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Abstract. We characterize the finiteness of the representation type of an
artin algebra in terms of the behavior of the projective covers and the injective
envelopes of the simple modules with respect to the infinite radical of the
module category. In case the algebra is representation-finite, we show that the
nilpotency of the radical of the module category is the maximal depth of the
composites of these maps, which is independent from the maximal length of
the indecomposable modules.

1. Introduction

Throughout this paper, A stands for an artin algebra, and modA for the cate-
gory of finitely generated left A-modules. One of the fundamental tasks of the
representation theory of A is to describe the maps in modA. The aim of this paper
is to show that the behavior of the maps in modA with respect to the radical series
is somehow controlled by the behavior of the projective covers and the injective
envelopes of the simple modules.

More precisely, suppose that A is of finite representation type. By the Harada-
Sai lemma, the radical of modA is nilpotent with a nilpotency bounded by 2b − 1,
where b is the maximal length of the indecomposable modules; see [7]. A sharper
bound is given in [6] which, however, also depends on the maximal length of the
indecomposable modules. In case A is a finite dimensional algebra over an alge-
braically closed field, this nilpotency is described explicitly in terms of the degrees
of finitely many irreducible maps associated to the simple modules; see [3]. In this
paper, we shall extend this result to an artin algebra and prove that the nilpotency
is the maximal depth of the composites of the projective covers and the injective
envelopes of the simples modules.

On the other hand, a well known result of Auslander’s says that A is of finite
representation type provided that the radical of modA is nilpotent, or equivalently,
the infinite radical of modA vanishes; see [11, (1.1)] and [10, (1.8)], and the latter
condition is shown to be equivalent to the vanishing of the square of the infinite
radical; see [5]. In this paper, we shall strengthen these two results by showing that
A is of finite representation type provided that the projective covers of the simple
modules do not lie in the infinite radical, or the injective envelopes of the simple
modules do not lie in the infinite radical, or the composites of these maps do not
lie in the square of the infinite radical.
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2. The results

Recall that the Jacobson radical of modA, written as rad(modA), is the ideal
generated by the non-invertible maps between the indecomposable modules, and
the infinite radical of modA, written as rad∞(modA), is the intersection of all the
powers radn(modA) with n ≥ 1. A map in modA is called radical if it belongs
to rad(modA). Throughout, for each simple module S, we fix a projective cover
πS : PS → S and an injective envelope ιS : S → IS , and put θS = ιS πS . We shall
need some basic notions and results of the Auslander-Reiten theory on irreducible
maps and almost split sequences in modA, for which the reader is referred to [1].

The following notion is convenient for us to formulate our results.

2.1. Definition. Let f : M → N be a map in modA. We define the depth of f ,
written as dp(f), to be infinity in case f ∈ rad∞(M,N); and otherwise, to be the
integer n ≥ 0 for which f ∈ radn(M,N) but f /∈ radn+1(M, N).

The following result is crucial in our investigation.

2.2. Lemma. Let S be a simple module in modA. If f ∈ Hom(P
S
, I

S
) is non-zero,

then there exist u ∈ End(P
S
) and v ∈ End(I

S
) such that vfu = θ

S
.

Proof. Let f : P
S
→ I

S
be a non-zero map in modA. By the Harada-Sai lemma,

there exists a maximal integer r ≥ 0 for which one can find a chain of radical maps

I
S

= I
S0

g1 // I
S1

// · · · // I
Sr−1

gr // ISr

such that gr · · · g1f 6= 0, where the Si are simple modules. Set v = gr · · · g1 if r > 0
and v = 1I otherwise. Then vf 6= 0. Now, consider the short exact sequence

0 // Sr

ι
Sr // I

Sr

p // I
Sr

/Sr
// 0.

If pvf 6= 0, passing through the injective envelope of ISr
/Sr, we can find a simple

module Sr+1 and a map q : I
Sr

/Sr → I
Sr+1

such that (qp)vf 6= 0. Since p is
irreducible, qp is a radical map, which contradicts the maximality of r. Thus,
pvf = 0, and consequently, vf = ι

Sr
g for some map g : P

S
→ Sr. Since g 6= 0, we

see that Sr = S and g is an epimorphism. Therefore, π
S

= gu for some u ∈ End(P
S
).

This yields vfu = ι
S
π

S
= θ

S
. The proof of the lemma is completed.

Remark. The above lemma says that Hom(P
S
, I

S
), as a End(I

S
)-End(P

S
)-bimodule,

has a simple socle generated by θ
S
.

2.3. Lemma. Let S be a simple module in modA. If f : M → I
S

is a non-zero map,
then there exists a map g : PS → M such that fg 6= 0.

Proof. Let f : M → IS be a non-zero map with kernel j : K → M . Consider the
short exact sequence

0 // K
j // M

c // M/K // 0.

Since f factors through c, we see that HomA(M/K, IS ) 6= 0. In particular, S is a
composition factor of M/K. Thus, M has submodules N, L with K ⊆ N ⊂ L ⊆ M
such that L/N ' S. Since P

S
is projective, we have a commutative diagram with

exact rows
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P
S

p

²²Â
Â
Â

π
S

ÃÃA
AA

AA
AA

A

0 // N
u // L

h

²²

v // S // 0

0 // K

w

OO

j // M
f // I

S ,

where w, u, h are all inclusion maps. Suppose that fhp = 0. Then, hp = jq = huwq
for some map q : P

S
→ K. Since h is a monomorphism, p = uwq, and hence,

π
S

= vp = vuwq = 0, a contradiction. The proof of the lemma is completed.

2.4. Proposition. Let f : M → N be a map in modA. If S is a composition factor
of Im(f), then there exist maps g : P

S
→ M and h : N → I

S
such that hfg = θ

S
.

Proof. Setting L = Im(f), we have a factorization f = qp, where p : M → L is an
epimorphism and q : L → N is a monomorphism. Suppose that S is a composition
factor of L. Then we have a non-zero map u : L → I

S
. Since I

S
is injective, u = vq

for some map v : N → I
S
. This yields vf = vqp = up 6= 0. By Lemma 2.3, there

exists a map w : PS → M such that vfw 6= 0. Now, applying Lemma 2.2, we get
two maps g, h such that hfg = θS . The proof of the proposition is completed.

The following statement answers, to certain extent, a problem posed in [6].

2.5. Corollary. Let a chain of radical maps between indecomposable modules

M0
f1 // M1

// · · · // Mn−1
fn // Mn

in modA. If n > dp(θ
S
) for every simple submodule S of Mn, then fn · · · f1 = 0.

Proof. Suppose that f = fn · · · f1 6= 0. Then Im(f) contains a simple submodule S
of Mn. By Proposition 2.4, θS = hfg for some maps g : PS → M and h : N → IS .
Hence, dp(θS ) ≥ dp(f) ≥ n. The proof of the corollary is completed.

Applying Proposition 2.4 to an identity map, we get another interesting conse-
quence as follows.

2.6. Corollary. Let M be a module in modA. If S is a composition factor of M,
then θ

S
factors through M .

We are ready to state the main result, in which the equivalence of the first three
statements for the algebraically closed case has been essentially obtained in [4].

2.7. Theorem. Let A be an artin algebra. The following statements are equivalent.
(1) The representation type of A is finite.
(2) The depth of ιS is finite, for every simple module S.
(3) The depth of π

S
is finite, for every simple module S.

(4) The map θS does not lie in (rad∞(modA))2, for every simple module S.
Moreover, in this case, the nilpotency of rad(modA) is m + 1, where m is the
maximal depth of the θ

S
with S ranging over the simple modules.
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Proof. Suppose first that A is of representation-finite. Then rad∞(modA) = 0; see
[11, (1.1)]. In particular, Statements (2), (3), and (4) hold trivially. Let m be the
maximal depth of the θ

S
with S ranging over the simple modules. By definition,

radm(modA) 6= 0. Moreover, by Corollary 2.5, every chain of radical maps between
indecomposable modules of length greater than m has zero composite. That is,
radm+1(modA) = 0.

Conversely, suppose that Statement (2) holds. Denote by r the maximal depth
of the ι

S
with S ranging over the simple modules. In order to show Statement (1),

we may assume that A is connected. Choose an Auslander-Reiten component Γ of
A, and consider an arbitrary module M lying in Γ . Let S be a simple submodule
of M with inclusion map q : S → M . Since I

S
is injective, there exists some map

p : M → IS such that ιS = pq. As a consequence, dp(p) ≤ dp(ιS ) ≤ r. Therefore,
Γ has a path from M to I

S
of length less than or equal to r. Being locally finite

and containing at most finitely many indecomposable injective modules, Γ is finite.
Therefore, A is of finite representation type; see, for example, [1, (VI.1.4)]. Dually,
Statement (3) implies Statement (1).

Finally, suppose that Statement (4) holds. Assume that (rad∞(modA))2 has
a non-zero map f : M → N . Let S be a composition factor of Im(f). We then
deduce from Proposition 2.4 that θ

S
∈ (rad∞(modA))2. This contradiction shows

that (rad∞(modA))2 = 0, and hence, A is of finite representation type; see [5]. The
proof of the theorem is completed.

We illustrate the above theorem by the following example. For this purpose, we
shall need the notion of degrees of an irreducible map; see [9, (1.1)].

Example. Let k be a field and consider the Nakayama algebra A = k[x]/<xn>
with n ≥ 2. It is well known that the non-isomorphic indecomposable modules in
modA are Mi =<xi>/<xn>, for i = 0, 1, · · · , n − 1, and the Auslander-Reiten
quiver ΓA of A is of the following shape:

M0
%%ee M1

%%ee · · · %%ee Mn−1

with τMi = Mi, for i = 1, · · · , n−1. Note that Mn−1 is the unique simple module.
For each 1 ≤ i < n − 1, let fi : Mi−1 → Mi be the multiplication by x̄; and for
each 0 < i ≤ n − 1, let gi : Mi → Mi−1 be the inclusion map. Then the fi, gi are
irreducible maps such that π = fn−1 · · · f1 : M0 → Mn−1 is the projective cover,
while ι = g1 · · · gn−1 : Mn−1 → M0 is the injective envelope of Mn−1. Being the
composite of a sectional chain of n− 1 irreducible maps, both ι and π are of depth
n− 1; see [2, 8]. Moreover, since g1 : M1 → M0 has a projective co-domain, its left
degree is infinite. Now, consider gi : Mi → Mi−1 with 1 < i < n. Observe that

M0
// M1

// · · · // Mi−2
// Mi−1

is a sectional path in ΓA such that Mi⊕Mi−2 is the middle term of the almost split
sequence ending with Mi−1. Since M0 is projective, the left degree of gi is infinite;
see [9, (1.2), (1.6)]. As a consequence, ιπ = g1 · · · gn−1π 6∈ rad2(n−1)+1(modA).
This implies that dp(ιπ) = 2(n−1). By Theorem 2.7, the nilpotency of rad(modA)
is 2n − 1. In particular, every chain of radical maps between indecomposable
modules of length greater than 2n− 1 has zero composite. On the other hand, we
note that the Harada-Sai bound, as well as the bound given in [6], for the nilpotency
of rad(modA) is 2n − 1.
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Remark. Let A be a finite dimensional algebra over an algebraically closed field.
If A is of finite representation type, then dp(θ

S
) = dp(ι

S
) + dp(π

S
) for every simple

module S; see [3]. However, we do not know if this is still the case for artin algebras.
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