρ(1) = 6, a
contradiction to Lemma 1.3.7 for ρ(6) = 2. Thus, ρ(2) = 2, and consequently, ρ(1) = 1 and ρ(5) = 5.
Since each of the vertices 5, 6, 7 has at most two neighbors, we deduce from 4.3.4(3) that ρ(i) = i for
all vertices i > 5. So, ρ is the identity.

4) Suppose that QH = Bn or Cn with n ≥ 3. By Lemma 4.3.4(2), ρ(1) = 1 and ρ(2) = 2. Since
every vertex i with 1 < i < n has exactly two neighbors, we easily deduce from Lemma 4.3.4(3) that
ρ(i) = i for all 3 ≤ i ≤ n. So, ρ is the identity.

5) Suppose that QH = Dn with n ≥ 4 even. By Lemma 4.2.6, I1 = τ2−nP1. Using the same
argument there, we can show that I2 = τ2−nP2. Thus, ρ(1) = 1 and ρ(2) = 2. Since 3 is of weight 3,
by Lemma 4.3.4(1), ρ(3) = 3. Then, ρ(4) = 4. Since every vertex i with 4 ≤ i < n has exactly two
neighbors, by Lemma 4.3.4(3), ρ(i) = i for all 4 < i ≤ n. So, ρ is the identity.

6) Suppose that QH = An with n ≥ 2. By Lemma 4.2.5, I1 = τ−r1,nPn with r1,n ≥ 0. So, ρ(n) = 1.
Since every vertex i with 1 < i < n has two neighbors, ρ(1) = n. Since n− 1 is the only neighbor of n,
we have ρ(2) = n− 1. Similarly, ρ(i) = n+ 1− i for all 1 ≤ i ≤ n. Hence, ρ is of order 2.

7) Suppose that QH = Dn with n ≥ 5 odd. by Lemma 4.3.4(1), ρ(3) = 3. Since τ−sP2 = I1 for
some s ≥ 0; see (4.2.6), ρ(2) = 1. Since the vertex 4 has two neighbors, ρ(2) = 1, and hence, ρ(4) = 4.
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Since every vertex i with 3 < i < n has only two neighbors, by Lemma 4.3.4(3), ρ(i) = i for 5 ≤ i ≤ n.
So, ρ is of order 2.

8) Suppose QH = E6. By Lemma 4.3.4(1), ρ(3) = 3. Since the vertex 4 has only one neighbors,
ρ(4) = 4. By Lemma 4.2.7, τ−tP6 = I1 for some t ≥ 0. So, ρ(6) = 1. Then ρ(1) = 6. Now, ρ(2) = 5
and ρ(5) = 2. So ρ is of order 2. The proof of the theorem is completed.

4.4. Coxeter order. In case H is of finite representation type, it is well-known that the Coxeter
transformation CH of K0(modH) is of finite order; see [29, (4.1)]. We call this finite order the Coxeter
order and write as |CH |. The following statement reinforces this fact in particular,.

Proposition 4.4.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Consider the
Auslander-Reiten translation τ

D
of ΓDb(modH), the pi-permutation ρ and the pi-index function m for

(QH)0. Then, the Coxeter transformation CH for H is of finite order |CH | such, for any i ∈ QH , that

|CH | = m(i) +m(ρ(i)) + 2 and τ−|CH |
D

Pi = Pi[2].

Proof. First, we claim that a := mi + mρ(i) is a constant, for all i ∈ (QH)0. Fix i, j ∈ (QH)0. By
Lemma 4.3.2, m(i) = m(j) − ri,j + rρ(i),ρ(j), where rp,q is the the number of arrows in the reduced

walk in QH from p to q. Since ρ2 = id by Theorem 4.3.5, m(ρ(i)) = m(ρ(j)) − rρ(i),ρ(j) + ri,j . Thus,
m(i) +m(ρ(i)) = m(j) +m(ρ(j)). This establishes our claim.

Now, since τ−m(i)Pi = Iρ(i) by definition and τ−
D
Iρ(i) = Pρ(i)[1]; see [18, (4.3)] and [5, (7.2)], we

obtain τ−(m(i)+1)
D

Pi = τ−
D

(τ−(m(i)Pi) = Pρ(i)[1]. This yields

τ−(a+2)
D

Pi = τ−(m(ρ(i))+1)
D

(τ−(m(i)+1)
D

Pi) = τ−(m(ρ(i))+1)
D

(Pρ(i)[1]) = Pρ2(i)[1][1] = Pi[2].

It remains to show that CH is of order a+ 2. Given i ∈ (QH)0, from Proposition 3.3.2 we see that

C
−(a+2)
H (dimPi) = dimτ−(a+2)

D
Pi = dimPi[2] = (−1)2dimPi = dimPi.

Since {dimP1, . . . ,dimPn} is a basis for K0(modH), C
−(a+2)
H = id. Consider now an integer t with

1 ≤ t ≤ a + 1 = m(1) + m(ρ(1)) + 1. Suppose first that t ≤ m(1). Then, τ−t
D
P1 = τ−tP1 ∈ ΓmodH

with τ−tP1 6∼= P1. Since the modules in ΓmodH are determined by their composition factors; see [2,
(IX.2.3)], dimτ−tP1 6= dimP1. That is, C−tH (dimP1) 6= dimP1. Suppose now that m(1) + 1 ≤ t. Then

0 ≤ t− (m(1) + 1) ≤ m(ρ(1)). Therefore,

τ−t
D
P1 = τ−(t−(m(1)+1))

D
(τ−(m(1)+1)
D

P1) = τ−(t−(m(1)+1))
D

(Pρ(1)[1]) = M [1],

where M = τ−(t−(m(1)+1))Pρ(1) ∈ ΓmodH . Applying again Proposition 3.3.2, we see that

C−tH (dimP1) = dim τ−t
D
P1 = dimM [1] = −dimM 6= dimP1.

So, CH is indeed of order a+ 2. The proof of the proposition is completed.

The Coxeter orders are given for each canonical Dynkin diagram with a particular orientation in [2,
Pages 289-290]. The following statement says that they are independent of the orientation.

Proposition 4.4.2. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH . Then the Coxeter
order |CH | for H is independent of the orientation of QH and given by the following table :

QH An Bn Cn Dn E6 E7 E8 F4 G2

|CH | n+1 2n 2n 2(n−1) 12 18 30 12 6

Proof. Assume that QH is a canonical Dynkin diagram; see (1.3.8). Consider the pi-permutation ρ and
the mi-index function m for (QH)0. Suppose first that QH = An with n ≥ 1. In view of Lemma 4.2.5,
we see that τ−r1,nPn = I1 and τ−rn,1P1 = In, where ri,j is the number of arrows in the reduced walk in
QH from i to j. Thus, m(n) = r1,n and m(1) = rn.1. Since rn,1 is also the number of inverse arrows in
the reduced walk in QH from 1 to n, we have m(1) + m(n) = n− 1. Since ρ(1) = n, from Propsoition
4.4.1 we deduce that |CH | = (n− 1) + 2 = n+ 1.

Suppose now that QH 6= An. Then, QH contains a vertex s, which is of weight 3 or incident to
a non-trivially valued edge. By Lemma 4.3.4, ρ(s) = s, and by Proposition 4.4.1, |CH | = 2m(s) + 2.
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Let hs be the extended hammock function on Suc(0, s). By Theorem 4.2.4(1), m(s) is such that
hs(m(s) + 1, s) = −1 and hs(s, j) ≥ 0 for all proper predecessors (s, j) of (m(s) + 1, s) in Suc(0, s).

Let H ′ be a hereditary artin algebra with QH′ = QH. Consider the pi-permutation ρ′ and the
pi-index function m′ for (QH′)0 = (QH)0. Let h′s be the extended hammock function on SucH′(0, s),
the full subquiver of ZQop

H′ generated by the successors of (0, s). Since ρ′(s) = s, as previously seen,
|CH′ | = 2m′(s) + 2, where m′(s) is such that h′s(m

′(s) + 1, s) = −1 and h′s(s, j) ≥ 0 for all proper
predecessors (s, j) of (m′(s) + 1, s) in SucH′(0, s).

By Proposition 2.2.6 and Lemma 2.1.6, the vertices of the (0, s)-source section ∆ in ZQop
H are (ri, i),

where i ∈ (QH)0, and ri is the number of inverse arrows in the reduced walk in Qop
H , that is, the

number of arrows in the reduced walk in QH , from s to i. Since ∆ is a leftmost section in Suc(0, s); see
(2.2.5), the vertices of Suc(0, s) are (ri + p, i) with p ≥ 0 and i ∈ (QH)0. Similarly, the vertices of the
(0, s)-source section ∆′ in ZQop

H′ are (r′i, i) with i ∈ (QH′)0 = (QH)0 and r′i the number of arrows in the

reduced walk in QH′ from s to i, and those of SucH′(0, s) are (r′i + p, i) with i ∈ (QH)0 and p ≥ 0.

Fix i, j ∈ QH. By Lemma 2.1.6, ∆ contains an arrow (ri, i)→ (rj , j) if and only if QH (that is QH′)
contains an edge i j if and only if ∆′ contains an arrow (r′i, i)→ (r′j , j); and in this case, the arrows

(ri, i) → (rj , j) and (r′i, i) → (r′j , j) have the same valuation as i j. So, we have a valued quiver
isomorphism f : ∆ → ∆′, sending (ri, i) to (r′i, i). Clearly, f extends to a valued translation quiver
isomorphism f : Suc(0, s)→ SucH′(0, s), sending (ri+p, i) to (r′i+p, i), for all p ≥ 0. Since rs = r′s = 0,
we have f(p, s) = (p, s) for all p ≥ 0.

By Definition 4.2.1, h′s(r
′
i, i) = h′s(f(ri, i)) = hs(ri, i) for all (ri, i) ∈ ∆0. Since hs and h′s are additive,

h′s(r
′
i+p) = hs(ri+p, i) for all p ≥ 0 and i ∈ (QH)0. In particular, h′s(m(s)+1, s) = hs(m(s)+1, s) = −1.

If (r′i + p, i) is a proper predecessor of (mi(s) + 1, s) in ZQop
H′ , then (ri + p, i) is a proper predecessor

of (mi(s) + 1, s) in ZQop
H , and hence, h′s(r

′
i + p, i) = hs(ri + p, i) ≥ 0. Therefore, m′(s) = m(s), and

consequently, |CH′ | = |CH |. Thus, |CH | is independent of the orientation of QH . Using the Coxeter
orders given in [2, Pages 289-290], we obtain the table stated in the proposition. The proof of the
proposition is completed.

Remark 4.4.3. As in the first part of the proof of Proposition 4.4.2, one can also use hammocks and
hammock functions to explicitly compute the Coxeter order case by case.

4.5. Shape of the Auslander-Reiten quiver. Applying our previous results, we can describe the
precise shape of ΓmodH in terms of QH in the following statement.

Theorem 4.5.1. Let H be a hereditary artin algebra with a canonical Dynkin ext-quiver QH . Let Pi
be the projective modules and Ii are the injective modules in ΓmodH associated with i ∈ (QH)0. Then
τ−m(i)Pi = Iρ(i), and there exists a convex embedding ΓmodH → ZQop

H , sending τ−rPi to (r, i), where ρ
is the pi-permutation of (QH)0 and m is the pi-index function on (QH)0 given case by case as follows.
(1) If QH = An with n ≥ 1, then ρ(i) = n+ 1− i and m(i) = a+(1, i) + a−(1, n+ 1− i), for i ∈ (QH)0.

(2) If QH = E6, then ρ = (16)(25) and m(i) = 5− a+(i, 3) + a+(ρ(i), 3) for i ∈ (QH)0.

(3) If QH = Dn (n ≥ 5 odd ), then ρ = (12) and m(i) = n − 2 for all 3 ≤ i ≤ n. Moreover,

m(1) = (n− 2)− a+(1, 3) + a+(2, 3) and m(2) = (n− 2) + a+(1, 3)− a+(2, 3).

(4) If QH = G2, F4, E7, E8, Bn (n ≥ 2), Cn (n ≥ 3) or Dn (n ≥ 4 even), then we have ρ(i) = i and

m(i) = 1
2 |CH | − 1 for all i ∈ QH , where |CH | is the Coxeter order for H.

Proof. By Proposition 4.1.1, we have a canonical embedding ϕ : ΓmodH → ZQop
H : τ−rPi 7→ (r, i), which

has a convex image in ZQop
H . By Lemma 4.3.1, τ−m(i)Pi = Iρ(i) for all i ∈ (QH)0. Write ri,j = a+(i, j),

for i, j ∈ (QH)0.
(1) Suppose that QH = An with n ≥ 1. As seen in the proof of Theorem 4.3.5, ρ(i) = n+ 1− i for

all ∈ (QH)0. Moreover, by Lemma 4.2.5, τ−r1,nPn = I1. Thus, m(n) = r1,n. Given i ∈ (QH)0, in view
of Lemma 4.3.2, we see that m(i) = m(n)− ri,n + rn+1−i,1 = r1,n − ri,n + rn+1−i,n = r1,i + rn+1−i,1.

(2) Suppose that QH = E6. In view of the proof of Theorem 4.3.5, we see that ρ = (16)(25). In
particular, ρ(3) = 3. Since |CH | = 12; see (4.4.2), we deduce from Proposition 4.4.1 that m(3) = 5.
Given i ∈ QH , by Lemma 4.3.2, m(i) = 5− ri,3 + rρ(i),3.



24 SHIPING LIU AND GORDANA TODOROV

(3) Suppose that QH = Dn with n ≥ 5 odd. In view of the proof of Theorem 4.3.5, we see that
ρ = (12). In particular, ρ(i) = i for all 3 ≤ i ≤ n. Since |CH | = 2(n − 1); see (4.4.2), we deduce from
Proposition 4.4.1 that m(i) = n−2, for 3 ≤ i ≤ n. Moreover, by Lemma 4.3.2, m(1) = (n−2)−r1,3+r2,3
and m(2) = (n− 2) + r1,3 − r2,3.

(4) Suppose that QH = G2, F4, E7, E8, Bn(n ≥ 2), Cn(n ≥ 3) or Dn(n ≥ 4 even). By Theorem
4.3.5(1), we have ρ(i) = i, and by Proposition 4.4.1, |CH | = 2m(i) + 2, for all i ∈ QH . The proof of the
theorem is completed.

Example 4.5.2. Let H be a hereditary artin algebre with ext-quiver

4

QH : 1 // 2 // 3

OO

// 5 6.oo

Since QH is of type E6, by Theorem 4.5.1(2), we have ρ(1) = 6; ρ(2) = 5; ρ(3) = 3; ρ(4) = 4; ρ(5) = 2
and ρ(6) = 1. Moreover, m(1) = m(2) = 4; m(3) = m(4) = 5; m(5) = m(6) = 6. Thus, ΓmodH is of the
following shape:

P6

  

τ -P6

  

τ -2P6

  

τ -3P6

  

τ -4P6

  

τ -5P6

  

I1

P5

  

>>

τ -P5

  

>>

τ -2P5

  

>>

τ -3P5

  

>>

τ -4P5

  

>>

τ -5P5

  

>>

I2

>>

P4
// P3

  

>>

// τ -P4
//τ -P3

  

>>

//τ -2P4
//τ -2P3

  

>>

//τ -3P4
//τ -3P3

  

>>

//τ -4P4
//τ -4P3

  

>>

// I4 // I3

>>

P2

  

>>

τ -P2

  

>>

τ -2P2

  

>>

τ -3P2

  

>>

I5

>>

  
P1

>>

τ -P1

>>

τ -2P1

>>

τ -3P1

>>

I6

Example 4.5.3. Let H be a hereditary artin algebra with ext-quiver QH : 1 // 2
(1,2) // 3 4.oo

Since QH = F4, by Theorem 4.5.1(4), ρ(i) = i and m(i) = 5, for all 1 ≤ i ≤ 4. Thus, ΓmodH is of the
following shape

P1

��

τ−P1

��

τ−2P1

��

τ−3P1

��

τ−4P1

��

I1

P2
(1,2)

��

??

τ−P2
(1,2)

��

??

τ−2P2
(1,2)

��

??

τ−3P2
(1,2)

��

??

τ−4P2

(1,2)

��

??

I2

??

P3

��

(2,1)
??

τ−P3

(2,1)
??

��

??

τ−2P3

��

(2,1)
??

τ−3P3

(2,1)
??

��

??

τ−4P3

��

(2,1)
??

I3

��

(2,1)
??

P4

??

τ−P1

??

τ−2P1

??

τ−3P1

??

τ−4P1

??

I4

The following statement is interesting in its own right.

Proposition 4.5.4. Let H be a hereditary artin algebra of Dynkin type. If P is a projective module
and I is an injective module in ΓmodH , then I is a successor of P in ΓmodH .

Proof. Let P be a projective module and I an injective module in ΓmodH . By Proposition 3.1.6,
ΓmodH contains a P -source section ∆. Then I = τsM for some M ∈ ∆ and s ∈ Z. If s > 0, then
τ−I = τs−1M ∈ ΓmodH , which gives a contradiction since τ−I = 0. Thus, s ≤ 0, and consequently, I
is a successor of P . The proof of the proposition is completed.
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4.6. Applications. Our first application is to compute the number of non-isomorphic indecomposable
modules in modH. Applying a series of results in [29] and [13], we see that this number was given case
by case in [13] and [17], and also by the number of positive roots of Dynkin diagrams; see [14, 17], which
was given in [12]. However, using our previous results, we obtain this number in a direct and easy way.

Theorem 4.6.1. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH and Coxeter order
|CH |. Then, the number of non-isomorphic indecomposable modules in modH is equal to

1

2
n|CH |,

where n is the number of non-isomorphic simple modules in modH.

Proof. Consider the pi-permutation ρ and the pi-index function m for (QH)0 = {1, . . . , n}. Let Pi be the
projective module and Ii the injective module in ΓmodH associated with i ∈ (QH)0. Since τ−m(i) = Iρ(i),
the τ -orbit of Pi contains exactly m(i) + 1 modules. Let t be the number of modules in ΓmodH . Since
the Pi generate a section in ΓmodH , we see that t =

∑n
i=1(m(i) + 1). And since ρ is a permutation,

t =
∑n
i=1(m(ρ(i) + 1). Applying Proposition 4.4.1 yields 2t =

∑n
i=1(m(i) +m(ρ(i)) + 2) = n|CH |. The

proof of the theorem is completed.

Now, we shall compute the nilpotency of the radical of modH. This has been essentially done by
Zacharia using preprojective partitions; see [35, Section 4]. However, we shall provide an alternative
approach. Since QH is a Dynkin diagram, by Propositions 2.1.8 and 4.1.1, any two parallel paths in
ΓmodH and ΓDb(modH) have the same length. So we may introduce the following definition.

Definition 4.6.2. Let H be a hereditary artin algebra of Dynkin type.

(1) If ΓmodH contains a path from M to N , then we define the distance between M and N, written as
dist(M,N), to be the length of any path from M to N in ΓmodH .

(2) If ΓDb(modH) contains a path from M. to N. , then we define the distance between M. and N. ,
written as dist(M. , N.), to be the length of any path from M. to N. in ΓDb(modH).

The following statement allows us to easily determine the depth of any map in modH.

Lemma 4.6.3. Let H be a hereditary artin algebra of Dynkin type. If f : M → N is a non-zero map
with M,N ∈ ΓmodH , then dp(f) = dist(M,N).

Proof. Let f : M → N be a non-zero map with M,N ∈ ΓmodH . Since H is representation-finite,
f 6∈ rads(M,N) for some s > 0; see [2, (V.7.6)]. Thus, dp(f) = t < ∞. If t = 0, then M = N and
dist(M,N) = 0. Otherwise, by Lemma 1.6.5, ΓmodH contains a path from M to N of length t. Hence,
dist(M,N) = t. The proof of the lemma is completed.

We are ready to provide a new proof for Zacharia’s theorem as follows; see [35, (4.11)].

Theorem 4.6.4. Let H be a hereditary artin algebra with a Dynkin ext-quiver QH and Coxeter order
|CH |. Then, the radical of modH is nilpotent of nilpotency |CH | − 1.

Proof. Given i ∈ (QH)0 = {1, . . . , n}, consider the simple module Si ∈ ΓmodH with a projective cover
πi : Pi → Si and an injective envelope ιi : Si → Ii, where Pi, Ii ∈ ΓmodH . Applying Theorem 2.7 in
[11] followed by Lemma 4.6.3, we see that the nilpotency of rad(modH) is equal to

sup{dp(ι1π1), . . . ,dp(ιnπn)}+ 1 = sup{dist(P1, I1), . . . ,distPn, In)}+ 1.

Thus, it suffices to show that dist(Pi, Ii) = |CH | − 2, for any i ∈ (QH)0. In fact, since ΓmodH is a
convex valued translation subquiver of ΓDb(modH); see (4.1.2), we have dist(M [0], N [0]) = dist(M,N),

for all M,N ∈ ΓmodH . And since τ−
D
Ii[0] = Pi[1]; see [5, (7.2)], we deduce

dist(Pi[0], Pi[1]) = dist(Pi[0], Ii[0]) + dist(Ii[0], Pi[1]) = dist(Pi, Ii) + 2.

As a consequence, we obtain

dist(Pi[0], Pi[2]) = dist(Pi[0], Pi[1]) + dist(Pi[1], Pi[2]) = 2dist(Pi[0], Pi[1]) = 2(dist(Pi, Ii) + 2).

On the other hand, by Proposition 4.4.1, dist(Pi[0], Pi[2]) = dist(Pi[0], τ−|CH |
D

Pi[0]) = 2|CH |. That is,
|CH | = dist(Pi, Ii) + 2. The proof of the theorem is completed.
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Next, we shall study the radical of the bounded derived category Db(modH). Being a triangulated
category, Db(modH) coincides with its projectively stable category and its injectively stable category;
see [27, (2.4)]. Since Db(modH) has almost split triangles, the Auslander-Reiten translation τ

D
of

ΓDb(modH) induces an auto-equivalence τ
D

: Db(modH)→ Db(modH); see [27, (4.10)].

Theorem 4.6.5. Let H be a hereditary algebra of Dynkin type with Coxeter order |CH |. Then the
radical of Db(modH) is nilpotent of nilpotency |CH | − 1.

Proof. Write D = Db(modH). Since modH is a convex subcategory in D , by Theorem 4.6.4,
rad|CH |−2(D) 6= 0. Suppose that radr(D) 6= 0 with r ≥ 0. Then, radrD(M,N [s]) 6= 0, for some
M,N ∈ ΓmodH and s ∈ Z. Write M = τ−tP for some t ≥ 0, where P is a projective module in
ΓmodH . Applying the equivalence τ

D
, we obtain radrD(P [0], (τ

D
N [0])[s]) 6= 0. Since P is projective,

(τ
D
N [0])[s] = L[0] for some L ∈ ΓmodH . Then, radr(P,L) 6= 0, and by Theorem 4.6.4, r ≤ |CH | − 2.

So, rad(D) is nilpotent of nilpotency |CH | − 1. The proof of the theorem is completed.

We conclude with the cluster category associated with H. Let D b(H) be a skeleton of Db(modH),
containing the complexes in ΓDb(modH). Then, D b(H) is a Hom-finite Krull-Schmidt R-category, which

has almost split sequences. Note that the Auslander-Reiten quiver ΓD b(H) of D b(H) coincides with

ΓDb(modH), and its Auslander-Reiten translation τD extends to an automorphism of D b(H). Thus, we

have an automorphism F = τ−1
D
◦ [1] of D b(H) such, for any indecomposable objects M., N. ∈ D b(H),

that F p(M.) 6∼= M. for all p 6= 0 and HomD b(H)(M
., F p(N.)) = 0 for all but finitely many p ∈ Z. Thus,

the action of the group F generated by F on D b(H) is free and locally bounded. As did in [7], we define
the cluster category associated with H to be the orbit category

D b(H)/F =: CH ,

which is Hom-finite and Krull-Schmidt; see 1.5.4.

Theorem 4.6.6. Let H be a hereditary artin algebra of Dynkin type with Coxeter order |CH |, and let
CH be the cluster category associated with H.

(1) The radical of CH is nilpotent of nilpotency |CH | − 1.

(2) The number of non-isomorphich indecomposable objects in CH is equal to

1

2
n(|CH |+ 2),

where n is the number of non-isomorphic simple modules in modH.

Proof. First, Statement (1) follows immediately from Proposition 1.5.4(1) and Theorem 4.6.5. Let
P1, . . . , Pn be the projective modules and I1, . . . , In the injective modules in ΓmodH with topPi = socIi.
Recall that F = τ−1

D
◦ [1], where τD is the Auslander-Reiten translation for D b(H). Given p ∈ Z, write

S(p) = {M [p] | M ∈ ΓmodH} ∪ {P1[p + 1], . . . , Pn[p + 1]} and T (p) = F p(S(0)). Since τ−
D
Ii = Pi[1],

we obtain F (Ii) = Pi[2] for 1 ≤ i ≤ n. Thus, T (1) = F (S(0)). In general, T (p) = F p(S(0)) for all
p ∈ Z. Since F = {F p | p ∈ Z}, we see that S(0) is a complete set of representatives of the F-orbits of
non-isomorphic indecomposable objects in D b(H). Now, Statement (2) follows from Proposition 1.5.4
and Theorem 4.6.1. The proof of the theorem is completed.

Remark 4.6.7. The number given in Theorem 4.6.6(2) coincides with the number cluster variables in
the cluster algebra associated with QH ; see [15, (5.9.1)].
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