COVERING THEORY FOR LINEAR CATEGORIES WITH
APPLICATION TO DERIVED CATEGORIES

RAYMUNDO BAUTISTA AND SHIPING LIU

ABSTRACT. We extend the Galois covering theory introduced by Bongartz-
Gabriel for skeletal linear categories to general linear categories. We show
that a Galois covering between Krull-Schmidt categories preserves irreducible
morphisms and almost splits sequences. Specializing to derived categories, we
study when a Galois covering between locally bounded linear categories induces
a Galois covering between the bounded derived categories of finite dimensional
modules. As an application, we show that each locally bounded linear category
with radical squared zero admits a gradable Galois covering, which induces a
Galois covering between the bounded derived categories of finite dimensional
modules, and a Galois covering between the Auslander-Reiten quivers of these
bounded derived categories. In a future paper, this will enable us to obtain
a complete description of the bounded derived category of finite dimensional
modules over a finite dimensional algebra with radical squared zero.

INTRODUCTION

The covering technique has been playing an important role in the representation
theory of finite dimensional algebras; see, for example, [6, 8, 9, 16]. In this connec-
tion, algebras are regarded as locally bounded linear categories; see [6]. To each
Galois covering between such categories, Bongartz-Gabriel associated a push-down
functor between their module categories, which induces a Galois covering between
the Auslander-Reiten quivers in the locally representation-finite case; see [6, §].
This technique was extended later by Asashiba by studying the induced push-down
functor between the bounded homotopy categories of finitely generated projective
modules; see [1]. Now, the push-down functor also induces an exact functor between
the bounded derived categories of finite dimensional modules. It is then natural
to ask when this derived push-down functor is a Galois covering. Unfortunately,
this question is somehow problematic, since Gabriel’s notion of a Galois covering
is only for skeletal linear categories. To overcome this difficulty, Asashiba intro-
duced the notion of a precovering and called a dense precovering a covering; see [2].
Strengthening this notion of a covering, we obtain the notion of a Galois covering for
general linear categories. As an interesting example, the bounded derived category
of finite dimensional representations of a finite acyclic quiver is a Galois covering
of the corresponding cluster category introduced in [7]. One of the nice properties
of such a Galois covering is that it preserves the Auslander-Reiten theory in case
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the categories are Krull-Schmidt. Most importantly, this provides a useful tool for
studying the bounded derived category of finite dimensional modules over a locally
bounded linear category. To give more details, we outline the content section by
section.

In Section 1, we shall deal with the problem as to when the derived category of
an abelian category has arbitrary direct sums. For this purpose, we introduce the
notion of essential direct sums and show that if an abelain category has essential
direct sums, then its derived category has direct sums. In particular, the derived
category of all modules over a locally bounded linear category has direct sums.

In Section 2, based on Asashiba’s notion of a precovering, we first define the
notion of a Galois covering for general linear categories, and then search for condi-
tions for a precovering to be a Galois covering. Moreover, we introduce the notion
of a graded adjoint pair between linear categories, and show that restricting such
an adjoint pair to appropriate subcategories yields precoverings.

In Sections 3, we show that a Galois covering between two Krull-Schmidt cate-
gories preserves irreducible morphisms and almost split sequences. In particular,
one of these categories has almost split sequences if and only the other one does.

In Section 4, we introduce the notion of a Galois covering for valued trans-
lation quivers, and show that a Galois covering between Hom-finite Krull-Schmidt
categories induces a Galois covering of their Auslander-Reiten quivers.

In Sections 5, we shall strengthen Milicic’s result that an adjoint pair of exact
functors between abelian categories induces an adjoint pair between their derived
categories; see [14], by showing that a graded adjoint pair between abelian categories
having essential direct sums induces a graded adjoint pair between their derived
categories.

In Section 6, we apply our results to study the derived push-down functor asso-
ciated to a Galois covering between locally bounded linear categories. By showing
that the push-down functor and the pull-up functor between the module categories
form a graded adjoint pair, we obtain a graded adjoint pair formed by the derived
push-down functor and the derived pull-up functor. Restricting the derived push-
down functor, we obtain a precovering between the bounded derived categories of
finite dimensional modules, and in case the group is torsion-free, it is a Galois
covering if and only if it is dense.

In Section 7, specializing to locally bounded linear categories with radical squared
zero, we prove that such a linear category admits a gradable Galois covering, which
induces a Galois covering between the bounded derived categories of finite dimen-
sional modules, and a Galois covering between the Auslander-Reiten quivers of
these derived categories.

1. PRELIMINARIES

Throughout this paper, all categories are skeletally small, and morphisms are
composed from the right to the left. Let R be a commutative ring. An R-linear
category is a category in which the morphism sets are R-modules such that the com-
position of morphisms is R-bilinear. All functors between R-linear categories are
assumed to be R-linear. An R-linear category is called Hom-finite if the morphism
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modules are of finite R-length, additive if it has finite direct sums, and skeletal if
the endomorphisms algebras are local and the isomorphisms are automorphisms. In
the sequel, a linear category refers to a Z-linear category and an additive category
refers to an additive Z-linear category. Moreover, a Krull-Schmidt category is an
additive category in which every non-zero object is a finite direct sum of objects
with a local endomorphism algebra.

Throughout this section, A stands for an additive category, whose object class is
written as Ag. We shall say that A has direct sums provided that any set-indexed
family of objects in A has a direct sum. For brevity, we assume that any family of
objects in A is always set-indexed. Let X;, ¢ € I, be objects in A such that @;c; X;
exists with canonical injections gq; : X; — @;e1r X, j € I. By definition, A has
unique morphisms p; : ®ier X5 — X, j € I, called pseudo-projections, such that

1, ifi=y;

() pidy = { 0, ifi#j,

for all 4,5 € I. An object M € A is called essential in ®;c;X; provided, for any
morphism f : M — ®;er X, that f = 0if and only if p; f = 0 for all j € I. If every
object in A is essential in @;c; X;, then @;;X; is called an essential direct sum.
By saying that A has essential direct sums, we mean that each family of objects
in A has an essential direct sum. Suppose that the product IL;c; X; exists with
canonical projections 7; : ll;er X; — Xj, j € J. Then A has a canonical morphism
o Bier X; — e X, which makes the diagram

Bier X ——>ier X;

N

X

J

commute, for every j € I. The following observation explains the essentialness of a
direct sum.

1.1. LEMMA. Let A be a linear category with objects X;, i € I. If both @icr X;
and Tl;e; X; exist in A, then @;c1 X; is essential in A if and only if the canonical
morphism p : Bier X; — ier X, is a monomorphism.
Proof. Suppose that both ®;c; X; and Il;c; X; exist in A, with canonical injec-
tions q; : X; — @;er X;, pseudo-projections p; : @;er X; — X, and canonical
projections m; : Il;e; X; — Xj, j € I. Assume first that p : @ier Xy = icr X
is a monomorphism. If f: M — @®;cr X; is such that p; f = 0 for all j € I, then
miuf = 0forall j € I. Thus pf = 0, and hence f = 0. That is, B;cs X; is essential.
Assume conversely that ®;c; X; is essential. If g : N — ®;cr X; is such that
g = 0, then p;jg = mjug = 0 for all j € I, and hence ¢ = 0. That is, p is a
monomorphism. The proof of the lemma is completed.

REMARK. (1) If I is finite, then p : ®;c; X; — IL;c; X; is an isomorphism. There-
fore, finite direct sums are always essential.

(2) Let S be aring. The category Mod.S of all left S-modules has direct sums and
products, and each direct sum embeds canonically in the corresponding product.
By Lemma 1.1, ModS has essential direct sums.
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1.2. LEMMA. Let A, B be linear categories, and let (A, B) be the category of linear
functors F : A — B. If B has (essential) direct sums, then so does F(A,B).

Proof. Tt is evident that % (A, B) is a linear category. Suppose that B has direct
sums. Consider a family of linear functors F; : A — B, i € I. For each a € Ag, let
@icrFi(a) be the direct sum of F;(a), ¢ € I, in B with canonical injections g¢;(a) :
Fj(a) = ®;erF;(a) and pseudo-projections p; : @ierFi(a) — Fj(a), j € I. There
exists a unique linear functor F : A — B such that F(a) = ®;er Fi(a) for a € Ay.
It is easy to see that F' is the direct sum of F;, i« € I, with canonical injections
g; = (g;(a))eca, and pseudo-projections p; = (p;(a))aca,, j € I. Moreover, if
@icrFi(a) is an essential direct sum for every a € Ap, then F is an essential direct
sum of the F;. The proof of the lemma is completed.

Let X;, i € I, be objects in A such that @®;c; X; exists with canonical injections
qj : Xj = @ier Xy, j € I. Foreach M € Ay, the category of abelian groups has a di-
rect sum @,¢7 A(M, X;) with canonical injections u; : A(M, X;) = ®ier A(M, X;).
Considering the maps A(M,q;) : A(M,X;) = AM,®icr Xi), j € I, we get a
canonical morphism v, : ®;er A(M, X;) = A(M, ®;cr X;) such, for every j € I,
that the following diagram commutes:

A(M, X;) ——> @1 A(M, X;)

Unr

.A(M, @ie[ Xl)

In view of the equations stated in (x), we see that v, is a monomorphism. It is
important to find conditions for v,, to be an isomorphism.

1.3. PROPOSITION. Let A be a linear category with a direct sum ®;cr X;. If M is
essential in ®;c; X; with A(M,X;) = 0 for all but finitely many i € 1, then the
canonical morphism v, : @ier A(M, X;) —= A(M, ®;cr X;) is an isomorphism.

Proof. Assume that M is essential in @;c; X; and J C I is finite such that
A(M, X;) =0 for : € I\J. Let g; : X; = @®;crX; be the canonical injections and
p; : @ier Xi = X the pseudo-projections. Given any morphism f : M — @;erX;
in A, we see that g = 3, ;p;f is in @;er A(M, X;). Consider the morphism

h=u,(9) = e apif- I i € J, then ph = 3. ;piajp;f = pif. Otherwise,
pih = Zjeri‘Iijf =0 = p;f. Thus, f = h = y,(g). This shows that 1, is an
epimorphism. The proof of the proposition is completed.

Assume now that A is a full additive subcategory of an abelian category 2A. A
complex (X*,d% ), or simply X", over A is a double infinite chain

an nt1
--~*>X"*X>X"+1L>X”+2H-n~, nez

of morphisms in A such that d}“d} = 0 for all n, where X" is the component of
degree n of X°, and d% is the differential of degree n. Such a complex X" is called
bounded-above if X™ = 0 for all but finitely many positive integers n, bounded if
X™ = 0 for all but finitely many integers n, and a stalk complex concentrated in
degree s if X™ = 0 for all integers n # s. The n-th cohomology of a complex X*
is H*(X*) = Ker(d%)/Im(d% ") € 2. One says that X* has bounded cohomology if
H™(X") = 0 for all but finitely many integers n and that X" is acyclic if H*(X") =0
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for all integers n. A morphism of complexes f*: X' — Y consists of morphisms
[T X" = Y™ n € Z,such that f*dy = d% f**! for all n € Z. Such a morphism f*
is a quasi-isomorphism if f™ induces an isomorphism H™(f") : H"(X") — H"(Y")
for every n € Z; and null-homotopic if there exist A” : X” — Y~ n € Z, such
that f* = d%h" + h"d%, for all n € Z.

The complexes over A form an additive category C(A). For X* € C(A) and
s € Z, the shift of X* by s is the complex X*[s] of which the component of degree n
is X"+ and the differential of degree n is (—1)*d’y"*. The automorphism of C'(.A)
sending X* to X'[1] is called the shift functor of C'(A). The full subcategories of
C(A) generated by the bounded-above complexes and by the bounded complexes
will be denoted by C~(A) and C?(A), respectively. Moreover, C~+*(A) denotes the
full subcategory of C~(A) generated by the complexes of bounded cohomologies.

Fix x € {0, —,b,{—,b}}. The homotopy category K*(A) is the quotient category
of C*(A) modulo the ideal of null-homotopic morphisms. This is a triangulated
category whose translation functor is the shift by one and whose exact triangles
are induced from the mapping cones. Let P’ : C*(A) — K*(A) be the canonical
projection functor. For a morphism f* € C(A), we shall write f* = P7(f) € K*(A).
The quasi-isomorphisms in K*(A) are the images of the quasi-isomorphisms in
C*(A) under P, which form a multiplicative system. The derived category D*(A)
of A is the localization of K*(A) with respect to the quasi-isomorphisms, which is
also a triangulated category with the exact triangles induced from those of K*(A).
The morphisms in D*(A) are the equivalence classes f°/5" of the diagrams

X 5 y* f 7
in K*(A) with 5" a quasi-isomorphism. We have an exact functor of triangulated
categories, called the localization functor, LY : K*(A) — D*(A), sending f*to f*/1.
For a morphisms f*in C*(A), we shall write f* = Li(Pr(f)) € D*(A).

Next, we shall study the existence of direct sums in complex categories, homotopy
categories and derived categories.

1.4. LEMMA. Let A be a full additive subcategory of an abelian category. If A has
direct sums, then so do C(A) and K(A). Moreover, if A has essential direct sums,
then so does C(A).

Proof. Suppose that A has direct sums. Let X, i € I, be complexes over A. For
n € Z, let X™ be the direct sum in A of the X*, i € I, with canonical injections
g+ X* — X" and pseudo-projections p!* : X" — X[, and set d} = @je; d;’
This yields a complex (X*,d; ) over A, which is clearly the direct sum in C'(A) of
the X with canonical injections ¢; = (¢/')nez : X; — X° and pseudo-projections
p; = (PM)nez : X° — X, i € I. Moreover, one sees easily that this direct sum is
essential in C'(.A) if all the direct sums @;c; X[, n € Z, are essential in A.

Next, we claim that X* is the direct sum of the X, i € I, in K (A) with canonical
injections g; and pseudo-projections p; . It suffices to show the following fact: if
fr: X' — Y is a morphism in C(A) such that f°g; is null-homotopic for every
i € I, then f°is null-homotopic. Indeed, let A" : X — Y™~ be such that
ffq = dz’lhf + h?“dzi, for i € I and n € Z. Then, for each n € Z, there

exists some u” : X" — Y™~ ! such that hl' = u"q?, for every i € I. This yields
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it = dﬁ’lu"q?—l—u"“qfﬂdzi = (d tu4u"td g fori € Tand n € Z. Asa
consequence, f" = d~tu" +u"td?, for every n € Z, that is, f*is null-homotopic.
The proof of the lemma is completed.

In general, the direct sums in K (A4) are not necessarily essential even if those in
A are essential. Nevertheless, we have the following partial result.

1.5. LEMMA. Let A be a full additive subcategory having essential direct sums of an
abelian category, and let M°, X; i € I, be complezes over A. If C(A)(M*, X;)=0
for all but finitely many ¢ € I, then M" is essential in the direct sum of the X,
iel, in K(A).

Proof. Assume that J is a finite subset of I such that C(A)(M",X;) = 0 for
i € I\J. Let X" be the direct sum of the X, i € I, in C'(A) with pseudo-projections
p; + X° = X;. Then X™ is the direct sum of the X, ¢ € I, in A with pseudo-
projections pi* : X" — X7 for every n € Z. By Lemma 1.4, X" is the direct sum
of the X:, ¢ € I, in K(A) with pseudo-projections p; : X* — X:.

Let f*: M' — X" be a morphism in K(A) such that p; f* = 0, that is, p; f*
is null-homotopic, for all ¢ € I. Let A} : M"™ — Xi”_1 be morphisms such that
prft = dpthy - hPTNAY for i € I and no€ Z. Setting A" = 3.5 q) " hY,
we obtain p}' f" = p?(dg_lh” + h""‘ld]’;), for i € I and n € Z. Since the direct

sums in A are essential, f™ = d"~'h" + h"*!d" for n € Z. This shows that f*is

null-homotopic, that is, f*= 0. The proof of the lemma is completed.

For the existence of direct sums in derived categories, we shall deal only with
derived categories of abelian categories. Let us start with an easy observation.

1.6. LEMMA. Let 2A be an abelian category with a family of short exact sequences

0 L; i M; L N; 0, ¢ € I. If A has essential direct sums, then it has

a short exact sequence as follows:

0 — DjerL; B2 DierM; Lo DierN; —=0.

Proof. Let 0 L ! M2~ N 0 denote the sequence stated in the

lemma. Using the universal properties of direct sums, one sees that g is the cokernel
of f. Let ¢; : L; — L and u; : M; — M be the canonical injections, and p; : L — L;
and v; : M — M; the pseudo-projections. Fix ¢ € I. Then v; fq; = viu; fi = fi.
For any j € I, if j = 4, then (v;f — fipi)g; = vifai — fipigi = 0; and otherwise,
(vif = fipi)g; = vifq; = viu; f; = 0. Thus, v;f — fip; = 0.

Suppose that L is an essential direct sum of the L;. Let h : X — M be such
that fh = 0. Then f;p;h = v;fh = 0, and since f; is a monomorphism, p;h = 0
for all ¢ € I. Since X is essential in L, we obtain h = 0. This proves that f is a
monomorphism. Since 2 is abelian, f is the kernel of its cokernel, that is g. The
proof of the lemma is completed.

1.7. COROLLARY. Let A be an abelian category, having essential direct sums. If
si : X; =Y, i€, are quasi-isomorphisms in C(2A), then the canonical morphism
Dicrs; : Dier X; — Dicr Y, is a quasi-isomorphism.
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Proof. Let s; : X;: — Y, i € I, be quasi-isomorphisms in C(). We write
X' =®icr X;, Y'=@ic1 Y, and s = ®;cr s; . In view of Lemma 1.6, we see that
Im(d?) = @ier Im(d? ) and Ker(d? ') = @;er Ker(d? ), for all n € Z. This in turn
implies that H"(s") = @®;cr H*(s; ), and consequently, H"(s") is an isomorphism.
The proof of the corollary is completed.

We are ready to state the main result of this section; compare [13, (3.5.1)].

1.8. THEOREM. Let A be an abelian category. If A has essential direct sums, then
D) has direct sums.

Proof. Suppose that 2 has essential direct sums. Let X;, ¢ € I, be complexes over
2(. By Lemma 1.4, C'(2) has an essential direct sum X" of the X; with canonical
injections ¢; : X; — X'. We shall show that X" is the direct sum of the X; in
D(2() with canonical injections ¢; : X; — X".

Let 6; : X; — Y*, i € I, be morphisms in D(A). Write §; = f;/5;, where
s; + Z; — X is a quasi-isomorphism and f; : Z; — Y is a morphism in C(2I).
Let Z* be the direct sum in C'(2) of the Z; with canonical injections u; : Z; — Z".
By Corollary 1.7, s° = @®er s; : Z°— X' is a quasi-isomorphism. Moreover, there
exists a morphism f*: Z* — Y in C() such that f; = fru;, for all ¢ € I. Set
n'=f/5: X — Y. Forany i€ I, since su; = q;s;, we obtain

g = Fui /s = Fi/5 =6

For proving the uniqueness of 7, it suffices to show that n° = 0 in case 0;, = 0,
for all ¢ € I. Indeed, in this case, C(2l) has quasi-isomorphisms r; : L; — Z;,
i € I, such that f;7; =0, for every i € I. Let L' = @;e; L; € C() with canonical
injections v; : L; — L' By Corollary 1.7, "= @®,;¢r; is a quasi-isomorphism,

such that r'v; = u;r;. This yields f'7 v, = fru;r; = f;r; =0, for all i € I.
By Lemma 1.4, L" is a direct sum in K () of the L; with canonical injections ;.
Hence, f7'= 0, and thus, "= f°/5" = 0. The proof of the theorem is completed.

For later application, we study some useful properties of bounded-above com-
plexes of projective objects.

1.9. LEMMA. Let 2l be an abelian category, and let X°,Y ", P* be complexes over U,
where P* is bounded-above of projective objects.
(1) The localization functor L, : K(A) — D(2) induces an isomorphism
Lp-x-: K@) (P, X") = DR)(P,X"): frs f.

(2) If 5 : X* — Y is a quasi-isomorphism and f°: P* — Y* is a morphism in

K(Q), then f'=5"g; for some morphism g": P*— X" in K(2).
Proof. Statement (1) is well known; see, for example, [17, (10.4.7)]. Let5*: X* —» Y~
be a quasi-isomorphism and f°: P* — Y* a morphism in K(2). Observing that
(3971f" € D)(P,X"), we get some morphism g*: P* — X* in C(2) such that
(59~'f =g, that is, f* = 5°G" Since Lp-x- is an injective map, f* = 5'g". The
proof of the lemma is completed.

1.10. PROPOSITION. Let 2 be an abelian category having essential direct sums, and
let P, X;, i € I, be complexes over A, where P* is bounded-above of projective
objects. If C(A)(P*, X;) =0 for all but finitely many i € I, then P° is essential in
the direct sum of the X; i € I, in D().
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Proof. Let X" be the direct sum of the X}, i € I, in C(2() with pseudo-projections
p; : X' — X;. By Lemma 1.4 and Theorem 1.8, X" is the direct sum of the X;,
i € I, in K(2A) and in D(Q) with pseudo-projections p; : X* — X;, i € I and
p; : X* — X, respectively.

Assume that J is a finite subset of I such that C'(A)(P*, X;) =0forie I\J. In
particular, K (2)(P*, X;) =0 for ¢ € I\J. By Lemma 1.9(1), D()(P", X;) =0, for
i€ I\J. Let 0": P*— X" be a morphism in D(2() such that p; =0, for all i € I.
By Lemma 1.9(1), 8° = §° for some morphism g*: M* — X" in C(2). This yields
p;g° =0, and by Lemma 1.9(1), p; g = 0 for all ¢ € I. Since P"is essential in the
direct sum @®;c5 X; in K(2); see (1.5), we obtain g'= 0. Hence, 6 = 0. The proof
of the proposition is completed.

Let € be a full abelian subcategory of 2[. We shall say that € has enough
A-projective objects provided that, for any X € &g, there exists an epimorphism
e: P — X in € with P being projective in 2. The following result is useful.

1.11. LEMMA. Let 2 be an abelian category, and let € be a full abelian subcategory
of A. If € has enough A-projective objects, then D°(€) can be regarded as a full
triangulated subcategory of D(2L).

Proof. Assume that € has enough 2-projective objects. It is well known that D®(&)
can be regarded as a full triangulated subcategory of D~ (&); see [10, (6.15)]. Hence,
it suffices to show that D~ (€) can be regarded as a full triangulated subcategory
of D(). Indeed, K~ (€) is a full triangulated subcategory of K (2). The inclusion
functor j : K= (€) — K(2) induces an exact functor of triangulated categories
P : D= (¢) — D() such that Ly oj = j° o L, where L : K~ (¢) — D~(€) is the
localization functor. We need only to show that ;7 is fully faithful.

Fix X°,Y" € C(€). Since € has enough 2-projective objects, K~ () has a
quasi-isomorphism 5°: P* — X°, where P’ is bounded-above of projective objects
in 21; see [10, (7.5)]. Let #°: X* — Y* be a morphism in D(2A). Write 8" = f*/7,
where 7' : M — X" is a quasi-isomorphism in K (). By Lemma 1.9(2), 5= g'7
for some g*: P*— M"in K (1), and hence, §° = (f*g")/5 = jP(L(f'g")L(5")71).

Now, let 7 : X* — Y* be in D~ (&) with jP (") = 0. Write ° = L(h")L(£") 71,
where £*: N* — X" is a quasi-isomorphism in K~ (¢). Then h°/#" is null in D(2).
Hence, K () has a quasi-morphism @ : U* — N* such that h'@’ = 0. By Lemma
1.9(2), K~ (€) has a morphism ¢ : P*— N"such that "= ¢'o". Since §', " are quasi-
isomorphisms in K~ (€), so is v". Using Lemma 1.9(2) again, we obtain a morphism
w' : P*— U’ in K(A) such that o° = @'w". This yields h'0" = h'@'w" = 0.
Therefore, ° = 0. The proof of the lemma is completed.

2. GALOIS COVERING OF LINEAR CATEGORIES

The main objective of this section is to extend Gabriel’s notion of a Galois co-
vering for skeletal linear categories to general linear categories. Throughout this
section, let A be a linear category equipped with an action of a group G, that is,
there exists a group homomorphism p from G into Aut(.A), the group of automor-
phisms of A.

2.1. DEFINITION. Let A be a linear category with G a group acting on A. The
G-action on A is called
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(1) free provided that g-X % X, for any indecomposable X € A and any non-
identity g € G;

(2) locally bounded provided, for any indecomposable X,Y € A, that A(X,g-Y) =0
for all but finitely many g € G;

(3) directed provided, for any indecomposable X,Y € A, that A(X, ¢g-Y) =0 or
A(g-Y, X) =0 for all but at most one g € G;

(4) admissible provided that it is both free and locally bounded.

A group is called torsion-free if every non-identity element is of infinite order.

2.2. LEMMA. Let A be a linear category with G a torsion-free group acting on A.
If the G-action on A is locally bounded, then it is free.

Proof. Let X € Ay be indecomposable such that there exists an isomorphism
u: X — g-X, for some g € G. Then
(g"w)o -0 (gu)ou: X = g1 X

is an isomorphism, for every ¢ > 1. If the G-action is locally bounded, then g is of
finite order, and hence, g is the identity of G. The proof of the lemma is completed.

Let F : A — B be a functor between linear categories. By abuse of notation,
we identify g € G with p(g) € Aut(A), where p is the homomorphism from G into
Aut(A). In this way, Fog: A — B is an additive functor. Recall that a functorial
(iso)morphism §g : F'og — F consists of (iso)morphisms 64 x : (Fog)(X) — F(X)
with X € By, which are natural in X.

The following definition is due to Asashiba originally under the name of inva-

riance adjuster; see [2, (1.1)].

2.3. DEFINITION. Let A, B be linear categories with G a group acting on A. A
functor F': A — B is called G-stable provided there exist functorial isomorphisms
0g: Fog— F, ge @, such that

On,x ©0g h.x = Ogh, X,

for any g,h € G and X € Ay. In this case, we call 6 = (§4)4ec a G-stabilizer for F.

REMARK. (1) By definition, 5;§( = 04-14.x for g € G and X € Ap; and 6. = 1p,

where e is the identity of G.
_ 5971’ 0
Po.x = ( 0 9z ) '

(2)If X =Y @ Z, then
(3) The G-stabilizer ¢ for F' is called trivial if 6, = 1p, for every g € G. In this
case, we shall say that F' is G-invariant.

2.4. LEMMA. Let A, B be linear categories with G a group acting on A, and let
F: A— B be a functor with a G-stabilizer 6. If u: X = ¢g-Y andv:Y — h-Z,
where g, h € G, are morphisms in A, then

(On,z 0 F(v)) 0 (05, © F (1)) = gn,7 © F((g-v) 0 u).
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Proof. Let u: X = g-Y andv:Y — h-Z, with g,h € G, be morphisms in A.
Applying F yields a diagram

F(X) = F(gv) 22 Flg-(h-2)) — F((gh)-2)

5g,h»Zl J{%h,z

61
F(U) h,Z F(Z)7

" pnez)

where the left square is commutative since d4 y is natural in Y, and the right square
is commutative by Definition 2.3. The proof of the lemma is completed.

The following definition is also due to Asashiba; see [2, (1.7)].

2.5. DEFINITION. Let A, B be linear categories with G a group acting on A. A
functor F' : A — B is called a G-precovering provided that F' has a G-stabilizer §
such that, for any X, Y € Ag, the following two maps are isomorphisms:

Fxy : ®gec AX,gY) = B(F(X),F(Y)) : (ug)gec = X yeq gy © Fluy).
FXY  @yeq Alg-X,Y) = B(F(X), F(Y)) : (v)gec = Yyee Flvg) 05, k-

REMARK. In the above definition, as observed by Asashiba, it is sufficient to require
all Fxy be isomorphisms, or all F¥¥ be isomorphisms; see [2, (1.6)].

In the following two results, we collect some properties of a precovering functor.

2.6. LEMMA. Let A,B be linear categories with G a group acting on A, and let
F: A— B be a G-precovering with a G-stabilizer §.

(1) For any X,Y € Agy, we have the following decompositions
B(F(X),F(Y)) = @gec dg,y © F(A(X,9Y)) = Bgec F(A(g-X,Y)) 0 6 .

(2) The functor F is faithful, and in particular, it sends decomposable objects to
decomposable ones.

Proof. Fix XY € Ap. By definition, we have an isomorphism
Fxy : @gec AX,9'Y) = B(F(X), F(Y)) : (ug)gec = EQGG bg,v © F(ug).

This yields immediately the first decomposition stated in Statement (1). Simi-
larly, the second decomposition follows from the defining isomorphisms FX¥ stated
in Definition 2.5. Furthermore, since 0.,y = 1p(y), where e is the identity of G, the
isomorphism Fx y restricts to a monomorphism

F.: A(X,Y) = B(F(X),F(Y)) : urs F(u).

The proof of the lemma is completed.

2.7. LEMMA. Let A,B be linear categories with G a group acting on A, and let
F: A— B be a G-precovering. Consider a morphism u: X —Y in A.

(1) Ifv: X = Z orv:Z —Y is a morphism in A, then v factorizes through u if
and only if F(v) factorizes through F(u).

(2) The morphism u is a section, retraction, or isomorphism if and only if F(u) is
a section, retraction, or isomorphism, respectively.
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Proof. (1) Let § be the G-stabilizer for F. Assume first that v € A(X, Z). If v
factorizes through w, then F(v) evidently factorizes through F'(u). Suppose con-
versely that F'(v) = w o F(u) for some w : F(Y) — F(Z) in B. By Lemma 2.6(1),
we may write w = Y -, 84,z o F(w;), where g1,...,9, € G are distinct, and
w; € A(Y,g;-Z). This gives rise to

F(v) = Z?:l 69,2 © F(w;) o F(u) = Z?:1 09,2 © F(w;i o).

In view of Lemma 2.6(1), there exists some 1 < s < n such that g; = e, the
identity of G, and F'(v) = F'(wsow). Since F' is faithful by Lemma 2.6(2), v = wsu.
In case v € A(Z,Y), we can establish Statement (1) in a dual manner.

(2) Specializing Statement (1) to the case where v = 1x or v = ly, we obtain

the first two parts of Statement(2), and which in turn imply the third part. The
proof of the lemma is completed.

A functor F' : A — B between linear categories is called almost dense if each
indecomposable object in B is isomorphic to an object lying in the image of F'.

2.8. DEFINITION. Let A, B be linear categories with G a group acting admissibly

on A. A G-precovering F': A — B is called a Galois G-covering provided that the

following conditions are verified.

(1) The functor F' is almost dense.

(2) If X € A is indecomposable, then F(X) is indecomposable.

(3) If X,Y € A are indecomposable with F(X) = F(Y), then there exists some
g € G such that Y = g¢-X.

REMARK. (1) In case A, B are Krull-Schmidt, a Galois G-covering F': A — Bis a
dense functor, and consequently, F' is an equivalence if and only if G is trivial.

(2) If A,B are skeletal linear categories over a field, then a Galois covering
F : A — B in Gabriel’s sense; see [8, (3.1)] is simply a G-invariant Galois G-
covering.

The next two results will be useful for determining when a precovering is a Galois
covering.

2.9. LEMMA. Let A, B be linear categories with G a group acting admissibly on A,
and let F : A — B be a G-precovering. Consider an object X in A such that
End 4(X) is local with a nilpotent radical.
(1) Endg(F(X)) is local with a nilpotent radical.
(2) IfY e Awith F(Y) 2 F(X), then Y = g-X for some g € G.
Proof. Let 6 be the G-stabilizer for F'. By Definition 2.5, we have an isomorphism
Fx : ®geq A(X,9-X) = Endp(F (X)) : (ug)gec — deG dgv 0o F(uyg).
(1) Let e denote the identity of G. Consider the additive subgroup
J = F(rad (Enda(X))) + 3.4 eq 0g.x © F(A(X, g-X))

of Endp(F(X)). By hypothesis, End 4(g-X) is local, for every g € G. Since the
G-action on A is free, any morphism u : X — ¢g- X with g # e is not invertible.
Letu: X -g-Xandv: X — h-X, with g, h € G, be morphisms in A. If u or v
is not invertible, then (g-v)owu : X — (gh)- X is not invertible. In view of Lemma
2.4, we see that

On,x 0 F(v) 06g x 0 F(u) = dgpn,x © F((g-v)ou) € J.
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This implies that J is a two-sided ideal in Endg(F(X)). As a consequence, the
isomorphism F'x induces a surjective algebra homomorphism

Fx : End4(X)/rad(End 4(X)) — Endg(F(X))/J.

Since End4(X)/rad(End4(X)) is a division algebra, F'x is an isomorphism. In
particular, Endg(F(X))/J is a division algebra.

Since the G-action on A is locally bounded, there exists a finite subset Gy of
G, say of n elements, such that A(X, g -X) = 0 for all g € G\Gy. Moreover, by
hypothesis, rad(End 4 (X)) = 0, for some d > 0. Then, radEnd4(g - X)) = 0, for
every g € G. Set m = nd+1. We claim that u,, - - - uguy = 0, for uy, ug, ..., uy, € J.
Indeed, with no loss of generality, we may assume that u; = 0,4, x o F'(v;), where

g; € G and v; : X — g;-X is a non-invertible morphism, ¢ = 1,...,m. Put hg =€,
and h; =¢g1---g; and w; = h;_1 - v;, for i =1,...,m. Consider the sequence
X b X by X B 1 X % b, X

of non-invertible morphisms. If h; € G for some 1 < i < m, then w,, - - - wow; = 0.
Otherwise, since m > nd, there exists some ¢t with 1 < t < n such that the
number of indices j with 1 < j < m for which h; = h; is greater than d. Since
rad(End 4 (hy-X)) = 0, we have w, - - - wow; = 0. By Lemma 2.4, we have

Uy -+ - Uty = Op,, x O F'(Wpy -+ - wowy) = 0.

This proves our claim, and hence, J™ = 0. In particular, J C rad(Endg(F(X))).
Since Endg(F(X))/J is a division algebra, we obtain J = rad(Endg(F(X))). That
is, Endp(F(X)) is local with a nilpotent radical.

(2) Let Y € A be such that F(X) = F(Y). By Statement (1), Endg(F(Y)) is
local. Since F' is faithful by Lemma 2.6(2), End 4(Y") has no proper idempotent.
Let now u : F(X) —» F(Y) and v : F(Y) — F(X) be morphisms in B such that
vu = lp(x). By Lemma 2.6(1), we may write u = >;_| dg,,y © F(u;), where
915+, gr € G are distinct and u; € A(X, g;Y); and v = 327, O, x 0 F(v;), where
hi,...,hs € G are distinct and v; € A(Y, h;-X). Applying Lemma 2.4, we obtain

lrx) = ZlSiST;ISjSS Oginy © F'((gi-v5) o wi).

By Lemma 2.6(1), 1p(x) = 32, j;gin,=e £((9i-vj) 0 u;). Since F is faithful by
Lemma 2.6(2), 1x = Zi,j;gihj:e (gi - v;) o u;. Since End 4(X) is local, there exist

i,j such that h; = g;' and (g; - vj) o u; is invertible. Since End4(Y) has no
proper idempotent, u; : X — g; - Y is an isomorphism. The proof of the lemma is
completed.

An object X € A is called properly indecomposable if End 4(X) has no proper
idempotent. Observe that if all idempotents in A4 split, then every indecomposable
object in A is properly indecomposable.

2.10. LEMMA. Let F' : A — B be a G-precovering between linear categories, where
G is a group acting on A with a directed and locally bounded action. Let X be a
properly indecomposable object in A.

(1) The image F(X) is properly indecomposable.

(2) IfY e Awith F(Y) 2 F(X), then Y = g-X for some g € G.
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Proof. Let ¢ be the G-stabilizer for F. By Lemma 2.6(1), we have
(%) Endg(F (X)) = @geq 0g,x 0 F(A(X, g- X)).
Denote by e the identity of G. We claim that
=3 ctgec 0g.x 0 FIAX, g- X))

is a two-sided ideal in Endg(F(X)). That is, if u € I and v € Endg(F (X)), then
uv, vu € I. Indeed, with no loss of generality, we may assume that u = 0, x o F'(u,)
with e # g € G and uy € A(X,g-X), and v = dp,x o F(vy) with h € G and
vp € A(X,h-X). By Lemma 2.4, uv = dpg,x © F'((h-ug) ovp). If hg # e, then
uv € I by definition. Otherwise, h # e. Since the G-action on A is directed, using
the fact that A(X,e-X) # 0 and A(e-X, X) # 0, we see that the composition map

() Ah-X, X)® 7 A(X,h-X) —— End 4(X)

vanishes. In particular, (h-ug) o vy, = 0, and consequently, uv € I. Similarly, we
can show that vu € I. This proves our claim.

Next, since the G-action on A is locally bounded, there exists a finite subset G
of G, say of n elements, such that A(X, ¢-X) = 0, for any g € G\Gp. Set m = n+1.
We shall show that w,, ---usu; = 0, for any uq,us,...,u, € I. Indeed, with no
loss of generality, we may assume that u; = dg, x o F'(v;) with e # ¢; € G and
v; € A(X,9;-X), fori=1,...;m. Write ho = e, hy = g1---g; and w; = h;_1 - vy,
for i =1,...,m. Consider the sequence
w1

w2 Wm,

X hi-X ho- X hm—1-X — hp,- X.

If h; € Gy for some 1 < i < m, then w,, ---wow; = 0. By Lemma 2.4,
Uy ** - UDUT :6hm,X0F(wm”'w2wl) :0.

Otherwise, since m > n, there exist r, s with 1 < r < s < m such that h, = h,. As
a consequence, gr4+1 - - gs = €, and in particular, r +1 < s. Since g,4+1 # e, in view
of the vanishing map (xx) for h = g,11, we see that

((gr+1++gs—1)0s) 0+ 0 (gr1-Vrt2) 0 Vpy1 = 0.
By Lemma 2.4, ug - - - u,41 = 0, and consequently, w,, - - - uguy = 0. This shows that
I is a nilpotent.

(1) Let f € Endp(F(X)) be an idempotent. In view of the direct decomposition
(%), we may uniquely write f = u — v with u € F(A(X, X)) and v € I. Since
f=f*=1u%—(uwv+vu—v?) with u? € F(A(X, X)) and uv+vu—v* € I, we infer
that v = u? and v = uv +vu —v?. Write u = F(ug) for some ug € End 4(X). Since
F is faithful by Lemma 2.6(2), u3 = ug, and since X is properly indecomposable,
ug = 0 or ug = 1lx. As a consequence, u = 0 or u = 1px). In the first case, since
—v is nilpotent, f = 0. In the second case, v = v +v — v2, and hence v = v2. Since
v is nilpotent, v = 0, and hence, f = 1p(x). This establishes Statement (1).

(2) Let Y € A be such that F(X) = F(Y). By Statement (1), F(Y') is properly
indecomposable, and by Lemma 2.6(2), so is Y. Let v : F(X) — F(Y) and
v : F(Y) — F(X) be morphisms such that vu = lpx). In view of the direct
decomposition (*), we write uniquely u = Y;_, 84, v o F(u;) with ¢1,...,9, € G
distinct and u; € A(X,g;-Y), and v = Z;Zl On;,x © F(v;) with hy,... ,hs € G
distinct and v; € A(Y, h;-X). Then, 1px) = vu =32, ; dg;n; © F'((giv;) 0 ui); see
(2.4), and hence, 1p(x) = ) F((g:-vj) o u;). Since F' is faithful; see (2.6),

i,5;9ihj=e
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Ix = X2i jigihy—e (9i-v;) © wi. Since the G-action on A is directed and the g; are
pairwise distinct, we may assume that (g;-v;) ou;, = 0 for all 4,5 with 1 < <r
and hjg; = e. Since the h; are pairwise distinct, we may assume that gih1 = e and
g1h; # e for all 1 < j <s. This implies that 1x = (g1-v1) o uy. Since End 4(Y") has
no proper idempotent, u; o (g1-v1) = ly, and hence, X = g;-Y. The proof of the
lemma is completed.

For the rest of this section, we assume that A has direct sums. By Lemma
1.2, the category of linear endofunctors of A also has direct sums. Regarding
each g € G as an automorphism of A, we obtain a direct sum G = @yecq g with
canonical injections j, : ¢ = G, g € G. More explicitly, for each X € A, we have
G(X) = ®g4ec g - X with canonical injections j, x : g- X — G(X), with g € G.

2.11. DEFINITION. Let A, B be linear categories such that A has direct sums and
admits an action of a group G. Let F : A — B and FE : B — A be functors such
that (F,FE) is an adjoint pair with adjoint isomorphism ¢. We say that (E, F) is
G-graded provided that the following conditions are verified.

(1) There exists a functorial isomorphism vy : Ggeqg — Eo F.

(2) There exists a G-stabilizer ¢ for F' such that

dx,p(v)(Vy ©J,y 0u) =dgy o F(u),
for any X,Y € Ag; g € G and u € A(X,g'Y).

A full subcategory C of A is called stable under the G-action on A, or simply, a
G-subcategory of A, provided, for any X € Cy and g € G, that g-X € C. In this
case, the G-action on A restricts to a G-action on C. This restricted G-action is
called A-essential provided, for any X,Y € Cp, that X is essential in the direct sum
g(Y) = @gEG gY € A

2.12. THEOREM. Let A,B be linear categories such that A has direct sums and
admits an action of a group G. Let F': A — B and E : B — A be functors forming
a G-graded adjoint pair (F, E). Let C be a G-subcategory of A with a locally bounded
and A-essential G-action, and D a full subcategory of B. If F' sends C into D, then
it restricts to a G-precovering F' : C — D.

Proof. By Definition 2.11, F' has a G-stabilizer d, which restricts to a G-stabilizer
¢’ for the restriction F’ : C — D. Consider the direct sum G = @4e g, where g is
regarded as an automorphism of .4, with canonical injections j, : g =+ G, g € G.
Let X,Y € Cp. By the assumption, A(X, g-Y) = 0 for all but finitely many g € G
and X is essential in ®g4eq g-Y. By Proposition 1.3, there exists an isomorphism
vy 1 @gec AKX, g-Y) —= A(X, G(Y))

such that v, (ug) = j, , o ug, for any uy € A(X,g-Y). By Definition 2.11(1), there
exists a functorial isomorphism ~ : G — F o F', which yields an isomorphism

Moreover, the adjoint isomorphism ¢ yields an isomorphism:

¢x.r(v) AKX, E(F(Y))) — B(F(X), F(Y)).
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Composing the above three isomorphisms yields an isomorphism
FX,Y : EB!]EG A(X,gY) — B(F(X)>F(Y))
By Definition 2.11(2), for any g € G and u, € A(X,g-Y), we have

Fx,y (ug) = ¢X,F(Y)('Yy Ojg,Y o ug) = 5g,X o F(“g) = 5g,X © Fl(ug)~
That is, F’ is a G-precovering. The proof of the theorem is completed.

3. AUSLANDER-REITEN THEORY UNDER A (GALOIS COVERING

The main objective of this section is to show that a Galois covering between
Krull-Schmidt categories preserves irreducible morphisms and almost split sequences.
Throughout this section, let A be a Krull-Schmidt category equipped with an ad-
missible action of a group G. Recall that the radical rad(A) of A is the ideal
generated by the non-invertible morphisms between indecomposable objects. A
morphism in A is called radical if it lies in rad(.A).

3.1. LEMMA. Let A, B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F': A — B be a Galois G-covering. If u is a morphism in A, then it
is radical if and only if F(u) is radical.
Proof. Let v : X — Y be a morphism in A. Write X = X; & --- ® X,, and
Y =Yi & - 8&Y,, with X;,Y, being indecomposable. Then, u = (ui;j)nxm
with u;; € A(X;,Y;). Since F is linear, we have F'(X) = F(X;)®---® F(X,) and
F(Y)=FMY)® - -®F(Yy), where F(X;), F(Y;) are indecomposable by Definition
28(2)’ and F(u) - (F(uij))an with F(uzj) € B(F(X])7F(YZ))

Now, u is radical if and only if u;; is not invertible for all 1 < ¢ < m and
1 < j < n. By Lemma 2.7(2), this is equivalent to F'(u,s) being not invertible, for
all 1 <7< mand 1 <j <mn, that is, F(u) is radical. The proof of the lemma is
completed.

For each integer n > 1, the n-th radical rad"(A) of A is the ideal generated by
the composites of n radical morphisms between indecomposable objects.

3.2. LEMMA. Let A, B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F : A — B be a Galois G-covering with a G-stabilizer 6. For some
X, Y € A, consider

u=23 gec 0y © Flug) € BIF(X), F(Y)),
where ug € A(X,g-Y) such that ug = 0 for all but finitely many g € G. If m is a
positive integer, then u € rad™ (B) if and only if uy € rad™(A), for all g € G.
Proof. We shall need only to prove the necessity, since the sufficiency follows easily
from Lemma 3.1. Assume that u € rad™(B)(F(X), F(Y)) for some integer m > 0.
Let Go = {g1,...,9n} be a subset of G such that u, = 0, for all g € G\Gy.
Writing u,, = u;, we obtain u = > 1 | 04,y © F(u;). In order to prove that
u; € rad™(A)(X,g; - Y), for i = 1,...,n, there exists no loss of generality in
assuming that X is indecomposable.

Let m = 1. Suppose on the contrary that some of the u;, say u, is not radical.
Since X is indecomposable, p; ou; = 1x for some p; € A(g;-Y, X). Observing that

-1 .
(@] . = — O — — = e
Ogi.v ©0g,y 591 gy 69]"91 Y(g1Y) 69;-91 Ly forj=2,m,



16 RAYMUNDO BAUTISTA AND SHIPING LIU

we obtain
F(p1)o 5g7117Y ou = F(p1)oF(ur)+ 35 o F(p1)o 6;11,)/ 0 dg,,v © F'(u;)
() 4 X F(p1) 06,1 41y © Fluy)
= Ipo) + X 0y 0t x 0 Fllgi90" - p1) 0 ug)

For any j > 1, since the G-action on A is free, (gjgfl-pl) ouj: X — gjgfl-X is
radical, and so is 6, -1 y o F((g;g7 " p1) o uj) by Lemma 3.1. As a consequence,
F(py)o 5;1171/ ow is an automorphism of F(X), which is absurd.

Assume that m > 1 and the necessity holds for m — 1. Write u = vw, where

v € rad(B)(M, F(Y)) and w € rad™ *(B)(F(X), M). Since F is dense, we may
assume that M = F(N) for some N € Ay. By Lemma 2.6(1), we have

B(F(X),F(N)) = @4ec dg,n © F(A(X,g-N))
and

B(F(N),F(Y)) = ®gec F(A(g-N,Y)) 05, .

Adding some zero summands for each of u, v, w, if necessary, we may assume that
w=>Y"_ 8 noF(w;)for somew; : X — g;-N,andv =3 -, F(vi)och_:N for some
v; - gi-N — Y. By the induction hypothesis and its dual, w; € rad™ *(A)(X, g;-N)
and v; € rad(A)(g; - N,Y), for i = 1,...,n. This yields

Z?:l 59@'7Y 0 F(ul) = Elgr,s <n F(UT') © 5_(]:1,N © 6!]87N ° F(wé)
= Zlgr,s <n F(v”‘) ° 5gsg:1,g,.-N °© F(ws)

= Zlﬁr,s <n 5959f1,Y ° F((gsg;l “Vp) 0 Wg).

For each integer i with 1 < i < n, set Q; = {(r,s) | 1 < r,s <n; gr.95" = g}
Since B(F(X),F(Y)) = ®gec g,y 0 F(A(X,g-Y)), we deduce that

Ogiy © F(ui) =32, 5 eq, Ogi,v © F'((9i - vr) 0o wy).
Since dg4,,y is an isomorphism and F is faithful, we conclude that
Ui = 5e0, (9 vr) ows € rad™(A) (X, g;Y), i=1,...,n.
The proof of the lemma is completed.

If M € A is indecomposable, then we call D,, = End4(M)/rad(End 4(M)) the
automorphism field of M. Let f : X — Y be a morphism in A. Recall that f is
irreducible if f is neither a section nor a retraction, and every factorization f = gh
implies that g is a section or h is a retraction. If X,Y are indecomposable, then

irr(X,Y) = rad(A)(X,Y)/rad’(A)(X,Y)

is a D, -D, -bimodule such that f is irreducible if and only if f is radical with a
non-zero image in irr(X,Y"); see [5].

3.3. PROPOSITION. Let A,B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F : A — B be a Galois G-covering. If u : X — Y is a
morphism in A with X orY indecomposable, then u is irreducible in A if and only
if F(u) is irreducible in B.
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Proof. Let u : X — Y be a morphism in 4. We shall consider only the case
where X is indecomposable. Suppose that F'(u) is irreducible. If v : X — M and
w: M — Y are morphisms in A such that 4 = vw, then F'(v) is a section or F'(w)
is a retraction. By Lemma 2.7(2), v is a section or w is a retraction. That is, u is
irreducible in A.

For proving the necessity, suppose that u is irreducible in A. Since F' is dense,
we may assume that F(Y) = F(Y1)" @---® F(Y,)", where n; > 0 and the Y; are
indecomposable objects in A such that the F'(Y;) are indecomposable and pairwise
non-isomorphic. Consider first the case where r = 1. By Definition 2.8(3), we may
assume that Y = (g1 - Y1) @ --- @ (gs - Y1)™*, where g1,...,9s € G are distinct
and mq,...,mg > 0 with m; + - +ms = ny. For each 1 <14 < s, denote by D;
the automorphism field of g;-Y;. Since X is indecomposable, u is radical. Thus,

T
u = (U/ll,"' aul,m17"' s Usly st 7us,m5) )

where u;1, ..., U m,; € rad(A)(X, ¢g;-Y1), with 1 <1 < s, are D;-linearly independent
modulo rad®(A)(X, g;-Y1); see [5, (3.5)]. Consider the isomorphism

mi ms
— —
w = dlag{ 5g1~,Y17"' 7591,3’1"" 76957Y17"' ’69575/1}7
and set
U:wOF(U) = (Ulla"' 7v1,m17"' s Usly " 7v8,mS)T: F(X)HF(YE)TLI )
where v;; = 0g, v 0 F(u;j), for j=1,...,m;;i=1,...,s.

We claim that if a;; € Endg(F(Y1)) are such that

Soi1 27y aij o vy € rad?(B)(F(X), F(Y1)),
then all the a,; are radical. Indeed, Endg(F(Y1)) = @4cc dg,v; © F(A(Y1,9:Y1)) by
Lemma 2.6(1). If g € G is non-identity, then A(Y1,¢-Y1) = rad(A)(Y1,g9-Y1), and
by Lemma 3.1, §gy, o F(A(Y1,9-Y1)) C rad(B)(F (Y1), F(Y1)). Therefore, we may
assume that a;; = F(b;;) with b;; € End 4(Y7), for all 4, j. This yields

iy aijov = 3o >0 Flbi) 006,y o Flug)

= o1 2y Oguy 0 F((gi - bij) 0 uiy)

= S0 Qv o F (S (gibig) 0w )
By Lemma 3.2, 337" (gi - bij) o uy; € rad®(A)(X,g; - Y1), for i = 1,...,s. Since
Uiy -« -, Uim,; are Dy-linearly independent modulo rad?(A)(X, g; - Y1), we deduce
that g; - b;; € rad(A)(g;-Y1, g;-Y1), and thus, b;; € rad(A)(Y7,Y7). By Lemma
3.1, Qij = F(bij) S I‘&d(B)(F(H),F(H)), for 7 =1,...,m;; 4 = 1,...,s. This
establishes our claim. As a consequence, v is irreducible in B; see [5, (3.5)], and so
is F'(u) since w is an isomorphism.

Suppose now that » > 1 and the necessity holds for r—1. Write Y = M @& N such
that F(M) = F(Y1)" @ -+ @® F(Yy—1)" ' and F(N) = F(Y,)" . Then, we have
u=(v,w)T : X = M&N and F(u) = (F(v), F(w))T : F(X) — F(M) @ F(N).
Since v, w are irreducible in A4; see [5, (3.2)], F(v), F(w) are irreducible in B by the
induction hypothesis. Since F'(M), F(N) have no common indecomposable direct
summand, F(u) is irreducible; see [5]. The proof of the proposition is completed.

As the converse of the previous result, we have the following statement.
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3.4. PROPOSITION. Let A, B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F' : A — B be a Galois G-covering. Consider an inde-
composable object X in A. If B has an irreducible morphism v : F(X) — Z or
v:Z — F(X), then A has an irreducible morphism v : X =Y oru:Y — X,
respectively, such that F(Y) = Z.

Proof. We shall consider only the case where there exists an irreducible morphism
v:F(X)— Zin B. Write Z = Z"* @ --- @ Z'", where the n; are positive integers
and the Z; are pairwise non-isomorphic indecomposable objects in B. Since F is
dense, we may assume that Z; = F(Y;) with Y; some indecomposable object in A4,
fori=1,...,r.

Suppose that 7 = 1. Let D be the automorphism field of F(Y;). Since F(X)
is indecomposable, v = (v1,...,v,,)T, where v1,...,v,, € rad(B)(F(X),F(Y1))
are D-linearly independent modulo rad?(B)(F(X), F(Y1)); see [5, (3.4)]. Applying
Lemma 3.2, we obtain

rad(B)(F(X), F(Y1)) = @yec g1 0 Flrad(A)(X, g- Y1)).

Therefore, vi = > 7L, 0n,;,v; 0 F(v1;), with hyj € G and vy € rad(A)(X, hi; V7).
Observe that one of the 05, y; © F'(v15), say dn,,,y; © F'(v11), is not a D-linear com-
bination of s, . .., v, modulo rad®(B)(F(X), F(Y1)). Setting v} = dn,, v, o F(v11),
we see that v/, vy, ..., v, are D-linearly independent modulo rad?(B)(F(X), F(Y})).
Repeating this process, we may assume that v; = d, y; o F(u;) with h; € G and
u; € rad(A)(X, h;-Y7), for i =1,...,n;. Up to permutation, we may assume that

mq mg

—— ——
{h17"'ahn1}:{gl7"' 591, sy 0 798}7
where ¢1,...,9s € G are distinct and my,...,ms > 0.

We claim that if 37" w; ou; € rad®(A)(X, g1-Y1) with w; € End4(g;-Y1), then
all the w; are radical. Indeed, observing v; = 0p, vy, © F'(u;) = 0g4,,y; © F(u;) and
applying Lemma 2.4, we obtain

S Flgrbw) ovy = 30 Flgy b ws) 08, v, © Fuy)
= 2t 0gvi 0 Fwiou)
= Ogvy 0 P wi o wy)
which, by Lemma 3.1, lies in rad*(B)(F(X), F(Y1)). Since the v; are D-linearly in-

dependent modulo rad*(B)(F(X), F(Y1)), we have F(g; ! -w;) € rad(Endg(F (Y1),
and g7 ' -w; € rad(Endg(Y1)) by Lemma 3.2, that is, w; € rad(Endg(g;-Y1)), for

i = 1,...,mj. This proves our claim, and consequently, (u,- - ,Un,)? is irre-

ducible in A; see [5, (3.4)]. Similarly, (wm; 41, ,umj71+mj)T is irreducible, for

j=2,...,s. Since g1-Y1,...,¢gs-Y1 are pairwise non-isomorphic,
w=(uy, . up)’ X = @M hi Y

is irreducible in A such that F (@, h; Y1) = F(Y7)™.

Suppose now that r > 1 and the proposition holds for r—1. Set Z; = F(Y7)™ and
Zy =F(Y5)"?@---@F(Y,)". Then Z = Z,®Zs and v = (w1, w2)T : X — Z1® 2o,
where w; : Z — Z; is irreducible, for ¢ = 1,2. By the induction hypothesis, A has
irreducible morphisms f; : X — M; with F(M;) & Z;, i = 1,2. Since Z; and Z
have no common indecomposable direct summand, neither do M; and Ms. As a
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consequence, f = (f1, f2) : X = M; @ M, is irreducible in A; see [5, (3.2)], such
that F(M; & Ms) = Z. The proof of the proposition is completed.

Let f : X — Y be a morphism in A. Recall that f is left minimal if every
factorization f = hf implies that h is an automorphism of X; and left almost
split if f is not a section and every non-section morphism g : X — Y factors
through f; and a source morphism if f is left minimal and left almost split. In dual
situations, one says that f is right minimal, right almost split, and a sink morphism,
respectively. Observe that X or Y is indecomposable in case f is left almost or
right almost, respectively; see [3], and also [15].

3.5. PROPOSITION. Let A,B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F : A — B be a Galois G-covering. If u : X — Y is a
morphism in A, then u is a source morphism or sink morphism if and only if F(u)
is a source morphism or sink morphism in B, respectively.

Proof. Let u : X — Y be a morphism in A. We shall prove only the first part of the
proposition. Assume that F'(u) is a source morphism in B. By Lemma 2.7(2), u is
not a section. Let v : X — L be a non-section morphism in 4. By Lemma 2.7(2),
F(v) is not a section morphism in B, and hence, F(v) factorizes through F(u). By
Lemma 2.7(1), v factorizes through w. If w : Y — Y is such that v = wu, then
F(u) = F(w)F(u). Therefore, F(w) is an automorphism of F(Y'), and by Lemma
2.7(2), w is an automorphism of Y. That is, u is a source morphism in A.

Conversely, suppose that u is a source morphism in A. In particular, X is
indecomposable. By Lemma 2.7(2), F'(u) is not a section. Let v : F(X) — M be
a non-section morphism in B. Since F is dense, we may assume that M = F(N)
with N € A. Let § be the G-stabilizer for F. Then, v ="' | 84, n o F(v;), where
gi,---,9n € G are distinet and v; € A(X, g;- N). Since F(X) is indecomposable by
Definition 2.8(2), v is radical. Then, v; is radical by Lemma 3.2, and hence, v; = uu;
for some u; € A(X,g;-N),i=1,...,n. This yields v = (3., dg,.n © F(v;)) 0 F(u).
Furthermore, if u # 0, then u is irreducible, and so is F(u) by Proposition 3.3.
Since B is Krull-Schmidt, F'(u) is left minimal. If u = 0, then Y = 0; see [12, (1.1)],
and consequently, F'(u) is left minimal. This shows that F(u) is a source morphism
in B. The proof of the proposition is completed.

Finally, we shall study the behavior of almost split sequences under a Galois
covering. A short sequence in A is a sequence of two morphisms

n: XY "> 7

which is called pseudo-exact if u is a pseudo-kernel of v, while v is a pseudo-cokernel
of u. Moreover, n is called an almost split sequence if it is pseudo-exact such that
Y is non-zero, u is a source morphism, and v is a sink morphism; see [12].

3.6. LEMMA. Let A, B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F : A — B be a Galois G-covering. If n is a short sequence in A,
then it is pseudo-ezact if and only if F(n) is pseudo-ezact.

Proof. Consider a short sequence 1: X ——=Y —%= Z in A. Suppose first that

F(u) F(v)
—_— —

Fn): F(X) F(Y) F(2)
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is pseudo-exact. Since F' is faithful by Lemma 2.6(2), vu = 0. Let w : Y — W
be a morphism in A such that wu = 0. Since F(w) o F(u) = 0, we see that F'(w)
factorizes through F'(v). By Lemma 2.7(1), w factorizes through v. That is, v is a
pseudo-cokernel of u. Dually, one can show that u is a pseudo-kernel of v.

Suppose conversely that 7 is pseudo-exact. In particular, F(v)F(u) = 0. Let
w: F(Y) — M be a morphism in B such that wF'(u) = 0. Since F is dense, we may
assume that M = F(L) for some L € A. By Lemma 2.6(1), w = >, 84,00 F (w;),
where g1, ..., g, € G are distinct and w; € A(Y, g;-L). This gives rise to

0=wF(u) =37, 0. 0 F(wi)F(u) = 3, bg, 1 © Fwiu).

Then, for any 1 < i < n, we have dy, 1, o F(w;u) = 0, and hence, w;u = 0 since F'
is faithful. Therefore, w; = v;v for some v; € A(Z,g;-L), i =1,...,n. This yields
w= (31104, 0 F(v;)) F(v). That is, F(v) is a pseudo-cokernel of F(u). Dually,
one can show that F(u) is a pseudo-kernel of F'(v). The proof of the lemma is
completed.

REMARK. The above result says particularly that a Galois covering between Krull-
Schmidt abelian categories is an exact functor.

We are now ready to obtain the main result of this section.

3.7. THEOREM. Let A, B be Krull-Schmidt categories with G a group acting admis-

sibly on A, and let F': A — B be a Galois G-covering.

(1) A short sequence ) in A is almost split if and only if F(n) is almost split.

(2) An object X in A is the starting term or the ending term of an almost split
sequence if and only if F(X) is the starting term or the ending term of an
almost split sequence, respectively.

Proof. Consider a short sequence n: X —Y — Z in A. Since F is faithful by

Lemma 2.6(2), Y # 0 if and only if, FI(Y) # 0. Now, it follows from Proposition

3.5 and Lemma 3.6 that n is almost split if and only if F'(n) is almost split. This

establishes Statement (1).

Next, the necessity of Statement (2) follows immediately from Statement (1).

Let X € Ap be such that B has an almost split sequence

F(X)*f>M*g>N

Note that f is irreducible in B because M # 0. By Proposition 3.4, A has an
irreducible morphism u : X — Y with F(Y) = M. By Proposition 3.3, F(u) is
irreducible in B. Therefore, F(u) = fw for some retraction w : M — F(Y'). Since
B is Krull-Schmidt, w is an isomorphism. Setting v = gw™!, we see that

Fx) 2 piy) - N

is an almost split sequence in B. Since F' is dense, we may assume that N = F(Z)
for some indecomposable Z € Aj. By Lemma 2.6(1), v = Y"1 | §,. z0 F(w;), where
g1,---,9n € G are distinct and w; € A(Y, g;-Z). This yields

S84,z 0 F(wiu) = vF(u) = 0.
Then, (64, z0F(w;))F(u) = 0, and thus, 4, zoF(w;) = a;v with a;, € Endg(F(2)),
for i = 1,...,n. This gives rise to v = v(}_1_; a;). Since Endg(F(Z)) is local, we
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may assume that a; is an automorphism. Thus, B has an almost split sequence

u 4 ,zoF(w
Fx) 2 Py 22 p(g),
and consequently, B has an almost split sequence
F(X) S F () N P 2),

By Statement (1), X —>Y —2> ¢;-Z is an almost split sequence in A. This
proves the first part of the sufficiency, and the second part follows dually. The
proof of the theorem is completed.

REMARK. The above theorem says in particular that if F' : A — B is a Galois
covering, then A has (left, right) almost split sequences if and only if B has (left,
right) almost split sequences.

4. GALOIS COVERINGS FOR AUSLANDER-REITEN QUIVERS

The classical notion of a Galois covering for translation quivers works only in
the unvalued context; see [6, 16]. In this section, we extend this to the valued con-
text, and show that a Galois covering between Hom-finite Krull-Schmidt categories
induces a Galois covering between their Auslander-Reiten quivers.

We start with a brief recall on some combinatorial background. Let @ = (Qo, Q1)
be a quiver, where @) is the set of vertices and @), is the set of arrows. If a: 2 — y
is in @1, then we shall write 2 = s(a) and y = e(«). For a € Qo, denote by z*
the set of arrows « with s(a) = z, and by z~ the set of arrows 8 with e(8) = z.
One says that @ is locally finite if x+ and z~ are both finite for every x € Qp. A
sequence p = a,, ---a1 with n > 0 and a; € Q1 such that s(a;41) = e(a;) for all
1 < i < n is called a path of length n. To each x € @, one associates a trivial
path £, with s(e,) = e(e,) = x which, by convention, is of length 0. For z,y € Qo,
denote by Q1(z,y) the set of arrows from z to y; by Q<1(x,y) the set of paths
of length < 1 from z to y, and by Q(x,y) the set of all paths from = to y. For
each a : ¥ — y in @1, one introduces a formal inverse o' with s(a™!) = y and
e(a™) = 2. A sequence w = ¢, ---cacy, where the ¢; are trivial paths, arrows
or the inverses of arrows in @ such that s(c;11) = e(¢;) for 1 < i < n, is called
a walk. In this case, we write s(w) = s(¢1) and e(w) = e(c,). The set of walks
in @ will be denoted by W(Q). A walk w in @ is called closed if s(w) = e(w);
reduced if w is either a trivial path, or w = ¢, ---¢; with ¢; € Q1 or c{l € @
such that ¢; 11 # c[l for all 1 <14 < n; and a cycle if w is non-trivial, reduced and
closed. A quiver-morphism ¢ : Q — Q' consists of two maps g : Qp — @ and
¢1 1 Q1 — Q1 such that ©1(Q1(z,y)) € Q1(po(), po(y)) for all z,y € Qo. Such a
morphism induces a map from W(Q) to W(Q'), which will be denoted again by ¢.
Observe that a quiver-morphism ¢ : Q — Q' is an isomorphism if both ¢¢ and ¢
are bijective.

Suppose that G is a group acting on @, that is, there exists a homomorphism
from G into the group of automorphisms of (). One says that the G-action on @ is
free provided that g-x # x, for any x € Qg and any non-identity g € G. As usual,
we shall regard g € G as an automorphism of ). The following definition is well
known; see, for example, [8, 9].
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4.1. DEFINITION. Let @ be a quiver with a free action of a group G. A quiver-
morphism ¢ : Q — Q' is called a Galois G-covering provided that the following
conditions are satisfied.

(1) The map g is surjective.

(2) If g € G, then 9o g =g.

(3) If z,y € Qo with po(z) = wo(y), then y = g - x for some g € G.

(4) If x € Qq, then ¢; induces two bijections 27 — o(z)T and = — @o(x)~.

REMARK. (1) A quiver-morphism ¢ : Q — Q' satisfying the above conditions (1)
and (4) is called a quiver-covering.

(2) Tt is easy to see that a Galois G-covering ¢ : @ — Q' of quivers is an
isomorphism, if and only if, ¢ : Qo — QF is an injection, if and only if G is trivial.

Next, a valued quiveris a pair (A,v), where A is a quiver without multiple arrows
and v is a valuation on the arrows, that is, each arrow = — y is endowed with a pair
(Vzy,vy,) of positive integers. The valuation (vsy, vy, ) of an arrow x — y is called
symmetric if v, = v;,. More generally, we say that A is symmetrically valued if
all the arrows have a symmetric valuation.

4.2. DEFINITION. A valued-quiver-morphism ¢: (A, v)— ({2, u) is a quiver-morphism

@+ A — (2 such that vy, < uy and vy, < u/ for any x — y in A;.

z),¢(y) p(x),0(y)’

REMARK. A valued-quiver-morphism ¢ : (4,v) — (£2,u) is an isomorphism if
and only if ¢ : A — (2 is a quiver-isomorphism such that v,, = ug(s),4,) and

/ 7 .
Uiy = Ugy(a), o(y) for any arrow x — y in A.

Sometimes, it will be convenient to identify a non-valued quiver @) with a sym-
metrically valued quiver A(Q) defined as follows: the vertices are those of @, and
there exists an unique arrow z — y in A(Q) with valuation (dgy, dgy) if and only if
there exist d, arrows from z to y in Q.

4.3. DEFINITION. Let (A,v) be a valued quiver with a free action of a group G. A
valued-quiver-morphism ¢ : (A,v) — (£2,u) is called a Galois G-covering provided
that the following conditions are verified.

(1) The map ¢g : Ag — 2 is surjective.

(2) If g € G, then pog= .

(3) If x,y € Ap with p(z) = ¢(y), then y = g -  for some g € G.

(4) If x € Ag with a € p(x)™ and b € p(z)~, then

_ li _ /
Up(x),a = ZyEm‘*'ﬁtp—(a) Vg,y and Up p(z) = ZzEw—ﬁgo—(b) Vz,a

REMARK. (1) We deduce from Definition 4.3(4) that ¢ induces, for any x € Ay,
two surjections T — (¢(z))T and = — (p(x))”; compare Definition 4.1(4). In
particular, the map o1 : Ay — {27 is surjective.

(2) A Galois G-covering ¢ : (A,v) — (£2,u) of valued quivers is an isomorphism
if and only if ¢ : Ag — {2 is an injection, if and only if G is trivial.

(3) Given non-valued quivers @ and Q’, each quiver-morphism ¢ : Q@ — Q'
induces a valued-quiver-morphism A(y) : A(Q) — A(Q') in such a way that ¢ is a
Galois covering of quivers if and only if A(p) is a Galois covering of valued quivers.

EXAMPLE. Let Aj 3 be the valued quiver consisting of two vertices a, b, and one
arrow a — b with valuation (2, 3). It is easy to see that A, 3 admits a Galois covering
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A%, consisting of the vertices a;, b;, i € Z, and arrows a; — b; with valuation (1,1)
and arrows a; — b;41 with valuation (1,2), i € Z.

Let A be a valued quiver with an action of a group G, and let C be a connected
component of A. If g € G, then g - C is a connected component of A, and conse-
quently, either g-C =C or CNg-C = . The elements g € G such that g-C = C
form a subgroup of G, which is written as G¢. Clearly, the G-action on A restricts
to a Ge-action on C.

4.4. LEMMA. Let ¢ : (A,v) = (2,u) be a Galois G-covering of valued quivers,
where G is a group acting freely on (A,v). If C is a connected component of A,
then p(C) is a connected component of {2 such that ¢ restricts to a Galois Ge-
covering @, : (C,v) = (p(C),u).
Proof. First of all, the G¢-action on C is free such that ¢, o g = ¢, for all g € Ge.
Moreover, since ¢ satisfies Condition (4) stated in Definition 4.3, so does ¢, .
Now, since C is connected, ¢(C) is a connected full subquiver of §2. Let x be a
vertex in p(A), and let y € 2y for which there exists a walk w with s(w) = = and
e(w) = y. Write z = p(a) with a € Ag. Since ¢ : Ay — 27 is surjective, A has
a walk w’ from some vertex b to a such that ¢(w’) = w. In particular, y = (b).
Since C is a connected component of A, we have y € ¢(C). This shows that ¢(C) is
a connected component of {2 and the action of ¢, on the vertices is surjective.
Next, let y,z € Co with ¢, (y) = ¢, (%), that is, ¢(y) = ¢(z). By Definition
4.1(2), z =g -y for some g € G. Since z € CNg-C, we have C = g - C, that is,
g € Ge. Thus, ¢, satisfies Condition (3) stated in Definition 4.1, and hence, is a
Galois G¢-covering. The proof of the lemma is completed.

Finally, a valued translation quiver is a triple (I',v,T), where (I',v) is a valued
quiver and 7 is a translation, that is a bijection from one subset of I'y to another
one such that, for any x € I'g with 7z defined, we have z+ = (72)~ # 0 and
(Vray, Vg y) = Uy, Vye) for every y € ot In this case, x € I'g is called projective
or injective if Tx or 7~ x is not defined, respectively. Note that valued translation
quivers considered here are not necessarily locally finite and may contain loops;
compare [11, Section 2].

4.5. DEFINITION. A morphism of valued translation quivers ¢ : (4,v,7) — (£2,u, p)
is a valued-quiver-morphism ¢ : (4,v) — ({2, u) satisfying the condition: for any
non-projective x € I'g, the image (z) is not projective with p(p(x)) = o(7(z));
or equivalently, for any non-injective x € I'g, the image ¢(z) is not injective with

p~ (@) = p(r~ (2))-

REMARK. A morphism of valued translation quivers ¢ : (I',7,v) — (4,p,d) is
an isomorphism if and only if ¢ : (I',v) = (4,d) is a valued-quiver-isomorphism
satisfying the condition: for any projective z € I'g, the image ¢(z) is projective; or
equivalently, for any injective « € I'g, the image ¢(x) is injective.

The following definition extends the notion of a Galois covering for unvalued
translation quivers introduced by Riedtmann; see [16], and also [6].

4.6. DEFINITION. Let (I',v,7) be a valued translation quiver with a free action of
a group G. A morphism of valued translation quivers ¢ : (I',v,7) — (A,d, p) is
called a Galois G-covering provided that ¢ : (I',v) — (4, d) is a Galois G-covering
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of valued quivers with the property: for any projective « € I'y, the image p(z) is
projective; or equivalently, for any injective x € I'g, the image ¢(x) is injective.

REMARK. (1) The equivalence of the two conditions stated in Definition 4.6 follows
from the conditions (1) and (3) stated in Definition 4.3.

(2) A Galois G-covering of valued translation quivers ¢ : (A,v,7) = (£2,u, p) is
an isomorphism if and only if G is trivial, if and only if g : Ag — {2¢ is an injection.

For the rest of this section, let A be a Hom-finite Krull-Schmidt R-linear category,
where R is a commutative artinian ring. If M € Ag, then M™ with n > 0 will denote
the direct sum of n copies of M. If XY € Ay are indecomposable, then we shall
denote by dyy and dxy the dimensions of irr(X,Y) over D, and D, , respectively.
Ifirr(X,Y) # 0, then d'yy is the maximal integer such that A admits an irreducible
morphism from X dxy o Y, while dxy is the maximal integer such that A admits an
irreducible morphism from X to Y4xv; see [5, (3.4)]. As a consequence, if M — Y
is a sink morphism, then d’yy is the multiplicity of X as a direct summand of M,
and if X — N is a source morphism, then dxy is the multiplicity of Y as a direct
summand of N. Let ind.A denote a complete set of non-isomorphic indecomposable
objects in A. Then the Auslander-Reiten quiver I', of A is a valued translation
quiver defined as follows; see [12, (2.1)]: the vertex set is ind.A; for any vertices
X,Y, there exists a single arrow X — Y with valuation (dxy,dxy) if and only
if dxy > 0; and the translation 7, is the Auslander-Reiten translation, that is,
X =1,7 if and only if A has an almost split sequence X — Y — Z.

Suppose now that G is a group acting freely on A. Let X be a complete set of
representatives of the G-orbits in Ay. Then, we can choose indA to be the set of
objects g - X with X € X and g € G. In this way, ind. A becomes G-stable, that is,
if M € ind A, then g - M € indA, for every g € G. It is easy to see that the free
G-action on A induces a free G-action on the valued translation quiver I',.

4.7. THEOREM. Let A,B be Hom-finite Krull-Schmidt R-linear categories with G

a group acting admissibly on A, where R is a commutative artinian ring, and let

F: A— B be a Galois G-covering.

(1) The functor F induces a Galois G-covering 7 : I, — Iy of valued translation
quivers.

(2) If I is a connected component of I',, then n(I") is a connected component of
I', and 7 restricts to a Galois Gp-covering w, : I — w([").

Proof. Let X be a complete set of representatives of the G-orbits in ind A. Then
the vertices in I', are the objects g- X, with g € G and X € Y. By Definition 2.8,
we may choose F'(X) = {F(X) | X € X'} to be the vertex set of I',.

Let M = go-X be a vertex in I'y, where gg € G and X € X. Set mo(M) = F(X).
This defines a surjection m : (I',)o — (I)o such that mo(g-M) = m(M), for
any g € G. Moreover, by Definition 2.8(3), o satisfies Condition (3) stated in
Definition 4.3. Furthermore, F(M) = F(X) = mo(M). By Theorem 3.7(3), M is
not projective in I'y if and only if mo(M) is not projective in Iz, and in this case,
mo(7,X) = 7 (m(X)) by Theorem 3.7(2). This shows that myp commutes with the
translations and has the property stated in Definition 4.6.

Next, let « : M — N be an arrow in I'4, where N = h-Y withhe€ GandY € X.
By Proposition 3.3, irr(F(M), F(N)) # 0 with dy n < dpr),p(vy and dyy v <
d},(M),F(N). Assume that ¢ is the G-stabilizer for F. In view of the isomorphisms
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0g,x and dpy, we see that (dF(X),F(Y)7d/F‘(X),F(Y)) = (dF(M),F(N)7d/F(M),F(N))'
Therefore, I'z has an arrow 3 : mo(M) — mo(N) with dar,n < dry(ar),mo(nv) and
dyn < d;O(M),WO(N). Set m1(a) = 8. Then, 71(g9-a) = m(«) for any g € G. This
yields a morphism of valued translation quivers m = (mwg,m1) : [a — I'g, which
verifies the property stated in Definition 4.6.

It remains to show that 7 verifies Condition (4) stated in Definition 4.3. Consider
Ue (r(M)*. Let Xt Nna~(U) = {Ly,...,L.} and m = mq + --- + m,, where
m; = dX,Li- Then Mt N 7T_(U) = {g()'Ll, ...,90 " LT} and dM,g(J'Li = dX,Li =m;,
for i =1,...,r. This implies that >y cyre oy Ay = 202 darge-L; = m.

Set n = dr),u = dp(x),u, which is maximal such that B has an irreducible
morphism f : F(X) — U". By Proposition 3.4, A has an irreducible morphism
u:X — N with F(N) 2 U". We may assume that N = N"' & --- @& N, where
n; > 0 and the N; are distinct vertices in I'4. Since u co-restricts to an irreducible
morphism w; : X — N"| we see that N; € XT N7~ (U) and dx n, > ny, for

7 0

i=1,...,s. This yields
=gt ng <300 dxon, £ Ypextne ) 4X,L = 2o dx,n, = M.

On the other hand, since m; = dx,,, there exists an irreducible morphism
w;: X = LM in A, fori=1,...,r. Hence, w = (w1, ,w,)T : X - @&7_; L™ is
irreducible in A; see [5, (3.2)]. By Proposition 3.3, F(w) : F(X) — &]_, F(L;)™
is irreducible in B. Since F(L;) & w(L;) = U, we see that B has an irreducible
morphism g : F(X) — U™, and hence, m < n. As a consequence, n = m, that is,
7 verifies the first equation stated in Definition 4.3(4); and dually, it also verifies
the second equation. This establishes Statement (1).

For proving Statement (2), let I" be a connected component of I',. By Lemma
4.4, w(I') is a connected component of I', such that m. : I' — «(") is a Galois
Gp-covering of valued quivers. Since 7 is a morphism of valued translation quivers
and verifies the property stated in Definition 4.6, the same holds for 7. That is,
7, : I' = w([") is a Galois Gp-covering of valued translation quivers. The proof of
the theorem is completed.

5. DERIVING ADJOINT PAIRS

Throughout this section, let 2, B be abelian categories. The objective of this
section is to show that a graded adjoint pair between 21 and B induces a graded
adjoint pair between D(2() and D(B).

Let F: A — B be a linear functor. For X* € C (), define FX") to be the
complex of which the component and the differentiation of degree n are F'(X™) and
F(d%) respectively, for n € Z. This yields a linear functor F¢ : C(21) — C(B).
The following result is well known; see, for example, [14, (V.1.2.2)].

5.1. PROPOSITION. Let 2A,B be abelian categories. If F' : A — ‘B s an ezxact
functor, then it induces a commutative diagram of functors

(2) —2> D(2A)

o) s K
Fcl FE FP
C(B) 2~ K(%B) —2~ D(B),
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where FC is an exact functor between abelian categories, while F¥ FP are exact
functors between triangulated categories.

In our late investigation, we shall need the following easy observation.

5.2. LEMMA. Let 2A,B be abelian categories, and let E, F : A — B be exact func-
tors. If n : E — F is a functorial (iso)morphism, then it induces functorial
(iso)morphisms ¢ : E¢ — F¢ and n* : EX — FX and nP? : EP — FP
such that, for any X° € C(2), we have nf, =P, (ng) and 775, =L, (77)(’;)
Proof. Suppose that n: F — F' is a functorial morphism. For each X" € C(B), we
define 772. : BE¢(X*) — FY(X") by setting its n-th component to be the morphism
Nyn + B(X™) = F(X™). Since 1, is natural in X, we see that <, is a morphism
in C(®B) which is natural in X*. Now, 77)1((. = Py (ng) EE(XY) - FE(X') is a
morphism in K(B8), and 775, = Ly (nf) : EP(X*) — FP(X") is a morphism in
D($B), both are natural in X". Finally, if the ,, with X € 9B are all isomorphisms,
then the 775.7 nf_ and nf_ with X* € C(B) are all isomorphisms. The proof of the
lemma is completed.

The following result has been widely believed to be true. However, we find a
rigorous proof only in Milicic’s unpublished lectures notes; see [14, (V.1.7.1)].

5.3. THEOREM (MILICIC). Let A,B be abelian categories, and let F: A — B and
E B — A be exact functors. If (F,E) is an adjoint pair, then the induced pairs
(FC,EC), (FK EX), (FP EP) are adjoint pairs.
Proof. We recall the description of the induced adjoint isomorphisms for our later
investigation, and refer the details to [14, (V.1.7.1)]. Assume that (F,E) is an
adjoint pair. For each pair (X,Y") € 2y x B, there exists an isomorphism
¢X,Y : Q[()(7£EI(}/)) - %(F(X)7Y)7

which is natural in both variables XY

Fix X* € C(A) and Y* € C(B). If f': X' — EYY") is a morphism in C(2l),
then we set (bgj(’y(f) = (¢xiyi(f1))iez : FYX") = Y, which is a morphism in
C(*8). This yields an isomorphism

¢Sy CROXT, EAY")) = C(B)(FIX), Y7,

which is natural in both variables X* and Y*. Thus, (E¢, F©) is an adjoint pair.

Next, the naturality of ¢xy in X,Y ensures that (;59(.’),. sends null-homotopic
morphisms to null-homotopic ones. Therefore, qbg’;.,y. induces an isomorphism

Peye: K@)(X, BXY) = K(B)(FHX), V),

which is natural in both variables X*, Y. That is, (EX, F¥) is an adjoint pair.
Finally, observe that F K sends quasi-isomorphisms to quasi-isomorphisms. For
each morphism 6* = f*/s* € D(2)(X", EX(Y™)), where 5" : M* — X" is a quasi-
isomorphism and f*: M*— Y"is a morphism in K (), set
Xy +(07) = Dy (F)/F(5).
This yields an isomorphism
¢xy+: D)X, YY) = D(B)(FAX"), Y7),
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which is natural in both variables X*, Y. The proof of the theorem is completed.

For the rest of this section, assume that 2l is equipped with an action of a group
G. Regarding g € G as an automorphism of [, we deduce immediately the following
statement from Proposition 5.1.

5.4. LEMMA. Let 2 be an abelian category. If G is a group acting on 2, then it acts
on each of C(2A), K(A), D) in such a way that, for any g € G, the following
diagram commutes:

F)Ql LQ[
C@) — K(21) —*> D(2A)
) - g : \Lg

CA) —= K(A) —= D().

We shall say that 2 has enough projective objects provided that every object X
in 21 admits an epimorphism ¢ : P — X with P being projective. Recall that D®(2)
can be regarded as a full triangulated subcategory of D(2); see [10, (6.15)].

5.5. LEMMA. Let 2 be an abelian category having enough projective objects and
equipped with a locally bounded action of a group G.
(1) If X", Y" € C°(A), then C(2) has a quasi-isomorphism s°: P*— X" with P* a
bounded-above complex of projective objects such that C(2A)(P; g-Y") =0, for
all but finitely many g € G.
(2) The category D*(2) is a G-subcategory of D() with a locally bounded G-action.
Proof. Clearly, D*(2() is stable under the G-action on D(21). Let X*,Y* € C*(2l).
Since 2 has enough projective objects, C'(2() has a quasi-isomorphism s": P*— X*
with P a bounded-above complex of projective objects; see [10, (7.5)]. Let m < n
be integers such that Y = 0 for i € [m,n]. Since the G-action on 2 is locally
bounded, there exists a finite subset G of G such that 2A(P?, gY*) = 0, for g € G\ Gy
and m <4 <mn. Thus, C(A)(P; g-Y") = 0, and consequently, K(A)(P; g-Y") =0,
for any g € G\Gy. Since §" is an isomorphism D(2), we have
D*(A)(X",g-Y") 2 DA)(X'g - Y) 2 DRA)(Pig-Y') 2 KA)(Pig-Y) =0,

where the last isomorphism follows from Lemma 1.9(1), for any g € G\Go. The
proof of the lemma is completed.

We shall need the following easy result.

5.6. LEMMA. Let F : A — B be a functor between abelian categories, and let G be
a group acting on A. If & is a G-stabilizer for F, then it induces G-stabilizers 6,
0K, and 6 for the functors FC, FX | and FP, respectively.
Proof. Let § be a G-stabilizer for F. Then, there exist functorial isomorphism
0g : Fog — F, with g € G, such that §, x g, n.x = dgn,x, for X € Ay and
g,h € G. For each g € G, observing that (Fog)® = F€og, and (Fog)X = FKog,
and (F o g)P? = FP og, we deduce from Lemma 5.2 that d, induces functorial
isomorphisms 55 :FCog— FC and 55( :FXog— FK and 5;3 :FPog— FP.
Fix X' € C() and g,h € G. For any n € Z, we have dp,xn 00g p.xn = dgn, xn,
that is, (0f )" o (6gh,X.)" = (6§hyx.)". This implies that 0 . o 55}1-){' = 55}1,){“

Applying first the functor P, and then L, yields 6,15 ¥ © 55 hxe = 551, - and
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6p - © 6£h-X’ = 6;%’)(.. The proof of the lemma is completed.

Furthermore, assume that 2 has essential direct sums. By Lemma 1.2, the
category of endofunctors of 2 has a direct sum G of the g € G, regarded as auto-
morphisms of A with canonical injection j, : ¢ — G. Being exact by Lemma 1.6, G
induces a commutative diagram

Fy Ly
C@l) —> K(A) —2= D(2A)

oo e
CR) 2 K () —2 D(3).

On the other hand, by Lemma 1.4 and Theorem 1.8, C'(2(), K(2), and D(2)
all have direct sums, and so does the category of linear endofunctors of each of
C(A), K(A) and D(A). Tt is easy to see that G¢, GK  GP are the direct sums of
the g € G, considered as automorphisms of C(2(), K (21), D(2(), respectively, with
canonical injections jgc 19— G¢, and j;( :g = GX and j;j : g = GP, which are
induced as described in Lemma 5.2 from the canonical injections j, : g — G.

5.7. PROPOSITION. Let 2A,*B be abelian categories such that 2 has essential direct
sums and admits an action of a group G. Let F : A — B and E : B — A
be exact functors. If (F,E) is a G-graded adjoint pair, then the induced pairs
(FC,E°), (FX,EX) and (FP,EP) are G-graded adjoint pairs.
Proof. Assume that (F, F) is a G-graded adjoint pair. Then, we have a functorial
isomorphism v : G — F o F, a G-stabilizer § for F, and an adjoint isomorphism
¢ for (E,F). It follows from Lemma 5.2 that v induces functorial isomorphisms
’yc :G¢ — ECOFC, and ny :GK - EXoFK and ’yD :GP — ECoFP, Moreover,
by Lemma 5.6, § induces G-stabilizers 6¢, 6%, 6P for FC, FK | FP respectively.
Finally, as described in the proof of Theorem 5.3, ¢ induces adjoint isomorphisms
¢, %, ¢P for (FC, E), (FX,EX) (FP, EP), respectively.

Consider a morphism u*: X* — ¢-Y" in C(2), where g € G. By Definition
2.11(2), we have

dxn p(yn)(Vyn ©J, yn 0U™) =g yn o F(u"),
for all n € Z. This yields
¢§(',FC(Y') (75 ° JSY ou’) = 553/- o F(u).

Applying the projection functor P, : C(B) — K (B), we obtain

O e vy (V1 Ojfy. o) =8y 0 FK(u).

Finally, let " = ©/5": X' — ¢-Y" with ¢ € G be a morphism in D(2(), where
§': Z° = X' is a quasi-morphism and @' : Z° — ¢-Y" is a morphism in K (2).
Observing that 75. o quy. 0f' = (fyf o jfy. ou")/5", we obtain

¢>)€-, FD(Y*) (’YYD. °© jfy. 0f") = ¢Iz{g FK(Y*) (’Yf °© jfy. ou)/FX(5")
= (0K o F¥(u?)) /F¥(5)
=06Dy o (FR(u)/FX(s7))
=6Dy-0 FP(07).

The proof of the proposition is completed.
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6. MODULE CATEGORIES AND THEIR DERIVED CATEGORIES

The objective of this section is to apply our previous results to study push-
down functors between the module categories and between their derived categories
induced from a Galois covering of locally bounded linear categories.

Throughout this section, k denotes a field, and all tensor products are over k.
Let A stand for a locally bounded linear category over k, that is, A is skeletal
such that @,eq, (A(a,z) @ A(a,x)) is finite dimensional, for any a € Ag; see [6,
(2.1)]. A left A-module is a k-linear functor M : A — Modk, where Modk is
the category of all k-vector spaces. If M, N are left A-modules, then a A-linear
morphism f : M — N consists of k-linear maps f(z) : M(z) — N(z), € Ao,
such that f(y)M(«) = N(«)f(x), for every morphism « : © — y in A. We denote
by ModA the category of all left A-modules, which has essential direct sums by
Lemma 1.2. For M € Mod A, one defines its support suppM to be the set of x € Ag
for which M (x) # 0. One says that M is finitely supported if suppM is finite, and
finite dimensional if ) _, dimgM(z) is finite. We shall denote by Mod% and

mod¥ the full abelian subcategories of Mod /A generated by the finitely supported
modules and by the finite dimensional modules, respectively.

For each z € Ay, it is well known that P[z] = A(z,—) is an indecomposable
projective object in ModA. Since A is locally bounded, P[z] € mod. Hence, for
any V € Modk, the A-module P[z]®V lies in Mod and is projective in Mod A. We
denote by projA the full additive subcategory of mod generated by the modules
isomorphic to P[x] for some x € Ay, and by ProjA the full additive subcategory of
Mod¥ generated by the modules isomorphic to some P[r] ® V with € Ay and
V € Modk.

6.1. LEMMA. Let A be a locally bounded k-linear category. If M € Mod¥, then it
admits a projective cover e : P — X with P € Proj A in such a way that M € mod%
if and only if P € projA.

Proof. Let M € Mod¥ having a finite support X. Since A is locally bounded,
M/rad M & @,ex Slx] ® U, where S[x] is the simple A-module supported by x
and U, € Modk. Hence, P = @®,¢cx5 Plz] ® U, is a projective cover of M, which
lies in ProjA. If M is finite dimensional, then U, is finite dimensional for every
x € X, and hence, P € projA. Conversely, if P € proj4, then M is clearly finite
dimensional. The proof of the lemma is completed.

For the rest of this section, let G be a group acting on A. The G-action on A
induces a G-action on Mod4 as follows; see [8, (3.2)]. Fix g € G. For a A-module
M : A — Modk, regarding g as an automorphism of A, one defines g-M = Mog~? :
A — Modk; and for a A-linear morphism u : M — N, one defines g-u : g-M — g-N
by setting (g -u)(z) = u(g~'-x), for x € Ay.

6.2. LEMMA. Let A be a locally bounded k-linear category with an action of a group
G. If the G-action on A is free, then Mod”A and mod are G-subcategories of
ModA with a locally bounded G-action.

Proof. Assume that the G-action on A is free. Let M, N € Mod%. For each g € G,
by the definition of the G-action on ModA, we have supp(g-N) = g-suppN. As
an immediate consequence, Mod% and mod¥ are both G-subcategories of Mod A.



30 RAYMUNDO BAUTISTA AND SHIPING LIU

Suppose that suppM N g - suppN # () for infinitely many ¢ € G. Being finite,
suppM has an element x with = € ¢ - supp/N, for infinitely many g € G. Since
suppNN is finite, there exists y € suppN such that x = ¢ -y for infinitely many
g € G. In particular, there exist two distinct elements g, h € G such that gy = h-y,
which is absurd. Thus, suppM N g - suppN = () for all but finitely many g € G. In
particular, Hom (M, g - N) = 0 for all but finitely many g € G. That is, the G-
action on Mod is locally bounded, and consequently, so is the G-action on mod®.
The proof of the lemma is completed.

Assume that the G-action on A is admissible. Let 7 : 4 — A be a G-invariant
Galois G-covering between locally bounded k-linear categories. In [6, (3.2)], Bon-
gartz and Gabriel constructed an exact functor

7y : Mod A — Mod A,

called push-down functor. Indeed, for a module M € Mod A, one defines an A-
module 7y (M) as follows. For a € Ay, one sets mx(M)(a) = ©ren—(a) M(x), where
7 (a) = {x € Ay | 7(z) = a}. Let @ : @ — b a morphism in A. Since 7 is G-
invariant, for each pair (z,y) € 7~ (a) x 7~ (b), there exists a unique o, € A(z,y)
such that 37 ) m(ays) = a, for every € 77 (a). Observing that M(ay,,) is
a k-linear map from M (x) to M(y), one sets

(M) () = (M(oy,2)) (y,2)en-0)xn-(a) * Prer—(a)M(2) = Byer— )M (y)-
Next, let f: M — N be a morphism in Mod A. Setting
mA(f)(a) = diag{f(z) |z € 7 (a)} : Baer—(0)M(¥) = Srer—(a)N (@),
for each a € Ap, one obtains a morphism m(f) : ma(M) — mA(N) in Mod A.

The following result collects some properties of the push-down functor, which is
partially due to Bongartz-Gabriel; see [6, 8].

6.3. LEMMA. Let A, A be locally bounded k-linear categories with G a group acting
admissibly on A, and let m: A — A be a G-invariant Galois G-covering.

(1) The push-down functor my : ModA — ModA admits a G-stabilizer §.

(2) If x € Ay, then mx(P[z]) & P[r(z)].

Proof. (1) Fix g € G. For M € ModA, we define dgar : mx(g-M) — mx(M) by
setting, for a € Ay, that

5g,M(a) = (Ey,m)(y,m)E‘fr—(a)Xﬂ—(a) : 6990671'—(a) M(g_l :L') — 69yEﬂ'—(a) M(y)v

where g, , : M(g~! - z) — M(y) is a k-linear map so that e, , = 1if g7 -z = y;

and €, , = 0 otherwise. One verifies easily that 4 s is an A-linear isomorphism,
which is natural in M. This yields a natural isomorphism 64 : 7y 0 g — 7y.
Next, let g,h € G. For each a € Ay, we write

6gh,M(a) = (gz,x)(z,m)ew*(a)xw*(a) : G9:16671'*((1) M((gh)71 ’ SC) - G92671'*(a) M(Z)7
where €, , : M((gh)™! - 2) — M(z) is defined such that e, , = 1 if (gh)™! -z = 2;
and €, , = 0 otherwise. Moreover, write

-1

6gﬁh'M(a) = (ny,z)(y,a:)ETr*(a)XTr*(a) : EBa:ETr*(a)]\4(h’71(gil'x)) — EBy€7r*(a)]\4-(h y)v
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where 1y, : M(h™'(g7' - z)) — M(h™' - y) is such that n,, = 1 provided that

g~ 'z =y; and 1y, = 0 otherwise, and write

6h,JW(a) = (Cz,y)(z,y)Eﬂ'*(a)Xﬂ-*(a) : EByErr*(a) M(h_l . y) — @267\'*((1) M(Z),

where (,, : M(h™! - y) — M(z) is such that (,, = 1if h™' -y =2;and ¢, , =0
otherwise. Therefore,

6h,M(a) o 5g,h-M(a) = (gz,z)(z,x)ETr_(a)XTr_(a)v where gz,r = Zygﬂ—f(a) Cz,y O Ny,a-

Assume that z = (gh) ™'z = h™ (g7 z). For y € 7~ (a), we have (, ,0ny, =0
if y # g~ -z, and otherwise, (., on,, = 1. As a consequence, &, , = 1in case
z=(gh)™' 2. If 2 # (gh)™' -z, thenn,, =0incase y # g-' -z and (., =0
if y = g~'-x. Therefore, £, , = 0 in case z # (gh)™' - z. This implies that
Ogh,m = On a0 6g n-mr, that is, § is a G-stabilizer for my.

(2) Fix x € Ap. For each a € Ay, since 7 is G-invariant, we have a k-linear
isomorphism

Tea : TA(P[2])(0) = ®yen- () A(2,y) = Az, 0) = Plr(2)](a),

sending (fy «)yer—(a) tO Zyeﬂ,(a) 7(fyz), where f, . € A(z,y). Moreover, let
a :a — b be a morphism in A. For each pair (z,y) € 7 (b) x 7~ (a), there exists
oy € Ay, 2) such that }° . ) m(a.y) = a, for any y € 7 (a). By definition,
for each f = (fy.2)yer—(a) € TA(P[7])(a), we have

(mep o MA(PZ]) (@) (f) = Xien ) 2yern ()T (@y)T(fy.e)
- aZyEW*(a)W(fy,I)
= (Plr(@)l(a) o msa) (f)-

This shows that m(P[z]) = P[n(z)]. The proof of the lemma is completed.

Moreover, Bongartz and Gabriel observed that the push-down functor 7y admits
an exact right adjoint

7, : ModA — Mod A,

called pull-up functor, such that if N € ModA, then w,(NN) is the composite of
m:A— Aand N : A — Modk; and if f: M — N is a morphism in ModA, then
mu(f) i (M) = 7, (N) is defined by 7, (f)(z) = f(n(x)) for all € Ao.

The following result is essentially due to Gabriel; see [8].

6.4. PROPOSITION. Let A, A be locally bounded k-linear categories with G a group
acting admissibly on A. If m: A — A is a G-invariant Galois G-covering, then the
functors wy : ModA — ModA and 7, : ModA — ModA form a G-graded adjoint
pair (mx, m,).

Proof. Let m: A — A be a G-invariant Galois G-covering. It is well known that
(mx,m,) is an adjoint pair. For our purpose, we recall the definition of the adjoint
isomorphism ¢. Fix M € ModA and N € ModA. Let u € Homy(M,w,(N)),
consisting of a family of k-linear maps u(x) : M(z) = 7, (N)(z) = N(w(z)) with
x € Ag. For a € Ay, define

O (u)(a) = (w(2))zer—(a) * Daen—(a) M(x) = N(a).
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Then ¢nr,n(u) = (dar,n(w)(a))aca, is an A-linear morphism from (M) to N.
This yields a natural k-linear map

¢M7N : HOIIIA(M,TFN(N)) — HOIIIA(W)\(M),N).
Conversely, let v € Homy (my (M), N). For each a € Ay, write
'U(a/) = (/Ua,:p)xETr*(a) : EB.”I:EW*((I)M(‘/I:) — N<a)7
where v, , € Homy (M (x), N(a)). For each x € Ay, define
Om, N (0)(2) = Vn(a), 2 M(2) = N(7(2)) = m(N)(2).
Then ¢ar,n(v) = (Yam,n(v)(2)),c 4, IS @ A-linear morphism from M to m,(N).
This yields a k-linear map
Y, N Homy(mxa (M), N) — Homu (M, 7, (N)),

which is the inverse of ¢ .

Consider the direct sum G = @4eq g of the g € G, regarded as automorphisms
of Mod A, with canonical injections j, : ¢ = G. For each M € ModA, one defines a
A-linear morphism v,, : G(M) — m,(7x(M)) in such a way that, for any = € Ao,

Y (@) = (Ey.0) (og)en—(n(@))xC : Bgec M(g7" 1) = Syen—(n(z)) M(y),

where ¢, , = 1 if g Y(z) = y; and €y,g = 0 otherwise. It is easy to see that
Y. 18 an isomorphism which is natural in M. This yields a natural isomorphism
v:G =m0y

Let u: M — g - N, where g € G, be a morphism in ModA. Write p, n for the
composite of jg : g-N — G(N) and yn : G(N) — 7, (mA(N)). Fix a € Ay. For each
x € m (a), we have a k-linear map u(z) : M(z) — (g N)(x) = N(g~! - z), and
by definition, the k-linear map pg n(z) : (g- N)(z) = m,ma(N)(z) = mA(N)(a) is a
column-matrix

Pg,N('lf) = (Ey,z)yEﬂ'*(a) : N(gil I‘) — 69yE‘/r*(a)J\f(y)a
where €, , = 1 in case g 'z =y; and €y,» = 0 otherwise. As a consequence,
(pg,n ou)(x) : M(z) = mx(N)(a) is the following column-matrix
(pg.n o u)(2) = (g0 0 U(T))yen—(a) : M(2) = Byer—(a)N (y) = ma(N)(a).

In view of the above definition of ¢, we see that the k-linear map
DM () (Pg,N 0 u)(a) : A(M)(a) = mA(N)(a)

is given by the following row-matrix

M () (Pg,N 0 u)(a) = ((pg,n 0 U)(T))zer—(a) : Brer—(a) M(x) = ma(N)(a),
which is indeed the following square matrix

(5y,r o u(x))(y,w)ew*(a)Xﬂ*(a) : G930677*((1) M(x) - 69ye‘fr*(a)]\/v(y)'
On the other hand, my(u)(a) : mA(M)(a) = ma(g-N)(a) is a diagonal matrix
WA(U)(U,) = dlag {u(x)}IEﬂ'*(a) : @mEﬂ'*(a)M(-r) — @meﬂ——(a)N(gil . l’)

Let 0 be the G-stabilizer for m) as described in Lemma 6.3. By definition,
0g,n(a) : mA(g-N) — (V) is given by the following square matrix:

5g,N(a) = (Sy,x)(y,w)e‘n’*(a)Xﬂ*(a) : 69acE‘n'*(a) N(gil : CC) - EBy€7r*(a)]v(y)'
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Therefore, (64, n 0 mx(w))(a) : TA(M)(a) — 7x(N)(a) is given by the following
square matrix

(ey.e © ul®@)) (y,0)en—(a)x 7~ (a) * Pren—(a) M (@) = Byer— ()N ().
That is, dnsxy () (Pg,n 0 u)(a) = (0g,n o Tx(u))(a). This gives rise to

¢M,‘IT)\(N)(FYN Ojng o u) = 5g,N ] 7TA(’U,).
The proof of the proposition is completed.

Observe that the push-down functor my : ModA — ModA sends Mod% and
mod¥ into Mod4 and mod™4, respectively. Restricting this functor yields two
functors Mod% — Mod4 and modA — mod”4 which, by abuse of notation, are
both denoted by 7 again.

6.5. THEOREM. Let A, A be locally bounded k-linear categories with G a group acting
admissibly on A. Let m: A — A be a G-invariant Galois G-covering.
(1) The push-down functor m : ModA — Mod¥ is G-precovering.
(2) The push-down functor ) : mod% — mod™ is a G-precovering, and in case G
is torsion-free, it has the following properties.
(a) If M € mod™ is indecomposable, then wy(M) is indecomposable.
(b) If M, N € mod™A are indecomposable with wy(M) = 75(N), then N = g-M
for some g € G.
Proof. By Proposition 6.4, the push-down functor 7y : ModA — ModA and the
pull-up functor 7, : ModA — ModA form a G-graded adjoint pair (m,7,). By
Lemma 6.2, Mod% and mod? are abelian G-subcategories of Mod A with a locally
bounded G-action. Since the direct sums in Mod A are essential, the G-actions on
Mod™ and mod% are ModA-essential. It follows from Theorem 2.12 that both
7 : Mod% — Mod¥ and 7y : mod% — mod¥ are G-precoverings.

Suppose that G is torsion-free. By Lemma 2.2, the G-action on mod¥ is free.
Since mod? is Hom-finite and abelian, the endomorphism algebra of any indecom-
posable module is local with a nilpotent radical. Therefore, the Statements (a) and
(b) follow immediately from Lemma 2.9. The proof of the theorem is completed.

REMARK. (1) Theorem 6.5(1) generalizes slightly a result of Asashiba; see [2, (4.3)].
(2) Theorem 6.5(2) is essentially due to Gabriel; see [8]. It shows in particular
that if G is torsion-free, then 7y : mod”d — mod“ is a Galois covering if and only
if it is dense.
Next, we shall study the functors between the derived categories of the module

categories induced from the push-down functor. First of all, by Lemma 5.4, the
G-action on Mod 4 induces a G-action on D(ModA).

6.6. LEMMA. Let A be a locally bounded k-linear category with an action of a group
G. If the G-action on A is free, then D*(Mod™) and D*(modA) are G-subcategories
of D(ModA) with a locally bounded G-action.

Proof. By Lemma 6.1, Mod% and Db(modlf/l) have enough Mod A-projective ob-
jects. Thus, by Lemma 1.11, D*(Mod¥) and D?(mod?) are full triangulated sub-
categories of D(ModA). Assume that the G-action on A is free. By Lemma 6.2,
Mod¥ and mod are G-subcategories of Mod with a locally bounded G-action.
Hence, D*(Mod™) and D’(mod) are G-subcategories of D(ModA). Since the
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G-actions on Mod% and mod*d are locally bounded, by Lemma 5.5, so are the
G-actions on D?(Mod*) and D?(mod“). The proof of the lemma is completed.

Now, by Proposition 5.1, the push-down functor 7y : ModA4 — Mod A induces a
commutative diagram of functors

C(ModA) "~ K(ModA) — > D(ModA)

c K D
BY l/ DY \L \L”A

C(ModA) 2+ K(ModA) —24~ D(ModA),

where the vertical functors are also called push-down functors. Moreover, the pull-
up functor 7, : ModA — Mod/ induces a commutative diagram of functors:

C(ModA) — 2+ K (ModA) —24> D(ModA)

c K D
x| il |=

C(ModA) — > K(ModA) —24~ D(ModA)
where the vertical functors are also called pull-up functors.

Note that the functor 72 : D(ModA) — D(ModA) sends D’(Mod%) and
Db(mod™) into D*(Mod%4) and D?(mod®), respectively. Restricting this functor,
we obtain two functors D?(Mod%) — D’(Mod“4) and D®(mod®) — Db(mod®A)
which, by abuse of notation, both are denoted by 7% again.

6.7. THEOREM. Let A, A be locally bounded k-linear categories with G a group acting
admissibly on A. Let m: A — A be a G-invariant Galois G-covering.
(1) The push-down functor 72 : D*(Mod) — Db(Mod"4) is a G-precovering.
(2) The push-down functor ¥ : D*(mod"4) — D¥(mod*A) is a G-precovering, and
in case G is torsion-free, it has the following properties.
(a) If M* € Db(mod) is indecomposable, then w2 (M) is indecomposable.
(b) If M*,N* € D*(mod"A) are indecomposable with w2 (M") = 72 (N*), then
N2 g-M* for some g € G.
Proof. First of all, by Theorem 1.8, D(ModA) has direct sums and is equipped
with a G-action induced from the G-action on ModA. By Proposition 6.4, the
two functors 7y : Mod4 — ModA and 7, : ModA — ModA form a G-graded
adjoint pair (my,7,). By Proposition 5.7, the induced functors 72 : D(ModA) —
D(ModA) and 77 : D(ModA) — D(ModA) form a G-graded adjoint pair (7§, 77).
On the other hand, by Lemma 6.6, D?(Mod*1) and D?(mod) are G-subcategories
of D(ModA) with a locally bounded G-action.

(1) Let X*, Y* € D*(Mod¥). By Lemma 5.5(1), there exists a quasi-isomorphism
52 P*— X" in C(Mod"), where P*is a bounded above-complex of projective A-
modules such that C(Mod®4)(P3 g-Y*) = 0, that is, C(ModA)(P5 g-Y*) = 0, for
all but finitely many g € G. By Proposition 1.10, P" is essential in the direct sum
@gec g-Y" in D(ModA), and so is X* because 5° is an isomorphism in D(ModA).
That is, the G-action on D’(Mod*l) is D(ModA)-essential. By Theorem 2.12, we
see that 72 : D®(Mod%) — D?(Mod"4) is a G-precovering.

(2) As argued above, we see that 7P : D’(mod) — DP(mod4) is a G-
precovering. Suppose that G is torsion-free. By Lemma 2.2, the G-action on
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Db(modb/l) is free. Since mod is Hom-finite and has enough projective objects,
it is well known that Db(modb/l) is Hom-finite. Moreover, since the idempotents
in Db(mod”) split; see [4, (2.10)], D*(mod) is Krull-Schmidt. Therefore, the
endomorphism algebra of any indecomposable object in Db(modbA) is local with a
nilpotent radical. By Lemma 2.9, 72 : D?(mod) — D?(mod“A) has the properties
stated in Statements (a) and (b). The proof of the theorem is completed.

REMARK. (1) Theorem 6.7 says in particular that if G is a torsion-free group, then
72 D’ (mod”) — D?(mod“4) is a Galois G-covering if and only if it is dense.

(2) The same result hold for the push-down functors between the complex cate-
gories and between the homotopy categories.

We conclude this section with a result which will be used in the next section.
A morphism f : M — N in ModA is called radical if the image of f is contained
in the radical of N. More generally, a complex over Mod A is called radical if all
its differentials are radical morphisms. For % € {—,{—,b}}, we shall denote by
RC*(ProjA) the full subcategory of C*(ProjA) generated by the radical complexes.

6.8. LEMMA. Let A be a locally bounded k-linear category. If X* € D?(Mod™) is
indecomposable, then there exists some indecomposable complex P* € RC~ (ProjA)
such that X* = P* in D(Mod") in such a way that P* € RC~(projA) whenever
X" € D*(mod).

Proof. Let X* € Db(ModbA) be indecomposable. Making use of Lemma 6.1, we
can find P € RC~(ProjA) such that X" 2 P* in D(Mod); see [10, (7.5)], where
P* e RC~(projA) whenever X* € D*(mod”). By Lemmas 1.11 and 1.9, we obtain

End ps (voar) (X7) = End pvoara) (X7) = End poaray (P7) = End g (ioaray (P°)-
Since idempotents in D?(Mod*) split, End pb (\oaa) (X 7) has no proper idempo-
tent, and neither does End K(ModbA)(P'). This implies that P is indecomposable in

K (Mod™). Hence, P"is indecomposable in RC'~ (Proj A) because no non-zero com-
plex in RO~ (ProjA) vanishes in K (Mod4). The proof of the lemma is completed.

7. THE RADICAL SQUARED ZERO CASE

The objective of this section is to show how the covering technique can be applied
to study derived categories of modules over a locally bounded linear category with
radical squared zero.

We start with some combinatorial consideration. Throughout this section, let
Q = (Qo, Q1) be a connected locally finite quiver. Given a walk w in @, we define
its degree O(w) in the following manner: if w is a trivial path, an arrow, or the
inverse of an arrow, then d(w) = 0,1, or —1, respectively, and this definition is
extended to all walks in @ by d(uv) = d(u) + d(v). In particular, the degree of a
path is equal to its length.

7.1. DEFINITION. A quiver @ is called gradable if all the closed walks in @ are of
degree zero.

REMARK. (1) A quiver without (oriented or non-oriented) cycles is evidently
gradable. On the other hand, a gradable quiver contains no oriented cycle.
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(2) Suppose that @ is gradable. Then, for any z,y € Qo, all the walks from z to
y have the same degree, written as d(z,y). Thus, each vertex a in @) determines a
graduation on Q as follows. For each i € Z, denote by Q(*% the set of vertices x
for which d(a,z) = 4. In this way, Qo is the disjoint union of the Q(*%, i € Z; and
each arrow in Q is of the form z — y with z € Q(*% and y € Q@1 for some
i. Moreover, if b is antoher vertex, then Q) = Q(ait+d(ab)) for all i € Z, where
d(a,b) is a constant.

Associated with a quiver @, we define a new quiver Q% as follows: the vertices are
the pairs (a,i) with a € Qo and ¢ € Z, and the arrows are (a, 1) : (a,i) — (b,i + 1),
where i € Z and a : a — b is an arrow in (. As shown below, Q% is gradable.

7.2. LEMMA. Let Q be a quiver. If (a,m), (b,n) € Q%, then Q% has a walk from
(a,m) to (b,n) if and only if Q has a walk of degree n —m from a to b, and in this
case, all the walks in Q% from (a,m) to (b,n) are of degree n —m.
Proof. Let (a,m), (b,n) be vertices in Q%. First, let w be a non-trivial walk
in Q% from (a,m) to (b,n). We may assume that w = (o, m,)% -+ (g, mq)h,
where r > 1, a; € Q1, m; € Z, and d; = £1. For 1 < i < r, write b; = e(afi),
then e((a;, m;)%) = (bi,n;) with n; € Z. By definition, n; = m +dy + -+ + d;,
for i = 1,...,r. In particular, n = n, = m+d; +--- + d. = m + 9(w). Thus
A(w) = n —m, and o - o is a walk in Q from a to b of degree n —m. From
this, we deduce the necessity of the first part and the second part of the lemma.
It remains to prove the sufficiency of the first part of the lemma. Indeed, let v
be a walk of degree n —m in Q from a to b. If v is trivial, then (a, m) = (b,n), and
hence, the trivial path in Q% at (a,m) is of degree n —m. Otherwise, we can write

v=p3d... fl, where s > 1, 5; € Q1 and d; = 1. Write ag = a and mg = m,

and write a; = e(ﬁidi) and m; = mg+dy +---+d;, fori = 1,...,s. Moreover,
define n; = Mi;—1 if dz = 1 and n; = My if dz' = 71, for ¢ = 1,...75. Then,
(Bi,ni)% -+ (Br,n1)™ is a walk in Q% from (ag, mg) to (a;,m;), for i = 1,...,s.

In particular, since n = m,, we obtain a walk (8,,15)% ---(B1,n1)% in Q% from
(a,m) to (b,n) of degree n — m. The proof of the lemma is completed.

We shall need the following notion in order to describe the connected components

of Q2.

7.3. DEFINITION. Let @ be a connected quiver. The grading period of Q) is defined
to be 0 in case @ is gradable, and otherwise, to be the minimum of the positive
degrees of closed walks in Q.

Observe that Q% has an automorphism o, called the translation, sending (a,1)
to (a,i+ 1), and («, ) to (o, i+ 1), where a € Qp, o € Q1 and i € Z. The group
generated o will be called the translation group of Q%. Moreover, for an integer
s> 0, we write Zs =Z if s =0; and Z; = {0,1,--- ,s — 1} if s > 0.

7.4. LEMMA. Let QQ be a connected quiver of grading period r. Let C be a connected
component, and o the translation, of Q%.

(1) If m,n € Z, then c™(C) = ¢™(C) if and only if m = n (modr).

(2) The distinct connected components of Q% are ™ (C) with n € Z,.

(3) If w is a closed walk in Q, then O(w) is a multiple of r.
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Proof. Observe first that if 7 is an automorphism of Q%, then 7(C) is a connected
component of QZ, and hence, C = n(C) or CNn(C) = 0. Fix a vertex (a,ng) in C,
where a € Yy and ng € Z.

(1) By definition, @ contains a closed walk of degree r which, we may assume, is
from a to a. By Lemma 7.2, Q% has a walk from (a,n¢) to (a,ng + r). Therefore,
o"(C) = C. Asaconsequence, c™(C) = c™(C) whenever m = n (mod ). Conversely,
assume that 0™(C) = 0™(C) with m # n(modr). In particular, Q% has walk from
(a,mg + m) to (a,np +n). By Lemma 7.2, ) contains a walk from a to a of
degree m — n. In particular, @ is not gradable, and hence r > 0. If mj,n; are
the remainders of m,n divided by r respectively, then ¢ (C) = o™ (C). Then,
@ contains a walk from a to a of degree ny — my, which is a contradiction since
0 < |m1 — ny| < r. This establishes Statement (1).

(2) By Statement (1), the 0™(C) with n € Z, are distinct connected components
of Q%. Let (x,7) be an arbitrary vertex in Q%. Being connected, @ has a walk from
a to m, say, of degree d. By Lemma 7.2, Q% has a walk from (a,i — d) to (z,1).
Hence (z,i) € o'=9""0(C) = ¢*(C), where t € Z, with i —d—ng =t ( mod r). This
establishes Statement (2).

(3) Let w be a closed walk of degree s in @, which we may assume is from a to
a. By Lemma 7.2, @ has a walk from (a,0) to (a,s). Suppose that (a,0) lies in a
connected component D of Q%. Then (a, s) lies in the connected component o*(D),
and hence, D = 0*(D). In view of Statement (1), s is a multiple of r. The proof of
the lemma is completed.

REMARK. By Lemma 7.4, restricting ¢” to C yields an automorphism o,, called the
translation, of C. If X is the translation group of Q%, then X, = {g € ¥ | g(C) = C}
is generated by o, , which we shall call the translation group of C.

It is evident that we have a quiver-morphism ¢ : Q% — @, sending (a,i) and
(a,7) to a and « respectively. We shall call it the canonical quiver-morphism.

7.5. THEOREM. Let @ be a connected locally finite quiver. Let X be the automor-

phism group and C a connected component of Q.

(1) The canonical morphism q : Q% — Q is a Galois X-covering.

(2) Restricting q yields a Galois X, -covering q, : C — Q.

(3) The quiver Q is gradable if and only if q. is an isomorphism.

(4) If Q is finite, then @ is gradable if and only if C is finite.

(5) If ¢ : I' = Q is a quiver-covering with I gradable, then there exists a quiver-
covering ¢ : I' = C such that ¢ =1 oq,.

Proof. By Lemma 7.4, ¥, = {o" | i € Z}, where r is the grading period of Q.

(1) It is evident that ¥ acts freely on QZ, the action of ¢ on the vertices is
surjective, and qo o? = ¢ for any i € Z. Moreover, if ¢(a,i) = (b,j), then b = a and
(b,§) = 097%(a,i). For any vertex (a,i) in Q%, the arrows in Q% starting in (a,17)
are the arrows (o, i), where a ranges over the arrows in @ starting in a, and the
the arrows in Q% ending in (a,4) are the arrows (3,7 — 1), where 3 ranges over the
arrows in @ ending in a. This shows that ¢ is a Galois X-covering.

(2) Since @ is connected, Statement (2) follows immediately from Lemma 4.4.

(3) If ¢, is an isomorphism, then @ is gradable because C is gradable. Conversely,
if  is gradable, then r = 0, and hence X, is trivial. Being a Galois X,-covering,
g, is an isomorphism.
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(4) Suppose that Q is finite. By Lemma 7.4(1), 0" (C) = C for i € Z. Let (a,m)
be a vertex in C. Then, (a,m + ri) € C for all i € Z. If r > 0, then C is infinite.
Otherwise, C 2 @ by Statement (3), and hence, C is finite.

(5) Let ¢ : I' — @ be a quiver-covering with I being gradable. Since Q is
connected, by Lemma 4.4(1), the restriction of ¢ to any connected component of I’
is a quiver-covering. Thus, we may assume that I" is connected. Choose z* € I'y.
Then y = ¢(a*) € @, and there exists some integer s with y* = (y,s) € Cp. Let
z € I'g, and write n, = d(z*,z). Choose a walk @ in I' from 2* to z, which
is necessarily of degree n,. Then ¢(w@) is a walk in @ from y to ¢(z) of degree
n,. By Lemma 7.2, Q% contains a walk from y* = (y,s) to (#(z),s +n.). In
particular, (¢(z),s + n.) € C. Define tg(z) = (#(2),s + n.). If (b,i) € Cy with
b € Qg then, by Lemma 7.2, @ has a walk w from y to b of degree ¢ — s. Since
¢ is a quiver-covering, I' contains a walk @ from z* to some vertex b* such that
(@) = w. Observing that 0(a) = d(w) = ¢ — s, we see that o(b*) = (b,4). This
yields a surjection ¥y : I'g — Co. Next, let a : 2 — z; be an arrow in I'. Then
ny, = ny + 1. Since ¢(a) : ¢(z) = ¢(z1) is an arrow in @, we obtain an arrow
(p(a),n,) : (p(2),n.) = (P(z1),n,,) in C. Define 91 () = (¢(),n,). This gives
rise to a quiver-morphism 1 : I' — C such that ¢, o9 = ¢. Since ¢, g, are both
quiver-coverings, so is ©. The proof of the theorem is completed.

REMARK. By Lemma 7.2(1), the connected components of Q% are pairwise
isomorphic. If C is such a component, due to the property stated in Theorem
7.5(5), we call g, : C — @ a minimal gradable covering of Q.

Let k be a field. Recall that the path category kQ of @ over k is a skeletal k-
linear category in which the objects are the vertices in ; and a morphism space
(kQ)(z,y), with 2,y € Qqo, has Q(x,y) as a k-basis. We shall be interested in the
following locally bounded k-linear category

A=kQ/(kQT)?

with rad? (A) = 0, where kQ™ is the ideal in kQ generated by the arrows. Some-
times, it will be convenient to regard A as a k-algebra with a complete set of pairwise
orthogonal primitive idempotents {e, = &, | a € Qo}, where 4@ = u + (kQT)? € A,
for u € kQ. Accordingly, a left module over the category A will be identified with
a left module over the algebra A which is unitary with respect to {e, | a € Qo}. In
particular, for each a € @y, we have an indecomposable projective left A-module
Pla] = Ae,; and for each arrow « : @ — b in @), we have an A-linear morphism
Pla] : P[b] — Pla], the right multiplication by &; and for a trivial path &,, we write
Plea] = 1p[q). All tensor products are over the base field k.

7.6. LEMMA. Let A = kQ/(kQ™)?, where Q is a connected locally finite quiver. If
a,b € Qo and U,V are k-spaces, then an A-linear morphism ¢ : P[b|@U — Pla]®@V
can be uniquely written as

=2 eqor(a ) PN ® [y, where f, € Homy (U, V).

Moreover, ¢ is radical if and only if ¢ = Zate(a’b) Pla] ® fo, fa € Homg (U, V).

Proof. Let U,V be k-spaces. Suppose that ¢ : P[b)]®@U — Pla]®V, with a,b € Qo,

is an A-linear morphism. Observe that ¢(e, @ U) C epAe, @ V. Since rad®(A) = 0,
we have epde, @ V. = @yeq_,(a,0)k7 ® V. Thus, for each u € U, the element
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@(ep ® u) is uniquely written as
(+) Hey ®u) = Z'YEQSI(G,I)) 7 ®vy, vy €V

This yields, for each v € Q<1(a, b), a k-linear map fy : U — V : u — v,. Being
A-linear, ¢ =3 +EQ1 (a,b) P[] ® f-, and this expression is unique by the uniqueness
of the v, in (x).

If ¢ = Zate(m p) Plo] ® fa, then ¢ is clearly radical. Otherwise, b = a and
fe, (1) # 0 for some u € U. Thus ¢(ep @ u) = e, ® fe, (u), which is not in the radical
of Pla] ® V, that is, ¢ is not radical. The proof of the lemma is completed.

The following result is essential for our investigation.

7.7. PROPOSITION. Let A = kQ/(kQ™)?, where Q is a connected gradable locally
finite quiver. Let P be an indecomposable complex in RC~(ProjA). If a € Qo,
then there exists an integer s such that, for every integer i, we have

Pt = Oregas—n Plr] ® Vi where V' € Modk.

Proof. If P™ # 0, then we may assume that P" = ©,¢ omn)Plz] ® V!, where
2(n) C Qo and the V) are non-zero k-spaces; and if d'% # 0, then we write

P = (dp(Y: 7)) (y.0)€ 2(nt1)x 2(n):

where d(y,z) : Plz] ® V;» — P[y] ® V;'™! is a radical A-linear morphism which,
by Lemma 7.6, can be written as

dp(y, ) = X pequ o) Plo] ® fa, where f3 € Homy (V' Vo,

Fix a € Qo. Let z € 2(n) and y € 2(m) be distinct vertices, where n,m
are integers. Then z € Q(®*~™ and y € Q®!~™) where s = n + d(a,x) and
t = m-+d(a,y). In particular, d(z,y) = (t—m)—(s—n). Now, P[z]®V." is a non-zero
direct summand of P", while P[y]®V,™ is a non-zero direct summand of P™. Since
Pis indecomposable, there exist integers n = ng, nq,...,n, = m with n;41 = n;+1;
and vertices © = yo,y1, -+ ,yr = y With y; € 2(n;) such that d5* (yiy1,v:) # 0 in
case nit+1 = n; + 1 or dp™ (yi,yit1) # 0 in case n;41 = n; — 1. Using the above
description of the maps d'%, we obtain a walk w = ;""" -+l 72T in Q
from x to y. This yields

(t—s)+ (n—m)=d(x,y) =0(w) =g (nis1 —n;) =n —m,
-

and consequently, t = s. Therefore, 2(i) C Q(**~% for every i such that P* # 0.
Setting V/ = 0 in case P7 = 0 or z ¢ £2(j), we obtain P’ = @,cg@..—» Plz] @ V},
for every i. The proof of the proposition is completed.

For the rest of the paper, we fix a connected component Q of Q%, and put
A=kQ/(kQ")?,
a connected locally bounded k-linear category with ra~d2(/~l) = 0. Let G be the
translation group of ). By linearity, the G-action on @ induces a G-action on A.

Moreover, the minimal gradable covering © : Q — @ induces a k-linear functor
A — A which, for the simplicity of notation, will be denoted by m again.
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7.8. LEMMA. Let A = kQ/(kQT)? and A = kQ/(kQ1)?, where Q is a connected
locally finite quiver and Q is a connected component of Q%. The minimal gradable
covering m : Q — Q induces a G-invariant Galois G-covering T : A = A, where G
is the translation group of Q.

Proof. First of all, it is easy to see that the G-action on A is admissible and the
functor m : A — A is G-invariant and satisfies the conditions (1), (2) and (3) stated
in Definition 2.8. It suffices to show, for z*,y* € Q, that

Tor g Bgec A, g-y*) = Alm(z*),m(y")) : (ug)gec — dea m(ug)

is an isomorphism. Indeed, write w(z*) =  and 7(y*) = y. By definition, A(z,y)
has a k-basis B = {fj | & € Q< (x,y)}, and A(z*, g -y*) with g € G has a k-basis
B, ={€] €€ Qci(a*,g-y")}. Since 7:Q — Q is a Galois G-covering, it induces
a bijection from Ugegcégl(m*,g -y*) onto Q<1 (z,y). As a consequence, Ty 4+ is a
k-linear isomorphism. The proof of the lemma is completed.

In the sequel, the G-invariant Galois G-covering 7 : A — A stated in Lemma 7.8
will be called a minimal gradable covering of A. Recall that the push-down functor
7\ : ModA — Mod A induces a functor 7§’ : C(ModA) — C(ModA).

7.9. LEMMA. Let A = kQ/(kQ1)? and A = kQ/(kQ™)?, where Q is a connected
locally finite quiver and Q is a connected component of Q%. Let m : A — A be
the minimal gradable covering. If P*€ RC—(ProjA), then P* = n{ (L"), where
L' € RC—*(ProjA), which lies in RC~*(projA) in case P*€ RC~*(projA).
Proof. By Theorem 7.5(3), we may assume that @ is of grading period r > 0. Let
X be the translation group of @Q%, which is generated by the translation o of Q%.
By Theorem 7.5, we have a canonical Galois X-covering q : Q% — Q. Consider the
locally bounded k-linear category A% = kQ%/I”, where I” is the square of the ideal
in kQ” generated by the arrows. In view of Lemma 7.8, we see that ¢ : Q% — Q
induces a Y-invariant Galois X-covering ¢ : A? — A. The push-down functor
qx : ModAZ — ModA induces an exact functor ¢§ : C(ModAZ) — C(ModA).

Let P*€ RC~*(ProjA). For each i € Z, write P’ = @©,cq, Plr] ® V!, where V}
is a k-space; and dp = (d%(y, %)) (y,2)c00 xQo» Where dis(y, x) is a radical A-linear
map from P[z] ® V; to Ply] ® V,;*'. By Lemma 7.6,

dio(y, ) = YacarwanPla]® [k, where fi € Homy (V) V).

Define a complex X* € RC~(ProjA%) by setting X* = @,eq, Pl(z, —i)] ® V}!
and d = (d (y, %)) (y.2)eox Qo : X' — X1, where
dx (y,2) = X weq, (o Pllas —i= 1))@ fi : Pl(z, —i)] @ Vi — Pl(y, —i— 1)@V,
By Lemma 6.3(2), ¢§(X*) = P~

On the other hand, it follows from Lemma 7.4 that the connected components
of Q% are C; = 09(Q), j = 0,---,r — 1. Thus, we may write X* = @}';éX},
where X € RC~*(ProjA?) is supported by C;. Clearly, there exist complexes
L; € RC™(ProjA) such that X; = O’j'L].», and~hence, qf(X]) & qf(LJ'»), for
j=0,...,r—1. Thus, L' = @;;é L; € RC~(ProjA) is such that

a5 (L) = @2 a5 (L) 2 @555 af (X;) = S (X7) = P,
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Since 7 : Q — @ is the restriction of ¢, we see that 7§ : C(ModA) — C(ModA)
is the restriction of ¢§. This yields 7§ (L") = ¢§{ (L") = P*. Moreover, since 7{ is
exact and faithful, L* € RC~*(ProjA).

Finally, if P* € RC~*(projA), then the V! are finite dimensional for all 2 € Qg
and i € Z. Hence, by our construction, X* € RC~ (projA%), and as a consequence,

L e RC_’b(proj fl) The proof of the lemma is completed.

We are now ready to have the main result of this section.

7.10. THEOREM. Let A = kQ/(kQ1)? and A = kQ/(kQ™T)?, where Q is a connected
locally finite quiver and Q is a connected component of Q%. Let w: A — A be the
minimal gradable covering, and G the translation group of Q.

(1) The push-down functor 7% Db(mod®4) — D?(mod*d) is a Galois G-covering.
(2) The push-down functor 7P : D*(Mod®A) — D*(Mod"A) is a Galois G-covering.
Proof. By Proposition 7.8, the functor 7 : A — A is a G-invariant Galois G-
covering. By Theorem 7.5(3), we may assume that @ is of grading period r > 0.
Then, the translation p of Q is of infinite order. In particular, G is torsion-free.
The G-actions on D?(Mod®4) and D?(mod%d) are locally bounded by Lemma 6.6,
and free by Lemma 2.2. By Theorem 6.7, both 7 : D®(mod®4) — DP(mod’4) and
72 . D*(Mod®A) — D(Mod"A) are G-precoverings.

(1) By Theorem 6.7(2), 72 : D?(mod’A) — D®(mod"A) satisfies the conditions
(2) and (3) stated in Definition 2.8. Let X* € D’(mod“d) be indecomposable.
By Lemma 6.8, X° = P"in D(modl.’A), where P° is an indecomposable object in
RC~*(projA). By Lemma 7.9, P* = 7 (L") for some L' € RC—*(proj A), and then,
P =7P(L)in D(mod4). Tt is well known that there exists some Y* € C?(mod®4)
such that L' 2 Y" in D(modbfl). This yields the following isomorphisms

YY) 2L 2P X
in D(mod®). Since 7P (Y*) and X" are bounded, we obtain 7P (Y*) = X" in
DP(mod"A); see, for example, [10, (6.15)]. That is, 72 : D®(mod®4) — D’(modA)
is almost dense, and hence, a Galois G-covering.

(2) As argued above, the functor 72 : D?(Mod’A) — DY(Mod"4) is almost
dense. We claim that the G-action on Db(Modbfl) is directed. Indeed, let X", Y" be
indecomposable objects in Db(Modbfi). By Lemma 6.8, there exist indecomposable
complexes P*, L' € RC~(ProjA) such that X*2 P*and Y* 2 L' in D(Mod“A).

Fix a* = (a,ip) € Qo, and write Q) = Q") for i € Z. By Proposition 7.7,
there exist integers s,t such that

Pl = Dyecie—n Plr*] ® Up; L'= Dy-cii-a Ply*] ® V.,

where U., Vy’; are k-spaces, for any i € Z.

Suppose that D?(Mod®4)(Y", X*) # 0 and D*(Mod"4)(X*,Y") # 0. As a con-
sequence, D(Mod"A)(L’, P*) # 0 and D(Mod%4)(P",L*) # 0. In view of Lemma
1.9(1), we deduce that C'(ModA)(L*, PY) # 0 and C'(Mod’4A)(P*, L") # 0. Let
u' : P*— L and v’ : L' — P° be non-zero morphisms in C(Mod"d). In par-
ticular, f™ # 0 for some m. Then there exist z* € QG=™ and y* € Q=™
such that Hom ;(P[z*], Ply*]) # 0. By Lemma 7.6, Q<i(z*,y*) # 0. Therefore,



42 RAYMUNDO BAUTISTA AND SHIPING LIU

(t—m) — (s —m) =d(z*,y*) > 0, that is, ¢ > s. Similarly, since v™ # 0 for some
n, we may deduce that s > ¢. That is, s = t.

Let g = pY € G with j € Z. Then d(z*,g - 2*) = jr for any 2* € Q. Hence,
g-Q) = QU+i™) for any i € Z. This implies that g-L* € RC~(ProjA) such that,
for each ¢ € Z, we have

(9:L)" = g-L' = ®yecqe-o Plg- ¥ ] ® Voo = B cquorin-n Pl2*] @ Vgifl.z*.

Suppose that D?(Mod®4d)(g-Y*, X") # 0 and D?(Mod"A)(X",g-Y") # 0. Since
g-Y'=g-L in D(Modbfl), as shown above, we deduce that s + jr = s, that is,
7 = 0. This establishes our claim.

Since idempotents in Db(Modbfl) split, the indecomposable objects in Db(Modbfl)
are properly indecomposable. By Lemma 2.10, 72 : D*(Mod®A) — D?(Mod"A) sa-
tisfies the conditions (2) and (3) stated in Definition 2.8, and hence, is a Galois
G-covering. The proof of the theorem is completed.

As an immediate consequence of Theorems 7.10 and 4.7, we obtain the following
interesting result.

7.11. COROLLARY. Let A = kQ/(kQT)* and A = kQ/(kQM)2, where Q is a con-
nected locally finite quiver and @ is a connected component of QZ, If G is the
translation group of Q, then the minimal gradable covering m : A — A induces a

Galois G-covering Fr : I' by (1oqvdy = I Db (modta)-
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