CLUSTER CATEGORIES OF TYPE A% AND
TRIANGULATIONS OF THE INFINITE STRIP

SHIPING LIU AND CHARLES PAQUETTE

ABSTRACT. We call a 2-Calabi-Yau triangulated category a cluster category if
its cluster-tilting subcategories form a cluster structure as defined in [4]. In
this paper, we show that the canonical orbit category of the bounded derived
category of finite dimensional representations of a quiver without infinite paths
of type Aew or A is a cluster category. Moreover, for a cluster category of
type AZZ, we give a geometrical description of its cluster structure in terms of
triangulations of an infinite strip with marked points in the plane.

INTRODUCTION

One of the most important developments of the representation theory of quivers is
its interaction with cluster algebras, introduced by Fomin and Zelevinsky in con-
nection with dual canonical bases and total positivity of semi-simple Lie groups; see
[8, 9]. The two theories are linked together through cluster categories, constructed
by Buan, Marsh, Reineke, Reiten and Todorov by taking the orbit category of the
bounded derived category of finite dimensional representations of a finite acyclic
quiver under the canonical auto-equivalence, that is the composite of the inverse
of the Auslander-Reiten translation and the shift functor; see [5]. Such a cluster
category is a categorification of the corresponding cluster algebra in such a way
that cluster-tilting objects correspond to clusters and exchange of indecomposable
summands of cluster-tilting objects correspond to mutations of cluster variables.
These cluster categories are said to be of finite rank since every cluster-tilting ob-
ject has only finitely many indecomposable summands. For cluster categories of
type A,,, Caldero, Chapoton and Schiffler gave a beautiful geometrical realization
in terms of triangulations of an (n + 3)-gon; see [7].

Replacing cluster-tilting objects by cluster-tilting subcategories, Buan, Iyama,
Reiten and Scott introduced the notion of cluster structure in a 2-Calabi-Yau trian-
gulated category; see, for example, (1.5). In this connection, we define a 2-Calabi-
Yau triangulated category to be a cluster category if its cluster-tilting subcategories
form a cluster structure. The first example of a cluster category of infinite rank
was discovered by Holm and Jgrgensen in [14], where they constructed a cluster
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category of type A, as the finite derived category of dg-modules over the polyno-
mial ring viewed as a dg-algebra and gave a geometrical realization of this cluster
category in terms of triangulations of an infinity-gon.

The purpose of this paper is two-fold. Firstly we shall construct, following the
canonical approach, cluster categories of types A, and AZ. Let @ be a locally
finite quiver with no infinite path. The category rep(Q) of finite dimensional rep-
resentations of @) is a hereditary abelian category such that D’(rep(Q)) has al-
most split triangles; see [3, (7.11)]. Thus, the canonical orbit category €(Q) of
D®(rep(Q)) as mentioned above is a 2-Calabi-Yau triangulated category; see [19],
and hence, it serves as a natural candidate for a cluster category of type (). Indeed,
the Auslander-Reiten components of % (Q) consists of a connecting component of
shape ZQ°P, where Q°P denotes the opposite quiver of ), and some possible regu-
lar components of shape ZA; see (2.5). Moreover, the projective representations
in rep(Q) generate a cluster-tilting subcategory of €' (Q); see (2.8). Therefore, in
order to show that €(Q) is a cluster category, it suffices to verify that the quiver
of every cluster-tilting subcategory of % (Q) has no oriented cycle of length one or
two; see [4, (I1.1.6)]. We conjecture that this is always the case. However, we shall
prove it only in case @ is of type A, or AZS. In this case, all the Auslander-Reiten
components of D?(rep(Q)) are standard of shapes ZA ., or ZAZ; see [24, (2.2)]. In
general, morphisms between objects in such components can be described in a pure
combinatorial way; see (2.5). This enables us to show in this case that €'(Q) is a
cluster category; see (2.13), in which weakly cluster-tilting subcategories coincide
with maximal rigid ones if @ is of type Ay, or AZ; see (2.11).

Secondly, as an analogy to the above mentioned work by Caldero-Chapoton-
Schiffler and by Holm-Jgrgensen, we shall give a geometrical realization of a cluster
category of type AY. For this purpose, we study in Section 3 triangulations of an
infinite strip with marked points B, in the plane. We introduce the notion of a
compact triangulation; see (3.11) and give an easy criterion for a triangulation to
be compact; see (3.18). In Section 4, we shall parameterize the indecomposable
objects of ¥(Q) by the arcs in B, in such a way that rigid pairs of indecomposable
objects correspond to non-crossing pairs of arcs; see (4.3). In particular, weakly
cluster-tilting subcategories of €(Q) correspond to triangulations of By, and the
functorial finiteness of a weakly cluster-tilting subcategory will be characterized
by the compactness of the corresponding triangulation; see (4.7). This yields a
geometric description of the cluster-tilting subcategories of € (Q). Finally, we would
like to mention that triangulations of B, have already been considered in [15, 16]
as a geometrical model of a class of cluster categories constructed in a different
approach.

We conclude with some new developments of cluster algebras of infinite rank.
As a decategorification of Holm and Jgrgensen’s cluster category, Grabowski and
Gratz constructed a cluster algebra of infinite rank as the coordinate ring of an
infinite Grassmannian; see [11]. Moreover, to each simple Lie algebra, Hernan-
dez and Leclerc associated some infinite quivers, from which they constructed a
cluster algebra of infinite rank in order to study the representation theory of the
corresponding untwisted quantum affine algebra; see [13]. We hope that our work
would motivate further study on cluster categories or cluster algebras associated
with infinite quivers.
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1. PRELIMINARIES

Throughout this paper, k stands for an algebraically closed field. All categories
are k-linear with finite dimensional Hom-spaces over k. The standard duality for
the category of finite dimensional k-spaces will be denoted by D. We refer to [1,
Section 2] for the Auslander-Reiten theory of irreducible morphisms and almost
split sequences in an abelian category, and to [12, Section 4] for that of irreducible
morphisms and almost split triangles in a triangulated category.

Throughout this section, A stands for a Hom-finite Krull-Schmidt triangulated
k-category having almost split triangles. That is, every indecomposable object of
A is the starting term, as well as an ending term, of an almost split triangle. The
Auslander-Reiten quiver I' 4 of A is a translation quiver, whose vertex set is chosen
to be a complete set of representatives of the isomorphism classes of indecomposable
objects in A and whose translation is given by the Auslander-Reiten translation 7,.
If no confusion is possible, we shall write 7 for 7,. A path

My M M, 1 —— M,

in Iy is called sectional if there exists no ¢ with 0 < ¢ < n such that 7M; 1 = M;_1;
and almost sectional if there exists at most one ¢ with 0 < ¢ < n such that M, =
M;_1. Let I' be a connected component of Iy. One considers the path category kI’
and the mesh category k(I'), where k(I') is the quotient category of kI" modulo
the ideal generated by the mesh elements in kI'; see [26, (2.1)]. One says that I is
standard if k(I") is equivalent to the full subcategory A(I") of A generated by the
objects lying in I'; see [26, (2.3)].

Given a quiver A = (Ap, A1) without oriented cycles, where A is the vertex
set and A; is the set of arrows, one constructs a stable translation quiver ZA in
a canonical way; see [26, Page 47]. In the sequel, we shall denote by NA and by
N~A the full subquivers of ZA generated respectively by the vertices (n,z) and by
the vertices (—n, x), where n € N and x € Ag. Moreover, we shall say that A is of
type A if the underlying graph of A is A,, with n > 1, or Ay, or AY. In this case,
Z A will be simply written as ZA.

Let I" be a connected component of I4 of shape ZA. A monomial mesh relation
in I' is a path 7X — Y — X, where Y is the only immediate predecessor of X in
I'. Given X € I', we define the forward rectangle Z% of X to be the full subquiver
of I' generated by its successors Y such that no path X ~» Y contains a monomial
mesh relation. Dually, we define the backward rectangle Zx of X in I'. If I' is of
shape ZAY then, by definition, ZX is generated by the successors of X and Zx
is generated by the predecessors of X. The following result is well known for the
A, -case.

1.1. PROPOSITION. Let I' be a standard component of I'x of shape ZA. If X, Y are
objects in I', then Hom4(X,Y) # 0 if and only if Y € % if and only if X € Ry;
and in this case, Hom4(X,Y) is one-dimensional over k.

Proof. We may assume with loss of generality that A(I") = k(I"). For u € kT,
we write @ for its image in k(I'). Let X,Y € I'. Clearly, Y € %~ if and only if
XePXy. Ifp: X ~Y and q: X ~ Y are two parallel paths in I', then it is easy to
see that p = g. Thus, Hom 4(X,Y") is at most one dimensional. It remains to prove
the first equivalence stated in the proposition. Suppose that Y ¢ %#X. Then either
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Y is not a successor of X in I, or else, I" has a path p : X ~ Y which contains a
monomial mesh relation. In the first case, Hom4(X,Y) = 0. In the second case,
p = 0, and by the previously stated remark, § = 0 for every path g : X ~» Y. As a
consequence, Hom 4(X,Y) = 0.

Suppose now that ¥ € %2%. Observe that all the paths from X to Y in I’
have the same length, written as d(X,Y"). We need to show that Hom 4(X,Y") # 0,
or equivalently, Hom 4(X,Y") is one dimensional. This is evident if d(X,Y) = 0.
Assume that d(X,Y’) > 0. Consider an almost split triangle

Z*>U1@U2*>Y*>Z[1]

in A, where U; € #% and U, being zero or an object in I'. By the induction
hypothesis, Hom 4 (X, U;) is one dimensional. Since X # Y, applying Hom 4 (X, —)
to the almost split triangle yields an exact sequence

Hom 4 (X, Z) — Hom (X, Uy @ Uy) — Hom 4(X,Y) — 0.

If Z ¢ #%, then Hom4(X,Z) = 0 and Hom4(X,Y) = Hom(X,U; ® Us) # 0.
Otherwise, by the definition of 2%, we obtain Us # 0, and hence, Uy € ZX.
Since each of Hom4 (X, Z), Hom4(X,U;) and Hom4(X,Us) is one-dimensional,
we obtain Hom 4(X,Y) # 0. The proof of the proposition is completed.

Let 7 be a full subcategory of A. Given X € A, a morphism f : X — T with
T € T is called a left T-approzimation for X if every morphism g : X — M with
M € T factors through f. Dually, one defines a right T -approzimation for X.
One says that T is covariantly (respectively, contravariantly) finite in A if every
object in A admits a left (respectively, right) T-approximation; and functorially
finite in A if it is covariantly and contravariantly finite in .A. We say that 7T is
covariantly (respectively, contravariantly) bounded in A provided that, for every
X € A, Homy(X, M) = 0 (respectively, Hom4(M, X) = 0) for all but finitely
many non-isomorphic indecomposable objects M of 7. The following statement
follows easily from the Hom-finiteness of A.

1.2. LEMMA. A covariantly (respectively, contravariantly) bounded subcategory of
A is covariantly (respectively, contravariantly) finite.

Recall that A is called 2-Calabi-Yau if, for each pair of objects (X,Y), there
exists an isomorphism Hom 4(X,Y[1]) = DHom4(Y, X[1]), which is natural in X
and in Y. In this case, the Auslander-Reiten translation 7, coincides with the shift
functor of A; see [25, (1.2.3)]. We recall from [4] the following definition, where a
strictly additive subcategory of A is a full subcategory closed under isomorphisms,
finite direct sums, and taking summands.

1.3. DEFINITION. Let A be a 2-Calabi-Yau triangulated category with a strictly
additive subcategory T. One says that T is weakly cluster-tilting provided, for
every X € A, that Hom 4(7,X[1]) = 0 if and only if X € T; and cluster-tilting
provided that T is weakly cluster-tilting and functorially finite in .A.

Let 7 be a strictly additive subcategory of A. In particular, 7 is Krull-Schmidt.
A morphism f: X — Y in 7 is called right almost split if it is not a retraction and
every non-retraction morphism g : M — Y in T factors through f; right minimal if
every factorization f = fh implies that h is an automorphism; and a sink morphism
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in 7 if it is right minimal and right almost split in 7. Dually, we define a left almost
split, left minimal or source morphism in 7. The quiver @ of T is defined so that
its vertices form a complete set of representatives of the indecomposable objects of
T, and the number of arrows from a vertex X to a vertex Y is the k-dimension
of radr(X,Y)/rad>(X,Y), where rads(X,Y) denotes the k-space of morphisms
in the Jacobson radical of 7. Moreover, given an indecomposable object M of
T, we shall denote by Tjs the full additive subcategory of T generated by the
indecomposable objects not isomorphic to M. Observe that T,; is also strictly
additive in A.

1.4. PROPOSITION. Let A be a Hom-finite 2-Calabi- Yau triangulated k-category.
If T is a cluster-tilting subcategory of A, then it has source morphisms and sink
morphisms; and consequently, its quiver Q. is locally finite.

Proof. Let T be a cluster-tilting subcategory of A. Suppose that M is an inde-
composable object of 7. Then T, is functorially finite in A; see [18, (4.1)]. Let
f X — M be a right T-approximation for M. Then we can decompose f as
f=1(9,0): X=Y®Z — M, where g : Y — M is right minimal; see [21, (1.2)].
Thus, g is a minimal right Tj,-approximation for M.

If rad(End 4 (M)) = 0, then g is right almost split, and hence, a sink morphism
for M in 7. Otherwise, choose a k-basis {h1,...,hn,} of rad(End 4(M)) and set
h = (h1, -+ ,hy) : M™ — M. Then every radical endomorphism of M factors
through h. As a consequence, u = (g,h) : Y @ M™ — M is right almost split in 7.
Again, u = (v,0) : N® L — M, where v : N — M is right minimal. Note that v is
also right almost split, and hence, a sink morphism for M in 7. Dually, M admits
a source morphism in 7. The proof of the proposition is completed.

We shall reformulate the notion of a cluster structure in a 2-Calabi-Yau trian-
gulated category, which is originally introduced in [4, (IL.1)].

1.5. DEFINITION. Let A be a 2-Calabi-Yau triangulated k-category. A non-empty
collection € of strictly additive subcategories of A is called a cluster structure if,
for each subcategory T € € and each indecomposable object M € T, the following
conditions are verified.

(1) There exists a unique (up to isomorphism) indecomposable object M* of A,
with M* % M, such that the additive subcategory u,,(7) of A generated by
Tar and M* belongs to €.

(2) There exist two exact triangles in A as follows:

M-Lon_?

M* M[1] and M* “>L—> M M*[1],
where f,u are minimal left Tj;-approximations, and g,v are minimal right
Tar-approximations in A.

(3) The quiver of T contains no oriented cycle of length one or two, from which

the quiver of pu,, (7) is obtained by the Fomin-Zelevinsky mutation at M as
described in [9, (1.1)].

The following notion is the main objective of study of this paper.

1.6. DEFINITION. A 2-Calabi-Yau triangulated k-category is called a cluster cate-
gory if its cluster-tilting subcategories form a cluster structure.
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2. CLUSTER CATEGORIES OF TYPES A, AND AZ

As the main objective of this section, we shall show that the canonical orbit category
of the bounded derived category of finite dimensional representations of a quiver
without infinite paths of type Ao or A is a cluster category.

We start with representations of quivers. Let @ be a connected locally finite
quiver without infinite paths. By Kénig’s Lemma; see [20], the number of paths
between every pair of vertices is finite. By definition, @ is strongly locally finite;
see [3, Section 1]. Since @ has no infinite path, the category rep(Q) of finite
dimensional k-linear representations of () coincides with the category of finitely
presented k-linear representations of Q; see [3, (1.5)]. Thus, rep(Q) is a hereditary
abelian category having almost split sequences; see [3, (3.7)]. The vertex set of
the Auslander-Reiten quiver I'.ep(q) of rep(Q) is chosen to contain the indecompo-
sable projective representations P,, the indecomposable injective representations
I, and the simple representations S,, with € Qq, as defined in [3, Section 1].
Its Auslander-Reiten translation is written as 7,. It is known that I'.e(q) has
a preprojective component Pg which is standard of shape NQ°P and contains all
the P, with = € Qo; and a preinjective component Zg which is standard of shape
N7Q°" and contains all the I, with x € Q. The other components of I'\p(q)
are called regular, which are of shape ZA; see [3, (4.16)] and [24, (2.2)]. Given
two connected components I, £2 of I'ycp (@), we shall write Hom,.ep gy (17, £2) = 0 if
Homy,ep()(X,Y) =0 for all X € I' and Y € £2; and say that I', {2 are orthogonal
if I‘IOIIlrep(Q)(F7 Q) =0 and HOIIlmp(Q)(Q7 F) =0.

2.1. LEMMA. Let QQ be a connected locally finite quiver with no infinite path. Then
Hom,ep(0)(Zg, Pg) = 0. Moreover, if R is a regular component of I'vep(q), then
Hom,ep(0)(Zg, R) = 0 and Hom,qpg) (R, Pg) = 0.

Proof. Let f : M — N be a non-zero morphism with M, N € I'.¢pg)- Assume
that M is preinjective, that is, M = 7)1, for some © € Qg and r € N. If N is
not preinjective, then N = TCZL for some non-injective representation L € I'yep(q)-
Applying 7. yields a non-zero morphism g : I, — L; see [24, (2.1)], contrary to
rep(Q) being hereditary. Dually, if N is preprojective, then so is M. The proof of
the lemma is completed.

In case @ is of infinite Dynkin type, that is, the underlying graph of @ is A,
A or Dy, the morphisms are better understood. Recall that the support supp(M)
of a representation M is the set of vertices x € (g for which M (zx) # 0.

2.2. LEMMA. Let Q be an infinite Dynkin quiver with no infinite path, and let X,Y
be representations lying in I'iep(qQ)-

(1) If X #Y, then Hom ep(0)(X,Y) = 0 or Hom opg) (Y, X) = 0.

(2) If Q is of type A or AL, then Hom o) (X,Y) is at most one-dimensional.
Proof. Statement (1) follows from Lemma 2.1 and that every connected component
of I'iep(@) is standard without oriented cycles; see [3, (4.16)] and [24, (2.2)]. Assume
that @ is of type Ay, or AY. Let A be a finite connected full subquiver of @,
containing the support of X &Y. Then A is of type A, for some n such that
Hom,ep(0)(X,Y) = Homyep(a)(X,Y), which is at most one-dimensional; see [10,
(6.5)], and also, (1.1). The proof of the lemma is completed.
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Let I' be a connected component of I',¢,(q) of shape ZA,, and let X € I'. One
says that X is quasi-simple if it has only one immediate predecessor in I'. In ge-
neral, I' has a unique sectional path X = X, X1 e X1, where

X, is quasi-simple. One defines the quasi-length £(X) of X to be n.

Let @ be of type AS. We shall describe the quasi-simple representations in
the regular component. To this end, we recall some terminology and notations. A
string in @ is a finite reduced walk w, to which one associates a string representation
M (w); see [3, Section 5]. Let a;, b;, i € Z, be the source vertices and the sink vertices
of @, respectively, such that there exist paths p; : a; ~ b; and ¢; : a; ~ b;_1, for
1 € Z. A vertex on a path is called a middle point if it is not an endpoint. Let Qg
denote the union of the p;, i € Z, and the trivial paths €,, where a is a middle point
of some g; with j € Z. Dually, @1, denotes the union of the ¢;, ¢ € Z, and the trivial
paths &, where b is a middle point of some p; with j € Z. It is known that I"..p @)
has exactly two regular components R and R, such that the quasi-simple objects
in Rp are the string representations M (p) with p € Qr, and those in Ry, are the
string representations M (q) with ¢ € Qp; see [24, (2.2)] and [3, (5.16), (5.22)].

2.3. LEMMA. Let @) be a quiver of type A with no infinite path. Then the two
reqular components Rr and Rr of I'vep(q) are orthogonal.

Proof. Let f : M — N be a non-zero morphism with M € Rg and N € Ry.
We may assume that m = ¢(M) + £(NN) is minimal with respect to the existence
of such a non-zero morphism. In view of the above description, the quasi-simple
representations have pairwise disjoint supports. Thus, we may assume with no loss
of generality that /(N) > 1. Then rep(Q) has a short exact sequence

0 X—2>N-">Y 0,
where X, Y € Ry with £(X) = ¢(N) — 1 and ¢(Y) = 1. By the minimality of m,

we have vf = 0, and hence, f = ww for some non-zero morphism w : M — X,
contrary to the minimality of m. The proof of the lemma is completed.

Let I' be a connected component of I'.o; () of shape ZA ., with a quasi-simple
representation S. Observe that I" has a unique infinite sectional path starting in .S,
called the ray starting in S and denoted by (S—); and a unique infinite sectional
path ending in S, called the co-ray ending in S and denoted by (—S). Let W(S)
be the full subquiver of I' generated by the representations X for which there exist
paths M ~» X ~» N, where M belongs to (—5) and N belongs to (S—). We call
W(S) the infinite wing with wing vertex S; compare [26, (3.3)].

2.4. PROPOSITION. Let Q be a quiver of type A with no infinite path, and let
X € Pq. If R is a regular component of I'ep(q), then it has a unique quasi-simple
representation S such that, for every Y € R, Hom () (X,Y) # 0 if and only
if Y € W(S); and every morphism f : X — Y factors through a representation
belonging to the co-ray (—5S).

Proof. We keep the notation introduced above and assume that R = Rg. Applying
7, if necessary, we may assume that X = P, for some x € Qo; see [24, (2.1)]. Since
P, ¢ R, applying Hom,ep(g)(Pr, —) yields an additive function d on R; see, for
definition, [26, (A.1)], defined by d(Y) = dimpHom,epq)(P:,Y) for Y € R. Set
S = M(p), where p is the unique path in Qg in which z appears. Then d(S) =1
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and d(7'S) = 0 for all i # 0. Using the additivity of d, we see first that d(Y) = 0
for all Y ¢ W(S), and then d(Y) =1 for all Y € W(S).

Suppose now that f : P, — Y is non-zero morphism with Y € W(S). There
exists a unique sectional path p: Z ~» Y in R with Z belonging to (—S). Observe
that there exists a monomorphism g : Z — Y in rep(Q). Since P, is projective,
we obtain a monomorphism Hom(P,, ¢) : Hom(P,, Z) — Hom(P,,Y), which is an
isomorphism since d(Y) = d(Z) = 1. Hence, f factors through g. The proof of the
proposition is completed.

REMARK. The dual statement holds for preinjective representations.

Next, we consider the bounded derived category D®(rep(Q)) of rep(Q). We re-
gard rep(Q) as a full subcategory of D’(rep(Q)) in a canonical way. It is known
that D®(rep(Q)) is a Hom-finite Krull-Schmidt triangulated k-category having al-
most split triangles; see [3, (7.11)]. The vertices of its Auslander-Reiten quiver
I'po(rep(q)) are chosen to be the shifts of the vertices of I'iep(q). The Auslander-
Reiten translation 7, is such that 7, X = 7, X for X € I'.o;(g) non-projective, and
7, P, = I.[-1] for * € Q. Thus, 7, induces an auto-equivalence of D®(rep(Q)).
A regular component of I'.op(@) is a connected component of I ps (rep(q)), While Pg
and Zg[—1] are glued together to form the connecting component Cq of I' pb rep (@)
which is of shape ZQ°P. The connected components of I' pe(ep(q)) are the shifts of
Cq and those of the regular components of I (q); see [3, (7.9),(7.10)].

Finally, we consider the canonical auto-equivalence F' = 71 o [1] of D(rep(Q)).
By a well known result of Keller; see [19, Section 9], the canonical orbit category

%(Q) = D"(xep(Q))/F

is a Hom-finite Krull-Schmidt 2-Calabi-Yau triangulated k-category such that the
canonical projection 7 : D?(rep(Q)) — €(Q) is triangle-exact. We shall denote by
T, the Auslander-Reiten translation of € (Q). The connected components of the
Auslander-Reiten quiver I'g(q) of €(Q) are described in the following result.

2.5. THEOREM. Let QQ be an infinite connected quiver, which is locally finite and

contains no infinite path.

(1) The canonical projection 7 : D(rep(Q)) — €(Q) sends Auslander-Reiten tri-
angles to Auslander-Reiten triangles.

(2) If I is a connected component of I pb(rep(q))> then w(I') is a connected compo-
nent of I'g(qy such that m(I') = I' as translation quivers.

(3) The connected components of I'¢(q) are the components w(I"), where I' is either
the connecting component of I' ps(vep(q)) 0T a Tegular component of I'iep(q)-

Proof. Observe that a rigorous definition of an orbit category of D®(rep(Q)) requires
an automorphism of D’(rep(Q)). In order to overcome this problem, we shall take
a skeleton 2 of D®(rep(Q)), containing the vertices of I'po(rep(@))- Then 7 is a
Hom-finite Krull-Schmidt triangulated k-category such that the inclusion functor
9 — DP(rep(Q)) is a triangle-equivalence and I'g = I'pb(rep(q))- Observe that
the translation 7, of I'ps(rep(@)) induces an automorphism of &, which is denoted
again by 7,. Setting F = 7% o [1], we obtain a group G = {F" | n € Z} of
automorphisms of 2. Observe that the action of G on & is free and locally bounded,
that is, no indecomposable object is fixed by any non-identity element of G; and
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Homg (X, F'Y) = 0 for all but finitely many integers i; see [2, (2.1)]. Now, the
image % of 2 under the canonical projection m : D°(rep(Q)) — €(Q) is a dense
full triangulated subcategory of % (Q). In particular, ¥ is Hom-finite and Krull-
Schmidt. Restricting 7 : D®(rep(Q)) — %(Q), we obtain a triangle functor 2 — ¥,
which is denoted again by 7. For X € 2 and n € Z, we define

6n,X = (6n,i)i€Z S EBiEZ HOIH@(F"X, FLX) = HOHkg(FnX,X),

where 0, ; = 1pnx if i = n; otherwise, d,; = 0. It is easy to see that &, x is
an isomorphism, which is natural in X, such that 6, x 0 6, Frx = Ongm,x, for
integers m,n. This yields functorial isomorphisms 6, : m o F"™* — 7w, n € Z, such
that § = (0 )nez is a G-stabilizer for 7; see [2, (2.3)]. It is not hard to verify that

Ty  Bicz Homg (X, F'Y) = Homo(X,Y) : (fi)icz = >iez 0iy o (fi)

is the identity map. Hence, 7 is a G-precovering; see [2, (2.5)]. Since 2 is evidently
Hom-finite and Krull-Schmidt, 7 : 2 — % a Galois G-covering; see [2, (2.8), (2.9)].
By Proposition 3.5 in [2], the exact functor 7 : 2 — % sends Auslander-Reiten
triangles to Auslander-Reiten triangles, and hence, Statement (1) holds.

Observe that I'¢(g) = I'¢. Let I" be a connected component of I'y. By Theorem
4.7 stated in [2], (1) is a connected component of I'¢ such that 7 restricts to Galois
Gr-covering 7, : I' — w(I"), where Gp = {F™ | F™(I") = I'}. Since @ is infinite,
F(I') # I for every n # 0. That is, G is trivial, and hence, 7, is an isomorphism
of translation quivers; see [2, (4.6)]. This establishes Statement (2).

Since 7 is dense, I'¢ consists of the connected components 7(6) with @ ranging
over the connected components of I'g. If @ is such a component, then & = F*(I),
where n € Z and I is the connecting component of I'g or a connected component
of I'iep(q)y- This yields (@) = w(I"). The proof of the theorem is completed.

REMARK. (1) If X € I'\ep(@) is non-projective, then 7, X =7, X =7, X.

(2) By abuse of language and notation, we shall identify the connecting compo-
nent Cq of I'p(rep(q)) With m(Cq) and call it the connecting component of I'¢(q),
and identify a regular component R of I'iep(gy With m(R) and call it a regular
component of I'¢(q)-

(3) The set .Z(Q) of objects of D’(rep(Q)) lying in Cg or a regular component of
Iep(@) form a fundamental domain of €' (Q). That is, every indecomposable object
of €(Q) is isomorphic to a unique object in F(Q). Observe that every object in
Z(Q) lies in the 7, -orbit of a preprojective or regular representation in I".ep(q)-

We shall need the following description of the morphisms between objects in the
fundamental domain of €(Q).

2.6. LEMMA. Let Q be a locally finite quiver with no infinite path, and let X, Y be
representations lying in I'iep(Q)-

(1) Hom () (X,Y) = Hom po rep(q)) (X, Y) & DHom po (o)) (Y, 72X).

(2) f X €1y andY € I, then Hom g (q)(X,Y[-1]) = Home(rep(Q))(X, TY).
(3) If X €Zg and Y ¢ I, then Hom () (X[~1],Y) = DHom pb (rep()) (Y, 7 X)-
Proof. Since D(rep(Q)) has almost split triangles, there exists a Serre duality

Home(rep(Q) (M, N[].]) = DHome(rep(Q)) (N, o M)
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for all M, N € D’(rep(Q)); see [25, (1.2.4)]. We shall prove only Statement (1),
since the other two statements can be shown in a similar fashion. Since rep(Q) is
hereditary, we deduce from the definition of F' that

Hom €(Q) ()(7 Y) = Home(GC(Q)) (X, Y) D Home(GC(Q)) (X, FY).
Since FY = (1, Y)[1], we deduce from the Serre duality that
Home(rep(Q)) (X, FY) = DHome(rep(Q)) (TD_K TDX) = DHome(rep(Q)) (Y, 7'2X).

D

The proof of the lemma is completed.
The following consequence is useful for our future investigation.

2.7. COROLLARY. Let @ be a locally finite quiver with no infinite path, and let
X €Pq andY € I'yep(qy- If X = Py for some x € Qo or'Y ¢ Pq, then

HOmcg(Q) (X, Y) = Hom rep(Q) (AX7 Y)

Proof. We claim that Hom pe (rep(0)) (Y5 TDZX) = 0. Indeed, since TD2PI = 1,1.[-1],
this is evident in case X = P,. Assume that ¥ ¢ Pg. Since X € Pq, either
TgX € Ig[—-1] or TD2X € Pgq. In the first case, the claim holds. In the second case,
Hom,ep () (Y, TgX) = 0 by Lemma 2.1. This establishes the claim. Now, the result
follows from Lemma 2.6(1). The proof of the corollary is completed.

The following result shows the existence of cluster-tilting subcategories in €(Q).

2.8. PROPOSITION. Let Q be a locally finite quiver with no infinite path. The strictly
additive subcategory & of €(Q) generated by the representations P, with x € Qg
is cluster-tilting.

Proof. Since %(Q) is 2-Calabi-Yau, the Auslander-Reiten translation 7, for €(Q)
coincides with its shift functor. Given z,y € Qo, we have 7,P, = I,[—1] and
7.1, = P,[1]. In view of Lemma 2.6(2), we obtain

Home gy (Pr, Py[1]) = Home gy (P, Iy[—1])
= HOme(rep(Q)) (anTI;Iy)
= Home(rep(Q))(P$’ Py[l])’
0.

Let X € €(Q)\Z. We may assume that X € .#(Q), the fundamental do-
main of €(Q). If X € I'epq), then X[1] = 7, X = 7,X € I'i¢p@). Choosing
x € supp(7,X), by Lemma 2.6(1), we obtain Hom ) (P,, X[1]) # 0. Otherwise,
X = Y[-1], for some Y € Zg. Choosing y € supp(Y’), in view of Lemma 2.6(1),
Home(q)(Py, X[1]) # 0. Thus, & is weakly cluster-tilting.

Let Z € #(Q). We claim that Hom () (Z, —) and Home(g)(—, Z) vanish on
all but finitely many indecomposable objects of &. Suppose first that Z € I'.ep(q)-
Then 777 = 727 if the latter is defined, and otherwise, 722 € Zg[—1]. Let 2 € Qo
be such that supp(P,) intersects neither supp(Z) nor supp(TQQZ ). By Corollary 2.7,
Home(q)(Pr, Z) = 0, and by Lemma 2.6(1), Home(g)(Z, P;) = 0. Similarly, we
can establish the claim in case Z € Zg[—1]. This shows that & is covariantly and
contravariantly bounded in ¢’ (Q). By Lemma 1.2, & is functorially finite in € (Q).
The proof of the proposition is completed.
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For the rest of this section, we shall concentrate on the infinite Dynkin case.

2.9. PROPOSITION. Let @ be an infinite Dynkin quiver with no infinite path. The

connected components of I',, ,, consist of the connecting component of shape ZQ)°P

and r reqular components of shape ZA,, where

(1) r=0if Q is of type As;

(2) r=11if Q is of type Doo;

(3) r = 2 if Q is of type AZ; and in this case, the two regular components are
orthogonal.

Proof. Tt is known that I'ep(g) has 0,1,2 regular components in case @ is of

type Aso, Do, AL, respectively; see [3, (5.16),(5.17),(5.22)]. All statements of the

proposition, except for the second part of Statement (3), follow from Theorem 2.5.

Suppose that @ is of type ASL. Let R, S be the two distinct regular components of

I'ep(@) Which, by Proposition 2.3, are orthogonal in rep(Q). Let X € Rand Y € S.

Since 72X = T;X, we deduce from Lemma 2.6(1) that Hom ) (X,Y) = 0. The

proof of the proposition is completed.

An object X of €(Q) is called a brick if Ende(g)(X) is one-dimensional over k;
and rigid if Home () (X, X[1]) = 0.

2.10. COROLLARY. Let Q be an infinite Dynkin quiver with no infinite path. Then
every indecomposable object of €(Q) is a rigid brick.

Proof. Let X be an indecomposable object of € (Q). Since 7, is an auto-equivalence
of €(Q), we may assume that X, 7, X € I'ep). Let I' be the connected com-
ponent of I'po(ep(q)y) containing X. Since I' is standard with no oriented cy-
cle; see [24, (2.3)], Hom pp (rep(@)) (X, 7, X) = 0, Hom ps (rep(g)) (X, 72X) = 0, and
End pe (rep(@)) (X) is one-dimensional. Thus, Endgqg)(X) is one-dimensional by
Lemma 2.6(1). Moreover, we have

Home () (X, X[1]) Home () (X, 7, X)
Home(GC(Q)) (X, TDX) D DHome(mp(Q)) (TD X, TE?X)
0.

o~
o~

The proof of the corollary is completed.

More generally, a strictly additive subcategory T of €(Q) is called rigid if
Home gy (X, Y[1]) = 0, for X,Y € T; and mazimal rigid if it is rigid and maximal
with respect to the rigidity property. A weakly cluster-tilting subcategory of ' (Q)
is clearly maximal rigid, and the converse is not true in general; see [6, (1.3)].

2.11. LEMMA. Let Q be an infinite Dynkin quiver with no infinite path. If T is a
strictly additive subcategory of €(Q), then it is weakly cluster-tilting if and only if
it is mazimal rigid in €(Q).

Proof. Let T be a strictly additive subcategory of € (Q), which is maximal rigid.
Let M € €(Q) be indecomposable such that Home(q)(7, M[1]) = 0. Since € (Q)
is 2-Calabi-Yau, Home gy (M, T[1]) = 0. By Corollary 2.10, M is rigid in €(Q).
Hence, the strictly additive subcategory of €(Q) generated by M and T is rigid.
Since 7 is maximal rigid, M € 7. The proof of the lemma is completed.

The following result is essential for our investigation.
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2.12. PROPOSITION. Let Q be a quiver with no infinite path of type A or AZ. If
X, Y € €(Q) are indecomposable, then Homy () (X,Y) is at most one dimensional.
Proof. Let X,Y € Z(Q). Since I'¢ (@) is stable and 7, is an auto-equivalence of
¢, we may assume that X,Y € I'\op). In particular, X, Y are preprojective or
regular representations. If X, Y & Pg, then the result follows from Proposition 2.9.
If X € Pg and Y ¢ Pg, then the result follows from Corollary 2.7 and Lemma 2.2.
If X & Pg andY € Pg, then the result follows from Lemmas 2.1 and 2.6(1). Finally,
assume that X,Y € Pg. In particular, X,Y lie in the connecting component Cq
of I' pbrep(q)), Which is standard without oriented cycles; see [3, (7.9)] and [24,
(2.3)]. In particular, Cg contains no path X ~» Y or no path ¥ ~ 7'L2)X. Thus,
Hom pb (rep()) (X, Y) = 0 or Hom po (rep()) (Y5 TSX) = 0. Now, the result follows
from Lemmas 2.2 and 2.6(1). The proof of the proposition is completed.

We are ready to present the main result of this section. We shall say that a pair
(X,Y) of indecomposable objects of €' (Q) is rigid if Hom « ) (X, Y[1]) = 0.

2.13. THEOREM. Let Q) be a quiver of type A or AL with no infinite path. Then
€ (Q) is a cluster category.

Proof. By Theorem I1.1.6 in [4] and Lemmas 2.8 and 2.11, it suffices to show that the
quiver of every cluster-tilting subcategory of € (Q) has no oriented cycle of length
two. If this is not the case, then there exists a rigid pair (X,Y") of distinct indecom-
posable objects of .7 (Q) such that Hom«(g)(X,Y) # 0 and Hom () (Y, X) # 0.
Since 7, is an auto-equivalence of ¥ (Q), we may assume that TEX , T;Y € Iep@)-
Then it follows from Lemma 2.6(1) that

Hom () (X,Y) = Hom ,ep () (X, Y) @ DHom ep ) (Y, TQzX) (%)

Suppose that Hom ,ep(g)(X,Y) # 0. By Lemma 2.2(1), Hom ,ep() (Y, X) = 0.
Then, Hom cp g (X, TQQY) # 0. Since Home () (X, 7,Y) = Home ) (X, Y[1]) = 0,
we obtain Hom,ep(g)(X,7,Y) = 0.

Let I' be the connected component of I" po(rep()) containing X. Then, I"is stan-
dard of shape ZA,, or ZAZ; see [24, (2.3)] and [3, (7.9)]. If Y € I', by Proposition
1.1, both TgY and Y lie in the forward rectangle 2% of X. Being convex, Z% also
contains 7,,Y. Applying again Proposition 1.1, Hom ps ep()) (X, 7,Y) # 0, a con-
tradiction. Therefore, Y lies in a connected component §2 of I"ps(rep(q)) different
from I'. Then, @ is of type A% by Proposition 2.9. Since X,Y are preprojective
or regular representations, by Lemma 2.1, X € Pg and Y is regular. This implies
that (2 is a regular component of I'.e;(g)- By Proposition 2.4, §2 has an infinite
wing W(S) such that, for each Z € 2, we have Hom, () (X, Z) # 0 if and only if
Z € W(S). In particular, Y,T(gY € W(S), and consequently, 7,Y € W(S). That
is, Hom ;ep () (X, 7,Y) # 0, a contradiction. Thus, Hom ¢,y (X, Y) = 0.

Similarly, we can show that Hom ep(g)(Y, X) = 0. In view of the isomorphism
(*), we obtain Hom ep(q) (Y, 72X) # 0 and Hom () (X, 72Y) # 0. Since every
connected component of I'.o;() is standard without oriented cycles, X and Y lie
in two different connected components of I'ip(q)- Since X,Y are preprojective
or regular, by Lemma 2.1, both X and Y are regular. Then @ is of type A by
Proposition 2.9 and this contradicts Proposition 2.3. The proof of the theorem is
completed.
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3. TRIANGULATIONS OF AN INFINITE STRIP WITH MARKED POINTS

The objective of this section is to study triangulations of an infinite strip with
marked points in the plane, which will serve as a geometric model for our cluster
categories of type A%2; compare [15, 16].

For the rest of this paper, we denote by B, the infinite strip in the plane of
the points (z,y) with 0 < y < 1. The points [; = (i,1), ¢ € Z, are called the
upper marked points; and v; = (—i,0), ¢ € Z, the lower marked points. An upper
or lower marked point will be simply called a marked point. By a simple curve in
B we mean a curve which does not cross itself and joins two (maybe identical)
marked points called endpoints. A simple curve is called internal if it intersects the
boundary of By, only at the endpoints. Two distinct simple curves in B, are said
to cross if they have a common point which is not an endpoint of any of the curves.

Let p,q be distinct marked points in B,,. There exists a unique isotopy class
of internal simple curves in By, joining p and g, which is called the segment of
endpoints p, q; and is written as [p,q] or [q,p]. A segment [p,q] is called an edge
if {p,q} = {l;,liz1} or {p,q} = {vs, tiy1} for some i € Z; and otherwise, an arc.
More explicitly, an arc in Bo is a segment of the form [[;, [;] with |¢ — j| > 1 called
an upper arc, or [t;, v;] with |i — j| > 1 called a lower arc, or [l;,t;] with 4,5 € Z
called a connecting arc. We shall denote by arc(Bs) the set of arcs in By, which
is equipped with a translation 7 as defined below.

3.1. DEFINITION. (1) For a marked point p in By, we define its translate 7p to be
[i+1 lfp = [;; and Tit1 if p=r.
(2) For an arc u = [p, q] in B, we define its translate Tu to be the arc [rp, 7q].

REMARK. The translation 7 is a permutation on the marked points and on the
arcs. Its inverse will be written as 7.

One says that two arcs u,v cross, or (u,v) is a crossing pair, if every curve in u
crosses each of the curves in v. Clearly, an arc does not cross itself, two crossing
arcs do not share a common endpoint, and an upper arc does not cross any lower
arc. The following easy observation will be frequently used without a reference.

3.2. LEMMA. Let (u,v) be a crossing pair of arcs in Beo.

(1) If u=[l;, ;] with i < j, then v = [l,vy] with i < p < j; or v = [lp, ;] with
1<p<j<qorp<i<qg<ij.

(2) If u=[vi,v;] withi > j, then v = [l,, t,] with i > q > j; or v = [t,, t4] with
1>p>j>qorp>i>q> 7.

(3) If u=[l;,¢;], thenv = [l [,] withp <i<gq; orv=]vy, t,] withp>j>gq; or
v=_[lp,tq] withi>pandj>qgori<pandj<g.

REMARK. By Lemma 3.2, a pair of arcs (u, v) is crossing if and only if so is (Tu, Tv).
Moreover, an arc u crosses both 7u and 7~ u.

The connecting arcs in By, play a special role in our investigation.
3.3. LEMMA. The set of connecting arcs in Boo is partially ordered in such a way

that [1;,v;] < [l,ts] if and only if i < r and j > s. In particular, two connecting
arcs are comparable if and only if they do not cross.
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The following notion is our main objective of study in this section.

3.4. DEFINITION. A maximal set T of pairwise non-crossing arcs in By, is called a
triangulation of B.

ExXAMPLE. The following picture shows a triangulation of B :

e [_5 (g [_3 l_o [_1 I [ [ [ [ [ [ [

Tg Ts Tq T3 T2 Ty tg9 ¢t-7 ¥ -2 ¥ 3 ¥ 4 ¥V_5 ¥_g T_7

We shall study some properties of connecting arcs of a triangulation. Given a
triangulation T of B, we denote by C(T) the set of connecting arcs of T.

3.5. LEMMA. Let T be a triangulation of Bs,, and let p be an integer.

(1) If there exist infinitely many i < p such that [I;,1;,] € T for some j; > p or
infinitely many j > —p such that [l;;,v;] € T for some i; > p, then no l; with
i < p is an endpoint of an arc of C(T).

(2) If there exist infinitely many i@ > p such that [}, ;] € T for some j; < p or
infinitely many j < —p such that [l;,,¢;] € T for some i; < p, then no l; with
i > p is an endpoint of an arc of C(T).

Proof. We shall prove only Statement (1). Consider a connecting arc v = [, t]

with r < p. If the first situation in Statement (1) occurs, then there exists some

integer i < r such that [[;,[;,] € T for some j; > p. In this case, v crosses [l;, [;,],

and hence, v ¢ T. If the second situation occurs, then there exists some j > s such

that [l;;, t;] € T for some i; > p. In this case, v crosses [l;,, t;], and hence, v ¢ T.

The proof of the lemma is completed.

REMARK. A similar statement holds for lower marked points.

Let T be a triangulation of B.,. For each arc u in B.,, we shall denote by T,
the set of arcs of T crossing u.

3.6. LEMMA. Let T be a triangulation of Bo, containing connecting arcs, and let u
be an arc in Bo,. If T, is infinite, then some marked point in By, is an endpoint
of infinitely many arcs in T,.

Proof. Assume that T, is infinite. If u is not a connecting arc, then the lemma is
evident. Suppose that v is a connecting arc. Choose v € C(T). Clearly, u # v.
If u,v do not cross, then they enclose a bounded region of B, having only finitely
many marked points. Then each arc in T, has an endpoint in the enclosed region.
So the lemma holds in this case. If u,v crosses, then they enclose two bounded
regions of B, each having only finitely many marked points. Again, each arc in
T, has an endpoint in one of these regions. The proof of the lemma is completed.

An upper marked point [; in By, is said to be covered by an upper arc [L,., [] if
r < i < s; and a lower marked point t; is covered by a lower arc [vp, to] if p > j > ¢.
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3.7. LEMMA. Let T be a triangulation of Boo. If C(T) is empty, then one of the
following situations occurs.

(1) Every upper marked point in Boo is an endpoint of at most finitely many upper
arcs of T and covered by infinitely many upper arcs of T.

(2) Every lower marked point in B is is an endpoint of at most finitely many
lower arcs of T and covered by infinitely many lower arcs of T.

Proof. Assume that neither of the two statements holds. We claim that some upper
marked point [, is not covered by any upper arc of T. If some upper marked point
[s is an endpoint of infinitely many upper arcs of T, since the arcs in T do not cross
each other, [, is not covered by any upper arc of T. Otherwise, since Statement (1)
does not hold, some upper marked point I, is covered only by a finite set .S of upper
arcs of T. We may assume that S is non-empty. Let p be minimal for which [, is
an endpoint of an arc in S. Using again the fact that the arcs in T do not cross
each other, we see that [, is not covered by any upper arc of T. This establishes
our claim. Similarly, there exists a lower marked point v, which is not covered by
any lower arc of T. If C(T) = 0, then [I,, t,] does not belong to T and does not
cross any of the arcs of T, a contradiction. The proof of the lemma is completed.

Let T be a triangulation of B.. An upper marked point [, is called left T-
bounded if [[;, [], [[p, t;] € T for at most finitely many ¢ < p and at most finitely
many j > —p; and left T-unbounded if [I;,1p],[l,,v;] € T for infinitely many
i < p and infinitely many j > —p. Moreover, [, is called right T-bounded if
[lp, L], [Ip,tj] € T for at most finitely many ¢ > p and at most finitely many
j < —p; and right T-unbounded if [I,,, (;], [I,, v;] € T for infinitely many i > p and
infinitely many j < —p. In a similar manner, we shall define a lower marked point
to be left T-bounded, left T-unbounded, right T-bounded, and right T-unbounded.
Note that, in these definitions, not bounded does not mean unbounded.

3.8. LEMMA. Let T be a triangulation of Boo with [[,,t4] € C(T).
(1) If 1, is left (respectively, right) T-bounded, then some [; with i < p (respectively,
i > p) is an endpoint of an arc of C(T) .
(2) Ifvq is left (respectively, right) T-bounded, then some v; with j > g (respectively,
j < q) is an endpoint of an arc of C(T).
Proof. We shall prove only the first part of Statement (1). Assume that no [; with
i < p is an endpoint of any arc of C(T) and [}, is left T-bounded. Then there exists
at most finitely many 7 < p — 1 such that [l;,{,] € T and we may suppose that ¢
is maximal such that u = [[,,, t4] € C(T). Define r =p —1if [[;,[,] ¢ T for every
i < p—1; and otherwise, let » < p — 1 be minimal such that [[,,[,] € T. By the
first part of the assumption, v = [[,, v,] ¢ T. Hence, v crosses some arc w of T.
Since w does not cross u, it is not a lower arc. If w is a connecting arc, using again
the assumption, we obtain w = [[,, t,,] with m > ¢, contrary to the maximality of
q. Hence, w = [ls, ;] with s < r <t < p. If t = p, then r < s by definition, a
contradiction. If ¢t < p, then r < p— 1, and by definition, [[,, [,,] € T which crosses
w, a contradiction. The proof of the lemma is completed.

Let X be a set of arcs in By,. We shall denote by 7X the set of arcs of the form
Tu with u € X'; and by 77 X the set of arcs of the form 77 v with v € X.
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3.9. DEFINITION. A set {2 of arcs in By is called compact if it admits a finite subset
X such that every arc in {2 crosses some arc of 72 as well as some arc of 77 Y.

Since every arc u crosses 7u and 7~ u, a finite subset of arc(Bs) is compact by
definition. A subset of a set is called co-finite if its complement is finite.

3.10. LEMMA. Let {2 be a set of arcs in Bs. If 2 has a compact co-finite subset,
then {2 is compact.

Proof. Assume that 2 has a compact co-finite subset @, with X' a finite subset of
O satisfying the condition stated in Definition 3.9. Let A be the union of X' and the
complement of © in {2, which is finite by the assumption. In particular, 73 C 74
and 77X C 7~ A. Let w be an arc in B,,. If uw € ©, then it crosses some arc of
72X and some arc of 77 Y. Otherwise, u € A, which crosses both 7u and 7~ u. The
proof of the lemma is completed.

The following notion is essential for describing the cluster-tilting subcategories
of a cluster category of type A in the next section.

3.11. DEFINITION. A triangulation T of B, is called compact if T, is compact for
every arc u in Bo,.

The rest of this section is devoted to finding a criterion for a triangulation of B,
to be compact. We start with some properties of a compact triangulation.

3.12. LEMMA. Let T be a compact triangulation of By, and let p,q be integers.
(1) If [l;,1,] € T for infinitely many i < p (respectively, i > p), then [, is left
(respectively, right) T-unbounded.
(2) If [vj,vq] € T for infinitely many j > q(respectively, j < q), then vq is left
(respectively, right) T-unbounded.
Proof. We shall prove only the first part of Statement (1). Assume that [[;,[,] € T
for infinitely many ¢ < p. We shall need to show that [[,,t;] € T for infinitely
many j > —p. Suppose that this is not the case. Then, there exists an integer ¢
such that [[,,v;] ¢ T for all j > ¢q. Consider the connecting arc u = [[,_1, tq].
By the assumption, [[;, [,] € T, for infinitely many ¢ < p — 1. Being compact, T,
has a finite subset X' satisfying the condition stated in Definition 3.9. Observe that
there exists an integer ¢ < p — 1 such that [[;,[,] € X for all j < ¢t. Moreover,
w = [, [,] € T, for some r < t.

We claim that w does not cross 7~ v for any v € Y. Indeed, this is trivial if v
is a lower arc in ¥'. Assume that v is a connecting arc in X. Then v = [l,,, t,]
with m > p—1and n > g, or else, m < p—1 and n < q. Since v does not cross
any of the infinitely many arcs [[;, [,] of T, with i <p — 1, we see that m >p—1
and n > ¢. By the assumption on ¢, we obtain m > p. Since w = [I,, [,,] with
p <m — 1, it does not cross 77v = [l_1, tp_1]-

Suppose now that v is an upper arc in X~. Then v = [l,,,, [;] withm < p—1 < n.
Since v does not cross any of the infinitely many arcs [l;, [,] € T, with i < p, we
have n = p, that is, v = [[,,,, [,,] with m < p—1. By the assumption on ¢, we obtain
t <m. Since w = [l,., [}] with r < m —1, it does not cross 7~ v = [[,,_1, [p—1]. This
establishes our claim, a contradiction. The proof of the lemma is completed.
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Let T be a triangulation of Be. It follows from Lemma 3.3 that C(T) is well
ordered whenever it is not empty.

3.13. PROPOSITION. Let T be a triangulation of Bso. If T is compact, then C(T)
is a double-infinite chain.

Proof. Let T be compact. Suppose that C(T) is empty. By Lemma 3.7, we may
assume that every upper marked point is an endpoint of at most finitely many
upper arcs of T and covered by infinitely many upper arcs of T. Consider the arc
uo = [lp, to]. Since every upper arc covering [y crosses ug, the set U(T,,) of upper
arcs of T,, is infinite. Being compact, T,, has a finite subset X satisfying the
condition stated in Definition 3.9. There exist rg, sg such that no [; with i < ry or
i > So is an endpoint of any arc of X'. Since each upper marked point is an endpoint
of at most finitely many arcs of U(T,,), the infinite set U(T,,) contains an arc
up = [l ls,] with r1 <rg—1 and s1 > s+ 1. Let v € ¥. By the assumption on
70, So, either v = [[,., [5] with 79 <7 < s < 59 or v is a lower arc. In either case, u;
does not cross 77 v or Tv, a contradiction. This shows that C(T) # 0.

By Lemma 3.3, C(T) is well ordered. Suppose that C(T) has a minimal element
[[p, tq]. Since arc(T) contains no crossing pair, we deduce from the minimality of
[[p, tq] that no I; with ¢ < p is an endpoint of an arc of C(T). By Lemma 3.8(1), [,
is not left T-bounded, and by Lemma 3.12(1), [, is left T-unbounded. In particular,
[[p, ;] € T for some j > ¢, contrary to the minimality of [[,, t,]. Similarly, one can
show that C(T) has no maximal element. Since every interval in C(T) is evidently
finite, C'(T) is a double infinite chain. The proof of the proposition is completed.

Let T be a triangulation of Bo,. A marked point p in B, is called a left T-
fountain base if p is left T-unbounded but right T-bounded. In this case, if p = [,,
then the set of arcs in T of the form [[;, [,] with ¢ < p —1 or [[,,t;] with j > —p
is called a left fountain of T at p; and if p = t,, then the set of arcs in T of the
form [v;, vy] with ¢ > ¢+ 1 or [[;, v,] with j < —q is called a left fountain of T at
p. In a dual fashion, we define a right T-fountain base and a right fountain of T
at a right fountain base. Further, a marked point p is called a full T-fountain base
if p is left and right T-unbounded; and in this case, the set of arcs of T having p
as an endpoint is called a full fountain of T at p. For brevity, a left, right or full
T-fountain base p will be simply called a T-fountain base; and the left, right or full
fountain at p will be simply called the fountain at p and denoted by F.(p).

3.14. LEMMA. Let T be a triangulation of B, containing at least one fountain.

(1) Ifp is a full T-fountain base, then it is the unique T-fountain base and it is an
endpoint of all connecting arcs of T.

(2) If p, q are two distinct T-fountain bases, then they are the only T-fountain
bases with one being a left T-fountain base and the other one being a right
T-fountain base.

Proof. Assume that some upper marked point [, is left T-unbounded. We claim
that [, is the only left T-unbounded marked point in B, and none of the [; with
i < p is an endpoint of some connecting arc of T. Indeed, the second part of the
claim follows from Lemma 3.5(1). As a consequence, the [; with ¢ < p and the v;
with 7 € Z are not left T-unbounded. Since p is a T-fountain base, T contains a
connecting arc [[,, t4]. Since arc(T) contains no crossing pair, [[;, [;] withi <p < j
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does not belong to T. In particular, no [; with j > p is left T-unbounded. This
establishes our claim.

Suppose now that p is a full T-fountain base. We shall consider only the case
where p is an upper marked point, say p = [,. By our claim and its dual, p is
the only T-fountain base. Moreover, no [; with ¢ # p is an end-point of some
connecting arc of T. Thus, p is an endpoint of all connecting arcs of T. This
establishes Statement (1). Finally, Statement (2) follows from the first part of the
claim and its dual. The proof of the lemma is completed.

3.15. LEMMA. Let T be a triangulation of Bs, and let v be an arc in By. If v
crosses infinitely many arcs of a full fountain of T, then T, is compact.

Proof. Assume that v crosses infinitely many arcs of a full fountain F, (p) of T. We
shall consider only the case where p is an upper marked point, say p = [, for some
p € Z. Then, v is evidently not a lower arc.

Suppose that v is an upper arc. Then v = [[,., [] with » < p < s. Let iy with
ip < r be maximal such that vy = [l;,, ;] € T, and let jo with jo > s be minimal
such that vo = [l,,, [;,] € T. We claim that T, NI (p) is co-finite in T,. Indeed,
let u be an arc in T, but not in F (I,). Then u is not a lower arc, and by Lemma
3.14(1), it is an upper arc. Since u does not cross vy or v, we see that u = [[;, (]
with ig i <r<j<porp<i<s<j< jo. Therefore, our claim holds.
In order to prove that T, is compact, by Lemma 3.10, it suffices to show that
T, NF,(l,) is compact. Note that vi,vs € T, NF.(I,) with 7v1 = [l;y+1, lp+1] and
T v = [lp—1, ljy—1]. Let w € T, NF,(l,). If w is an upper arc, then we deduce
from the maximality of iy and the minimality of jo that w = [I,,, (] with m <y or
w = [Ip, [,,] with jo < n. In the first situation, sincem < jp+1<r+1<p<p+1
andm<r<p—1<p<s<jo— 1, wesee that w crosses both 7v; and 77 vy. In
the second situation, since ip + 1 <r<p<p+1l<s<nandp<s<jo—1<n,
we see that w crosses both 7vq and 7~ vs. Hence, T, NF,(I,) is indeed compact.
In a similar way, one can deal with the case where v is a connecting arc. The proof
of the lemma is completed.

Let T be a triangulation of B,. For a marked point p, we shall denote by E_(p)
the set of arcs of T having p as an endpoint. If p is a T-fountain base, then the
T-fountain F(p) is by definition a co-finite subset of E,(p).

3.16. LEMMA. Let T be a triangulation of Bs with p a left or right T-fountain
base, and let v be an arc in Bs. If v crosses infinitely many arcs of F.(p), then
T, NF.(p) is compact and co-finite in E_(p).

Proof. We shall consider only the case where p is a left T-fountain base and p = [,
for some p € Z. Assume that v crosses infinitely many arcs of F,(p). Then v is
not a lower arc, since every lower arc crosses at most finitely many arcs of F_([},).
Since [, is right T-bounded, one of the endpoints of v is [, with » < p. That is,
v=[l., ] withr <p<sorv=][[,ts] withr <pand s €Z.

Let w € F.(p), which does not cross v. If v = [[,, ], then w = [[;,[,] with
r<j<p—1Ifv=][l, ¢, thenw = [l;,[,] withr <j <p—1orw = [l,, t;] with
—p <t <s. Thus, T, NF_.(p) is co-finite in F(p), and then, co-finite in E (p).

We shall show that T, NF,(p) is compact. Since [, is left T-unbounded, there
exists a maximal m (< r) such that v1 = [[,,, [,] € T. Clearly, v; € T, NF,({,). Let
u € T, NF(I,). If u is a connecting arc, then u = [[,, v;| for some ¢ > —p, which
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crosses Tv1 = [[y41, [p+1]. Otherwise, u = [[;, [,] with ¢t < r. By the maximality of
m, we obtain ¢t < m, Therefore, u crosses 7v1 = [[;41, [p41].

Next, in case v = [l,, [5], let n > —p be minimal such that [[,,v,] € T; and
in case v = [l,, 4], let n > max{—p,s} be minimal such that [[,,¢v,] € T. In
either case, set ve = [[,, t,]. Clearly vo € T, NF,([;). Let u € T, NF.({,). If u
is an upper arc, then u = [l;, [)] with ¢ < r, which crosses 77 vs = [[p_1, tp_1].
Otherwise, u = [[p, t;], where ¢ > —p, and ¢ > s in case v = [[,,v5]. By the
minimality of n, we obtain ¢ > n. Hence, u crosses 7~ vy = [[,_1, tp—1]. This shows
that T, NF.(p) is compact. The proof of the lemma is completed.

Let T be a triangulation of B,,. A marked point in B, is said to be T-bounded
if it is both left and right T-bounded, or equivalently, it is an endpoint of at most
finitely many arcs of T.

3.17. LEMMA. Let T be a triangulation of B such that every marked point in Bo
is either T-bounded or an endpoint of infinitely many connecting arcs of T. Then
every marked point in By, is either T-bounded or a T-fountain base.

Proof. Let p be a marked point, which is an endpoint of infinitely many arcs in
C(T). It suffices to show that p is a T-fountain base. Let C,(T) denote the arcs
of C(T) having p as an endpoint. We shall consider only the case where p = [, for
some p € Z. Being infinite and well-ordered, Cy(T) has no minimal element or no
maximal element. We may assume that the first case occurs.

We claim that p is left T-unbounded. Indeed, having no minimal element,
[[p,t;] € Cp(T) for infinitely many j > —p. Since arc(T) contains no crossing
pair, no [; with ¢ < p is an endpoint of a connecting arc of T. By the assumption
stated in the lemma, [; with ¢ < p is T-bounded. Suppose that the claim is false.
Then [I;,1,] € T for at most finitely many i < p. Define s =p —1if [[;,[,] ¢ T
for every j < p — 1; and otherwise, let s < p — 1 be minimal such that [, [,] € T.
Since [ is an endpoint of at most finitely many arcs of T, we may define t = s — 1
if [I;, (5] ¢ T for every i < s — 1; and otherwise, let ¢ < s — 1 be minimal such that
[[;, 5] € T. Consider the upper arc v = [l;, [,] ¢ T. Observe that v does not cross
any arc in C(T). Therefore, v crosses some upper arc u of T. Since u does not
cross any arc of Cy(T), we obtain u = [[;,, [5,] with t; <t < s1 <p. If s < s1, then
s < p—1, and hence, [I5, [,] lies in T and crosses u, a contradiction. If s; < s, then
t < s—1, and hence, [l;, (] € T which crosses u, a contradiction. Thus, s; = s, a
contradiction to the definition of ¢. This establishes our claim.

If Cp(T) has no maximal element, a dual argument shows that p is right T-
unbounded, and hence, it is a full T-fountain base. Assume that Cp(T) has a
maximal element ug = [[,, v4]. If p is right T-bounded, then [, is a left T-fountain
base. Otherwise, we deduce from the maximality of ug that [[,, [;] € T for infinitely
many j > p. Since arc(T) contains no crossing pair, ug is the only connecting arc of
T having v, as an endpoint, and no t; with j < ¢ is an endpoint of any connecting
arc of T. By the assumption stated in the lemma, t, is T-bounded, a contradiction
to the second part of Lemma 3.8(2). The proof of the lemma is completed.

We are ready to obtain the criterion for a triangulation to be compact.
3.18. THEOREM. A triangulation T of By is compact if and only if it contains

infinitely many connecting arcs, and every marked point in By is either T-bounded
or an endpoint of infinitely many connecting arcs of T.
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Proof. By Lemma 3.12 and Proposition 3.13, we need only to prove the sufficiency.
Let T be a triangulation of B, such that C(T) is non-empty and every marked
point in By, is either T-bounded or an endpoint of infinitely many arcs of C(T).

Fix an arc v in By,. We need to show that T, is compact. For this purpose, we
may assume that T, is infinite. By Lemma 3.6, some marked point is an endpoint
of infinitely many arcs of T,; and by Lemma 3.17, such a marked point is a T-
fountain base. In view of Lemma 3.14, the number ¢ of such T-fountain bases is at
most two. Let p;, with ¢ € {1,¢}, be the T-fountain bases such that T, NF.(p;)
is infinite. By Lemma 3.15, we may assume that each p; with ¢ € {1,¢} is a left
or right T-fountain base; and by Lemma 3.16, each T, NF_.(p;) with ¢ € {1,¢} is
compact and co-finite in E (p;). It is then easy to see that Ui<i<; T, NTF,(p;) is
compact. By Lemma 3.10, it suffices to show the claim that Ui<;<; T, NTF,(p;) is
co-finite in T,. Indeed, given any marked point q in B.,, we set

Q(q)_{ET(q>\(TUmFm(q))ﬂ if qe{Pl»Pt}y

T'Um]ET(q)7 if qg{pl»pt}a
which is finite by Lemma 3.16 and the definition of {py,p:}. Suppose that v is
an upper arc, say v = [l,, ;] with r < s — 1. Let u be an arc in T, but not

in F,(p1) UF.(p:). Since u crosses [[,, [5], there exists some r < i < s such that
u € E,(l;), and by definition, v € §2(1;). That is, u € Uy<;<s $2(1;). Thus, the
claim holds. Similarly, the claim holds in case v is a lower arc.

Suppose that v is a connecting arc, say v = [[,, ts]. We consider only the case
where p; is an upper marked point and a left T-fountain base. Then p; = [, for
some p; > r, and hence, F_(p1) contains a connecting arc w = [[,,, t,] with ¢ > s.
Let u be an arc in T, but not in Ui<;<¢F,(p;). If v is an upper arc then, since
it does not cross w, we obtain v = [[;, [;] with ¢ < r < j < p1. Then, u € £2(1;)
for some r < j < py. If uw is a connecting arc, we deduce from Lemma 3.5(1) that
uw = [l;,t;] with ¢ > p; and ¢ > j > s, and hence, u € 2(t;) for some ¢ > j > s.
If w is a lower arc, we obtain u = [t;, v;] with ¢ > j > s, and hence, u € 2(v;) for
some g > j > s. This establishes the claim. The proof of the theorem is completed.

EXAMPLE. The following shows a compact triangulation of B,, with two fountains.

Tio U9 T8 t7  Tg Ts5 Ty T3 T2 T tp T-1 t_2 T_3

4. GEOMETRIC REALIZATION OF CLUSTER CATEGORIES OF TYPE AZ

The objective of this section is to study the cluster structure of a cluster category
of type A in terms of the triangulations of the infinite strip with marked points
B, as introduced in the previous section.
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We start with some algebraic considerations. Let () denote a quiver of type A
with no infinite path, whose vertices are the integers and whose arrows are of the
formn — (n+1) or n < (n+1). Let a;,b;, i € Z, be the sources and the sinks,
respectively, in @ such that b; 1 < a; < b;. Letting p; : a; ~ b; and ¢; : a; ~ b;_1,
i € Z, be the maximal paths, we can picture @) as follows:

a_1 ao aq
q-1 P—1 qo0 Xw; q/f P1
..b_;j/ \b—l/ b \\bl...

By Proposition 2.9, the Auslander-Reiten quiver I'g () of ¢'(Q) consists of three
connected components, namely, the connecting component Cg and two regular com-
ponents Rr and Ry. The objects in these components form the fundamental do-
main % (Q) of €(Q). We shall describe the morphisms from objects in Cq to those
in R or Ry. For this purpose, we need some notation. Observe that Cg is of
shape ZAS containing a section; see, for definition, [23, (2.1)], as follows:

P,
/ﬂ
Py,
~
P,
/1’
P,
\
P,

We denote by R, the double infinite sectional path in Cg containing the path
Py, ~ P,,, which corresponds to the path pg : ap ~» bg in @; and by Lg the double
infinite sectional path containing the path P, , ~» P,,, which corresponds to the
path qo : ag ~» b_1. Put R; = T;RO and L; = TéLo, for each ¢ € Z. Then each object
in Cq lies in a unique R; with ¢ € Z and in a unique L; with j € Z. Recall also that
Rr, Ry are orthogonal of shape ZA ., with the string representation M (py) being
a quasi-simple object in R and M (qo) being a quasi-simple object in R,.

4.1. PROPOSITION. Let M be an object in Cq. If i € Z, then

(1) M € Ry if and only if Homeg ) (M, 7. M(po)) # 0; and in this case, for each
Y € R, one has Homeq)(M,Y) # 0 if and only if Y € W(7. M (po));

(2) M € L; if and only if Homg o) (M, 7. M(qo)) # 0; and in this case, for each
Y € Ry, one has Hom ) (M,Y) # 0 if and only if Y € W(7! M (qo)).

Proof. We prove Statement (1) for i = 0. Put d(M) = dimzHome ) (M, M (po)).

Then, by Proposition 2.12, d(M) = 0 or 1; and d(M) = dimyHom,cpq) (M, M (po))

in case M € Pg; see (2.7). In particular, for z € Qy, we have d(P,) = 1 if and

only if = appears on pg : ag ~> by. Let b be the immediate predecessor of by in

q1 : a1 ~ bg. Then, Cg has an arrow Py, — P, with P, € R_;.



22 SHIPING LIU AND CHARLES PAQUETTE

Let M be the immediate successor of Py, in Ry. Since M(pg) % P, in rep(Q),
applying Hom,ep gy (—, M (po)) to the almost split sequence in rep(Q) starting with
Py, yields a short exact sequence. Thus, d(Py,) + d(7. Py,) = d(M) + d(Fy). Since
d(Py,) = 1 and d(P,) = 0, we obtain d(M) = 1 and d(7_ P,) = 0. By induction,
we can show that d(M) = 1 and d(7_ M) = 0 if M is a successor of P, in Ry.

Assume that M is the immediate predecessor of Pp, in Ry. Let N be the imme-
diate predecessor of P, in R_;. Since Home(q)(Ps, M(po)) = 0 and M (po) 2 M
in €(Q), applying Home (g)(—, M(po)) to the almost split triangle in %'(Q) start-
ing with M, we obtain Home ) (N @ Py,, M(po)) = Home gy (M, M (po)). Thus,
d(M) = d(Pp,) + d(N) > 0. Therefore d(M) = 1, and hence, d(N) = 0. By
induction, we have d(M) = 1 and d(7,_ M) = 0 if M is a predecessor of Py, in Ry.

Suppose that d(X) =1 for some X € R; with j # 0. Write X = TéY for some
Y € Ry. This yields Home(g) (Y, 7,7 M(po)) # 0 and Home (o) (Y, M(po)) # 0.
Observe that M (po) and 7.9 M (po) = T;j M (po) are distinct quasi-simple objects
in Rgr. By Proposition 2.4, Y ¢ Pg. Thus, Y = Z[—1] with Z € Zy. By Lemma
2.6(3), we obtain Hom,.ep(q) (M (po), 7, Z) # 0 and Hom,ep () (179 M (po), T,Z) # 0,
which contradicts the dual of Proposition 2.4.

Let M € RpandY € Ri. If M € Pg, then Homcg(Q) (M, Y) = HOmrep(Q)(M, Y)
with Homyep (o) (M, M(po)) # 0. By Lemma 2.6, Hom«(g)(M,Y’) # 0 if and only
if Y € W(M(po)). If M = N[—1] with N € T, then Hom,ep(q) (M (po), 7,N) # 0
and Hom ¢ (q)(M,Y) = DHom,ep(q)(Y, 7, V). Thus, Hom gy (M,Y) # 0 if and
only if Y € W(M (pg)) by the dual of Lemma 2.6. The proof is completed.

Now, we shall parameterize the indecomposable objects of €(Q) by the arcs in
B, that is, we shall define a bijection ¢ : #(Q) — arc(Bu). Recall that .#(Q)
consists of the objects in Cg, R and Ry. For each X € Cg, there exists a unique
pair (i,7) of integers such that X = L; N R;, and we set ¢(X) = [l;,tv;]. This
defines a bijection from the objects in Cg onto the connecting arcs in Bo.

Next, consider the quasi-simple object Sy, = 7. M(qo) in Ry. For i € Z, denote
by L} the ray in Ry starting with 725, and by L; the coray ending with 725
For each X € Ry, there exists a unique pair of integers (i, ) with ¢ < j such that
X=L N Lj+7 and we set ©(X) = [l;_1,[j41]. This defines a bijection from the
objects in Ry, onto the upper arcs in By. In this way, the quasi-simple objects in
R are those mapped by ¢ to [[;, [;] with |i — j] = 2.

Finally, consider the quasi-simple object Sg = 7_ M (po) in Rr. For i € Z,
denote by Rj the ray in Rp starting with 7'; Sr; and by R the coray ending with
7;; Sg. For each object X € Rp, there exists a unique pair (i,7) of integers with
i > j such that Y = R N R}, and we set ¢ (X) = [vit1,vj-1] € arc(B). This
yields a bijection from the objects in R onto the lower arcs in B.,. Observe that
the quasi-simple objects in R are those mapped by ¢ to [v;, v;] with | — j| = 2.
This concludes the definition of our bijection . To simplify the notation, for
X € Z(Q) and u € arc(By,), we shall write a,, = ¢(X) and M, = ¢~ (u).

The following easy observation describes the Auslander-Reiten translation and
the arrows of I'¢(g) in terms of the arcs in Bso. Recall that arc(Bs) is equipped
with a translation 7 as defined in Definition 3.1.

4.2. LEMMA. Let u,v be distinct arcs in By, and let X be an object in F(Q).
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(1) We have 7, My, = Mry, 7_ M, = M,-,; and Ta, = Ur X5 T Oy = Gr-x.

(2) If u = [ly, ¢;], then there exists an arrow M, — M, in I'¢q) if and only if
v = [[1, tj_l] or v = [[i_1, tj].

(3) If u=[l;, ;] with i < j —2, then there exists an arrow M, — M, in I'gq) if
and only if v =[l;, ;1] with i < j—2 orv = [l;_1, [;].

(4) If u = [v4,t;] with i > j+ 2, then there exists an arrow My, — M, in I'gqy if
and only if v =[v;_1,t;] withi > j+2 orv=[t;,t;_1].

The following result says that rigid pairs of indecomposable objects of €(Q)
correspond to non-crossing pairs of arcs in B,.

4.3. THEOREM. Let u,v be arcs in Boy. If M, M, are the corresponding objects in
Z(Q), then (u,v) is a crossing pair if and only if Hom gy (M., My[1]) # 0.
Proof. By Corollary 2.10, we may assume that u # v. If one of u, v is an upper arc
and the other one is a lower arc, then u,v do not cross. On the other hand, one of
M, M, lies in R, and the other lies in Ri. The result follows from Proposition
2.9(3) in this case.

Consider the case where u,v are connecting arcs. Then M,, M, € Cq. There
exists no loss of generality in assuming that M, and 7, M, = M, belong to Pg.
Recall that Cq is a standard component of I ps(rep(q)) of shape ZAZ; see 24, (2.3)]
and [3, (7.9)]. Suppose first that (u,v) is crossing. We may assume that u = [[,,, t(]
and v = [l;, v;] with ¢ < p and j < ¢. By Lemma 4.2(1), Cq contains a path

My = My, ) — My, eqoy) — - — M, ;00 — My

p—1,tj+1]

— M, — o — My M,

lying in the forward rectangle of M,,. Then, Homps rep(q)) (My, M+,,) # 0 by Propo-
sition 1.1, and consequently, Hom () (M, M-,) # 0.

Suppose conversely that Hom%(Q)(Mu,Mﬂ,) =# 0. Since M,,, M, are assumed
to be representations, by Lemma 2.6(1), either Hom pb(vep(q))(Mu, M7y) # 0 or
Hom pi (rep(@y) (Mrv, T2 My) # 0. Since Cq is standard in D’(rep(Q)), we obtain
a path M, ~» M, or M, ~» Mg, that is, a path M, .| ~ M, ;,,) or
My, e~ M,y ep00) in Cq. By Lemma 4.2(1), p <i+1and ¢ < j+1 in the first
case, and i < p+1 and j < g+ 1 in the second case. Thus, (u,v) is a crossing pair.

Consider now the case where v, u are upper arcs, say u = [l,,, [4] and v = [[;, [;]
with p < ¢g—2and ¢ < j—2. Then M,,M, € Rr. Recall that R, is a standard
component of I" pu(yep(q)) Of shape ZA.; see [24, (2.3)] and [3, (7.9)]. Assume that
u crosses v, say ¢ < p < j < gq. By Lemma 4.2(3), Ry, contains a path

p—2,Cj41] i+1,t41] T

My = My, ) — M, — - — M, 15, — M,

prli+2 NS

—)M[[ ]—>M[[ ]—)---—>M[[ My,

lying in the forward rectangle of M,,. By Proposition 1.1, Homep(q) (M, M7y) # 0,
and consequently, Home gy (M, M) # 0.

Conversely, assume that Home(q) (M, M,[1]) = Homeg gy (My, M-,) # 0. By
Lemma 26(1), HOme(rep(Q))(Mu,Mﬂ,) 7é 0 or HOme(rep(Q))(Mﬂ,,TDQMu) ;é 0.
Suppose that the first case occurs. By Proposition 1.1, M, lies in the forward rec-
tangle of M,. Hence, R, has an almost sectional path M, = M, ) ~ M
the composite of two paths M, (] ~ M and M, 1., ~ M|

lp plit1]

p—1Lj41 p—2:041 i1, L] =

i1 Lj1]0
This

L+t i+1, b4l
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gives rise to ¢ < p < j < q. If the second case occurs, then p < i < ¢ < j. Thus,
(u,v) is a crossing pair. Similarly, we can treat the case where u,v are lower arcs.

Consider next the case where u = [Ip, ;] with p < ¢ —2 and v = [I;,¢j].
By definition, we obtain M, = L,,N Lq+_1 € Rp and M, = Ly N R; € Cq.
Since 7, is an automorphism of %(Q), we may assume that M, € Pg. Since
M,[1] = 7,M, € Rp, by Corollary 2.7, Hom(q)(M,, M,[1]) # 0 if and only if
Hom pb (vep(@)) (Mo, T My,) # 0. Since 7, M, = My, = My, 1,,,], by Proposition
4.1(2), the latter condition is equivalent to M ., 1,,,] € W(r.M(q)). Since
TiM(q) = 7571S, = L, N L;, and M, g0) = Lo N LY, we see that
M,y 1,00 € WI(T, M(qo)) if and only if 4 +1 > p+ 2 and ¢ > i + 1, that is,
p < i < q. This last condition is evidently equivalent to u,v crossing. The case
where u is a lower arc and v is a connecting arc can be treated in a similar manner.
The proof of the theorem is completed.

The following statement is an alternative interpretation of Theorem 4.3.

4.4. COROLLARY. Let X,Y be objects in .F(Q). Then Home(q)(X,Y) # 0 if and
only if (ay,Tay) is a crossing pair if and only if (ay, 7 a,) is crossing.

Proof. The second equivalence is evident. Since € (Q) is 2-Calabi-Yau, we have
Home gy (Y, 7, X [1]) = Home gy (Y, X[2]) = DHome ) (X, Y).

By definition, Z = M, for every object Z € #(Q). By Theorem 4.3, a, crosses
ar_x = Ta, if and only if Home (q)(Y, 7, X[1]) # 0, that is, Hom¢g)(X,Y) # 0.
The proof of the corollary is completed.

Given a strictly additive subcategory T of €(Q), we shall write arc(7) for the
set of arcs a, with T'e T N.%#(Q). As an immediate consequence of Theorem 4.3
and Lemma 2.11, we obtain the following result.

4.5. THEOREM. Let T be a strictly additive subcategory of € (Q). Then T is weakly
cluster-tilting if and only if arc(T) is a triangulation of By.

Our main objective is to determine the triangulations of B, which correspond
to cluster-tilting subcategories of €' (Q). For this purpose, the following technical
result is needed.

4.6. LEMMA. Let f : M — N and g : N — L be non-zero morphisms between
indecomposable objects in € (Q). If Home gy (M, N[1]) = 0, then Home ) (M, L)
is generated by gf over k.

Proof. Suppose that {M, N} is a rigid pair and that Homegy(M, L) # 0. By
Proposition 2.12, it suffices to show that gf # 0. Since 7, ia an auto-equivalence,
we may assume that T;M,T;N,T;L € I'iep(g), for =1 < i < 1. Let A be a
connected finite full subquiver of Q which supports all these representations and is

closed under taking successors. Then, Ti (X) = Té (X) for —1 <i < 1. Since every

projective representation in rep(A4) is projective in rep(Q), moreover, D’(rep(A))
is a full triangulated subcategory of D’(rep(Q)); see [2, (1.11)]. Let F, = 7~ o [1],
where 7 is the Auslander-Reiten translation of D®(rep(A4)). For X, Y € {M, N, L},
we have F'Y = F|Y, and as seen in the proof of Lemma 2.6,
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HOmcg(Q) (X, Y) Home(rep(Q)) (X, Y) D Home(rep(Q)) (X, FY)

= Home(rcp(A)) (Xv Y) =) Home(rop(A)) (X7 FAY)'

Since A is of type A, for some n > 0, it is well known that I peep(a)) is stan-
dard of shape ZA,; see [12, (5.5)]. By the assumption, there exists an object
N; € {N,F,N} and objects L1, Ly € {L, F, L} such that Ny, L; lies in the forward
rectangle of M, and Ly lies in the forward rectangle of Ni, in I' po(rep(a))-

Observing that 7Ny = 7, N in €(Q), by the rigidity of (M, N) in €(Q), we
obtain Hom pbyep(ay) (M, 7N1) = 0. Thus, I'pbep(a)) contains a sectional path
M ~- Ni, which is contained in a maximal sectional path M ~» Nj ~~ S, where
S has only one immediate predecessor in I'ps(rep(ay)- Then, M, Ny, Ly, Ly all lie
in the wing W(S) with wing vertex S; see, for definition, [26, (3.3)]. It is easy to
see that every wing in I"ps(rep(a)) meets each F,-orbit exactly once. In particular,
Lo = L4 lies in the forward rectangle of M. In this case, the composite of any path
from M to N; and any path from N to L2 in I'po(rep(a)) contains no monomial
mesh relation. In particular, gf # 0. The proof of the lemma is completed.

We are ready to obtain the main result of this section, which characterizes the
cluster-tilting subcategories of 4'(Q) in terms of the triangulations of Bu.

4.7. THEOREM. Let ) be a quiver of type AX with no infinite path, and let T be a

strictly additive subcategory of €(Q). The following statements are equivalent.

(1) The subcategory T is cluster-tilting.

(2) The set arc(T) is a compact triangulation of Bu.

(3) The set arc(T) is a triangulation containing infinitely many connecting arcs,
and every marked point in B is arc(T )-bounded or an arc(T)-fountain base.

In this case, moreover, arc(T) has at most two fountains, and if it has two, then

one of them is a left fountain and the other one is a right fountain.

Proof. In view of Theorem 3.18 and Lemmas 3.14 and 3.17, it suffices to show the
equivalence of Statements (1) and (2). By Theorem 4.5, it amounts to show that
T is functorially finite in € (Q) if and only if arc(7) is compact in case T is weakly
cluster-tilting. Let this be the case.

Assume first that arc(7) is compact. Let X be an indecomposable object of
%(Q). Denote by {2 the set of arcs of arc(T) crossing 7~ a,, which is compact
by the assumption. Let X be a finite subset of 2 satisfying the condition stated
in Definition 3.9. For each v € X, since a,, = v crosses 7~ a,, we may find
a nonzero morphism f, : M, — X in ¢(Q) by Corollary 4.4. We claim that
f=®ves fv: Pves M, — X is a right T-approximation for X. Indeed, let T € T
be indecomposable with Home(g)(T, X) # 0. By Corollary 4.4, a,. crosses 7~a,,
that is, a, € 2. Then, there exists w € X' such that a, crosses 77w =77a,, . By
Corollary 4.4, we can find a non-zero morphism g, : T — M,, in €(Q). Consider
the chosen nonzero morphism f,, : M,, — X. By Lemma 4.6, every morphism
g : T — X is a multiple of f,,g,,. In particular, g factors through f. This establishes
our claim. Therefore, 7 is contravariantly finite in ’(Q)). Using the dual of Lemma
4.6 and the compactness of the set of arcs of arc(T) crossing 7a,, we may show
that 7 is covariantly finite in €(Q).

Suppose conversely that T is functorially finite in €(Q). Let u € arc(Bs).
By the assumption, M., admits a minimal right 7-approximation f : T — M,,.

X
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We may write T = ®,,cx- M,,, where ¥~ is a finite subset of arc(T). For each
w € X7, restricting f to M, yields a non-zero morphism f, : M,, - M,,. By
Corollary 4.4, a,, = w crosses 7~a,, = u. This shows that ¥~ C arc(T),.
Now, for each v € arc(T),, since a,, = v crosses 7~a,, = u, we deduce from
Corollary 4.4 that there exists a nonzero morphism g : M,, — M_,,. Then g factors
through f : ®yex- My — Myy. In particular, Home gy (M,, M,,) # 0 for some
v1 € XY7. By Corollary 4.4, v crosses 7~ vy. Similarly, considering a minimal left
T-approximation for M., we obtain a finite subset X of arc(7), such that each
arc v of arc(7), crosses some arc of X 7. Then ¥ = ¥~ U X" is a finite subset of
arc(T ), satisfying the condition stated in Definition 3.9. Thus, arc(T), is compact.
This shows that arc(T) is compact. The proof of the theorem is completed.

EXAMPLE. The following picture shows a compact triangulation of By, with two
fountains, which corresponds to a cluster-tilting subcategory of € (Q).

Tio U9 g t7r  Tg Ts5 Ty T3 Ty T tg T3 T2 T_g3

We would like to conclude the paper with a final remark. Let 7 be a cluster-
tilting subcategory of € (Q) with an indecomposable object M. We know that there
exists a unique (up to isomorphism) indecomposable object M* in € (Q) but not
in 7 such that the additive subcategory generated by Tys and M* is cluster-tilting.
On the geometric side, arc(7) is a compact triangulation of By, and a,, is a side of
exactly two triangles, that is, a,, is a diagonal of a quadrilateral formed by some
arcs in arc(7) and some edges in B,. It is easy to see that the other diagonal u of
the quadrilateral together with the arcs in arc(7)\{a,, } form a triangulation of B
satisfying the condition stated in Theorem 4.7(3). By the uniqueness, we obtain

a,,. = u. In other words, mutation corresponds to arc flipping.
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