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Abstract. Using the Nakayama duality induced by a Nakayama functor, we

provide a novel and concise account of the existence of Auslander-Reiten du-

alities and almost split sequences in abelian categories with enough projective
objects or enough injective objects. As an example, we establish the existence

of almost split sequences ending with finitely presented modules and those

starting with finitely copresented modules in the category of all modules over
a small endo-local Hom-reflexive category. Specializing to algebras given by

(not necessarily finite) quivers with relations, we further investigate when the

categories of finitely presented modules, finitely copresented modules and finite
dimensional modules have almost split sequences on either or both sides.

Introduction

The Auslander-Reiten theory of irreducible maps and almost split sequences,
introduced by Auslander and Reiten in the 1970’s; see [8, 9], is a powerful tool
for studying categories of various kinds: most prominently, categories of modules
over algebras and their derived categories; see [10, 19, 21, 38], and also, categories
of Cohen-Macaulay modules over commutative algebras; see [32, 39], categories of
sheaves on varieties and schemes; see [6, 25], derived categories of differential graded
algebras arising from topological spaces; see [24], and most recently, extriangulated
categories; see [23, 34].

In this paper, we are mainly concerned with the existence of almost split se-
quences in an R-category A, where R is a commutative ring. Write D for the dual
functor HomR(−,IR), where IR is the minimal injective cogenerator for R-modules.

Typically, one derives an almost split sequence 0 // τM // E // M // 0
from an Auslander-Reiten duality Ext1A(X, τM) ∼= DA(M,X) or Ext1A(M,X) ∼=
DA(X, τM) for all X ∈ A, or from their weak forms as described in [35, (2.3)],
where τ is the AR-translation; see [4, 10, 19, 31]. The classical AR-translation for
module categories is the dual of the transpose; see [4, (I.3)], [7, (7.4)], [8, (2.2)] and
[37, (1.6.1)]. For lack of a transpose functor, we shall take a different approach.

Let P be a strictly full additive subcategory of projective objects in A. As
defined in [34, (5.4)], a Nakayama functor ν : P → A induces a Nakayama duality
DA(P,X) ∼= A(X, νP ) for P ∈ P and X ∈ A. It has been shown that a Nakayama
duality induces Aualander-Reiten dualities in the derived category of A; see [34,
(5.7)]. Inspired by our recent work on the Auslander-Reiten dualities for graded
modules; see [33, (3.4)], we show that it also induces, in an elegant way, Auslander-
Reiten dualities in A. Indeed, defining the AR-translate τ

δ
M of an object M with
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a projective presentation δ over P; see (2.3.1), we show straightforwardly that
Ext1A(X, τδM) ∼= DA(M,X) for X ∈ A if A has enough projective objects, and

DExt1A(M,X) ∼= A(X, τ
δ
M) for X ∈ A if A has enough injective objects; see (2.3.2)

and (2.3.3). Observe that the second isomorphism induces only a monomorphism
Ext1A(M,X) → DA(X, τ

δ
M), not an isomorphism as stated above.

In order to derive almost split sequences from Auslander-Reiten dualities or their
weak forms, one requires a key property that the AR-translation preserves strong
indecomposability. For this purpose, we assume that P is Hom-reflexive and Krull-
Schmidt; see (1.2). In this case, we obtain a Nakayama equivalence ν : P → νP; see
[34, (5.6)] and an AR-translation uniquely defined (up to isomorphism) for objects
finitely presented over P; see (2.4.3). These lead directly to the desired property;
see (2.4.5), without involving a transpose functor as the classical approach; see [7,
(7.4)] and [10, (IV.1)]. This enables us to apply the result in [35, (2.3)] to establish
the existence of almost split sequences ending with objects finitely presented over P
if A has enough projective objects, and almost split sequences starting with objects
finitely copresented over νP if A has enough injective objects; see (3.6.3).

Our results will be applicable to many concrete abelian categories, including
potentially categories of sheaves on topological spaces. In Section 3, for example,
we shall consider the category ModC of all left modules over a small endo-local
Hom-reflexive R-category C . By the Yoneda Lemma, the full subcategory projC of
finitely generated projective modules in ModC is Hom-reflexive and Krull-Schmidt.
By constructing a Nakayama functor ν : projC → ModC ; see (3.4.1), we obtain an
existence theorem for almost split sequences in ModC ending with finitely presented
modules and for those starting with finitely copresented modules; see (2.5.1). Note
that the first part of this existence theorem was stated without proof or reference by
Auslander in [4]. However, the most relevant result that we can find in the existent
literature is the existence of the Auslander-Reiten duality, and consequently, the
existence of almost split sequences, in the category of finitely presented C -modules
when C is a dualizing R-variety; see [7, (7.4)]. It is not clear how this approach
works for ModC , whether C is a dualizing R-variety or not.

In section 4, we shall specialize to an algebra Λ given by a quiver with relations.
In case Λ is locally semiperfect; see (4.4.1), which can be viewed as a small endo-
local Hom-reflexive category, we obtain immediately a general existence theorem
for almost split sequences in ModΛ; see (4.7.1). So we will focus on the subcate-

gories mod+Λ, mod−Λ and modbΛ of finitely presented modules, finitely copresented
modules and finite dimensional modules in ModΛ, respectively. In case Λ is locally
semiprimary given by locally finite quivers; see (4.5.1), the almost split sequences in
mod+Λ and mod−Λ are almost split in ModΛ; see (4.7.4) and (4.7.6). And we find
conditions for these subcategories to have almost split sequences on either or both
sides; see (4.8.1), (4.8.3) and (4.8.5). In particular, we obtain examples in which

modbΛ has almost split sequences, but it has neither enough projective objects nor
enough injective objects; see (4.8.9). In the hereditary case, our results strengthen
the corresponding ones in [13]. We conclude by emphasizing the broad significance
of the representation theory of algebras defined by infinite quivers with or without
relations: it allows us to apply Bongartz and Gabriel’s covering theory to study
representations of finite dimensional algebras; see [11, 12, 14, 18]; and it establishes
deep connections to other domains such as coalgebras and comodules; see [15, 16],
non-commutative algebraic geometry; see [38] and cluster theory; see [22, 36].
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1. Preliminaries

The objective of this section is to fix some terminology and notation, which will
be used throughout this paper, and collect some preliminary results.

1.1. Reflexive modules. Throughout this paper, R stands for a commutative
ring with an identity. We denote by ModR the category of R-modules and by IR a
minimal injective cogenerator for ModR. A significant role in our investigation will
be played by the dual functor D = HomR(−, IR) : ModR→ ModR will play. Given
an R-module M, there exists a canonical R-linear monomorphism σ

M
:M → D2M ,

sending m to the evaluating at m function. We shall say that M is reflexive if σ
M

is bijective. The following statement is known; see [34, (1.3)].

Reflex 1.1.1. Lemma. Let R be a commutative ring. Then the category modR of reflexive
R-modules is abelian, and the dual functor restricts to a duality D :modR→modR.

sp_rmod 1.1.2. Remark. (1) The category modR contains all R-modules of finite length.
(2) In case R is complete noetherian local, modR contains all noetherian R-modules
and all artinian R-modules.

KS_section

1.2. Krull-Schmidt categories. An R-category is a category in which the mor-
phism sets are R-modules and the composition of morphisms is R-bilinear. We shall
compose morphisms in any R-category from right to left. A full subcategory of an
R-category is called strictly full if it is closed under isomorphisms. All functors
between R-categories are assumed to be R-linear.

Let A be an R-category. Given objects X,Y ∈ A, we write A(X,Y ) for the
R-module of morphisms f : X → Y. A non-zero object X in A is called strongly
indecomposable if A(X,X) is local; and Krull-Schmidt if it is a finite direct sum
of strongly indecomposable objects. We shall say that A is Krull-Schmidt if every
non-zero object is Krull-Schmidt, and Hom-reflexive (respectively, Hom-noetherian,
Hom-finite) if the R-modules A(X,Y ) are reflexive (respectively, noetherian, of
finite length), for all objects X,Y in A. Note that a Hom-finite R-category is Hom-
reflexive and Hom-noetherian. Moreover, if R is complete noetherian local, then a
Hom-noetherian R-category is Hom-reflexive.

Ku-sum 1.2.1. Proposition. Let A be a strictly full additive subcategory of an abelian R-
category A. If A is Krull-Schmidt, then it is closed under direct summands in
A. The converse holds if A is either Hom-finite or Hom-noetherian with R being
complete local noetherian.

Proof. Firstly, assume that A is Krull-Schmidt. Let X ∈ A with a nonzero direct
summand Y in A. Then, X = X1 ⊕ · · · ⊕Xn, where Xi ∈ A with A(Xi, Xi) being
local. Since A(Xi, Xi) = A(Xi, Xi), we see that Y is a direct sum of some of the
Xi; see [35, (1.1)]. In particular, Y ∈ A.

Conversely, assume that A is closed under direct summands in A. Then, the
idempotent endomorphisms in A split. Assume further that A is either Hom-finite
or Hom-noetherian with R being complete noetherian local. Then, for any X ∈ A,
the R-algebra A(X,X) is either artianian; or noetherian with R being complete
noetherian local. In either case, A(X,X) is semi-perfect; see [30, (21.35)]. Thus,
A is Krull-Schmidt; see [35, (1.1)]. The proof of the proposition is completed.

1.3. Minimal morphisms. Let A be an R-category. An epimorphism f : X → Y
in A is called superfluous if any morphism g : M → X in A such that fg is
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an epimorphism is an epimorphism. Dually, a monomorphism f : X → Y is
called essential if any morphism h : Y → N such that hf is a monomorphism is
a monomorphism. More importantly, a morphism f : X → Y in A is called left
minimal if every morphism g : Y → Y such that gf = f is an automorphism; and
right minimal if every morphism h : X → X such that fh = f is an automorphism.
For later reference, we quote the following statement from [29, (1.4)].

min_decom 1.3.1. Proposition. Let A be an additive R-category.

(1) Every nonzero morphism f : X → Y in A, where Y is Krull-Schmidt, can be

decomposed as f = (f1, 0)
T : X → Y1 ⊕ Y2, where f1 : X → Y1 is left minimal.

(2) Every nonzero morphism g : X → Y in A, where X is Krull-Schmidt, can be
decomposed as f = (g1, 0) : X1 ⊕X2 → Y, where g1 : X1 → Y is right minimal.

1.4. Almost split sequence. LetA be an exactR-category, that is, an extension-
closed subcategory of an abelian R-category A. An object X in A is called ext-

projective if every short exact sequence 0 // Z // Y // X // 0 in A splits;

and ext-injective if every short exact sequence 0 // X // Y // Z // 0 in A
splits. If A is abelian, then the projective objects in A coincide with the Ext-
projective objects, and the injective objects coincide with the Ext-injective objects.

Let f : X → Y be a morphism in A. One says that f is irreducible if f is neither
a section nor a retraction, and given any factorization f = gh, either h is a section
or g is a retraction. Moreover, f is called left almost split if f is not a section and
every non-section morphism g : X → Z factors through f ; and minimal left almost
split if it is left minimal and left almost split. Dually, one defines right almost split
morphisms and minimal right almost split morphisms in A. Furthermore, an almost
split sequence in A is a short exact sequence

0 // X
f // Y

g // Z // 0,

where f is minimal left almost split and g is minimal right almost. In such an
almost split sequence, X is the starting term and Z is the ending term.

We shall say that A has almost split sequence on the right if every strongly in-
decomposable and not ext-projective object is the ending term of an almost split
sequence, and A has almost split sequences on the left if every strongly indecompos-
able and not ext-injective object is the starting term of an almost split sequence.
Finally, we shall say that A has almost split sequences if it has almost split se-
quences on the right and on the left.

1.5. Stable categories. Let A be an exact R-category. A morphism f :X→Y
in A is called projectively trivial if it factors through every proper epimorphism
g :M → Y in A, and injectively trivial if it factors through every proper monomor-
phism h : X → N in A. In case A is abelian with enough projective objects, a
morphism in A is projectively trivial if and only if it factors through a projective
object. And in case A is abelian with enough injective objects, a morphism in A is
injectively trivial if and only if it factors through an injective object.

Write P and I for the ideals in A generated by the projectively trivial mor-
phisms and the injectively trivial morphisms, respectively. The projectively sta-
ble category and the injectively stable category of A are the quotient categories

A = A/P andA = A/I , respectively; see [19, (9.2)], [31, (2.1)], [35, Section 2].
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2. Auslander-Reiten Theory in abelian categories

The main objective of this section is to provide a novel and concise account
of the Auslander-Reiten theory in general abelian categories. First, we derive an
Auslander-Reiten duality from the Nakayama duality induced by a Nakayama func-
tor. In case the Nakayama functor is defined on a “small” subcategory of projective
objects, we show that the AR-translation is uniquely defined (up to isomorphism)
on finitely presented objects and preserves the strong indecomposability. This en-
ables us to establish the existence of almost split sequences ending with finitely
presented objects and those starting with finitely copresented objects.

2.1. Projective presentations and injective copresentations. Through-
out this section, A stands for an abelian R-category. Let P and I be strictly full
additive subcategories of projective objects and injective objects in A, respectively.
Consider an object X in A. A projective cover of X over P is a right minimal
epimorphism f : P → X in A with P ∈ P; and an injective envelope of X over I is
a left minimal monomorphism g : X → I in A with I ∈ I. Moreover, a projective

presentation of X over P is an exact sequence P1
d1 // P0

d0 // X // 0 in A with
P1, P0 ∈ P, which is minimal if d1, d0 are right minimal. Dually, a injective cop-

resentation of X over I is an exact sequence 0 // X
d0
// I0

d1 // I1 in A with
I0, I1 ∈ I, which is minimal if d0, d1 are left minimal. Clearly, projective cover,
injective envelope, minimal projective presentation and minimal injective copresen-
tation are unique up to isomorphism if they exist. We denote by A+(P) and A−(I)
the full subcategories of objects in A with a projective presentation over P and
with an injective copresentation over I, respectively.

subcat_pres 2.1.1. Proposition. Let A be an abelian R-category, and let P be a strictly full ad-
ditive subcategory of projective objects in A. Then, A+(P) is closed under cokernels
and extension-closed in A. Moreover,

(1) if P is Hom-reflexive (respectively, Hom-noetherian, Hom-finite), then A+(P)
is Hom-reflexive (respectively, Hom-noetherian, Hom-finite);

(2) if P is Krull-Schmidt, then A+(P) is closed under direct summands in A, and
every object in A+(P) admits a minimal projective presentation over P.

Proof. It follows from Proposition 2.1 in [2] that A+(P) is closed under cokernels
and extension-closed in A.

(1) Let X,X ′ be objects in A+(P). By definition, there exist projective pre-

sentations P1
d1 // P0

d0 // X // 0 and P ′
1

d′1 // P ′
0

d′0 // X ′ // 0 over P. Set

M(X,X ′) := {(f1, f0) ∈ A(P1, P
′
1)⊕A(P1, P

′
1) | f0d1 = d′1f1}. It is evident that we

have an R-linear epimorphism φ : M(X,X ′) → A(X,X ′), given by (f1, f0) 7→ f,
where f is the unique morphism making the diagram

P1
d1 //

f1
��

P0
d0 //

f0
��

X

f
��

// 0

P ′
1

d′1 // P ′
0

d′0 // X ′ // 0

commute. Suppose that P is Hom-reflexive. Then A(P1, P
′
1) and A(P1, P

′
1) are

reflexive R-modules. Since modR is abelian; see (1.1.1), M(X,X ′) is reflexive,
and so is A(X,X ′). Similarly, if P is Hom-noetherian or Hom-finite, then A+(P) is
Hom-noetherian or Hom-finite, respectively.
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(2) Assume that P is Krull-Schmidt. Then, P is closed under direct summands

in A. Let X ∈ A+(P) with a projective presentation P1
d1 // P0

d0 // X // 0
over P. By Proposition 1.3.1, d0 = (d′0, 0) : P0 = P ′

0 ⊕N0 → X, where d′0 is a right
minimal epimorphism. Thus, d′0 : P ′

0 → X is an projective cover with P ′
0 ∈ P.

Moreover, Im(d1) = Ker(d0) = Ker(d′0) ⊕ N0. Thus, we have a decomposition

d1 = (f, 0)T : P1 → P ′
0 ⊕N0, where f : P1 → P ′

0 is such that Im(f) = Ker(d′0). By

Proposition 1.3.1 again, f = (d1, 0) : P
′
1 ⊕ N1 → P ′

0, where d
′
1 : P ′

1 → P ′
0 is right

minimal. It is easy to check that Im(d′1) = Im(f). This yields a minimal projective

presentation P ′
1

d′1 // P ′
0

d′0 // X // 0 over P.
Suppose now that X = X1⊕X2 with canonical projections pi : X → Xi. In par-

ticular, we obtain epimorphisms pid
′
0 : P ′

0 → Xi, for i = 1, 2. As seen above, there

exist short exact sequences 0 // Ki
fi // Li

gi // Xi
// 0, where Li ∈ P and gi

is a projective cover, for i = 1, 2. By the uniqueness of projective cover, we see easily
that K1⊕K2

∼= Ker(d′0) = Im(d′1). Therefore, we have epimorphisms hi : P
′
1 → Ki,

for i = 1, 2. This yields projective presentations P ′
1

fihi // Li
gi // Xi

// 0 over P,
for i = 1, 2. So, X1, X2 ∈ A+(P). The proof of the proposition is completed.

Dually, we have the following statement.

subcat_copres 2.1.2. Proposition. Let A be an abelian R-category, and let I be a strictly full
additive subcategory of injective objects in A. Then, A+(I) is closed under kernels
and extension-closed in A. Moreover,

(1) if I is Hom-reflexive (respectively, Hom-noetherian, Hom-finite), then A−(I) is
Hom-reflexive (respectively, Hom-noetherian, Hom-finite);

(2) if I is Krull-Schmidt, then A−(I) is closed under direct summands in A, and
every object in A−(I) admits a minimal injective copresentation over I.

2.2. Nakayama functor. The key ingredient in our approach to the Auslander-
Reiten duality is a Nakayama functor defined as follows; see [34, (5.4)].

N_functor 2.2.1. Definition. Let A be an abelian R-category, and let P be a strictly full
additive subcategory of projective objects in A. A functor ν : P → A is called a

Nakayama functor provided, for all P ∈ P and X ∈ A, that there exists an R-linear

isomorphism ϕP,X : A(X, νP ) → DA(P,X), which is natural in P and X.

NF_im 2.2.2. Remark. Since the dual functor D is exact, the image Iν of a Nakayama
functor ν : P → A is a strictly full additive subcategory of injective objects in A.

2.3. Auslander-Reiten duality. In order to have an Auslander-Reiten duality,
we need to introduce the following notion, which depends on not only the objects
in A+(P) but also their projective presentations over P.

pseu_AR_trasl 2.3.1. Definition. Let A be an abelian R-category equipped with a Nakayama
functor ν : P → A. Given an object M in A+(P) with a projective presenta-

tion δ : P1
d1 // P0

d0 // M // 0 over P, we put τ
δ
M = Ker(νd1), called the

Auslander-Reiten translate of M associated with δ.

The following statement is essential for the Auslander-Reiten duality.

Naka-fcon 2.3.2. Proposition. Let A be an abelian R-category equipped with a Nakayama

functor ν : P → A. Consider a projective presentation δ : P1
d1 // P0

d0 // M // 0
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over P and a short exact sequence 0 // X
f // Y

g // Z // 0 in A. Then, we

have an R-linear exact sequence

0 // A(Z, τ
δ
M)

g∗ // A(Y, τ
δ
M)

f∗
// A(X, τ

δ
M)

η //

DA(M,Z)
Dg∗ // DA(M,Y )

Df∗ // DA(M,X) // 0.

Proof. Applying the Nakayama functor ν to δ, we obtain an injective copresentation

0 // τ
δ
M // νP1

νd1 // νP0 over Iν . Given an object N in A, applying A(N,−)

to this injective copresentation yields an exact sequence

(∗) 0 // A(N, τ
δ
M) // A(N, νP1)

(νd1)∗ // A(N, νP0).

On the other hand, applying DA(−,N) to δ and using the Nakayama duality,
we obtain a commutative diagram

A(N, νP1)

∼=
��

(νd1)∗ // A(N, νP0)

∼=
��

DA(P1, N)
Dd∗1 // DA(P0, N)

Dd∗0 // DA(M,N) // 0,

where the bottom row is exact. Combining this with (∗) yields an exact sequence

0 // A(N, τ
δ
M) // A(N, νP1)

(νd1)∗ // A(N, νP0) // DA(M,N) // 0.

Therefore, we obtain a commutative diagram with exact rows and columns

0

��

0

��

0

��
0 // A(Z, τ

δ
M)

g∗ //

��

A(Y, τ
δ
M)

f∗
//

��

A(X, τ
δ
M)

��
0 // A(Z, νP1) //

��

A(Y, νP1) //

��

A(X, νP1) //

��

0

0 // A(Z, νP0) //

��

A(Y, νP0) //

��

A(X, νP0) //

��

0

DA(M,Z)
Dg∗ //

��

DA(M,Y )

��

Df∗ // DA(M,X) //

��

0,

0 0 0

where the two middle rows are exact because νP1 and νP0 are injective. Applying
the Snake Lemma, we obtain the desired exact sequence stated in the proposition.
The proof of the proposition is completed.

We are ready to establish the Auslander-Reiten duality; compare [28, (1.1),
(1.2)]. Recall that A = A/P, the projectively stable category; and A = A/I , the
injectively stable category, of A.

AR-formu 2.3.3. Theorem. Let A be an abelian R-category equipped with a Nakayama func-
tor ν : P → A. Consider an object M in A+(P) with a projective presentation

δ : P1
d1 // P0

d0 // M // 0 over P.



8 Z. LIN AND S. LIU

(1) If A has enough projective objects, then there exists an R-linear isomorphism

DA(M,X) ∼= Ext1A(X, τδM) for X ∈ A, which is natural in X.

(2) If A has enough injective objects, then there exists an R-linear isomorphism

A(X, τ
δ
M) ∼= DExt1A(M,X) for X ∈ A, which is natural in X.

Proof. (1) Suppose that A has enough projective objects. Fix an object X ∈ A.

We have a short exact sequence 0 // L
q // P

p // X // 0, where P is a

projective object in A. It is easy to see that there exists an R-linear exact sequence

0 // DA(M,X) // DA(M,X)
Dp∗ // DA(M,P ).

Thus, we have an R-linear isomorphism DA(M,X) ∼= Ker(Dp∗), which is clearly
natural in X. On the other hand, applying A(−, τ

δ
M) to the above short exact

sequence yields an R-linear exact sequence

0 // A(X, τ
δ
M)

p∗ // A(P, τ
δ
M)

q∗ // A(L, τ
δ
M) // Ext1A(X, τδM) // 0.

Thus, we obtain an R-linear isomorphism Coker(q∗) ∼= Ext1A(X, τδM), which is
also natural in X. Further, by Proposition 2.3.2, there exists an exact sequence

A(P, τ
δ
M)

q∗ // A(L, τ
δ
M)

η // DA(M,X)
Dp∗ // DA(M,P )

This yields an R-linear isomorphism Ker(Dp∗) = Im(η) ∼= Coker(q∗), which is
natural in X. Combining the above isomorphisms, we obtain an R-linear isomor-

phism DA(M,X)∼=Ext1A(X, τδM), which is natural in X.

(2) Suppose that A has enough injective objects. Fix an objectX ∈ A. We have a

short exact sequence 0 // X
q // I

p // L // 0, where I is an injective object

in A. Then, we have an exact sequence

A(I, τ
δ
M)

q∗ // A(X, τ
δ
M) // A(X, τ

δ
M) // 0.

So, we have an R-linear isomorphism A(X, τ
δ
M) ∼= Coker(q∗), which is natural

in X. On the other hand, applying A(M,−) yields an R-linear exact sequence

0 // A(M,X)
q∗ // A(M, I)

p∗ // A(M,L) // Ext1A(M,X) // 0.

This gives rise to an R-linear isomorphism DExt1A(M,X) ∼= Ker(Dp∗), which is
natural in X. Further, by Proposition 2.3.2, we have an R-linear exact sequence

A(I, τ
δ
M)

q∗ // A(X, τ
δ
M)

η // DA(M,L)
Dp∗ // DA(M, I).

This gives rise to an R-linear isomorphism Ker(Dp∗) = Im(η) ∼= Coker(q∗),
which is natural in X. Combining the above R-linear isomorphisms, we obtain an

R-linear isomorphism A(X, τ
δ
M) ∼= DExt1A(M,X), which is natural in X. The

proof of the theorem is completed.

2.4. Auslander-Reiten translations. Let ν : P → A be a Nakayama functor.
Given a strongly indecomposable object M with a projective presentation δ over
P, in order to derive an almost split sequence from the Auslander-Reiten duality
stated in Theorem 2.3.3(1), we need to ensure that τδM is strongly indecomposable.
For this purpose, we assume that P is Hom-reflexive and Krull-Schmidt. In this
setting, we have the following result; see [34, (5.6)].

fu-fai 2.4.1. Proposition. Let A be an abelian R-category equipped with a Nakayama
functor ν : P → A, where P is Hom-reflexive and Krull-Schmidt. Then ν restricts
to an equivalence ν : P → Iν . In particular, Iν is Hom-reflexive and Krull-Schmidt.
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2.4.2. Remark. We call the equivalence ν : P → Iν stated in Proposition 2.4.1 the
Nakayama equivalence, and we fix a quasi-inverse ν− : Iν → P for it.

By Propositions 2.1.1 and 2.1.2, the exact categories A+(P) and A−(Iν) are
Hom-reflexive and closed under direct summands in A. Moreover, every object in
A+(P) admits a minimal projective presentation over P, and every object in A−(Iν)
admits a minimal injective copresentation over Iν . This allows us to define, unique
up to isomorphism, the AR-translations τ and τ− as follows.

AR-trsl 2.4.3. Definition. Let A be an abelian R-category equipped with a Nakayama
functor ν : P → A, where P is Hom-reflexive and Krull-Schmidt.

(1) GivenM ∈ A+(P) of which P1
d1 // P0

d0 // M // 0 is a minimal projective

presentation over P, we define τM = Ker(νd1).

(2) Given N ∈ A−(Iν) of which 0 // N
d0
// I0

d1 // I1 is a minimal injective

copresentation over Iν , we define τ−N = Coker(ν−d1).

In order to show that τ and τ− preserve the strong indecomposability, we slightly
generalize a well-known fact stated in [4, (II.4.3)].

LR-minimal 2.4.4. Lemma. Let A be an abelian R-category, and let X
f // Y

g // Z be an
exact sequence in A.

(1) If A(Z,Z) is local and g is a nonsplit epimorphism, then f is left minimal.

(2) If A(X,X) is local and f is a nonsplit monomorphism, then g is right minimal.

Proof. We shall only prove Statement (1). Suppose that A(Z,Z) is local and
g is a nonsplit epimorphism. Then, there exists a nonsplit short exact sequence

0 // M
j //// Y

g // Z // 0 in A. By Lemma 4.3 in [4, Chapter II], j is left
minimal. And since M = Im(f), there exists an epimorphism v : X → M such
that f = jv. Assume that hf = f for some h : Y → Y . Then hjv = jv, and hence,
hj = j. Therefore, h is an automorphism. The proof of the lemma is completed.

The classical approach for showing that the Auslander-Reiten translation pre-
serves indecomposability goes through the morphism category of projective modules
and the stable categories; see [10, (IV.1)]. Here we provide a direct proof.

tau1 2.4.5. Proposition. Let A be an abelian R-category equipped with a Nakayama
functor ν : P → A, where P is Hom-reflexive and Krull-Schmidt. Consider a
strongly indecomposable object M in A.

(1) If M ∈ A+(P) is not projective, then τM ∈ A−(Iν) is strongly indecomposable
and not injective such that τ−(τM) ∼=M .

(2) If M ∈ A−(Iν) is not injective, then τ−M ∈ A+(P) is strongly indecomposable
and not projective such that τ(τ−M) ∼=M .

Proof. We shall only prove Statement (1). Assume that M ∈ A+(P) is nonprojec-

tive with a minimal projective presentation P1
d1 // P0

d0 // M // 0 over P. By

definition, τM admits an injective copresentation 0 // τM
j // νP1

νd1 // νP0

over Iν , which we claim is minimal. Indeed, d1 is right minimal and d0 is not a
retraction. By Lemma 2.4.4, d1 is also left minimal. And by Proposition 2.4.1, νd1
is left and right minimal. Since νP1 is Krull-Schmidt, it follows from Proposition
1.3.1 that j = (l, 0)T : τM → L ⊕ U = νP1, where l : τM → L is left minimal.
Then, Ker(νd1) = Im(j) = Im(l). Hence, νd1 = (f, g) : νP1 = L ⊕ U → νP0,
where g : U → νP0 is a monomorphism. Since U is injective, g is a section. And



10 Z. LIN AND S. LIU

since ν : P → Iν is an equivalence, we can write d1 = (p, q) : P1 = V ⊕W → P0

such that g = ν(q : W → P0). Then, q is a section such that d0q = 0. Since
d0 : P0 → M is right minimal, we have W = 0, and consequently, U = 0. That is,
j is left minimal. Thus, τM admits a minimal injective copresentation over Iν as
claimed above. Applying ν− to it, we see that τ−(τM) ∼=M .

Suppose that τM is injective. Then, j is a section. Being left minimal, j is an
isomorphism. Then, νd1 = 0. Since νd1 is left minimal, νP0 = 0, and hence, P0 = 0,
absurd. It remains to show that A(τM, τM) is local. Given any f ∈ A(τM, τM),
we have a commutative diagram with exact rows

0 // τM
j //

f
��

νP1
νd1 //

f1
��

νP0

f0
��

0 // τM
j // νP1

νd1 // νP0.

Again since ν is an equivalence, we have a commutative diagram with exact rows

P1
d1 //

g1
��

P0

g0
��

d0 // M //

g

��

0

P1
d1 // P0

d0 // M // 0

such that νg0 = f0 and νg1 = f1. Assume that g is invertible. Since d0 is superflu-
ous; see [27, (3.4)] and P0 is Krull-Schmidt, g0 is an isomorphism. Similarly, g1 is
also an isomorphism. Thus, f0 and f1 are isomorphisms. So f is invertible. Sup-
pose that g is not invertible. Since A(M,M) is local, 1M − g is invertible. Observe
that we obtain commutative diagrams from the above commutative diagrams by
replacing (f, f1, f0) and (g1, g0, g) by (1−f, 1−f1, 1−f0) and (1−g1, 1−g0, 1−g),
respectively. Using the same argument, we deduce that 1τM − f is invertible. So,
A(τM, τM) is local. The proof of the proposition is completed.

We conclude this subsection with some sufficient conditions for A+(P) and
A−(Iν) to be Krull-Schmidt.

fpres_cat_KS 2.4.6. Lemma. Let A be an abelian R-category equipped with a Nakayama functor
ν : P → A, where P is Krull-Schmidt. If P is either Hom-finite or Hom-noetherian
with R being complete noetherian local, then A+(P) and A−(Iν) are Krull-Schmidt.

Proof. Let P be Hom-finite. By Proposition 2.4.1, Iν is Hom-finite and Krull-
Schmidt. By Propositions 2.1.1 and 2.1.2, A+(P) and A−(Iν) are Hom-finite and
closed under direct summands in A. By Proposition 1.2.1, they are Krull-Schmidt.
In case R is complete noetherian local and P is Hom-noetherian, we can prove the
result by the same argument. The proof of the lemma is completed.

2.5. The existence theorem. We are ready to apply the result in [35, (2.3)] to
derive almost split sequences from the Auslander-Reiten dualities in Theorem 2.3.3.

AR-seq 2.5.1. Theorem. Let A be an abelian R-category equipped with a Nakayama functor
ν : P → A, where P is Hom-reflexive and Krull-Schmidt.

(1) If A has enough projective objects, then it has an almost split sequence

0 // τM // E // M // 0,
for every strongly indecomposable nonprojective object M in A+(P).

(2) If A has enough injective objects, then it has an almost split sequence

0 // N // E // τ−N // 0,
for every strongly indecomposable noninjective object N in A−(Iν).
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Poof. (1) Assume that A has enough projective objects. Consider a strongly in-
decomposable nonprojective M ∈ A+(P). By Proposition 2.4.5(1), τM is strongly
indecomposable, and by Theorem 2.3.3(1), there exists a functorial isomophism
ΨM : Ext1A(−, τM) → DA(M,−). In particular, Ext1A(M, τM) ∼= DA(M,M) as

right A(M,M)-modules. Since A(M,M) is local, we see that DA(M,M) has a
nonzero A(M,M)-socle, and so does Ext1A(M, τM). By Theorem 2.3 in [35], we
obtain a desired almost split sequence as stated in Statement (1).

(2) Assume that A has enough injective objects. Consider a strongly indecom-
posable noninjective object N ∈ A−(Iν). By Proposition 2.4.5(2), τ−N is strongly
indecomposable, and by Theorem 2.3.3(2), there exists a functorial isomorphism

ΦN : D2Ext1A(τ
−N,−) → DA(−, N). This induces a functorial monomorphism

ΨN : Ext1A(τ
−N,−) → DA(−, N). Moreover, we have a left A(N,N)-linear iso-

morphism ΦN,N : D2Ext1A(τ
−N,N) → DA(N,N). By Propositions 2.4.1 and 2.1.2,

A(N,N) is R-reflexive, and by Lemma 1.1.1, both DA(N,N) and D2Ext1A(τ
−N,N)

are R-reflexive. Therefore, Ext1A(τ
−N,N) ∼= D2Ext1A(τ

−N,N) ∼= DA(N,N) as left

A(N,N)-modules. Since A(N,N) is local, DA(N,N) has a nonzero A(N,N)-socle,
and so does Ext1A(τ

−N,N). By Theorem 2.3 in [35], we obtain a desired almost
split sequence as stated in Statement (2). The proof of the theorem is completed.

As an easy example, we obtain Auslander’s results stated in [4, (II.6.3), (II.6.6)].

2.5.2. Theorem (Auslander). Let A be a noetherian R-algebra with an identity
with R complete noetherian local, and letM be an indecomposable module in ModA.

(1) If M is noetherian and not projective, then there exists an almost split sequence

0 // τM // E // M // 0 in ModA, where τM is artinian.

(2) If M is artinian and not injective, then there exists an almost split sequence

0 // M // E // τ−M // 0 in ModA, where τ−M is noetherian.

Proof. The category ModA of left A-modules has enough projective and injective
modules. And the full subcategories of noetherian modules and artinian modules in
ModA are Krull-Schmidt; see [4, (I.5.1), (I.5.2)]. In particular, the full subcategory
projA of finitely generated projective modules in ModA is Krull-Schmidt and Hom-
noetherian; see [4, (I.4.2)]. By Lemma 5.5 in [34], there exists a Nakayama functor
ν = DHomA(−, A) : projA → ModA. Further, a module in ModA is noetherian if
and only if it has a projective presentation over projA; and artinian if and only if it
has an injective copresentation over ν(projA); see [4, (I.5.2)]. Now, the statement
follows from Theorem 2.5.1. The proof of the corollary is completed.

2.5.3. Remark. Let Σ be a ring with an identity. Auslander obtained an existence
theorem for almost split sequences in ModΣ ending with finitely presented modules;
see [4, (II.5.1)]. To the best of our knowledge, there exists no such statement for
almost split sequences in ModΣ starting with finitely copresented modules.

3. Applications to functor categories

An R-category is called small if its objects form a set and endo-local if all endo-
morphism algebras are local. The objective of this section is to apply our previous
results to establish the existence of almost split sequences for finitely presented
modules and for finitely copresented modules in the category of all modules over a
small endo-local Hom-reflexive R-category. The key ingredients for this objective
include a Nakayama functor and the sufficiency of projective and injective objects.
The latter fact was stated in [41], but its proof seems to have never been published.
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3.1. Modules over a category. Throughout this section, C stands for a small
R-category. A left C -module is a covariant functor M : C → ModR. Given left
C -modules M,N, a C -linear morphism f :M → N consists of a family of R-linear
maps fx : M(x) → N(x) with x ∈ C such that N(u) ◦ fx = fy ◦M(u), for all
morphisms u : x → y in C . Write HomC (M,N) for the R-module of C -linear
morphisms f : M → N . The category ModC of all left C -modules is an abelian
R-category with arbitrary products and coproducts; see [4, Section 2]. A module
M ∈ ModC is called locally R-reflexive if M(x) is an R-reflexive for all x ∈ C .
Since the category modR of reflexive R-modules is abelian, the full subcategory
modC of locally R-reflexive modules in ModC is abelian.

We denote by C ◦ the opposite category of C : the objects are those of C and
the morphisms u◦ : y → x are induced by the morphisms u : x → y in C . Given a
module M in ModC ◦, we define a module DM in ModC by (DM)(x) = D(M(x))
and (DM)(u) = D(M(u◦)) for all objects x and morphisms u in C . This yields an
exact contravariant functor D : ModC ◦ → ModC .

LRMod 3.1.1. Proposition. Let C be a small R-category. The exact contravariant functor
D : ModC ◦ → ModC restricts to a duality D : modC ◦ → modC.

Proof. Let M ∈ ModC ◦. By Lemma 1.1.1, there exist canonical R-linear isomor-
phisms σM,x :M(x) → D2(M(x)) with x ∈ C , which form a C -linear isomorphism,
natural in M . The proof of the proposition is completed.

3.2. Projective modules. For each object x in C , we obtain a left C -module
Px = C (x,−) : C → ModR. And a morphism u : y → x in C induces a C -linear
morphism C (u,−) : Px → Py with C (u,−)z = C (u, z) : C (x, z) → C (y, z) for
z ∈ C . We denote by 1x the identity morphism associated with an object x in C .

Mor_proj_mod 3.2.1. Proposition. Let C be a small R-category. Given M ∈ ModC and x ∈ C ,
we have an R-linear isomorphim, which is natural in M, as follows :

ΦPx,M : HomC (Px,M) →M(x) : f 7→ fx(1x).

Proof. Fix M ∈ ModC and x ∈ C . By the Yoneda Lemma, ΦPx,M is an R-linear
isomorphism, which is natural in M and x. If φ : Px → Py is a C -linear morphism,
by the Yoneda Lemma again, φ = C (u,−) for some u : y → x in C . Thus ΦPx,M is
natural in Px because it is natural in x. The proof of the proposition is completed.

proj_Cmod 3.2.2. Remark. By Proposition 3.2.1, Px is projective in ModC, for all x ∈ C .

The following result is stated with a sketched proof in [41]. We include a short
proof for the reader’s convenience.

Proj_C_mcat 3.2.3. Proposition. Let C be a small R-category. Then ModC has enough pro-
jective objects.

Proof. Fix M ∈ ModC . Given x ∈ C with m ∈ M(x), we write xm = x. Then,
P =

∐
x∈C ;m∈M(x) C (xm,−) is projective in ModC ; see (3.2.2). For y ∈ C , we

have an R-linear map ψy : P (y) =
∐
x∈C ;m∈M(x)C (xm, y) → M(y), defined by

ψy(ux,m) =M(ux,m)(m) for ux,m ∈ C (xm, y) such, for any v : y → z in C , that∐
x∈C ;m∈M(x) C (xm, y)∐

x∈C ;m∈M(x) C (xm,v)

��

ψy // M(y)

M(v)

��∐
x∈C ;m∈M(x) C (xm, z)

ψz // M(z)
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commutes. Given m ∈ M(y), we have ψy(1y) = M(1y)(m) = m. Thus, the R-
linear epimorphisms ψy with y ∈ C form a C -linear epimorphism ψ : P →M. The
proof of the proposition is completed.

3.3. Injective modules. Given x ∈ C , we have a module Ix = D(P ◦
x ) in ModC,

where P ◦
x = C ◦(x,−) = C (−, x) ∈ ModC ◦. More explicitly, Ix(y) = DC (y, x) and

Ix(u) = DC (u, x) : DC (y, x) → DC (z, x), for objects y and morphisms u : y → z
in C . A morphism v : x→ y in C induces a C -linear morphism DC (−, v) : Iy → Ix.
And for x ∈ C , we have an R-linear function θx : C (x, x) → IR given by f 7→ f(1x).

Mor-mod-inj 3.3.1. Proposition. Let C be a small R-category. Given M ∈ ModC and x ∈ C ,
we have an R-linear isomorphism, which is natural in M , as follows :

ΨM,Ix : HomC (M, Ix) → D(M(x)) : f 7→ θx ◦ fx.
Proof. Fix M ∈ ModC and x ∈ C . Clearly, we have an R-linear map ΨM,Ix as
stated in the proposition. Assume that f ∈ HomC (M, Ix) such that ΨM,Ix(f) = 0.
Given y ∈ C and u ∈ C (y, x), since DC (u, x) ◦ fy = fx ◦M(u), we have

fy(m)(u) = fy(m)(C (u, x)(1x))
= θx (DC (u, x)(fy(m)))
= θx (fx(M(u)(m)))
= ΨM,Ix(f)(M(u)(m))
= 0,

for all m ∈ M(y) and u ∈ C (y, x). Thus, fy(m) = 0, for all m ∈ M(y). That is,
fy = 0 for all y ∈ C , and hence, f = 0. So, ΨM,Ix is a monomorphism. Conversely,
given any R-linear function g :M(x) → IR, we shall construct a C -linear morphism
f :M → Ix. Indeed, for any y ∈ C , we have an R-linear map

fy :M(y) → Ix(y) = DC (y, x) : m 7→ fy(m)

such that fy(m)(u) = g(M(u)(m)), for u ∈ C (y, x). Given v ∈ C (y, z), we claim
that DC (v, x) ◦ fy = fx ◦M(v). Indeed, for m ∈M(y) and u ∈ C (z, x), we have

(DC (v, x))(fy(m))(u) = (fy(m) ◦ C (v, x))(u)
= fy(m)(uv)
= g(M(uv)(m))
= fz(M(v)(m))(u).

This establishes our claim. Hence, the R-linear maps fy :M(y) → Ix(y) with y ∈ C
form a C -linear morphism f :M → Ix. Moreover, for any m ∈M(x), we have

ΨM,Ix(f)(m) = ψx(fx(m)) = fx(m)(1x) = (g ◦M(1x))(m) = g(m).

That is, ΨM,Ix(f) = g. So, ΨM,Ix is surjective. Finally, a routine verification shows
that ΦM,Ix is natural in M . The proof of the proposition is completed.

inj_Cmod 3.3.2. Remark. Since the dual functor D is exact, we deduce from Proposition
3.3.1 that Ix is an injective object in ModC , for all x ∈ C .

The following result was stated without any proof in [41]. We include a short
proof for the reader’s convenience.

Inj_C_mcat 3.3.3. Proposition. Let C be a small R-category. Then, ModC has enough injec-
tive objects.

Poof. Fix M ∈ ModC . For x ∈ C and φ ∈ D(M(x)), we write xφ = x. Then,
I =

∏
x∈C ;φ∈D(M(x))DC (−, xφ) is an injective object in ModC ; see (3.3.2). For

any y ∈ C , we have an R-linear map
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ψy :M(y) → I(y) =
∏
x∈C ;φ∈D(M(x))DC (y, xφ) : m 7→ (fx,φ,m)x∈C ;φ∈D(M(x)),

where fx,φ,m ∈ DC (y, xφ) such that fx,φ,m(u) = φ(M(u)(m)), for u ∈ C (y, xφ).

Given a morphism v : y → z in C , it is not hard to verify that the diagram

M(y)

M(v)

��

ψy // ∏
x∈C ;φ∈D(M(x)) C (y, xφ)∏

x∈C ;φ∈D(M(x))DC (xφ,v)

��
M(z)

ψz // ∏
x∈C ;φ∈D(M(x))DC (z, xφ)

commutes. Assume that ψy(m) = 0 for some m ∈ M(y) with y ∈ Q0. Then, for
any φ ∈ D(M(y)), we have 0 = fy,φ,m(1y) = φ(M(1y)(m)) = φ(m). Since IR is

a cogenerator for ModR, we have m = 0. So, ψy is a monomorphism. Therefore,
the R-linear maps ψy with y ∈ C form a C -linear monomorphism ψ :M → I. The
proof of the proposition is completed.

3.4. The Nakayama functor. Let C be a small R-category. We shall construct
a Nakayama functor for ModC . Write projC and injC for the strictly full additive
subcategories of ModC generated by the projective modules Px with x ∈ C ; see
(3.2.2), and by the injective modules Ix with x ∈ C ; see (3.3.2), respectively.

NK_functor 3.4.1. Theorem. Let C be a small R-category. Then, there exists a Nakayama
functor ν : projC → ModC , sending Px to Ix for all objects x ∈ C .

Proof. We begin with the full subcategory P of ModC generated by the modules
Px with x ∈ C . By the Yoneda Lemma, HomC (Px, Py) = {C (u,−) | u ∈ C (y, x)}.
Thus, setting νPx = Ix and νC (u,−) = DC (−, u) for objects x and morphisms u
in C , we obtain an R-linear functor ν : P → ModC .

Fix M ∈ ModC and x ∈ C . By Proposition 3.2.1, we have an R-linear iso-
morphism ΦPx,M : HomC (Px,M) → M(x), which is natural in Px and M . This
induces an R-linear isomorphism DΦPx,M : D(M(x)) → DHomC (Px,M), which is
natural in Px and M . And by Proposition 3.3.1, we have an R-linear isomorphism

ΨM,νPx
: HomC (M,νPx) → D(M(x)) : f 7→ θx ◦ fx,

which is natural in M . We claim that ΨM,νPx
is natural in Px, or equivalently,

ΨM,νPy
◦ HomC (M, νC (u,−)) = D(M(y)) ◦ ΨM,νPx

, for any u : y → x in C .

Indeed, given f ∈ HomC (M,νPx) and m ∈M(y), we have

(ΨM,νPy ◦HomC (M, νC (u,−)))(f)(m) = (θy ◦ (DC (−, u) ◦ f)y)(m)

= θy(DC (y, u)(fy(m))

= (fy(m) ◦ C (y, u))(1y)

= fy(m)(u).

And since f is C -linear, we have DC (u, x) ◦ fy = fx ◦M(u). This yields

(D(M(u)) ◦ΨM,νPx
(f))(m) = (θx ◦DC (u, x) ◦ fy)(m)

= θx(DC (u, x)(fy(m)))

= (fy(m) ◦ C (u, x))(1x)
= fy(m)(u).

This establishes our claim. Composing ΨM,νPx and DΦPx,M yields an R-linear
isomorphism ΘM,Px : HomC (M,νPx) → DHomC (Px,M), which is natural in Px
and M . Now, since every object in projC is isomorphic to a finite direct sum of
the Px with x ∈ C , we can extend, in a canonical way, the functor ν : P → ModC
to a functor ν : projC → ModC . Moreover, the isomorphism ΘM,Px

can also be
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extended to an R-linear isomorphism ΘM,P : HomC (M,νP ) → DHomC (P,M),
for P ∈ projC and M ∈ ModC , and it is natural in P and M . This shows that
ν : projC → ModC is a Nakayama functor. The proof of the theorem is completed.

3.5. Finitely presented and finitely copresented modules. Let C be a
small R-category. Fix a module M in ModC . We shall say that M is finitely
generated if there exists an epimorphism f : P → M with P ∈ projC ; and finitely
presented if it admits a projective presentation over projC , or equivalently, there
exists an epimorphism f :P →M with P in projC and Ker(f) finitely generated.
Dually, M is called finitely cogenerated if there exists a monomorphism g :M → I
with I ∈ injC ; and finitely copresented if it admits an injective copresentation
over injC , or equivalently, there exists a monomorphism g : M → I with I in
injC and Coker(g) finitely cogenerated. We denote by mod+C and mod−C the
full subcategories of finitely presented modules and finitely copresented modules
in ModC , respectively. By Propositions 2.1.1 and 2.1.2, mod+C and mod−C are
exact R-categories. It is interesting to know when they are abelian categories.

fpres_AB 3.5.1. Proposition. Let C be a small R-category. Then

(1) mod+C is abelian if and only if the finitely generated submodules of the modules
in projC are finitely presented;

(2) mod−C is abelian if and only if the finitely cogenerated quotient-modules of the
modules in injC are finitely copresented.

Proof. We shall only prove Statement (1). Assume that mod+C is abelian. Let
M be a finitely generated submodule of a module P0 in projC . Then, we have an
epimorphism f : P1 → M with P1 ∈ projC , and hence, a morphism jf : P1 → P0

in mod+C , where j : M → P0 is the inclusion map. Note that f and jf have the
same kernel K, which lies in mod+C . Thus, M is finitely presented.

Assume that the finitely generated submodules of modules in projC are finitely
presented. Consider a morphism f : P1 → P0 in projC and its kernel j : K → P1 in
ModC . By the assumption, there exists an epimorphism f ′ : P ′

1 → Im(f) having a
kernel q : K ′ → P ′

1, where P
′
1 ∈ projC and K ′ is finitely generated. By Schanule’s

Lemma, K ′ ⊕ P1
∼= K ⊕ P ′

1. Thus, K is finitely generated with an epimorphism

g : P2 → K, where P2 ∈ projC . So, P2
jg // P1

f // P0 is an exact sequence in

projC . Thus, mod+C is closed under kernels; see [2, (2.1)]. Being also closed under

cokernels; see (2.1.1), mod+C is abelian. The proof of the proposition is completed.

3.6. The existence thereom. In this subsection, we need to assume that C is
endo-local and Hom-reflexive. In this setting, we have the following statement.

C-proj 3.6.1. Proposition. Let C be a small endo-local Hom-reflexive R-category. Then

(1) projC and injC are Hom-reflexive Krull-Schmidt subcategories of modC ;

(2) the functor D : ModC ◦→ModC restricts to a duality D : mod+C ◦ →mod−C.

Proof. Let x, y ∈ C . Since Px(y) = C (x, y), projC ⊆ modC. By Proposition 3.2.1,
there exists an R-linear isomorphism φx,y : HomC (Px, Py) → C (y, x), natural in x

and y. So, projC is Hom-reflexive. Since φx,x : EndC (Px) → C (x, x) is an algebra
anti-isomorphism, projC is Krull-Schmidt. Since C ◦ is Hom-reflexive and Krull-
Schmidt, projC ◦ is Hom-reflexive, Krull-Schmidt and contained in modC ◦. Then,
the duality D : modC ◦ → modC restricts a duality D : projC ◦ → injC ; see (3.1.1)
Therefore, injC is Hom-reflexive, Krull-Schmidt and contained in modC .
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Since modC ◦ and modC are abelian, mod+C ◦ ⊆ modC ◦ and mod−C ⊆ modC .
For any M ∈ mod+C ◦ with a projective presentation P1

// P0
// M // 0

over projC ◦, we have an injective copresentation 0 // DM // DP0
// DP1

over injC. Hence, DM ∈ mod−C . So, the duality D : modC ◦ → modC restricts to
a duality D : mod+C ◦ →mod−C. The proof of the proposition is completed.

3.6.2. Remark. Let C be a small R-category, where R is a commutative artinian
ring. By Proposition 3.6.1(2), we see that C is a dualizing R-variety as defined in
[7, Section 2] if and only if C is endo-local and Hom-finite with mod+C = mod−C .

We are ready to obtain the main result of this section.

C_mod_ass 3.6.3. Theorem. Let C be a small endo-local Hom-reflexive R-category. Consider
a strongly indecomposable module M in ModC .

(1) If M ∈ mod+C is not projective, then there exists an almost split sequence
0 // τM // E // M // 0 in ModC , where τM ∈ mod−C .

(2) If M ∈ mod−C is not injective, then there exists an almost split sequence

0 // M // E // τ−M // 0 in ModC where τ−M ∈ mod+C .

Proof. By Theorem 3.4.1, we have a Nakayama functor ν : projC → ModC ,
where projC is Hom-reflexive and Krull-Schmidt; see (3.6.1). Since ModC has
enough projective and injective objects; see (3.2.3) and (3.3.3), the result follows
immediately from Theorem 2.5.1. The proof of the theorem is completed.

ass_cln 3.6.4. Remark. Let C be a small endo-local Hom-noetherian R-category with R
being complete noetherian local.

(1) In Theorem 3.6.3, it suffices to assume that M is indecomposable; see (2.4.6).

(2) Theorem 3.6.3(1) is stated as Theorem 6 in [5]. However, we cannot find any
proof in the existing literature, and we do not see how to establish an Auslander-
Reiten duality for ModC by the classical approach as used in [7, (7.4)] or [4, (I.3.4)].

4. Application to representations of quivers with relations

The objective of this section is mainly to apply our previous results to study the
existence of almost split sequences over algebras defined by quivers with relations.
In the local semiperfect case; see (4.4.1), a general existence theorem in the cate-
gory of all modules is a special case for small endo-local Hom-reflexive categories;
see (4.7.1). So, we shall focus on the subcategories of finitely presented modules,
finitely copresented modules and finite dimensional modules. For locally semipri-
mary algebras given by locally finite quivers; see (4.5.1), we show that the almost
split sequences in the first two subcategories are almost split in the category of
all modules; see (4.7.4) and (4.7.6). More importantly, we shall study when these
subcategories have almost split sequences; see (4.8.1), (4.8.3) and (4.8.5).

Throughout this section, k denotes a field. Note that the dual functor for Modk
is D = Homk(−, k), and a module in Modk is reflexive if and only if it is finite
dimensional. In particular, a k-category is Hom-reflexive if and only if it is Hom-
finite. In this section, a k-algebra has enough idempotents but not necessarily an
identity, in which an ideal is always two-sided.

4.1. Quivers. Let Q = (Q0, Q1) be a quiver, where Q0 is the set of vertices and
Q1 is the set of arrows. Given α : x → y in Q1, we call x the starting point and y
the ending point, and write s(α) = x and e(α) = y. For each x ∈ Q0, one associates



ALMOST SPLIT SEQUENCES 17

a trivial path εx with s(εx) = e(εx) = x. A path of length n(> 0) is a sequence
ρ = αn · · ·α1, where αi ∈ Q1 such that s(αi+1) = e(αi), for 1 ≤ i < n. Two paths
are called comparable if one is the subpath of the other, and a set of paths is called
comparable if every two paths in the set are comparable. For x ∈ Q0 and n ≥ 0, we
denote by Qn(x,−) and Qn(−, x) the sets of paths of length n starting with x, and
those ending with x, respectively. We say that Q is left locally finite if Q1(x,−)
is finite for all x ∈ Q0; right locally finite if Q1(−, x) is finite for all x ∈ Q0, and
locally finite if Q is left and right locally finite. Further, Q is called interval-finite
if the set of paths from x to y is finite, for all x, y ∈ Q0; and strongly locally finite
if Q is locally finite and interval-finite.

The opposite quiver Qo of Q is defined in such a way that (Qo)0 = Q0 and
(Qo)1 = {αo : y → x | α : x → y ∈ Q1}. A non-trivial path ρ = αn · · ·α1 in Q,
where αi ∈ Q1, induces a non-trivial path ρo = αo

1 · · ·αo
n in Qo. However, we shall

identify the trivial path in Qo at a vertex x with that in Q.

4.2. Algebras given by quivers with relations. LetQ be a quiver. Write kQ
for the path algebra of Q over k. An ideal I in kQ is a relation ideal if I ⊆ (kQ+)2,
where kQ+ is the ideal in kQ generated by the arrows in Q. In this case, (Q, I) is
called a bound quiver, and a path ρ in Q is called nonzero in Λ, or simply nonzero,
if ρ ̸∈ I. Given ρ =

∑
λiρi ∈ kQ, where λi ∈ k and ρi is a path in Q, we write

ρ◦ =
∑
λiρ

◦
i ∈ kQ◦. In this way, an ideal I in kQ is a relation ideal if and only if

I◦ = {ρ◦ | ρ ∈ I} is a relation ideal in kQ◦.
Consider now a k-algebra Λ = kQ/I, where Q is a quiver and I is a relation

ideal in kQ. Write γ̄ = γ + I ∈ Λ for γ ∈ kQ. Then Λ has a complete orthogonal
set of idempotents {ex | x ∈ Q0}, where ex = ε̄x. Set JΛ = {ρ̄ | ρ ∈ kQ+} := J.
Note that kQ◦/I◦ is the opposite algebra of Λ. Write ρ̄◦ = ρ◦ + I◦ for ρ ∈ kQ but
ex = εx + I◦ for x ∈ Q0. In particular, JΛ◦ = {ρ̄◦ | ρ ∈ kQ+} = J◦.

A left Λ-module M is called unitary if M =
∑
x∈Q0

exM . We denote by ModΛ
the category of all unitary left Λ-modules. Observe that the k-algebra Λ can also
be regarded as a small k-category, whose objects are the vertices of Q and whose
morphism spaces are Λ(x, y) = eyΛex with x, y ∈ Q0. In this viewpoint, a k-linear
representation of (Q, I) is a covariant functor from Λ to Modk. It is well known
that ModΛ is equivalent to the category Rep(Q, I) of all k-linear representations of

(Q, I), in such a way that a module M corresponds to a representation M̃ defined

by M̃(x) = exM and M̃(u) : M̃(x) → M̃(y) being the left multiplication by u,
where x, y ∈ Q0 and u ∈ Λ(x, y). Identifying M with M̃ , we shall freely use the
terminology, the notation and the results stated in Section 4 for Λ-modules. In
particular, for each x ∈ Q0, we have a projective module Px = Λex = Λ(x,−); see
(3.2.2) and a simple module Sx = Λex/Jex in ModΛ. And we have a projective
module P ◦

x = Λ◦ex = Λ(−, x) and a simple module S◦
x = Λ◦ex/J

◦ex in ModΛ◦.
For a module M in ModΛ◦, we have a module DM = ⊕x∈Q0 D(exM) in ModΛ

such, for all φ ∈ D(exM) and u ∈ eyΛex, that uφ ∈ D(eyM), which is defined
by (uφ)(m) = φ(uom), for m ∈ eyM. For a morphism f : M → N in ModΛ◦, we
have a morphism Df : DN → DM in ModΛ such, for φ ∈ D(exN) with x ∈ Q0,
that (Df)(φ) = φ ◦ fx, where fx : exM → exN is the restriction of f . This
yields a contravariant functor D : ModΛo → ModΛ. For each x ∈ Q0, we see that
D(S◦

x)
∼= Sx and Ix = D(P ◦

x ) = D(−, x), an injective module in ModΛ; see (3.3.2).

A module M in ModΛ is called locally finite dimensional if dimk(exM) <∞ for
all x ∈ Q0. We denote by modΛ and modbΛ the full subcategories of locally finite
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dimensional modules and finite dimensional modules in ModΛ, respectively. As a
special case of Proposition 3.1.1, we obtain the following statement.

duality_lfdm 4.2.1. Proposition. Let Λ = kQ/I, where Q is a quiver and I is an ideal in
kQ. Then the contravariant functor D : ModΛ◦ → ModΛ restricts to dualities
D : modΛ◦ → modΛ and D : modbΛ◦ → modbΛ.

4.3. Locally noetherian algebras. Let Λ = kQ/I, where Q is a quiver and
I is an ideal in kQ. Recall that Λ is locally left noetherian if Λex is noetherian
for all x ∈ Q0, locally right noetherian if exΛ is noetherian for all x ∈ Q0, and
locally noetherian if Λ is locally left and right noetherian. Moreover, Λ is locally
left bounded if Λex is finite dimensional for all x ∈ Q0, locally right bounded if exΛ
is finite dimensional for all x ∈ Q0, and locally bounded if Λ is locally left and
right bounded. Locally (left, right) bounded algebras are clearly locally (left, right)
noetherian, and so are the special multiserial algebras; see [33, (1.3)]. To provide
more classes of locally noetherian algebras, we introduce the following notion.

mserial 4.3.1. Definition. Let Λ = kQ/I, where Q is a quiver and I is a relation ideal in
kQ. We shall say that Λ is

(1) locally left eventually multiserial if Q is left locally finite, and for each x ∈ Q0,
there exists an integer nx(≥ 0) such, for any ρ ∈ Qnx(x,−), that the set of
nonzero paths in Q starting with ρ is comparable ;

(2) locally right eventually multiserial if Q is right locally finite, and for any x ∈ Q0,
there exists an integer nx(≥ 0) such, for any ρ ∈ Qnx

(−, x), that the set of
nonzero paths in Q ending with ρ is comparable ;

(3) locally eventually multiserial if Λ is locally left and right eventually multiserial.

Note that special multiserial algebras are locally left and right eventually multi-
serial, while locally bounded algebras are not necessarily so.

mul-noe 4.3.2. Proposition. Let Λ = kQ/I, where Q is a quiver and I is a relation ideal
in kQ. If Λ is locally left or right eventually multiserial, then it is locally left or
right noetherian, respectively.

Proof. We shall consider only the case where Λ is locally left eventually multiserial.
Let x be an vertex in Q with an integer nx as stated in Definition 4.3.1(1). Fix
ρ ∈ Qnx

(x,−). Then Λρ̄ =
∑

η∈Ω(ρ) kη̄, where Ω(ρ) denotes the set of nonzero

paths in Q starting with ρ. If Ω(ρ) is finite, then Λρ̄ is noetherian. Otherwise, since
Ω(ρ) is comparable, there exist arrows αi : xi → xi+1 in Q with i ≥ 1 and x1 = x,
such that Ω(ρ) = {ρ, α1ρ, . . . , αi · · ·α1ρ, . . .}. Set u0 = ρ̄ and ui = ᾱi · · · ᾱ1ρ̄ for

i ≥ 1. Given 0 ̸= u ∈ Λρ̄, there exists a minimal d(u) ≥ 0 such that u =
∑d(u)
i=0 λiui,

where λi ∈ k with λd(u) ̸= 0. If u, v ∈ Λρ̄ are nonzero, then v = qu+w, where q ∈ Λ
and w ∈ Λρ̄ with w = 0 or d(w) < d(u). Thus, every nonzero submodule of Λρ̄ is
generated by some u ∈ Λρ̄. Thus, Λρ̄ is noetherian. Since Q is left locally finite,
Jnxex =

∑
ρ∈Qnx (x,−)Λρ̄ with Qnx(x,−) finite is noetherian, and Λex/J

nxex is

finite dimensional. So, Λex is noetherian. The proof of the proposition is completed.

trun_mser_ex 4.3.3. Example. Consider Λ = kQ/I, where Q is the quiver

a3
α3 // a2

α2 // a1
α1 // a0

//
//

��

d1 //

��

d2

��

// d3

��
b3

β3

OO

b2

β2

OO

b1

β1

OO

c0 c1 c2 c3
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and I = ⟨αiβi | i ≥ 1⟩. Then Λ is locally right eventually multiserial. By Propo-
sition 4.3.2, it is locally right noetherian. On the other hand, Λ is neither locally
left eventually multiserial nor locally left noetherian.

4.4. Locally semiperfect algebras. A ring Σ with an identity is semiperfect
if and only if it has a complete orthogonal set of idempotents {e1, . . . , en} such that
eiΣei is local; see [1, (27.6)]. This inspires the following definition; see [20, (1.4.3)].

lspa 4.4.1. Definition. Let Λ = kQ/I, where Q is a quiver and I is a relation ideal in
kQ. One says that Λ is locally semiperfect provided, for all x, y ∈ Q0, that

(1) exΛex is a local k-algebra;
(2) eyΛex is a finite dimensional k-vector space.

4.4.2. Remark. Let Λ = kQ/I be a locally semiperfect algebra. Regarded as a
k-category, Λ is small endo-local and Hom-finite.

spa_ex 4.4.3. Example. (1) Let Λ be the k-algebra defined by a single loop α at a vertex
with relation α2 = α3. Then Λ is locally bounded but not locally semiperfect.

(2) Consier the k-algebra Λ = kQ/I, where Q is the quiver

a0
α1 //

β0

&&

γ 77 a1
α2 //

β1

��

a2
α3 //

β2

��

a3
β3

��

//

xx
b

and I = ⟨γ2, β1α1 − βiαi · · ·α2α1 | i ≥ 2⟩. Then Λ is locally semiperfect with Q
being left locally finite but not right locally finite.

The following result collects some basic properties of locally semiperfect algebras.

lfd_rad 4.4.4. Proposition. Let Λ = kQ/I be locally semiperfect, where Q is a quiver and
I is a relation ideal in kQ.

(1) If x ∈ Q0, then Jex is the unique maximal submodule of Px.
(2) If x ∈ Q0, then socIx is isomorphic to Sx and essential in Ix.
(3) The non-isomorphic simple modules in ModΛ are the Sx with x ∈ Q0.
(4) If M ∈ ModΛ, then socM = {m ∈M | Jm = 0}.
Proof. (1) Let x ∈ Q0. Clearly, Jex is a maximal submodule of Px. For the
uniqueness, it suffices to show that ex − ρ̄ is invertible for ρ ∈ εx(kQ

+)εx. Assume
that this is not the case. Since exΛex is local, ρ̄ is invertible for some ρ ∈ εx(kQ

+)εx.
Then, ex = ρ̄η̄ for some η ∈ εx(kQ)εx. So ex − ρη ∈ I, contrary to I ⊆ (kQ+)2.

(2) Let x ∈ Q0. Since Λ
◦ is locally semiprimary, by Statement (1), the canonical

projection p : Λ◦ex → S◦
x is a projective cover. So, p is superfluous; see [27,

(3.4)]. Since Λ◦ex ∈ modΛ◦, by Proposition 4.2.1, Dp : Sx → Ix is an essential
monomorphism. Thus, Im(Dp) is an essential submodule of Ix. Since Im(Dp) ∼= Sx,
we see that socIx = Im(Dp).

(3) Let S be a simple module in ModΛ. Then, there exists 0 ̸= m ∈ exS for
some x ∈ Q0. If (Jex)m = S, then m = ρ̄m for some ρ̄ ∈ exJex. Since ex − ρ̄ is
invertibe, we have m = 0, absurd. Thus, (Jex)m = 0, and hence, S ∼= Λex/Jex.

(4) Given m ∈ socM , by Statement (3), Jm = 0. Suppose that Jm = 0 for some
0 ̸= m ∈M. Then, m = ex1m+ · · ·+exrm, where exim ̸= 0 and xi ∈ Q are pairwise
distinct. Since Jexi(exim) = (Jexi)m ⊆ Jm = 0, we deduce that Λ(eximi) ∼= Sxi ,
for i = 1, . . . , r. Thus, m ∈ socM . The proof of the proposition is completed.
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4.4.5. Remark. By Proposition 4.4.4(1), the condition (1) in Definition 4.4.1 can
be replaced by the condition that every oriented cycle in Q is nilpotent in Λ.

fd_soc 4.4.6. Lemma. Let Λ = kQ/I be locally semiperfect, where Q is a quiver and I is
a relation ideal in kQ. Then a module M in ModΛ is finitely cogenerated if and
only if socM is finite dimensional and essential in M.

Proof. Assume thatM is finitely cogenerated with an injective envelope g :M → I,
where I ∈ injΛ. By Proposition 4.4.4(2), socI ∈ modbΛ is essential in I. Since

g(socM) ⊆ socI, we have socM ∈ modbΛ and g(socM) = socI. Thus, socM is

essential in M. Conversely, assume that socM ∈ modbΛ is essential in M. Then,
socM = km1⊕· · ·⊕kms, where 0 ̸= mi ∈ exi

(socM) with xi ∈ Q0. By Proposition
4.4.4(4), kmi

∼= Sxi
, and in view of Proposition 4.4.4(2), we have a monomorphism

hi : kmi → Ixi with Im(hi) = socIxi , for i = 1, . . . , s. This yields a monomor-
phism h : socM → I = ⊕si=1Ixi with h(socM) = socI. Thus, h extends to a
monomorphism g :M → I. The proof of the lemma is completed.

4.5. Locally semiprimary algebras. For our later study on almost split se-
quences in mod+Λ and mod−Λ, we need to impose some stronger conditions on Λ.
Recall that a ring Σ with an identity is called semiprimary if radΣ is nilpotent and
Σ/radΣ is semisimple; see [30, (4.15)]. This motivates the following definition.

lspri_def 4.5.1. Definition. Let Λ = kQ/I, where Q is a quiver and I is a relation ideal
in kQ. We say that Λ is locally semiprimary provided, for any x, y ∈ Q0, that Q
contains at most finitely many nonzero paths from x to y.

lsprm_lsp 4.5.2. Remark. Clearly, locally semiprimary algebras are locally semiperfect.

lspri_ex 4.5.3. Example. (1) IfQ is an interval-finite quiver, then kQ is locally semiprimary.

(2) Consider Λ = kQ/I, where Q is the quiver

a0
α1 //

β0

&&

γ 77 a1
α2 //

β1

��

a2
α3 //

β2

��

a3
β3

��

//

xx
b

and I = ⟨γ2, βnαn · · ·αi | i ≥ 1;n ≥ 2i⟩. Then Λ is locally semiprimary with Q
not locally finite. In contrast, the algebra in Example 4.4.3(2) defined by the same
quiver is not locally semiprimary.

We shall need the following statement for describing almost split sequences in
the subcategories mod+Λ and mod−Λ of ModΛ.

fdmod 4.5.4. Lemma. Let Λ = kQ/I be locally semiprimary, where Q is a quiver and I is
a relation ideal in kQ. Then a module in ModΛ is finite dimensional if and only if
it is finitely generated and finitely cogenerated.

Proof. Let M ∈ modbΛ. In particular, M is finitely generated and socM ∈ modbΛ.
And there exist x1, . . . , xr ∈ Q0 such that exM = 0, for x ∈ Q0\{x1, . . . , xr}.
Let 0 ̸= m ∈ exi

M for some 1 ≤ i ≤ r. Suppose that (socM) ∩ (Λm) = 0.
By Proposition 4.4.4(4), there exist αn : an → an+1 in Q1 with a1 = xi, such that
0 ̸= ᾱn · · · ᾱ1m ∈ eanM , for all n ≥ 1. In particular, an ∈ {x1, . . . , xr} and αn · · ·α1

is a nonzero path in Q from xi to an, for all n ≥ 1. So, there exists some 1 ≤ j ≤ r
such that Q has infinitely many nonzero paths from xi to xj , a contradiction. Thus,
socM is essential in M , and hence, M is finitely cogenerated; see (4.4.6).
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Assume now that M is finitely cogenerated, and finitely generated with an epi-
morphism f : Px1 ⊕ · · · ⊕ Pxr → M, where xi ∈ Q0. Then M =

∑r
i=1 Λf(exi),

where f(exi
) ∈ exi

M, and by Lemma 4.4.6, socM = ey1(socM)⊕ · · · ⊕ eys(socM),
where yi ∈ Q0. For any x ∈ Q0, dim(exM) ≤

∑r
i=1 dim(exΛexi

) < ∞. Suppose
that exM ̸= 0 for some x ∈ Q0. Then, Q contains a path ρ from some xi to x such
that ρ̄f(exi) ̸= 0. Since socM is essential in M ; see (4.4.6), Q contains a path η
from x to some yj such that η̄(ρ̄f(exi)) ̸= 0. So, ηρ is a nonzero path in Q from
xi to yj passing through x. By Definition 4.5.1, exM ̸= 0 for only finitely many

x ∈ Q0. Thus, M ∈ modbΛ. The proof of the lemma is completed.

fg_cfg_nfd 4.5.5. Remark. Lemma 4.5.4 does not hold for locally semiperfect algebras. Con-
sider the locally semiperfect algebra Λ = kQ/I, where Q is the quiver

a0
α0 // a1

α1 //

γ1
��

a2

γ2
��

α2 // a3
γ3
��

α3 // a4
γ4
��

b0 b1
β0oo b2

β1oo b3
β2oo b4

β3oo

and I is the ideal generated by β0γ1α0 − β0β1 · · ·βiγi+1αi · · ·α1α0 with i ≥ 1, and
βiγi+1αi − βiβi+1 · · ·βjγj+1αj · · ·αi+1αi with j > i ≥ 1. Note that Pa0

∼= Ib0 .
Thus, Pa0 is finitely generated, finitely cogenerated and infinite dimensional.

The following result is handy for constructing examples of locally semiprimary
algebras, which are also locally left or right noetherian.

4.5.6. Lemma. Let Λ = kQ/I, where Q is a quiver and I is a relation ideal in kQ.
If Λ is locally left or right eventually multiserial, then Λ is locally semiprimary if
and only if all oriented cycles in Q are nilpotent in Λ.

Proof. We consider only the case where Λ is locally left eventually multiserial.
The necessity is evident. Assume that all oriented cycles in Q are nilpotent in Λ.
Suppose that Q has infinitely many nonzero paths from x to y, for some x, y ∈ Q0.
Since Q is left locally finite, it contains an infinite path

ζ : x = y0
α1 // y1

α2 // y2
α3 // · · · αi // yi

αi+1 // · · ·
such that Q has a path ρi : yi ⇝ y such that ρiαi · · ·α1 is a nonzero path, for all
i ≥ 1. Let nx be an integer as in Definition 4.3.1(1). Then, for any i ≥ nx, the
infinite subpath ζi of ζ starting with yi starts with ρi. So, we may assume that
ynx

= y. It is not difficult to see that ζnx
starts with ρsnx

for infinitely many s > 0,
contrary to the assumption. The proof of the lemma is completed.

4.6. Finite presented and finitely copresented modules. We begin with
the following statement, which is a special case of Proposition 3.6.1.

lfd_fpres 4.6.1. Proposition. Let Λ = kQ/I be locally semiperfect, where Q is a quiver and
I is a relation ideal in kQ. Then

(1) mod+Λ and mod−Λ are Hom-finite Krull-Schmidt subcategories of modΛ;
(2) The duality D : modΛ◦ → modΛ restricts to a duality D : mod+Λ◦ → mod−Λ.

We shall need the property that finite dimensional modules are all finitely pre-
sented or all finitely copresented.

fd_fp 4.6.2. Lemma. Let Λ = kQ/I be locally semiperfect, where Q is a quiver and I is

a relation ideal in kQ. Then modbΛ ⊆ mod+Λ if and only if Q is left locally finite ;
and modbΛ ⊆ mod−Λ if and only if Q is right locally finite.
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Proof. Since mod+Λ is extension-closed in ModΛ, by Proposition 4.4.4(3), we see

that modbΛ ⊆ mod+Λ if and only if Sx ∈ mod+Λ for all x ∈ Q0. And for each

x ∈ Q0, there exists a short exact sequence 0 // Jex // Px // Sx // 0 in

ModΛ. Since {ᾱ | α ∈ Q1(x,−)} is a minimal generating set for Jex, by Schanul’s
Lemma, Sx ∈ mod+Λ if and only if {ᾱ | α ∈ Q1(x,−)} is finite, that is, Q1(x,−) is
finite. The first part of the lemma holds. Next, by Propositions 4.2.1 and 4.6.1(2),

modbΛ ⊆ mod−Λ if and only if modbΛ◦ ⊆ mod+Λ◦, or equivalently, Q◦ is left locally
finite, that is, Q is right locally finite. The proof of the lemma is completed.

We shall also need the following easy statement.

llb_lrb 4.6.3. Lemma. Let Λ = kQ/R be semiperfect, where Q is a quiver and I is a

relation ideal in kQ. Then, mod+Λ = modbΛ if and only if Λ is locally left bounded;
and mod−Λ = modbΛ if and only if Λ is locally right bounded.

Proof. We shall only prove the sufficiency of the first part of the lemma. Assume
that Λ is locally left bounded. Then, projΛ ⊆ modbΛ, and hence, mod+Λ ⊆ modbΛ.
Moreover, Q is clearly left locally finite, and hence, modbΛ ⊆ mod+Λ; see (4.6.2).
The proof of the lemma is completed.

Clearly, the projective modules in mod+Λ are ext-projective, and the injective
modules in mod−Λ are ext-injective. The converses are not true in general.

ext_proj_ab 4.6.4. Lemma. Let Λ = kQ/R, where Q is a quiver and I is a relation ideal in kQ.

(1) If mod+Λ is abelian, then its ext-projective objects are the modules in projΛ.

(2) If mod−Λ is abelian, then its ext-injective objects are the modules in injΛ.

Proof. We shall only prove Statement (1). Suppose that mod+Λ be abelian. Con-
sider a nonprojective module M in mod+Λ. Then there exists a nonsplit short
exact sequence 0 // L // P // M // 0 in ModΛ where P ∈ projΛ and
L is finitely generated. By Proposition 3.5.1, L ∈ mod+Λ, and hence, M is not
ext-projective in mod+Λ. The proof of the lemma is completed.

We provide some classes of algebras Λ for which mod+Λ or mod−Λ is abelian.

fpres_ab 4.6.5. Proposition. Let Λ = kQ/I be locally semiperfect, where Q is a quiver and
I is a relation ideal in kQ.

(1) If I = 0, then mod+Λ and mod−Λ are abelian.

(2) If Λ is locally left (resp. right) noetherian, then mod+Λ(resp. mod−Λ) is abelian.

Proof. (1) Assume that I = 0. Then Λ is hereditary; see [19, (8.2)]. Thus, projΛ is
closed under finitely generated submodules and injΛ is closed under finitely cogen-
erated quotient-modules. By Proposition 3.5.1, mod+Λ and mod−Λ are abelian.

(2) Suppose that Λ is locally left noetherian. Then the modules in projΛ are
noetherian. Thus, finitely generated modules are finitely presented. By Proposition
3.5.1, mod+Λ is abelian. Assume that Λ is locally right noetherian. Then Λ◦ is
locally left noetherian, and hence, mod+Λ◦ is abelian. By Proposition 4.6.1(2),
mod−Λ is abelian. The proof of the proposition is completed.

Ab_subcat_ex 4.6.6. Example. Consider Λ = kQ/I, where Q is the quiver

a3
α3 // a2

α2 // a1
α1 // a0

α //
β
// a−1

//

��

a−2

��

// a−3

��
b3

β3

OO

b2

β2

OO

b1

β1

OO

c1 c1 c2



ALMOST SPLIT SEQUENCES 23

and I = ⟨αα1, βα1, αiβi | i ≥ 1⟩. Then, Λ is locally right eventually multiserial. By
Propositions 4.3.2 and 4.6.5, mod−Λ is abelian. Although Λ is neither locally left
noetherian nor hereditary, we claim that mod+Λ is abelian.

Indeed let Λ′ = kQ′, where Q′ is the full subquiver of Q generated by the ai
and cj with i ≤ 0 and j ≥ 1. Then projΛ′ ⊆ projΛ. Let M be a finitely generated
submodule of some module P in projΛ. Write P ′ for the maximal direct summand of
P lying in projΛ′. Note thatM ′ =

∑
a0 ̸=x∈Q′

0
exM is a finitely generated submodule

of P ′ ∩M such that M/M ′ ∈ modbΛ ⊆ mod+Λ; see (4.6.2). Since Λ′ is hereditary,
M ′ ∈ projΛ′ ⊆ mod+Λ. Therefore, M ∈ mod+Λ. Now it follows from Proposition
3.5.1(1) that mod+Λ is abelian.

4.7. Almost split sequences. We start with the locally semiperfect case. Since
mod+Λ and mod−Λ are Krull-Schmidt; see (4.6.1), as a special case of Theorem
3.6.3, we immediately obtain a general existence theorem for ModΛ as follows.

ass_lfd 4.7.1.Theorem. Let Λ = kQ/I be a locally semiperfect algebra, where Q is a quiver
and I is a relation ideal in kQ. Consider an indecomposable module M ∈ ModΛ.

(1) If M ∈ mod+Λ is not projective, then there exists an almost split sequence

0 // τM // N // M // 0 in ModΛ, where τM ∈ mod−Λ.

(2) If M ∈ mod−Λ is not injective, then there exists an almost split sequence

0 // M // N // τ−M // 0 in ModΛ, where τ−M ∈ mod+Λ.

4.7.2. Remark. (1) In case Q is strongly locally finite and I = 0, Theorem 4.7.1
strengthens the result of Theorem 2.8 in [13].

(2) In case Λ is locally left or right bounded, Theorem 4.7.1 strengthens the result of
Theorem 3.4.1 in [20]. Note that the latter is obtained using the classical approach,
and contains an error claiming that τM and τ−M are finite dimensional.

Next, we shall concentrate on almost split sequences in mod+Λ and mod−Λ in
the locally semiprimary case. This will be based on the following description of
irreducible morphisms in mod+Λ and mod−Λ, which covers the result in [13, (3.1)].

ker_irr_epi 4.7.3. Lemma. Let Λ = kQ/I be locally semiprimary, where Q is a quiver and I is
a relation ideal in kQ.

(1) If Q is left locally finite, then every irreducible epimorphism in mod+Λ has a
finite dimensional kernel.

(2) If Q is right locally finite, then every irreducible monomorphism in mod−Λ has
a finite dimensional cokernel.

Proof. We shall only prove Statement (1). Assume that Q is left locally finite. By

Lemma 4.6.2, modbΛ ⊆ mod+Λ. Consider an irreducible epimorphism f : M → N
in mod+Λ. We may assume that N is indecomposable. In view of Theorem 4.7.1(1),
we can construct a commutative diagram with exact rows

0 // L
g //

u

��

M

v

��

f // N // // 0

0 // X
h // Y

p // N // 0,
where the bottom row is an almost split sequence in ModΛ with X ∈ mod−Λ.
Writing X ′ = Im(u) and Y ′ = Im(v), we obtain factorizations u = ju′ and v = qv′,
where u′ : L→ X ′ and v′ :M → Y ′ are epimorphisms; j : X ′ → X and q : Y ′ → Y
are inclusion maps. This yields a commutative diagram with exact rows
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0 // L
g //

u′

��

M

v′
��

f // N // // 0

0 // X ′ h′
// Y ′ pq // N // 0.

Since L is finitely generated, so is X ′. And since X is finitely cogenerated, so is
X ′; see (4.4.6). Thus, X ′ ∈ modbΛ ⊆ mod+Λ; see (4.5.4), and hence, Y ′ ∈ mod+Λ;
see (2.1.1). Since p is not a retraction, neither is pq : Y ′ → N . Thus, v′ is a section.
Then, v′ is an isomorphism, and so is u′. So, L is finite dimensional. The proof of
the lemma is completed.

We are now ready to describe the almost split sequences in mod+Λ which, in the
hereditary case, strengthens the result stated in [13, (3.6)].

ass_fpres 4.7.4. Theorem. Let Λ = kQ/I be a locally semiprimary algebra, where Q is a
locally finite quiver and I is a relation ideal in kQ. Then the almost split sequences

in mod+Λ are those in ModΛ with a finite dimensional starting term. Moreover,

(1) an indecomosable nonprojective module M in mod+Λ is the ending term of an
almost split sequence in mod+Λ if and only if τM is finite dimensional;

(2) an indecomosable noninjective module N in mod+Λ is the starting term of an
almost split sequence in mod+Λ if and only if N is finite dimensional.

Proof. Since Q is locally finite, modbΛ = mod+Λ ∩ mod−Λ; see (4.5.4) and (4.6.2).

Consider an almost split sequence 0 // X // Y // Z // 0 in ModΛ, where

X is finite dimensional. By Theorem 4.7.1(2), Z ∼= τ−X ∈ mod+Λ. Since mod+Λ is
extension-closed in ModΛ, this is an almost split sequence in mod+Λ. Conversely,

let (∗) 0 // M // N // L // 0 be an almost split sequence in mod+Λ.

By Lemma 4.7.3(1), M ∈ modbΛ, and by Theorem 4.7.1(2), there exists an almost

split sequence 0 // M // E // τ−M // 0 in ModΛ, where τ−M ∈ mod+Λ.
Since M ∈ mod+Λ, this is an almost split sequence in mod+Λ, and hence, it is
isomorphic to (∗). This establishes the first part of the theorem. Combining this
part with Theorem 4.7.1, we deduce easily Statements (1) and (2). The proof of
the theorem is completed.

4.7.5. Remark. In view of Theorem 4.7.4(2), we see that the finite dimensional
ext-injective objects in mod+Λ are the finite dimensional modules in injΛ.

Dually, we can describe the almost split sequences in mod−Λ as follows.

ass_fcp 4.7.6. Theorem. Let Λ = kQ/I be a locally semiprimary algebra, where Q is a
locally finite quiver and I is a relation ideal in kQ. Then the almost split sequences
in mod−Λ are those in ModΛ with a finite dimensional ending term. Moreover,

(1) an indecomposable noninjective module N in mod−Λ is the starting term of an
almost split sequence in mod−Λ if and only if τ−N is finite dimensional ;

(2) an indecomposable nonprojective module M in mod−Λ is the ending term of an
almost split sequence in mod−Λ if and only if M is finite dimensional.

4.7.7.Remark. In view of 4.7.6(2), we see that the finite dimensional ext-projective
objects in mod−Λ are the finite dimensional modules in projΛ.

4.8. Subcategories having almost split sequences. The objective of this
subsection is to study when mod+Λ, mod−Λ and modbΛ have almost split sequences
on one or both sides in case Λ is locally semiprimary given by a locally finite quiver.
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ass_fp_cat 4.8.1. Theorem. Let Λ = kQ/R be a locally semiprimary algebra, where Q is a
locally finite quiver and I is a relation ideal in kQ.

(1) If Λ is locally left bounded, then mod+Λ has almost split sequences on the left.
And the converse holds in case mod+Λ is abelian.

(2) If the indecomposable noninjective modules in mod−Λ are finite dimensional (in
particular, if Λ is locally right bounded), then mod+Λ has almost split sequences
on the right. And the converse holds in case mod+Λ is abelian.

Proof. (1) Suppose that Λ is locally left bounded. Then, mod+Λ = modbΛ by
Lemma 4.6.3. If M ∈ mod+Λ is indecomposable and not ext-injective, then it is
not injective, and by Theorem 4.7.4(2), M is the starting term of an almost split
sequence in mod+Λ. Thus, mod+Λ has almost split sequences on the left.

Suppose now that Λ is not locally left bounded and mod+Λ is abelian. Then
Px is infinite dimensional for some x ∈ Q0. Since Q is locally finite, by Propo-
sition 3.5.1(1), radPx ∈ mod+Λ. Let N be an infinite dimensional indecompos-
able direct summand of radPx. Then, we obtain a nonsplit short exact sequence
0 // N // Px // Px/N // 0 in mod+Λ. In particular, N is not ext-injective

in mod+Λ. By Theorem 4.7.4(2), N is not the starting term of any almost split se-
quence in mod+Λ. Thus, mod+Λ does not have almost split sequences on the left.

(2) Suppose that all indecomposable noninjective modules in mod−Λ are finite
dimensional. If M ∈ mod+Λ is indecomposable and not ext-projective, then M
is not projective, and by Theorem 4.7.1(1), there exists an almost split sequence
0 // τM // N // M // 0 in ModΛ, where τM ∈ mod−Λ. Since τM ∈
modbΛ by the assumption, this is an almost split sequence in mod+Λ. Therefore,
mod+Λ has almost split sequences on the right.

Assume now that mod+Λ is abelian and mod−Λ contains an infinite dimensional
indecomposable noninjective module M . By Theorem 4.7.1(2), there exists an al-
most split sequence 0 // M // N // L // 0 in ModΛ, where L ∈ mod+Λ.
Since τL ∼= M, by Theorem 4.7.4(1), mod+Λ has no almost split sequence ending
with L. Since L is not ext-projective in mod+Λ by Lemma 4.6.4(1), mod+Λ does not
have almost split sequences on the right. The proof of the theorem is completed.

4.8.2. Remark. In case I = 0, we see from Lemma 4.6.5(1) that Theorem 4.8.1
covers the result in [13, (3.7)]; compare also [33, (3.6.1)].

Dually, we have the following statement.

ass_fcp_cat 4.8.3. Theorem. Let Λ = kQ/R be a locally semiprimary algebra, where Q is a
locally finite quiver and I is a relation ideal in kQ.

(1) If Λ is locally right bounded, then mod−Λ has almost split sequences on the
right. And the converse holds if mod−Λ is abelian.

(2) If the indecomposable nonprojective modules in mod+Λ are finite dimensional
(in particular, if Λ is locally left bounded), then mod−Λ has almost split se-
quences on the left. And the converse holds if mod−Λ is abelian.

ex_ass_fp_cat 4.8.4. Example. (1) Consider Λ = kQ/I, where Q is the quiver

δ0
α 1

2β

3
γ

456· · ·

and I = ⟨αγ, βγ, δ3⟩. Then, Λ is locally eventually multiserial. By Lemmas 4.3.2
and 4.6.5, mod−Λ and mod+Λ are abelian. Since Λ is locally left bounded but
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not locally right bounded, by Theorem 4.8.3, mod−Λ has almost split sequences on
the left but not on the right. And by Theorem 4.8.1(1), mod+Λ has almost split
sequences on the left. We claim that it also has almost split sequences on the right.

Indeed let Λ′ = kQ′ and Λ′′ = (kQ′′)/⟨δ3⟩, where Q′ and Q′′ are the full sub-
quivers of Q generated by the vertices i ≥ 3 and by the vertices j with 0 ≤ j ≤ 3,
respectively. Then, every module M in ModΛ is decomposed as M = M ′ ⊕M ′′,
where M ′ ∈ ModΛ′ and M ′′ ∈ ModΛ′′. Thus, if M is an infinite dimensional in-
decomposable module in mod−Λ, then M ∈ mod−Λ′, and hence, M ∼= Ii for some
i ≥ 3. By Theorem 4.8.1(2), mod+Λ has almost split sequences on the right.

(2) Consider Λ = kQ/I, where Q is the quiver

a3
α3 // a2

α2 // a1
α1 // a0

α //
β
// a−1

//

��

a−2

��

// a−3

��
b3

β3

OO

b2

β2

OO

b1

β1

OO

c1 c1 c2

and I = ⟨αα1, βα1, αiβi | i ≥ 1⟩. We claim that neither mod+Λ nor mod−Λ has
almost split sequences on either side. As seen in Example 4.6.6, mod+Λ and mod−Λ
are abelian. Since Λ is not left locally bounded, by Theorem 4.8.1(1), mod+Λ
does not have almost split sequences on the left. On the other hand, let M be
the submodule of Ia1 such that Ia1/M

∼= Sb1 . Then M is an infinite dimensional
indecomposable noninjective module in mod−Λ. By Theorem 4.8.1(2), mod+Λ does
not have almost split sequences on the right. Similarly, we see from Theorem 4.8.3
that mod−Λ does not have almost split sequences on either side.

To conclude the paper, we study when modbΛ has almost split sequences.

ass_fdm_cat 4.8.5. Theorem. Let Λ = kQ/R be a locally semiprimary algebra, where Q is a
locally finite quiver and I is a relation ideal in kQ.

(1) If the indecomposable noninjective modules in mod−Λ are finite dimensional,

then modbΛ has almost split sequences on the right.
(2) If the indecomposable nonprojective modules in mod+Λ are finite dimensional,

then modbΛ has almost split sequences on the left.
(3) In each of the above two situations, the almost split sequences in modbΛ are

almost split sequences in ModΛ.

Proof. We shall only consider the case where all indecomposable noninjective mo-
dules in mod−Λ are finite dimensional. Let M ∈ modbΛ be indecomposable and not
ext-projective. By Lemma 4.6.2, M ∈ mod+Λ is not projective, and by Theorem
4.7.1, ModΛ has an almost split sequence 0 // τM // N // M // 0 with
τM ∈ mod−Λ. Since τM ∈ modbΛ, this is an almost split sequence in modbΛ. Thus,
Statements (1) and (3) hold in this case. The proof of the theorem is completed.

rlb-ass 4.8.6.Remark. In case Λ is a finite dimensional algebra, Theorem 4.8.5(3) is known
to some specialists.

By Lemma 4.6.3 and Theorem 4.8.5, we have immediately the following result.

ass_fdm_cor 4.8.7. Corollary. Let Λ = kQ/R be a locally semiprimary algebra, where Q is
a locally finite quiver and I is a relation ideal in kQ. If Λ is locally (left, right)

bounded, then modbΛ has almost split sequences (on the left, on the right).

4.8.8. Remark. Let Λ = kQ/I be finite dimensional, where Q is a finite quiver and

I is a relation ideal in kQ containing (kQ+)n for some n ≥ 2. LetΛ̃ = kQ̃/Ĩ such
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that there exists a quiver-covering ϕ : Q̃→ Q; see [11, (4.1)] and Ĩ is the pre-image

of I under the k-linearly induced map ϕ′ : kQ̃ → kQ. Then, ϕ′ induces a covering
ψ :Λ̃ → Λ as defined in [14, (3.1)]. It is easy to check thatΛ̃ is locally semiprimary

and locally bounded. By Corollary 4.8.7, modbΛ̃ has almost split sequences, and
by Theorem 4.8.5, the almost split sequences in modbΛ̃ are almost split in ModΛ̃.

ex_ass_fdim_cat 4.8.9. Example. Consider Λ = kQ/I, where Q is the quiver

· · · a3 a2 a1
α

γ

β c1

c2 ζ

δ

b1
η

b2 b3 · · ·

and I = ⟨βα, γα, ηδ, ζη⟩. Clearly, Λ is neither locally left bounded nor locally right
bounded. As seen in Example 4.8.4(1), the infinite dimensional indecomposable
modules in mod−Λ are the injective modules Iai with i ≥ 1, and the infinite di-
mensional indecomposable modules in mod+Λ are the projective modules Pbj with
j ≥ 1. By Theorem 4.8.5, modbΛ has almost split sequences. Observe that modbΛ
has neither enough projective objects nor enough injective objects.
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VHW [40] H. J. Von Höhne and J. Waschbüsch, “Die struktur n-reihiger algebren,” Comm. Algebra

12 (1984) 1187-1206.

Wat [41] C. E. Watts, “A homology theory for small categories”, Proc. Conf. Categorical Algebra
(La Jolla, Calif., 1965) (Springer-Verlag, New York, 1966) 331-335.

Zetao Lin, Department of Mathematical Sciences, Tsinghua University, 100084, Bei-

jing, P. R. China.
Email address: zetao.lin@foxmail.com
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