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ABSTRACT. Using the Nakayama duality induced by a Nakayama functor, we
provide a novel and concise account of the existence of Auslander-Reiten du-
alities and almost split sequences in abelian categories with enough projective
objects or enough injective objects. As an example, we establish the existence
of almost split sequences ending with finitely presented modules and those
starting with finitely copresented modules in the category of all modules over
a small endo-local Hom-reflexive category. Specializing to algebras given by
(not necessarily finite) quivers with relations, we further investigate when the
categories of finitely presented modules, finitely copresented modules and finite
dimensional modules have almost split sequences on either or both sides.

INTRODUCTION

The Auslander-Reiten theory of irreducible maps and almost split sequences,
introduced by Auslander and Reiten in the 1970’s; see [8, 9], is a powerful tool
for studying categories of various kinds: most prominently, categories of modules
over algebras and their derived categories; see [10, 19, 21, 38], and also, categories
of Cohen-Macaulay modules over commutative algebras; see [32, 39], categories of
sheaves on varieties and schemes; see [6, 25], derived categories of differential graded
algebras arising from topological spaces; see [24], and most recently, extriangulated
categories; see [23, 34].

In this paper, we are mainly concerned with the existence of almost split se-
quences in an R-category 2, where R is a commutative ring. Write D for the dual
functor Homp(—,Ig), where Ig is the minimal injective cogenerator for R-modules.

Typically, one derives an almost split sequence 0 ™™ E M 0
from an Auslander-Reiten duality Exty (X, 7M) = DAU(M, X) or Exty (M, X) =
DA(X,7M) for all X € 2, or from their weak forms as described in [35, (2.3)],
where 7 is the AR-translation; see [4, 10, 19, 31]. The classical AR-~translation for
module categories is the dual of the transpose; see [4, (1.3)], [7, (7.4)], [8, (2.2)] and
[37, (1.6.1)]. For lack of a transpose functor, we shall take a different approach.
Let P be a strictly full additive subcategory of projective objects in 2. As
defined in [34, (5.4)], a Nakayama functor v : P — 2 induces a Nakayama duality
DA(P, X) =2 A(X,vP) for P € P and X € 2. It has been shown that a Nakayama
duality induces Aualander-Reiten dualities in the derived category of 2; see [34,
(5.7)]. Inspired by our recent work on the Auslander-Reiten dualities for graded
modules; see [33, (3.4)], we show that it also induces, in an elegant way, Auslander-
Reiten dualities in . Indeed, defining the AR-translate T,M of an object M with
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a projective presentation & over P; see (2.3.1), we show straightforwardly that
Exty (X, 7,M) = DA(M, X) for X € 2 if 2 has enough projective objects, and
DExty (M, X) = A(X,7,M) for X € 2 if 2 has enough injective objects; see (2.3.2)
and (2.3.3). Observe that the second isomorphism induces only a monomorphism
Exty (M, X) — DA(X,7,M), not an isomorphism as stated above.

In order to derive almost split sequences from Auslander-Reiten dualities or their
weak forms, one requires a key property that the AR-translation preserves strong
indecomposability. For this purpose, we assume that P is Hom-reflexive and Krull-
Schmidt; see (1.2). In this case, we obtain a Nakayama equivalence v : P — vP; see
[34, (5.6)] and an AR~translation uniquely defined (up to isomorphism) for objects
finitely presented over P; see (2.4.3). These lead directly to the desired property;
see (2.4.5), without involving a transpose functor as the classical approach; see [7,
(7.4)] and [10, (IV.1)]. This enables us to apply the result in [35, (2.3)] to establish
the existence of almost split sequences ending with objects finitely presented over P
if 2 has enough projective objects, and almost split sequences starting with objects
finitely copresented over vP if 2 has enough injective objects; see (3.6.3).

Our results will be applicable to many concrete abelian categories, including
potentially categories of sheaves on topological spaces. In Section 3, for example,
we shall consider the category Mod% of all left modules over a small endo-local
Hom-reflexive R-category €. By the Yoneda Lemma, the full subcategory projé of
finitely generated projective modules in Mod% is Hom-reflexive and Krull-Schmidt.
By constructing a Nakayama functor v : projé’ — Mod%’; see (3.4.1), we obtain an
existence theorem for almost split sequences in Mod% ending with finitely presented
modules and for those starting with finitely copresented modules; see (2.5.1). Note
that the first part of this existence theorem was stated without proof or reference by
Auslander in [4]. However, the most relevant result that we can find in the existent
literature is the existence of the Auslander-Reiten duality, and consequently, the
existence of almost split sequences, in the category of finitely presented %’-modules
when ¢ is a dualizing R-variety; see [7, (7.4)]. It is not clear how this approach
works for Mod%’, whether ¥ is a dualizing R-variety or not.

In section 4, we shall specialize to an algebra A given by a quiver with relations.
In case A is locally semiperfect; see (4.4.1), which can be viewed as a small endo-
local Hom-reflexive category, we obtain immediately a general existence theorem
for almost split sequences in ModA; see (4.7.1). So we will focus on the subcate-
gories mod A, mod A and mod¥ of finitely presented modules, finitely copresented
modules and finite dimensional modules in Mod A, respectively. In case A is locally
semiprimary given by locally finite quivers; see (4.5.1), the almost split sequences in
mod ™ and mod A are almost split in ModA; see (4.7.4) and (4.7.6). And we find
conditions for these subcategories to have almost split sequences on either or both
sides; see (4.8.1), (4.8.3) and (4.8.5). In particular, we obtain examples in which
mod has almost split sequences, but it has neither enough projective objects nor
enough injective objects; see (4.8.9). In the hereditary case, our results strengthen
the corresponding ones in [13]. We conclude by emphasizing the broad significance
of the representation theory of algebras defined by infinite quivers with or without
relations: it allows us to apply Bongartz and Gabriel’s covering theory to study
representations of finite dimensional algebras; see [11, 12, 14, 18]; and it establishes
deep connections to other domains such as coalgebras and comodules; see [15, 16],
non-commutative algebraic geometry; see [38] and cluster theory; see [22, 36].
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1. PRELIMINARIES

The objective of this section is to fix some terminology and notation, which will
be used throughout this paper, and collect some preliminary results.

1.1. REFLEXIVE MODULES. Throughout this paper, R stands for a commutative
ring with an identity. We denote by ModR the category of R-modules and by I a
minimal injective cogenerator for Mod R. A significant role in our investigation will
be played by the dual functor D = Hompg(—, Iz) : ModR — ModR will play. Given
an R-module M, there exists a canonical R-linear monomorphism a,, : M — DM,
sending m to the evaluating at m function. We shall say that M is reflezive if o,,
is bijective. The following statement is known; see [34, (1.3)].

1.1.1. LEMMA. Let R be a commutative ring. Then the category modR of reflexive
R-modules is abelian, and the dual functor restricts to a duality D :modR— modR.

1.1.2. REMARK. (1) The category modR contains all R-modules of finite length.
(2) In case R is complete noetherian local, mod R contains all noetherian R-modules
and all artinian R-modules.

1.2. KRULL-SCHMIDT CATEGORIES. An R-category is a category in which the mor-
phism sets are R-modules and the composition of morphisms is R-bilinear. We shall
compose morphisms in any R-category from right to left. A full subcategory of an
R-category is called strictly full if it is closed under isomorphisms. All functors
between R-categories are assumed to be R-linear.

Let A be an R-category. Given objects X,Y € A, we write A(X,Y) for the
R-module of morphisms f : X — Y. A non-zero object X in A is called strongly
indecomposable if A(X,X) is local; and Krull-Schmidt if it is a finite direct sum
of strongly indecomposable objects. We shall say that A is Krull-Schmidt if every
non-zero object is Krull-Schmidt, and Hom-reflezive (respectively, Hom-noetherian,
Hom-finite) if the R-modules A(X,Y) are reflexive (respectively, noetherian, of
finite length), for all objects X, Y in 4. Note that a Hom-finite R-category is Hom-
reflexive and Hom-noetherian. Moreover, if R is complete noetherian local, then a
Hom-noetherian R-category is Hom-reflexive.

1.2.1. PROPOSITION. Let A be a strictly full additive subcategory of an abelian R-
category A. If A is Krull-Schmidt, then it is closed under direct summands in
A. The converse holds if A is either Hom-finite or Hom-noetherian with R being
complete local noetherian.

Proof. Firstly, assume that A is Krull-Schmidt. Let X € A with a nonzero direct
summand Y in 2. Then, X = X; & --- ® X,,, where X; € A with A(X;, X;) being
local. Since 2A(X;, X;) = A(X;, X;), we see that Y is a direct sum of some of the
Xi; see [35, (1.1)]. In particular, Y € A.

Conversely, assume that A is closed under direct summands in 2(. Then, the
idempotent endomorphisms in A split. Assume further that A is either Hom-finite
or Hom-noetherian with R being complete noetherian local. Then, for any X € A,
the R-algebra A(X, X) is either artianian; or noetherian with R being complete
noetherian local. In either case, A(X, X) is semi-perfect; see [30, (21.35)]. Thus,
A is Krull-Schmidt; see [35, (1.1)]. The proof of the proposition is completed.

1.3. MINIMAL MORPHISMS. Let A be an R-category. An epimorphism f: X — Y
in A is called superfluous if any morphism ¢ : M — X in A such that fg is
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an epimorphism is an epimorphism. Dually, a monomorphism f : X — Y is
called essential if any morphism h : Y — N such that hAf is a monomorphism is
a monomorphism. More importantly, a morphism f : X — Y in A is called left
minimal if every morphism ¢ : Y — Y such that gf = f is an automorphism; and
right minimal if every morphism h : X — X such that fh = f is an automorphism.
For later reference, we quote the following statement from [29, (1.4)].

1.3.1. PROPOSITION. Let A be an additive R-category.

(1) FEvery nonzero morphism f : X — Y in A, where Y is Krull-Schmidt, can be
decomposed as f = (f1,0)T : X — Y1 @ Ys, where f1 : X — Y1 is left minimal.

(2) Fvery nonzero morphism g : X — Y in A, where X is Krull-Schmidt, can be
decomposed as f = (¢1,0) : X1 ® Xo — Y, where g1 : X1 — Y is right minimal.

1.4. ALMOST SPLIT SEQUENCE. Let A be an exact R-category, that is, an extension-
closed subcategory of an abelian R-category 2. An object X in A is called ext-
projective if every short exact sequence 0 7 Y X 0 in A splits;

and ext-injective if every short exact sequence 0 X Y Z 0in A
splits. If A is abelian, then the projective objects in A coincide with the Ext-
projective objects, and the injective objects coincide with the Ext-injective objects.

Let f: X — Y be a morphism in A. One says that f is irreducible if f is neither
a section nor a retraction, and given any factorization f = gh, either h is a section
or g is a retraction. Moreover, f is called left almost split if f is not a section and
every non-section morphism g : X — Z factors through f; and minimal left almost
split if it is left minimal and left almost split. Dually, one defines right almost split
morphisms and minimal right almost split morphisms in A. Furthermore, an almost
split sequence in A is a short exact sequence

0—>x_Jsy_?

7 —>0,

where f is minimal left almost split and ¢ is minimal right almost. In such an
almost split sequence, X is the starting term and Z is the ending term.

We shall say that A has almost split sequence on the right if every strongly in-
decomposable and not ext-projective object is the ending term of an almost split
sequence, and 4 has almost split sequences on the left if every strongly indecompos-
able and not ext-injective object is the starting term of an almost split sequence.
Finally, we shall say that .4 has almost split sequences if it has almost split se-
quences on the right and on the left.

1.5. STABLE CATEGORIES. Let A be an exact R-category. A morphism f: X —Y
in A is called projectively trivial if it factors through every proper epimorphism
g: M — Y in A, and injectively trivial if it factors through every proper monomor-
phism A : X — N in A. In case A is abelian with enough projective objects, a
morphism in A is projectively trivial if and only if it factors through a projective
object. And in case A is abelian with enough injective objects, a morphism in A is
injectively trivial if and only if it factors through an injective object.

Write & and .# for the ideals in A generated by the projectively trivial mor-
phisms and the injectively trivial morphisms, respectively. The projectively sta-
ble category and the injectively stable category of A are the quotient categories
A=A/P and A = A/, respectively; see [19, (9.2)], [31, (2.1)], [35, Section 2].
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2. AUSLANDER-REITEN THEORY IN ABELIAN CATEGORIES

The main objective of this section is to provide a novel and concise account
of the Auslander-Reiten theory in general abelian categories. First, we derive an
Auslander-Reiten duality from the Nakayama duality induced by a Nakayama func-
tor. In case the Nakayama functor is defined on a “small” subcategory of projective
objects, we show that the AR-translation is uniquely defined (up to isomorphism)
on finitely presented objects and preserves the strong indecomposability. This en-
ables us to establish the existence of almost split sequences ending with finitely
presented objects and those starting with finitely copresented objects.

2.1. PROJECTIVE PRESENTATIONS AND INJECTIVE COPRESENTATIONS. Through-
out this section, 2 stands for an abelian R-category. Let P and Z be strictly full
additive subcategories of projective objects and injective objects in 2, respectively.
Consider an object X in 2A. A projective cover of X over P is a right minimal
epimorphism f: P — X in 2 with P € P; and an injective envelope of X over T is
a left minimal monomorphism ¢ : X — I in 2 with I € Z. Moreover, a projective

d d
presentation of X over P is an exact sequence P, —> Py —> X 0 in A with
Py, Py € P, which is minimal if di,dy are right minimal. Dually, a injective cop-

resentation of X over Z is an exact sequence 0 X 4 10 T iy 9 with
I°, I' € T, which is minimal if d°,d" are left minimal. Clearly, projective cover,
injective envelope, minimal projective presentation and minimal injective copresen-
tation are unique up to isomorphism if they exist. We denote by 2 (P) and 2~ (Z)
the full subcategories of objects in 2 with a projective presentation over P and
with an injective copresentation over Z, respectively.

2.1.1. PROPOSITION. Let 2l be an abelian R-category, and let P be a strictly full ad-

ditive subcategory of projective objects in A. Then, AT (P) is closed under cokernels

and extension-closed in A. Moreover,

(1) if P is Hom-reflexive (respectively, Hom-noetherian, Hom-finite), then AT(P)
is Hom-reflexive (respectively, Hom-noetherian, Hom-finite);

(2) if P is Krull-Schmidt, then AT (P) is closed under direct summands in A, and
every object in AT(P) admits a minimal projective presentation over P.

Proof. Tt follows from Proposition 2.1 in [2] that 2+ (P) is closed under cokernels

and extension-closed in 2.

(1) Let X, X’ be objects in 2T (P). By definition, there exist projective pre-
sentations P; Py do_ X 0 and P —= P} T x 0 over P. Set
M(X, X" :={(f1, fo) € APy, P)) APy, P]) | fodr = d f1}. Tt is evident that we
have an R-linear epimorphism ¢ : M(X, X’) — A(X, X’), given by (f1, fo) — f,
where f is the unique morphism making the diagram

dy

Pt p . x 0
\Lfl \L fo l/ f

d} d!
Pl —= P —> X' 0

commute. Suppose that P is Hom-reflexive. Then 2(P;, P{) and 2(Py, P{) are
reflexive R-modules. Since modR is abelian; see (1.1.1), M(X, X’) is reflexive,
and so is 2A(X, X’). Similarly, if P is Hom-noetherian or Hom-finite, then A" (P) is
Hom-noetherian or Hom-finite, respectively.
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(2) Assume that P is Krull-Schmidt. Then, P is closed under direct summands
in A. Let X € AT(P) with a projective presentation P; & Py b x 0
over P. By Proposition 1.3.1, dg = (dp,0) : Py = P& No — X, where dj, is a right
minimal epimorphism. Thus, dj : P; — X is an projective cover with P} € P.
Moreover, Im(d;) = Ker(dg) = Ker(dy) @ Nog. Thus, we have a decomposition
di = (f,0)T : P, — P} @ Ny, where f : P, — P} is such that Im(f) = Ker(d}). By
Proposition 1.3.1 again, f = (dy,0) : P{ & Ny — P, where d} : P{ — P} is right
minimal. It is easy to check that Im(d}) = Im(f). This yields a minimal projective

. ,d o, do
presentation P P X 0 over P.
Suppose now that X = X; & X5 with canonical projections p; : X — X;. In par-
ticular, we obtain epimorphisms p;dj, : P; — X;, for i = 1,2. As seen above, there

exist short exact sequences 0 K; fi L; g X; 0, where L; € P and g;

is a projective cover, for ¢ = 1,2. By the uniqueness of projective cover, we see easily

that K & Ko = Ker(dj) = Im(d} ). Therefore, we have epimorphisms h; : P{ — K,
ihi i

for ¢ = 1,2. This yields projective presentations P| ! L; J X, 0 over P,

for i = 1,2. So, X1, X3 € AT (P). The proof of the proposition is completed.

Dually, we have the following statement.

2.1.2. PROPOSITION. Let 2 be an abelian R-category, and let T be a strictly full

additive subcategory of injective objects in A. Then, A1 (L) is closed under kernels

and extension-closed in 2A. Moreover,

(1) if T is Hom-reflexive (respectively, Hom-noetherian, Hom-finite), then A~ (L) is
Hom-reflexive (respectively, Hom-noetherian, Hom-finite);

(2) if T is Krull-Schmidt, then A~ (I) is closed under direct summands in A, and
every object in A~ (L) admits a minimal injective copresentation over I.

2.2. NAKAYAMA FUNCTOR. The key ingredient in our approach to the Auslander-
Reiten duality is a Nakayama functor defined as follows; see [34, (5.4)].

2.2.1. DEFINITION. Let 2 be an abelian R-category, and let P be a strictly full
additive subcategory of projective objects in 2. A functor v : P — 2 is called a
Nakayama functor provided, for all P € P and X € 2, that there exists an R-linear
isomorphism ¢p x : A(X,vP) — DA(P, X), which is natural in P and X.

2.2.2. REMARK. Since the dual functor D is exact, the image Z, of a Nakayama
functor v : P — %A is a strictly full additive subcategory of injective objects in .

2.3. AUSLANDER-REITEN DUALITY. In order to have an Auslander-Reiten duality,
we need to introduce the following notion, which depends on not only the objects
in AT (P) but also their projective presentations over P.

2.3.1. DEFINITION. Let 2 be an abelian R-category equipped with a Nakayama
functor v : P — 2. Given an object M in AT (P) with a projective presenta-
tion ¢ : P 4 Py b M 0 over P, we put 7,M = Ker(vd;), called the
Auslander-Reiten translate of M associated with 6.

The following statement is essential for the Auslander-Reiten duality.
2.3.2. PROPOSITION. Let 2 be an abelian R-category equipped with a Nakayama

d d
functorv : P — . Consider a projective presentation & : P, — Py —= M 0
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over P and a short exact sequence 0 X ! y 2

have an R-linear exact sequence

A 0 in A. Then, we

0——2(Z, TM)*)Q[(Y’TM)HQ[(X M) ——

DA(M, Z) > DA(M, Y) > DA(M, X) — 0.
Proof. Applying the Nakayama functor v to d, we obtain an injective copresentation
vdy
0 T(SM VP1

to this injective copresentation yields an exact sequence
(vd1)«
(%) 0 —— AN, 7,M) ——=A(N,vP) HQ{(N vPy).
On the other hand, applying DA(—,N) to § and using the Nakayama duality,
we obtain a commutative diagram

AN, vP) L (N, v Py)

L

Dd; Ddy;
DA(P, N) —> DUA(Py, N) —2> DA(M, N) — 0,

vPy over Z,. Given an object N in 2, applying (N, —)

where the bottom row is exact. Combining this with (x) yields an exact sequence

(vdi1)«
0 ——2A(N,7,M) ——=A(N,vP) —= A(N,vPy) —— DA(M,N) —— 0.

Therefore, we obtain a commutative diagram with exact rows and columns

0 0 0

0 —— A(Z, 7, M) —= A(Y, 7, M) —L= (X, 7,M)

S5 S5
0——=AZ,vP) —=AY,vP) — = AX,vP) — 0

0 ——A(Z,vP) ——=AY,vPy) —— A(X,vP)) —=0

DAM, Z) 2%~ pa(m, ) 2L~ pav, x) ——o,

l | |

0 0 0

where the two middle rows are exact because vP; and v P, are injective. Applying
the Snake Lemma, we obtain the desired exact sequence stated in the proposition.
The proof of the proposition is completed.

We are ready to establish the Auslander-Reiten duality; compare [28, (1.1),
(1.2)]. Recall that 2 = 2/ 22, the projectively stable category; and A = 21/.#, the
injectively stable category, of 2.

2.3.3. THEOREM. Let 2 be an abelian R-category equipped with a Nakayama func-
tor v : P — 2. Consider an object M in AT (P) with a projective presentation

6: P il Py do M 0 over P.




8 Z. LIN AND S. LIU

(1) If A has enough projective objects, then there exists an R-linear isomorphism
DA(M, X) = Exty(X, 7,M) for X € A, which is natural in X.

(2) If A has enough injective objects, then there exists an R-linear isomorphism
A(X,7,M) = DExty(M, X) for X € 2, which is natural in X .

Proof. (1) Suppose that 2 has enough projective objects. Fix an object X € 2.

We have a short exact sequence 0 L-2-p-tox 0, where P is a
projective object in . It is easy to see that there exists an R-linear exact sequence
Dp.
0 —= DA(M, X) — DA(M, X) —2> DA(M, P).
Thus, we have an R-linear isomorphism DA(M, X)) = Ker(Dp. ), which is clearly
natural in X. On the other hand, applying 2A(—,7,M) to the above short exact
sequence yields an R-linear exact sequence

0 — A(X, 7,M) —> A(P, 7,M) ——> A(L, 7,M ) —> Extly (X, 7,M) — 0.

Thus, we obtain an R-linear isomorphism Coker(q*) 2 Exty (X, 7,M), which is
also natural in X. Further, by Proposition 2.3.2; there exists an exact sequence

AP, 7, M) — = A(L,7,M) —"> DAM, X) -2V~ DA(M, P)

This yields an R-linear isomorphism Ker(Dp,) = Im(n) = Coker(¢*), which is
natural in X. Combining the above isomorphisms, we obtain an R-linear isomor-
phism DA(M, X)=Exty(X, 7,M), which is natural in X.

(2) Suppose that 2l has enough injective objects. Fix an object X € 2(. We have a
short exact sequence 0 ) Gy
in 2. Then, we have an exact sequence

AL, 7, M) — L= A(X, 7,M) — A(X, 7,M) — 0.

So, we have an R-linear isomorphism 2((X,7,M) = Coker(q*), which is natural
in X. On the other hand, applying 2((M, —) yields an R-linear exact sequence

L 0, where [ is an injective object

0—= AM, X) —Z= A(M, I) L= A(M, L) —> Extlh (M, X) —= 0.

This gives rise to an R-linear isomorphism DExt s (M, X) 2 Ker(Dp,), which is
natural in X. Further, by Proposition 2.3.2, we have an R-linear exact sequence

AL, 7, M) — L= A(X, 7, M) —"—> DAM, L) 22"~ DA(M, I).

This gives rise to an R-linear isomorphism Ker(Dp,) = Im(n) = Coker(q*),
which is natural in X. Combining the above R-linear isomorphisms, we obtain an
R-linear isomorphism A(X,7,M) = DExty(M, X), which is natural in X. The
proof of the theorem is completed.

2.4. AUSLANDER-REITEN TRANSLATIONS. Let v : P — 2 be a Nakayama functor.
Given a strongly indecomposable object M with a projective presentation J over
P, in order to derive an almost split sequence from the Auslander-Reiten duality
stated in Theorem 2.3.3(1), we need to ensure that 75M is strongly indecomposable.
For this purpose, we assume that P is Hom-reflexive and Krull-Schmidt. In this
setting, we have the following result; see [34, (5.6)].

2.4.1. PROPOSITION. Let 2 be an abelian R-category equipped with a Nakayama
functor v : P — A, where P is Hom-reflexive and Krull-Schmidt. Then v restricts
to an equivalence v : P — I,,. In particular, I, is Hom-reflexive and Krull-Schmidt.
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2.4.2. REMARK. We call the equivalence v : P — 7, stated in Proposition 2.4.1 the
Nakayama equivalence, and we fix a quasi-inverse v~ : Z,, — P for it.

By Propositions 2.1.1 and 2.1.2, the exact categories 2T (P) and A~ (Z,) are
Hom-reflexive and closed under direct summands in 2. Moreover, every object in
20T (P) admits a minimal projective presentation over P, and every object in %A~ (Z,)
admits a minimal injective copresentation over Z,. This allows us to define, unique
up to isomorphism, the A R-translations 7 and 7~ as follows.

2.4.3. DEFINITION. Let 2 be an abelian R-category equipped with a Nakayama

functor v : P — 2, where P is Hom-reflexive and Krull-Schmidt.

(1) Given M € AT (P) of which P, @ P o M 0 is a minimal projective
presentation over P, we define 7M = Ker(vd;).

(2) Given N € 247 (Z,) of which 0 N -~ Iy a I, is a minimal injective
copresentation over Z,, we define 7N = Coker(v—d').

In order to show that 7 and 7~ preserve the strong indecomposability, we slightly
generalize a well-known fact stated in [4, (I1.4.3)].

2.4.4. LEMMA. Let A be an abelian R-category, and let X *f>Y*g>Z be an
exact sequence in 2.

(1) If A(Z, Z) is local and g is a nonsplit epimorphism, then f is left minimal.
(2) IfA(X, X) is local and f is a nonsplit monomorphism, then g is right minimal.
Proof. We shall only prove Statement (1). Suppose that 20(Z, Z) is local and
g is a nonsplit epimorphism. Then, there exists a nonsplit short exact sequence
0 M-1sy 2oz 0 in 2A. By Lemma 4.3 in [4, Chapter II], j is left
minimal. And since M = Im(f), there exists an epimorphism v : X — M such
that f = jv. Assume that hf = f for some i : Y — Y. Then hjv = jv, and hence,
hj = j. Therefore, h is an automorphism. The proof of the lemma is completed.

The classical approach for showing that the Auslander-Reiten translation pre-
serves indecomposability goes through the morphism category of projective modules
and the stable categories; see [10, (IV.1)]. Here we provide a direct proof.

2.4.5. PROPOSITION. Let 21 be an abelian R-category equipped with a Nakayama
functor v : P — A, where P is Hom-reflexive and Krull-Schmidt. Consider a
strongly indecomposable object M in .
(1) If M € AT (P) is not projective, then TM € A~ (Z,) is strongly indecomposable
and not injective such that 7= (M) = M.
(2) If M € A~ (Z,) is not injective, then T~ M € AT (P) is strongly indecomposable
and not projective such that (1~ M) = M.
Proof. We shall only prove Statement (1). Assume that M € 2T (P) is nonprojec-
B Py -2 M —= 0 over P. By
definition, 7M admits an injective copresentation 0 M —2 vP i VP,
over Z,,, which we claim is minimal. Indeed, d; is right minimal and dj is not a
retraction. By Lemma 2.4.4, d; is also left minimal. And by Proposition 2.4.1, vd,
is left and right minimal. Since vP; is Krull-Schmidt, it follows from Proposition
1.3.1 that j = (1,0)T : 7TM — L® U = vP,, where | : TM — L is left minimal.
Then, Ker(vd;) = Im(j) = Im(l). Hence, vdy = (f,g9) : vPL = L& U — vP,,
where g : U — v Py is a monomorphism. Since U is injective, ¢ is a section. And

tive with a minimal projective presentation P;
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since v : P — 7, is an equivalence, we can write dy = (p,q) : P =V W — P
such that ¢ = v(q : W — P;). Then, ¢ is a section such that dpg = 0. Since
do : Py — M is right minimal, we have W = 0, and consequently, U = 0. That is,
j is left minimal. Thus, 7M admits a minimal injective copresentation over Z, as
claimed above. Applying v~ to it, we see that 7~ (7 M) = M.

Suppose that 7M is injective. Then, j is a section. Being left minimal, j is an
isomorphism. Then, vd; = 0. Since vd; is left minimal, v Py = 0, and hence, Py = 0,
absurd. It remains to show that A(7M,7M) is local. Given any f € A(t M, M),
we have a commutative diagram with exact rows

0 M —2 vP; v vPy
\Lf l’fl ifo
0 M — s yp, 2N B,
Again since v is an equivalence, we have a commutative diagram with exact rows
Ry RN Y 0
lgl lgo ig
PP 0

such that vgg = fo and vg; = f1. Assume that g is invertible. Since dj is superflu-
ous; see [27, (3.4)] and P is Krull-Schmidt, go is an isomorphism. Similarly, ¢; is
also an isomorphism. Thus, fo and f; are isomorphisms. So f is invertible. Sup-
pose that g is not invertible. Since (M, M) is local, 15y — g is invertible. Observe
that we obtain commutative diagrams from the above commutative diagrams by
replacing (f7 flafo) and (9179079) by (l_fv 1_f171_f0) and (1_913 1_90, l_g)a
respectively. Using the same argument, we deduce that 1.5, — f is invertible. So,
A(TM, M) is local. The proof of the proposition is completed.

We conclude this subsection with some sufficient conditions for A+ (P) and
2~ (Z,) to be Krull-Schmidst.
2.4.6. LEMMA. Let A be an abelian R-category equipped with a Nakayama functor
v:P — AU, where P is Krull-Schmidt. If P is either Hom-finite or Hom-noetherian
with R being complete noetherian local, then AT (P) and A~ (Z,) are Krull-Schmidt.
Proof. Let P be Hom-finite. By Proposition 2.4.1, Z,, is Hom-finite and Krull-
Schmidt. By Propositions 2.1.1 and 2.1.2, A" (P) and 21~ (Z,) are Hom-finite and
closed under direct summands in 2. By Proposition 1.2.1, they are Krull-Schmidt.
In case R is complete noetherian local and P is Hom-noetherian, we can prove the
result by the same argument. The proof of the lemma is completed.

2.5. THE EXISTENCE THEOREM. We are ready to apply the result in [35, (2.3)] to
derive almost split sequences from the Auslander-Reiten dualities in Theorem 2.3.3.

2.5.1. THEOREM. Let® be an abelian R-category equipped with a Nakayama functor
v:P — A, where P is Hom-reflerive and Krull-Schmidt.
(1) If A has enough projective objects, then it has an almost split sequence
0 TM E M 0,
for every strongly indecomposable nonprojective object M in AT (P).
(2) If A has enough injective objects, then it has an almost split sequence
0 N E TN 0,
for every strongly indecomposable noninjective object N in A~ (Z,).
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Poof. (1) Assume that 2 has enough projective objects. Consider a strongly in-
decomposable nonprojective M € 27 (P). By Proposition 2.4.5(1), 7M is strongly
indecomposable, and by Theorem 2.3.3(1), there exists a functorial isomophism
Uy @ Exty(—,7M) — DAU(M, ). In particular, Exty(M,7M) = DA(M, M) as
right A(M, M)-modules. Since A(M, M) is local, we see that DA(M, M) has a
nonzero A(M, M)-socle, and so does Exty(M,7M). By Theorem 2.3 in [35], we
obtain a desired almost split sequence as stated in Statement (1).

(2) Assume that 2 has enough injective objects. Consider a strongly indecom-
posable noninjective object N € A~ (Z,). By Proposition 2.4.5(2), 7~ N is strongly
indecomposable, and by Theorem 2.3.3(2), there exists a functorial isomorphism
®y : D?Exty(r~N,—) — DA(—,N). This induces a functorial monomorphism
Uy : Exty (77N, —) — DA(—, N). Moreover, we have a left (N, N)-linear iso-
morphism @y : D?Exty (7N, N) — DA(N, N). By Propositions 2.4.1 and 2.1.2,
2A(N, N) is R-reflexive, and by Lemma 1.1.1, both DA(N, N) and D?Extg (7N, N)
are R-reflexive. Therefore, Exty (7N, N) = D?Exty(7~N, N) = DA(N, N) as left
2(N, N)-modules. Since A(N, N) is local, D(N, N) has a nonzero (N, N)-socle,
and so does Exty (7N, N). By Theorem 2.3 in [35], we obtain a desired almost
split sequence as stated in Statement (2). The proof of the theorem is completed.

As an easy example, we obtain Auslander’s results stated in [4, (I1.6.3), (I1.6.6)].

2.5.2. THEOREM (AUSLANDER). Let A be a noetherian R-algebra with an identity

with R complete noetherian local, and let M be an indecomposable module in Mod A.

(1) If M is noetherian and not projective, then there exists an almost split sequence
0 M E M 0 in ModA, where M is artinian.

(2) If M is artinian and not injective, then there exists an almost split sequence
0 M E M 0 in ModA, where M is noetherian.
Proof. The category ModA of left A-modules has enough projective and injective
modules. And the full subcategories of noetherian modules and artinian modules in
ModA are Krull-Schmidt; see [4, (I.5.1), (I.5.2)]. In particular, the full subcategory
projA of finitely generated projective modules in Mod A is Krull-Schmidt and Hom-
noetherian; see [4, (I.4.2)]. By Lemma 5.5 in [34], there exists a Nakayama functor
v = DHomy(—, A) : projA — ModA. Further, a module in Mod A is noetherian if
and only if it has a projective presentation over projA; and artinian if and only if it
has an injective copresentation over v(projA); see [4, (1.5.2)]. Now, the statement

follows from Theorem 2.5.1. The proof of the corollary is completed.

2.5.3. REMARK. Let X be a ring with an identity. Auslander obtained an existence
theorem for almost split sequences in Mod X' ending with finitely presented modules;
see [4, (IL.5.1)]. To the best of our knowledge, there exists no such statement for
almost split sequences in Mod X starting with finitely copresented modules.

3. APPLICATIONS TO FUNCTOR CATEGORIES

An R-category is called small if its objects form a set and endo-local if all endo-
morphism algebras are local. The objective of this section is to apply our previous
results to establish the existence of almost split sequences for finitely presented
modules and for finitely copresented modules in the category of all modules over a
small endo-local Hom-reflexive R-category. The key ingredients for this objective
include a Nakayama functor and the sufficiency of projective and injective objects.
The latter fact was stated in [41], but its proof seems to have never been published.
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3.1. MODULES OVER A CATEGORY. Throughout this section, € stands for a small
R-category. A left €-module is a covariant functor M : ¢ — ModR. Given left
®-modules M, N, a €-linear morphism f : M — N consists of a family of R-linear
maps f : M(z) = N(z) with € € such that N(u) o f, = f, o M(u), for all
morphisms v : ¢ — y in . Write Homg (M, N) for the R-module of ¢-linear
morphisms f : M — N. The category Mod% of all left ¥-modules is an abelian
R-category with arbitrary products and coproducts; see [4, Section 2]. A module
M € Mod€¥ is called locally R-reflexive if M(x) is an R-reflexive for all z € ¥.
Since the category modR of reflexive R-modules is abelian, the full subcategory
mod% of locally R-reflexive modules in Mod% is abelian.

We denote by ¢° the opposite category of € : the objects are those of ¥ and
the morphisms u° : y — z are induced by the morphisms u : x — y in ¥. Given a
module M in Mod%°, we define a module ®M in Mod¥ by (OM)(z) = D(M(x))
and (OM)(u) = D(M(u®)) for all objects z and morphisms u in €. This yields an
exact contravariant functor ® : Mod%° — Mod%'.

3.1.1. PROPOSITION. Let € be a small R-category. The exact contravariant functor
D : Mod%° — Mod¥% restricts to a duality ® : mod€° — mod%.

Proof. Let M € Mod%°. By Lemma 1.1.1, there exist canonical R-linear isomor-
phisms ops . 1 M(x) — D?(M(z)) with z € ¢, which form a ¢-linear isomorphism,
natural in M. The proof of the proposition is completed.

3.2. PROJECTIVE MODULES. For each object z in %, we obtain a left ¥-module
P, = %(x,—) : ¥ - ModR. And a morphism « : y — z in € induces a €-linear
morphism € (u,—) : P, — P, with €(u,—), = €(u,2) : €(x,2) - €(y,z) for
z € €. We denote by 1, the identity morphism associated with an object = in €.
3.2.1. PROPOSITION. Let € be a small R-category. Given M € Mod% and z € €,
we have an R-linear isomorphim, which is natural in M, as follows:
Op. o Homeg (P, M) — M(x) - f— fo(1s).

Proof. Fix M € Mod% and x € €. By the Yoneda Lemma, ®p, 5s is an R-linear
isomorphism, which is natural in M and z. If ¢ : P, — P, is a %-linear morphism,
by the Yoneda Lemma again, ¢ = € (u, —) for some u : y — = in €. Thus ®p, as is
natural in P, because it is natural in . The proof of the proposition is completed.

3.2.2. REMARK. By Proposition 3.2.1, P, is projective in Mod%, for all x € %.

The following result is stated with a sketched proof in [41]. We include a short
proof for the reader’s convenience.

3.2.3. PROPOSITION. Let € be a small R-category. Then Mod% has enough pro-
jective objects.

Proof. Fix M € Mod%. Given z € ¢ with m € M(z), we write z,,, = x. Then,
P = er%’;meM(z) 6 (xm,—) is projective in Mod%’; see (3.2.2). For y € €, we
have an R-linear map v, : P(y) = HIG%;mGM(I)CK(aBm,y) — M(y), defined by
Wy (Ug,m) = M (Ug,m)(m) for ugy m € €(2m,y) such, for any v :y — z in €, that
P
HzG%;mGM(z) %(.’L‘m, y) —y> M<y)
Woceimero %(zmml iM@)
P

Hme‘f;meM(z) C(xm, 2) —— M(z)
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commutes. Given m € M(y), we have 9,(1,) = M(1,)(m) = m. Thus, the R-
linear epimorphisms v, with y € € form a %-linear epimorphism ¢ : P — M. The
proof of the proposition is completed.

3.3. INJECTIVE MODULES. Given x € ¥, we have a module I, = D(Py) in Mod%,
where P2 = €°(z,—) = €(—,x) € Mod€°. More explicitly, I,(y) = D€ (y,z) and
I.(u) = D€ (u,x) : D€ (y,x) — D€(z,x), for objects y and morphisms u : y — 2
in 4. A morphism v : # — y in € induces a F-linear morphism D¢ (—,v) : I, = I,.
And for z € ¥, we have an R-linear function 0, : € (x,z) — Ig given by f — f(1,).

3.3.1. PROPOSITION. Let € be a small R-category. Given M € Mod% and x € €,
we have an R-linear isomorphism, which is natural in M, as follows:

War g, : Homg (M, I,) = D(M(z)) : f — 050 fq.

Proof. Fix M € Mod% and x € %. Clearly, we have an R-linear map Wy s, as
stated in the proposition. Assume that f € Home (M, I;) such that Uy p (f) = 0.
Given y € € and u € €(y, z), since D€ (u,x) o f, = fu o M(u), we have

fy(m)(u) Ly(m) (€ (u, 2)(12))
0. (D€ (u, )(fy(m)))

= 0 (fo(M(u)(m)))

= (‘)I’M,Im (f) (M (u)(m))
for all m € M(y) and u € €¢(y,z). Thus, f,(m) = 0, for all m € M(y). That is,
fy =0for all y € ¢, and hence, f = 0. So, ¥ s, is a monomorphism. Conversely,
given any R-linear function g : M(x) — I, we shall construct a %-linear morphism
f i+ M — I,. Indeed, for any y € ¥, we have an R-linear map

fy: M(y) = L:(y) = DE (y, ) : m = f,(m)
such that fy,(m)(u) = g(M(u)(m)), for u € €(y,x). Given v € €(y,z), we claim
that D€ (v, z) o f, = fu o M(v). Indeed, for m € M(y) and u € €(z, ), we have

(D€ (v, 2))(fy(m))(u) (fy(m) 0 € (v, z))(u)
= fy(m)(uwv)
= g(M(uv)(m))
f(M(v)(m))(w).
This establishes our claim. Hence, the R-linear maps f, : M (y) — I,(y) withy € €
form a €-linear morphism f : M — I,.. Moreover, for any m € M (x), we have

\IIM,Iw (f)(m) = ’(/}w(fx(m)) = fw(m)(la:) = (g o M(lw))(m) = g(m)

That is, Was 7, (f) = g. So, ¥ 1, is surjective. Finally, a routine verification shows
that @,y s, is natural in M. The proof of the proposition is completed.

3.3.2. REMARK. Since the dual functor D is exact, we deduce from Proposition
3.3.1 that I, is an injective object in Mod%’, for all x € ¥.

The following result was stated without any proof in [41]. We include a short
proof for the reader’s convenience.

3.3.3. PROPOSITION. Let € be a small R-category. Then, Mod% has enough injec-
tive objects.

Poof. Fix M € Mod¥%. For x € € and ¢ € D(M(zx)), we write z, = x. Then,
I = [l,cs.pen(m(z)y D€ (= z,) is an injective object in Mod%’; see (3.3.2). For
any y € €, we have an R-linear map
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by : M(y) = I(y) = HmE%;@ED(]\/I(aj)) D% (y, xsa) m (fx,w,m)me‘ﬁ;tpED(M(w))7
where fy om € D€ (y,x,) such that f, ,m(u) = @(M(u)(m)), for u € €(y,z,).
Given a morphism v : y — z in €, it is not hard to verify that the diagram

P
M(y) — ,ee;penar) €Y Tp)

M(”)l inme‘ﬁzapeD(Al(r)) DE(xy,v)
11)2
M(z) —— HzG‘ﬁ;apED(M(m)) Dt (z,x,)

commutes. Assume that 1, (m) = 0 for some m € M(y) with y € Q9. Then, for
any ¢ € D(M(y)), we have 0 = f, o m(1y) = @(M(1,)(m)) = ¢(m). Since Ig is
a cogenerator for ModR, we have m = 0. So, 9, is a monomorphism. Therefore,
the R-linear maps v, with y € ¢ form a %-linear monomorphism v : M — I. The
proof of the proposition is completed.

3.4. THE NAKAYAMA FUNCTOR. Let € be a small R-category. We shall construct
a Nakayama functor for Mod% . Write proj% and inj% for the strictly full additive
subcategories of Mod% generated by the projective modules P, with x € ¥’; see
(3.2.2), and by the injective modules I, with x € €; see (3.3.2), respectively.

3.4.1. THEOREM. Let € be a small R-category. Then, there exists a Nakayama
functor v : proj¢ — Mod¥, sending P, to I, for all objects x € €.

Proof. We begin with the full subcategory P of Mod% generated by the modules
P, with z € €. By the Yoneda Lemma, Homg (P,, Py) = {€(u,—) | u € €(y,z)}.
Thus, setting vP, = I, and v€(u,—) = D% (—,u) for objects x and morphisms u
in ¢, we obtain an R-linear functor v : P — Mod%.

Fix M € Mod% and = € ¥. By Proposition 3.2.1, we have an R-linear iso-
morphism ®p, ys : Home (P, M) — M(z), which is natural in P, and M. This
induces an R-linear isomorphism D®p_ s : D(M(z)) - DHome (P, M), which is
natural in P, and M. And by Proposition 3.3.1, we have an R-linear isomorphism

Uar,vp, : Home (M, vP,) — D(M(x)) : f — 650 fa,
which is natural in M. We claim that W,; ,p, is natural in P, or equivalently,
Uar,vp, © Home (M, v€ (u,—)) = D(M(y)) o Vpr,p,, for any u : y — x in €.
Indeed, given f € Homg (M, vP,) and m € M(y), we have
(Yar,vp, o Home (M, v€ (u, —)))(f)(m) (0y o (D (=, u) o f)y)(m)
0,(DE (y, u)(fy(m))
= (fy(m)oC(y,u))(1y)
= fy(m)(u).
And since f is @-linear, we have D% (u,z) o f, = fy o M (). This yields

(D(M(u)) o Warpp, (f))(m) (0z 0 D (u,x) 0 fy)(m)
02(DE (u, x)(fy(m)))

= (fy(m) o C(u,z))(1)

fy(m)(w).

This establishes our claim. Composing ¥, ,p, and D®p, as yields an R-linear
isomorphism Oy p, : Homy (M, vP,) — DHomg (P, M), which is natural in P,
and M. Now, since every object in proj% is isomorphic to a finite direct sum of
the P, with = € ¥, we can extend, in a canonical way, the functor v : P — Mod%
to a functor v : proj¢ — Mod%. Moreover, the isomorphism 6, p, can also be
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extended to an R-linear isomorphism O p : Homy (M, vP) — DHome (P, M),
for P € proj¥ and M € Mod%¥, and it is natural in P and M. This shows that
v : projé — Mod¥ is a Nakayama functor. The proof of the theorem is completed.

3.5. FINITELY PRESENTED AND FINITELY COPRESENTED MODULES. Let € be a
small R-category. Fix a module M in Mod%. We shall say that M is finitely
generated if there exists an epimorphism f : P — M with P € proj%’; and finitely
presented if it admits a projective presentation over proj%, or equivalently, there
exists an epimorphism f : P — M with P in proj%¢ and Ker(f) finitely generated.
Dually, M is called finitely cogenerated if there exists a monomorphism g : M — I
with I € inj%; and finitely copresented if it admits an injective copresentation
over inj%, or equivalently, there exists a monomorphism ¢ : M — I with I in
inj¢ and Coker(g) finitely cogenerated. We denote by mod™% and mod~% the
full subcategories of finitely presented modules and finitely copresented modules
in Mod%, respectively. By Propositions 2.1.1 and 2.1.2, mod™%¢ and mod~ % are
exact R-categories. It is interesting to know when they are abelian categories.

3.5.1. PROPOSITION. Let € be a small R-category. Then

(1) mod™*¥ is abelian if and only if the finitely generated submodules of the modules
in proj% are finitely presented,;

(2) mod™ ¥ is abelian if and only if the finitely cogenerated quotient-modules of the
modules in inj€ are finitely copresented.

Proof. We shall only prove Statement (1). Assume that mod*% is abelian. Let

M be a finitely generated submodule of a module Py in proj%. Then, we have an

epimorphism f : P, — M with P, € proj%, and hence, a morphism jf : P, — Py

in mod™ ¥, where j : M — Py is the inclusion map. Note that f and jf have the

same kernel K, which lies in mod*t%. Thus, M is finitely presented.

Assume that the finitely generated submodules of modules in proj% are finitely
presented. Consider a morphism f : P — Py in proj% and its kernel j : K — P; in
Mod%. By the assumption, there exists an epimorphism f’: P/ — Im(f) having a
kernel ¢ : K’ — P/, where P € proj% and K’ is finitely generated. By Schanule’s
Lemma, K' & P, & K @ P/. Thus, K is finitely generated with an epimorphism
g: P, — K, where P, € proj%. So, P, LA P I P, is an exact sequence in
proj%. Thus, mod™% is closed under kernels; see [2, (2.1)]. Being also closed under
cokernels; see (2.1.1), mod™t % is abelian. The proof of the proposition is completed.

3.6. THE EXISTENCE THEREOM. In this subsection, we need to assume that % is
endo-local and Hom-reflexive. In this setting, we have the following statement.

3.6.1. PROPOSITION. Let € be a small endo-local Hom-reflexive R-category. Then

(1) proj€ and injé are Hom-reflexive Krull-Schmidt subcategories of mod%’
(2) the functor ® : Mod%° —Mod¥ restricts to a duality ® : mod™¢° — mod ™~ %.

Proof. Let x,y € €. Since P,(y) = € (z,y), proj¥ C mod%. By Proposition 3.2.1,
there exists an R-linear isomorphism ¢, , : Hom¢ (Py, Py) — € (y, x), natural in
and y. So, proj% is Hom-reflexive. Since ¢, , : Endg(P;) — € (z, ) is an algebra
anti-isomorphism, proj% is Krull-Schmidt. Since %° is Hom-reflexive and Krull-
Schmidt, proj¢° is Hom-reflexive, Krull-Schmidt and contained in mod%°. Then,
the duality © : mod%° — mod% restricts a duality © : proj¢° — inj%¢’; see (3.1.1)
Therefore, inj% is Hom-reflexive, Krull-Schmidt and contained in mod%’.
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Since mod%° and mod% are abelian, mod™ %° C mod%”° and mod~ % C mod%.
For any M € mod™¢° with a projective presentation P; P, M 0
over proj%°, we have an injective copresentation 0 DM DF, DP
over inj%. Hence, ® M € mod™ % . So, the duality ® : mod%° — mod% restricts to
a duality ® : modt%° — mod~ €. The proof of the proposition is completed.

3.6.2. REMARK. Let & be a small R-category, where R is a commutative artinian
ring. By Proposition 3.6.1(2), we see that C is a dualizing R-variety as defined in
[7, Section 2] if and only if % is endo-local and Hom-finite with mod™% = mod ™~ %.

We are ready to obtain the main result of this section.

3.6.3. THEOREM. Let & be a small endo-local Hom-reflexive R-category. Consider

a strongly indecomposable module M in Mod% .

(1) If M € mod*¥ is not projective, then there exists an almost split sequence
0 ™M E M 0 in Mod%, where TM € mod™ %.

(2) If M € mod™ % is not injective, then there exists an almost split sequence
0 M E TM 0 in Mod% where 7-M € mod™%.

Proof. By Theorem 3.4.1, we have a Nakayama functor v : proj¥ — Mod¥%,

where projé is Hom-reflexive and Krull-Schmidt; see (3.6.1). Since Mod% has

enough projective and injective objects; see (3.2.3) and (3.3.3), the result follows

immediately from Theorem 2.5.1. The proof of the theorem is completed.

3.6.4. REMARK. Let € be a small endo-local Hom-noetherian R-category with R
being complete noetherian local.

(1) In Theorem 3.6.3, it suffices to assume that M is indecomposable; see (2.4.6).
(2) Theorem 3.6.3(1) is stated as Theorem 6 in [5]. However, we cannot find any
proof in the existing literature, and we do not see how to establish an Auslander-
Reiten duality for Mod% by the classical approach as used in [7, (7.4)] or [4, (1.3.4)].

4. APPLICATION TO REPRESENTATIONS OF QUIVERS WITH RELATIONS

The objective of this section is mainly to apply our previous results to study the
existence of almost split sequences over algebras defined by quivers with relations.
In the local semiperfect case; see (4.4.1), a general existence theorem in the cate-
gory of all modules is a special case for small endo-local Hom-reflexive categories;
see (4.7.1). So, we shall focus on the subcategories of finitely presented modules,
finitely copresented modules and finite dimensional modules. For locally semipri-
mary algebras given by locally finite quivers; see (4.5.1), we show that the almost
split sequences in the first two subcategories are almost split in the category of
all modules; see (4.7.4) and (4.7.6). More importantly, we shall study when these
subcategories have almost split sequences; see (4.8.1), (4.8.3) and (4.8.5).

Throughout this section, k£ denotes a field. Note that the dual functor for Modk
is D = Homyg(—, k), and a module in Modk is reflexive if and only if it is finite
dimensional. In particular, a k-category is Hom-reflexive if and only if it is Hom-
finite. In this section, a k-algebra has enough idempotents but not necessarily an
identity, in which an ideal is always two-sided.

4.1. QUIVERS. Let @Q = (Qo, Q1) be a quiver, where Q) is the set of vertices and
@1 is the set of arrows. Given a: x — y in @1, we call = the starting point and y
the ending point, and write s(«) = x and e(a) = y. For each x € @, one associates
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a trivial path €, with s(e;) = e(e;) = x. A path of length n(> 0) is a sequence
p = - ag, where «; € 1 such that s(a;y1) = e(ay), for 1 <i < n. Two paths
are called comparable if one is the subpath of the other, and a set of paths is called
comparable if every two paths in the set are comparable. For z € Qg and n > 0, we
denote by @, (z,—) and Q,(—, ) the sets of paths of length n starting with z, and
those ending with z, respectively. We say that Q is left locally finite if Qq(x,—)
is finite for all x € Qo; right locally finite if Q1(—,x) is finite for all z € Qq, and
locally finite if @ is left and right locally finite. Further, @ is called interval-finite
if the set of paths from z to y is finite, for all z,y € Qq; and strongly locally finite
if @ is locally finite and interval-finite.

The opposite quiver Q° of @ is defined in such a way that (Q°)g = Qo and
Q)n ={a®:y—>2zxz|a:z—yecQ} Anontrivial path p = a,---aq in Q,
where o; € @1, induces a non-trivial path p° = af---af in Q°. However, we shall
identify the trivial path in Q° at a vertex x with that in Q.

4.2. ALGEBRAS GIVEN BY QUIVERS WITH RELATIONS. Let @ be a quiver. Write kQ
for the path algebra of @ over k. An ideal J in kQ is a relation ideal if 3 C (kQ™T)?,
where kQ is the ideal in kQ generated by the arrows in Q. In this case, (Q,7J) is
called a bound quiver, and a path p in @ is called nonzero in A, or simply nonzero,
if p g3 Given p = > \ip; € kQ, where \; € k and p; is a path in Q, we write
p° =D Aipy € kQ°. In this way, an ideal J in kQ is a relation ideal if and only if
J° ={p° | p € T} is a relation ideal in kQ°.

Consider now a k-algebra A = kQ/J, where @ is a quiver and J is a relation
ideal in kQ). Writey = v+ J € A for v € kQ. Then A has a complete orthogonal
set of idempotents {e, | € Qo}, where e, = &,. Set Jy = {p | p € kQT} := J.
Note that kQ°/J° is the opposite algebra of A. Write p° = p° + J° for p € kQ but
ex = &5 + J° for z € Q. In particular, Jpo = {p° | p € kQT} = J°.

A left A-module M is called unitary if M = Zzer e, M. We denote by Mod A
the category of all unitary left A-modules. Observe that the k-algebra A can also
be regarded as a small k-category, whose objects are the vertices of ) and whose
morphism spaces are A(z,y) = e, e, with z,y € Qo. In this viewpoint, a k-linear
representation of (Q,7) is a covariant functor from A to Modk. It is well known
that ModA is equivalent to the category Rep(Q,J) of all k-linear representations of
(Q,7), in such a way that a module M corresponds to a representation M defined
by M(z) = e, M and M(u) : M(x) — M(y) being the left multiplication by u,
where 2,y € Qo and u € A(z,y). Identifying M with M, we shall freely use the
terminology, the notation and the results stated in Section 4 for A-modules. In
particular, for each & € Qg, we have a projective module P, = Ae, = A(x,—); see
(3.2.2) and a simple module S, = Ae,/Je, in ModA. And we have a projective
module P = A%, = A(—,z) and a simple module S = A°¢,/J%, in Mod A°.

For a module M in ModA°, we have a module DM = &,c, D(e, M) in Mod A
such, for all ¢ € D(e,M) and u € ey de,, that up € D(ey, M), which is defined
by (up)(m) = p(u®m), for m € e, M. For a morphism f : M — N in ModA°, we
have a morphism Df : DN — DM in Mod A such, for ¢ € D(e,N) with z € Qq,
that (Df)(p) = @ o fr, where f, : e,M — e, N is the restriction of f. This
yields a contravariant functor ® : Mod A° — Mod A. For each x € Qp, we see that
D(S2) =2 S, and I, =D(Py) = D(—,x), an injective module in Mod 4; see (3.3.2).

A module M in ModA is called locally finite dimensional if dimy (e, M) < oo for
all z € Qy. We denote by modA and mod® the full subcategories of locally finite
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dimensional modules and finite dimensional modules in Mod A, respectively. As a
special case of Proposition 3.1.1, we obtain the following statement.

4.2.1. PROPOSITION. Let A = kQ/J, where Q is a quiver and J is an ideal in
kQ. Then the contravariant functor ® : ModA° — ModA restricts to dualities
D : modA° — modA and D : mod”° — mod’A.

4.3. LOCALLY NOETHERIAN ALGEBRAS. Let A = kQ/J, where @ is a quiver and
J is an ideal in £Q. Recall that A is locally left noetherian if Ae, is noetherian
for all x € Qq, locally right noetherian if e, A is noetherian for all x € @, and
locally moetherian if A is locally left and right noetherian. Moreover, A is locally
left bounded if Ae, is finite dimensional for all = € Qq, locally right bounded if e, A
is finite dimensional for all x € @, and locally bounded if A is locally left and
right bounded. Locally (left, right) bounded algebras are clearly locally (left, right)
noetherian, and so are the special multiserial algebras; see [33, (1.3)]. To provide
more classes of locally noetherian algebras, we introduce the following notion.

4.3.1. DEFINITION. Let A = kQ/J, where @ is a quiver and J is a relation ideal in

kQ. We shall say that A is

(1) locally left eventually multiserial if Q is left locally finite, and for each z € Qo,
there exists an integer n, (> 0) such, for any p € @, (z,—), that the set of
nonzero paths in @) starting with p is comparable;

(2) locally right eventually multiserial if @ is right locally finite, and for any x € Q,
there exists an integer n,(> 0) such, for any p € @, (—,z), that the set of
nonzero paths in @) ending with p is comparable ;

(3) locally eventually multiserial if A is locally left and right eventually multiserial.

Note that special multiserial algebras are locally left and right eventually multi-
serial, while locally bounded algebras are not necessarily so.

4.3.2. PROPOSITION. Let A = kQ/J, where Q is a quiver and J is a relation ideal
i kQ. If A is locally left or right eventually multiserial, then it is locally left or
right noetherian, respectively.

Proof. We shall consider only the case where A is locally left eventually multiserial.
Let = be an vertex in () with an integer n, as stated in Definition 4.3.1(1). Fix
p € Qn,(x,—). Then Ap = 37, ¢, k7], where £2(p) denotes the set of nonzero
paths in @ starting with p. If £2(p) is finite, then Ap is noetherian. Otherwise, since
£2(p) is comparable, there exist arrows «; : ©; = x;41 in Q with ¢ > 1 and =1 = =z,
such that 2(p) = {p,c1p,..., ;- 1p,...}. Set ug = p and u; = @;---aip for
i > 1. Given 0 # u € Ap, there exists a minimal d(u) > 0 such that u = Z?i%) Aitly,
where \; € k with Aj(,) # 0. If u,v € Ap are nonzero, then v = qu+w, where g € A
and w € Ap with w = 0 or d(w) < d(u). Thus, every nonzero submodule of Ap is
generated by some u € Ap. Thus, Ap is noetherian. Since @ is left locally finite,
Jee =3 ,c0, (v,—) AP With Qn, (z,—) finite is noetherian, and Aey/J"=e; is
finite dimensional. So, Ae, is noetherian. The proof of the proposition is completed.

4.3.3. ExaMpPLE. Consider A = kQ/J, where @ is the quiver

a3 a2 [e5]
as a2 a1 ago 4; dy ——dy —>d3
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and J = (a;0; | i« > 1). Then A is locally right eventually multiserial. By Propo-
sition 4.3.2, it is locally right noetherian. On the other hand, A is neither locally
left eventually multiserial nor locally left noetherian.

4.4. LOCALLY SEMIPERFECT ALGEBRAS. A ring Y with an identity is semiperfect
if and only if it has a complete orthogonal set of idempotents {ey, ..., e, } such that
e; Xe; is local; see [1, (27.6)]. This inspires the following definition; see [20, (1.4.3)].

4.4.1. DEFINITION. Let A = kQ/J, where @ is a quiver and J is a relation ideal in
kQ. One says that A is locally semiperfect provided, for all z,y € Qq, that

(1) eyAe, is a local k-algebra;

(2) eyde, is a finite dimensional k-vector space.

4.4.2. REMARK. Let A = kQ/J be a locally semiperfect algebra. Regarded as a
k-category, A is small endo-local and Hom-finite.

4.4.3. EXAMPLE. (1) Let A be the k-algebra defined by a single loop « at a vertex
with relation a2 = 3. Then 4 is locally bounded but not locally semiperfect.
(2) Consier the k-algebra A = kQ/J, where Q is the quiver

[e5] a9 a3
v ap al as as

and J = (72, B1a1 — Biai---agay | i > 2). Then A is locally semiperfect with Q
being left locally finite but not right locally finite.

The following result collects some basic properties of locally semiperfect algebras.

4.4.4. PROPOSITION. Let A = kQ/T be locally semiperfect, where Q is a quiver and
J is a relation ideal in kQ.

(1) If x € Qq, then Je, is the unique mazimal submodule of P,.

(2) If x € Qo, then socl, is isomorphic to S, and essential in I,.

(3) The non-isomorphic simple modules in Mod A are the S, with x € Q.

(4) If M € ModA, then socM = {m € M | Jm = 0}.

Proof. (1) Let x € Q. Clearly, Je, is a maximal submodule of P,. For the
uniqueness, it suffices to show that e, — p is invertible for p € e, (kQ")e,. Assume
that this is not the case. Since e Ae, is local, p is invertible for some p € £, (kQ™)e,.
Then, e, = pi for some 1 € €,(kQ)e,. So e, — pn € J, contrary to J C (kQ™)2.

(2) Let z € Qq. Since A° is locally semiprimary, by Statement (1), the canonical
projection p : A°e, — S? is a projective cover. So, p is superfluous; see [27,
(3.4)]. Since A°e, € modA°, by Proposition 4.2.1, ®p : S, — I, is an essential
monomorphism. Thus, Im(®p) is an essential submodule of I,,. Since Im(Dp) = S,
we see that socl, = Im(Dp).

(3) Let S be a simple module in ModA. Then, there exists 0 # m € e,S for
some x € Q. If (Jey)m = S, then m = pm for some p € e, Je,. Since e, — p is
invertibe, we have m = 0, absurd. Thus, (Je,)m = 0, and hence, S = Ae, /Je,.

(4) Given m € socM, by Statement (3), Jm = 0. Suppose that Jm = 0 for some
0 # m € M. Then, m = e;,m+---+e;, m, where e;,;m # 0 and x; € () are pairwise
distinct. Since Jey, (ez,;m) = (Jeg,)m C Jm = 0, we deduce that A(e,,m;) = S,,,
for i =1,...,r. Thus, m € socM. The proof of the proposition is completed.



1spri_def

1sprm_lsp

1lspri_ex

20 Z. LIN AND S. LIU

4.4.5. REMARK. By Proposition 4.4.4(1), the condition (1) in Definition 4.4.1 can
be replaced by the condition that every oriented cycle in () is nilpotent in A.

4.4.6. LEMMA. Let A = kQ/T be locally semiperfect, where Q is a quiver and J is
a relation ideal in kQ. Then a module M in ModA is finitely cogenerated if and
only if socM is finite dimensional and essential in M.

Proof. Assume that M is finitely cogenerated with an injective envelope g : M — I,
where I € injA. By Proposition 4.4.4(2), socl € mod® is essential in I. Since
g(socM) C socl, we have socM € mod?A and g(socM) = socl. Thus, socM is
essential in M. Conversely, assume that socM € mod?/ is essential in M. Then,
socM = km1®---@kmg, where 0 # m; € e,,(socM) with x; € Qy. By Proposition
4.4.4(4), km; = S,,, and in view of Proposition 4.4.4(2), we have a monomorphism
h; : km; — I, with Im(h;) = socl,,, for ¢ = 1,...,s. This yields a monomor-
phism h : socM — I = @_,I,, with h(socM) = socl. Thus, h extends to a
monomorphism g : M — I. The proof of the lemma is completed.

4.5. LOCALLY SEMIPRIMARY ALGEBRAS. For our later study on almost split se-
quences in mod™4 and mod ™A, we need to impose some stronger conditions on A.
Recall that a ring X' with an identity is called semiprimary if rad X is nilpotent and
XY /rad X is semisimple; see [30, (4.15)]. This motivates the following definition.

4.5.1. DEFINITION. Let A = kQ/J, where @ is a quiver and J is a relation ideal
in kQ. We say that A is locally semiprimary provided, for any =,y € Qo, that Q
contains at most finitely many nonzero paths from x to y.

4.5.2. REMARK. Clearly, locally semiprimary algebras are locally semiperfect.

4.5.3. ExamMpPLE. (1) If Q is an interval-finite quiver, then k@ is locally semiprimary.
(2) Consider A = kQ/J, where @ is the quiver

o a9 a3
8l ap a1 a2 as

i/

b
and J = (v2, Bpn - | i > 1;m > 2i). Then A is locally semiprimary with Q
not locally finite. In contrast, the algebra in Example 4.4.3(2) defined by the same
quiver is not locally semiprimary.

We shall need the following statement for describing almost split sequences in
the subcategories mod ™ and mod ™A of ModA.

4.5.4. LEMMA. Let A = kQ/T be locally semiprimary, where Q is a quiver and J is
a relation ideal in kQ. Then a module in ModA is finite dimensional if and only if
it is finitely generated and finitely cogenerated.

Proof. Let M € mod®. In particular, M is finitely generated and socM € mod®d.
And there exist x1,...,2, € Qo such that e, M = 0, for z € Qo\{z1,...,2,}.
Let 0 # m € ey, M for some 1 < 4 < r. Suppose that (socM) N (Am) = 0.
By Proposition 4.4.4(4), there exist a, : a, — ap41 in Q1 with a; = x;, such that
0+# Q- --aym € e,, M, for all n > 1. In particular, a,, € {z1,..., 2.} and o, - - 1
is a nonzero path in @ from z; to a,, for all n > 1. So, there exists some 1 < j <r
such that @ has infinitely many nonzero paths from z; to x;, a contradiction. Thus,
socM 1is essential in M, and hence, M is finitely cogenerated; see (4.4.6).
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Assume now that M is finitely cogenerated, and finitely generated with an epi-
morphism f : Py, ® -+ @ P, — M, where 2; € Qo. Then M = Y| Af(es,),
where f(ey,) € eg, M, and by Lemma 4.4.6, socM = ey, (socM) @ - -- B ey, (socM),
where y; € Qo. For any z € Qo, dim(e, M) < >°'_, dim(e,Ae,,) < oo. Suppose
that e, M # 0 for some = € QQg. Then, @) contains a path p from some z; to x such
that pf(ey,) # 0. Since socM is essential in M; see (4.4.6), Q contains a path n
from z to some y; such that 7(pf(es;)) # 0. So, np is a nonzero path in @ from
x; to y; passing through z. By Definition 4.5.1, e, M # 0 for only finitely many
z € Qo. Thus, M € mod®A. The proof of the lemma is completed.

4.5.5. REMARK. Lemma 4.5.4 does not hold for locally semiperfect algebras. Con-
sider the locally semiperfect algebra A = kQ/J, where @ is the quiver

@o g a2 as
ao ai a2 a3 Gy

\L’Yl \L’Yz \L’m \L’m
b Bo by B1 by B2 by Bs by
and J is the ideal generated by Sovicp — Bof1 -« - BiYit104 - - - @1 with ¢ > 1, and

Bi7i+104i - Biﬁi—i—l . "6]"}/]'4_105]‘ C Q1O with j > 4 > 1. Note that Pao = Ibo~
Thus, P, is finitely generated, finitely cogenerated and infinite dimensional.

The following result is handy for constructing examples of locally semiprimary
algebras, which are also locally left or right noetherian.

4.5.6. LEMMA. Let A = kQ/3, where Q is a quiver and J is a relation ideal in kQ.
If A is locally left or right eventually multiserial, then A is locally semiprimary if
and only if all oriented cycles in Q are nilpotent in A.

Proof. We consider only the case where A is locally left eventually multiserial.
The necessity is evident. Assume that all oriented cycles in @ are nilpotent in A.
Suppose that @ has infinitely many nonzero paths from x to y, for some =,y € Q.
Since @ is left locally finite, it contains an infinite path
aq a2 asg o Qi41

C: z=1yo n Yo n
such that @ has a path p; : y; ~ y such that p;«a;--- @1 is a nonzero path, for all
i > 1. Let n, be an integer as in Definition 4.3.1(1). Then, for any ¢ > n,, the
infinite subpath (; of { starting with y; starts with p;. So, we may assume that
Yn, = y- It is not difficult to see that (,,, starts with p;, for infinitely many s > 0,
contrary to the assumption. The proof of the lemma is completed.

4.6. FINITE PRESENTED AND FINITELY COPRESENTED MODULES. We begin with
the following statement, which is a special case of Proposition 3.6.1.

4.6.1. PROPOSITION. Let A = kQ/T be locally semiperfect, where Q is a quiver and
J is a relation ideal in kQ. Then

(1) mod*A and mod™A are Hom-finite Krull-Schmidt subcategories of modA;

(2) The duality ® : modA° — modA restricts to a duality ® : modA° — mod A.

We shall need the property that finite dimensional modules are all finitely pre-
sented or all finitely copresented.

4.6.2. LEMMA. Let A = kQ/J be locally semiperfect, where Q is a quiver and J is
a relation ideal in kQ. Then modA C mod™A if and only if Q is left locally finite;
and mod®A C mod A if and only if Q is right locally finite.



22 Z. LIN AND S. LIU

Proof. Since mod™/ is extension-closed in Mod A, by Proposition 4.4.4(3), we see
that mod?4 C mod™ if and only if S, € mod™ for all z € Qy. And for each
T € @Qo, there exists a short exact sequence 0 Je, P, Se 0 in
ModA. Since {@ | @ € Q1(x,—)} is a minimal generating set for Je,, by Schanul’s
Lemma, S, € mod™ if and only if {a | o € Qi (x, —)} is finite, that is, Q;(x, —) is
finite. The first part of the lemma holds. Next, by Propositions 4.2.1 and 4.6.1(2),
mod? C mod A if and only if mod”A° C mod™4°, or equivalently, Q° is left locally
finite, that is, @ is right locally finite. The proof of the lemma is completed.

We shall also need the following easy statement.

4.6.3. LEMMA. Let A = kQ/R be semiperfect, where Q is a quiver and J is a
relation ideal in kQ. Then, mod™A = mod if and only if A is locally left bounded;
and mod A = mod¥ if and only if A is locally right bounded.
Proof. We shall only prove the sufficiency of the first part of the lemma. Assume
that A is locally left bounded. Then, proj4 C mod, and hence, mod™ C mod“.
Moreover, Q is clearly left locally finite, and hence, modA C mod™; see (4.6.2).
The proof of the lemma is completed.

Clearly, the projective modules in mod™/ are ext-projective, and the injective
modules in mod ™A are ext-injective. The converses are not true in general.

4.6.4. LEMMA. Let A = kQ/R, where Q is a quiver and J is a relation ideal in kQ.
(1) If mod™ is abelian, then its ext-projective objects are the modules in projA.
(2) If mod™A is abelian, then its ext-injective objects are the modules in injA.

Proof. We shall only prove Statement (1). Suppose that mod™A be abelian. Con-
sider a nonprojective module M in mod™A. Then there exists a nonsplit short
exact sequence 0 L P M 0 in ModA where P € projA and
L is finitely generated. By Proposition 3.5.1, L € mod™A, and hence, M is not
ext-projective in mod*A. The proof of the lemma is completed.

We provide some classes of algebras A for which mod™A or mod ™ is abelian.

4.6.5. PROPOSITION. Let A = kQ/T be locally semiperfect, where Q is a quiver and
J is a relation ideal in kQ.

(1) If 3 =0, then mod™A and mod A are abelian.
(2) If A is locally left (resp. right) noetherian, then mod A (resp. modA) is abelian.

Proof. (1) Assume that J = 0. Then 4 is hereditary; see [19, (8.2)]. Thus, proj4 is
closed under finitely generated submodules and injA is closed under finitely cogen-
erated quotient-modules. By Proposition 3.5.1, mod*4 and mod A are abelian.

(2) Suppose that A is locally left noetherian. Then the modules in projA are
noetherian. Thus, finitely generated modules are finitely presented. By Proposition
3.5.1, mod™ is abelian. Assume that A is locally right noetherian. Then A° is
locally left noetherian, and hence, mod™A° is abelian. By Proposition 4.6.1(2),
mod A is abelian. The proof of the proposition is completed.

4.6.6. ExaMPLE. Consider A = kQ/J, where @ is the quiver

a3 g Qp @
as as a w—Zaq—>=a_9—>a_3

b T

b3 bo by c1 c1 C2
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and J = (aaq, Baq, ;B | i > 1). Then, A is locally right eventually multiserial. By
Propositions 4.3.2 and 4.6.5, mod ™A is abelian. Although A is neither locally left
noetherian nor hereditary, we claim that mod™* is abelian.

Indeed let A" = kQ’, where Q' is the full subquiver of ) generated by the a;
and ¢; with ¢ <0 and j > 1. Then projA’ C projA. Let M be a finitely generated
submodule of some module P in projA. Write P’ for the maximal direct summand of
P lying in projA’. Note that M’ = Zao#ze% e, M is a finitely generated submodule
of P'' N M such that M/M’ € modA € mod™4; see (4.6.2). Since A’ is hereditary,

M’ € projA’ € mod*A. Therefore, M € mod™A. Now it follows from Proposition
3.5.1(1) that mod™ is abelian.

4.7. ALMOST SPLIT SEQUENCES. We start with the locally semiperfect case. Since
mod*4 and mod™A are Krull-Schmidt; see (4.6.1), as a special case of Theorem
3.6.3, we immediately obtain a general existence theorem for Mod A as follows.

4.7.1. THEOREM. Let A = kQ/T be a locally semiperfect algebra, where Q is a quiver

and T is a relation ideal in kQ. Consider an indecomposable module M € ModA.

(1) If M € mod™*A is not projective, then there exists an almost split sequence
0 ™™™ N M 0 in ModA, where M € mod A.

(2) If M € mod A is not injective, then there exists an almost split sequence
0 M N TM 0 in Mod A, where 7~M € mod™A.

4.7.2. REMARK. (1) In case @ is strongly locally finite and J = 0, Theorem 4.7.1
strengthens the result of Theorem 2.8 in [13].

(2) In case A is locally left or right bounded, Theorem 4.7.1 strengthens the result of
Theorem 3.4.1 in [20]. Note that the latter is obtained using the classical approach,
and contains an error claiming that 7M and 7~ M are finite dimensional.

Next, we shall concentrate on almost split sequences in mod*4 and mod™4 in
the locally semiprimary case. This will be based on the following description of
irreducible morphisms in mod*A and mod 4, which covers the result in [13, (3.1)].

4.7.3. LEMMA. Let A = kQ/T be locally semiprimary, where Q is a quiver and J is

a relation ideal in kQ.

(1) If Q is left locally finite, then every irreducible epimorphism in mod™A has a
finite dimensional kernel.

(2) If Q is right locally finite, then every irreducible monomorphism in mod™A has
a finite dimensional cokernel.

Proof. We shall only prove Statement (1). Assume that @ is left locally finite. By

Lemma 4.6.2, mod%d C mod™A. Consider an irreducible epimorphism f : M — N

in mod™A. We may assume that N is indecomposable. In view of Theorem 4.7.1(1),

we can construct a commutative diagram with exact rows
g f

0 L M N 0
P
0 Xty - PonN 0,

where the bottom row is an almost split sequence in ModA with X € mod™A.
Writing X’ = Im(u) and Y’ = Im(v), we obtain factorizations u = ju' and v = qv’,
where v’ : L — X' and v' : M — Y are epimorphisms; 7 : X' - X and¢:Y' =Y
are inclusion maps. This yields a commutative diagram with exact rows
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0 L—2sym-—tonN 0
0 X Moy PN 0.

Since L is finitely generated, so is X’. And since X is finitely cogenerated, so is
X'; see (4.4.6). Thus, X' € mod¥ C mod™; see (4.5.4), and hence, Y’ € mod*4;
see (2.1.1). Since p is not a retraction, neither is pg : Y’ — N. Thus, v’ is a section.
Then, v’ is an isomorphism, and so is u’. So, L is finite dimensional. The proof of
the lemma is completed.

We are now ready to describe the almost split sequences in mod*4 which, in the

hereditary case, strengthens the result stated in [13, (3.6)].

4.7.4. THEOREM. Let A = kQ/T be a locally semiprimary algebra, where @ is a

locally finite quiver and J is a relation ideal in kQ. Then the almost split sequences

in mod™A are those in Mod A with a finite dimensional starting term. Moreover,

(1) an indecomosable nonprojective module M in mod™A is the ending term of an
almost split sequence in mod™A if and only if TM is finite dimensional,

(2) an indecomosable noninjective module N in mod™A is the starting term of an
almost split sequence in mod™A if and only if N is finite dimensional.

Proof. Since @ is locally finite, mod%d = mod™A N mod A; see (4.5.4) and (4.6.2).

Consider an almost split sequence 0 X Y Z 0 in Mod A, where

X is finite dimensional. By Theorem 4.7.1(2), Z = 7~ X € mod"A. Since mod ™ is
extension-closed in Mod A, this is an almost split sequence in mod™A. Conversely,

let (%) 0O M N L 0 be an almost split sequence in mod™A.
By Lemma 4.7.3(1), M € mod’, and by Theorem 4.7.1(2), there exists an almost
split sequence 0 M E 7~M — 0 in Mod A, where 7~ M € mod™A.

Since M € mod ™/, this is an almost split sequence in mod™A, and hence, it is
isomorphic to (x). This establishes the first part of the theorem. Combining this
part with Theorem 4.7.1, we deduce easily Statements (1) and (2). The proof of
the theorem is completed.

4.7.5. REMARK. In view of Theorem 4.7.4(2), we see that the finite dimensional
ext-injective objects in mod ™/ are the finite dimensional modules in injA.

Dually, we can describe the almost split sequences in mod 4 as follows.

4.7.6. THEOREM. Let A = kQ/T be a locally semiprimary algebra, where @ is a

locally finite quiver and J is a relation ideal in kQ. Then the almost split sequences

in mod A are those in Mod A with a finite dimensional ending term. Moreover,

(1) an indecomposable noninjective module N in mod™A is the starting term of an
almost split sequence in mod A if and only if T~ N is finite dimensional;

(2) an indecomposable nonprojective module M in mod™A is the ending term of an
almost split sequence in mod A if and only if M is finite dimensional.

4.7.7. REMARK. In view of 4.7.6(2), we see that the finite dimensional ext-projective
objects in mod /A are the finite dimensional modules in projA.

4.8. SUBCATEGORIES HAVING ALMOST SPLIT SEQUENCES. The objective of this
subsection is to study when mod™4, mod A and mod? have almost split sequences
on one or both sides in case 4 is locally semiprimary given by a locally finite quiver.
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4.8.1. THEOREM. Let A = kQ/R be a locally semiprimary algebra, where Q is a

locally finite quiver and J is a relation ideal in kQ).

(1) If A is locally left bounded, then mod ™A has almost split sequences on the left.
And the converse holds in case mod™ is abelian.

(2) If the indecomposable noninjective modules in mod™A are finite dimensional (in
particular, if A is locally right bounded), then mod ™A has almost split sequences
on the right. And the converse holds in case mod™A is abelian.

Proof. (1) Suppose that A is locally left bounded. Then, mod™A = mod by

Lemma 4.6.3. If M € mod™/ is indecomposable and not ext-injective, then it is

not injective, and by Theorem 4.7.4(2), M is the starting term of an almost split

sequence in mod™A. Thus, mod ™ has almost split sequences on the left.

Suppose now that A is not locally left bounded and mod™A is abelian. Then
P, is infinite dimensional for some x € Q. Since @ is locally finite, by Propo-
sition 3.5.1(1), radP, € mod™A. Let N be an infinite dimensional indecompos-
able direct summand of radP,. Then, we obtain a nonsplit short exact sequence
0 N P, P,/N 0 in mod™A. In particular, N is not ext-injective
in mod . By Theorem 4.7.4(2), N is not the starting term of any almost split se-
quence in mod™A. Thus, mod™ does not have almost split sequences on the left.

(2) Suppose that all indecomposable noninjective modules in mod ™A are finite
dimensional. If M € mod™ is indecomposable and not ext-projective, then M
is not projective, and by Theorem 4.7.1(1), there exists an almost split sequence
0 ™™™ N M 0 in ModA, where TM € mod A. Since TM €
mod by the assumption, this is an almost split sequence in mod™A. Therefore,
mod ™A has almost split sequences on the right.

Assume now that mod™*/ is abelian and mod /A contains an infinite dimensional
indecomposable noninjective module M. By Theorem 4.7.1(2), there exists an al-
most split sequence 0 M N L 0 in ModA, where L € mod™A.
Since 7L = M, by Theorem 4.7.4(1), mod ™ has no almost split sequence ending
with L. Since L is not ext-projective in mod A by Lemma 4.6.4(1), mod ™A does not
have almost split sequences on the right. The proof of the theorem is completed.

4.8.2. REMARK. In case J = 0, we see from Lemma 4.6.5(1) that Theorem 4.8.1
covers the result in [13, (3.7)]; compare also [33, (3.6.1)].
Dually, we have the following statement.

4.8.3. THEOREM. Let A = kQ/R be a locally semiprimary algebra, where Q is a

locally finite quiver and J is a relation ideal in kQ).

(1) If A is locally right bounded, then mod™A has almost split sequences on the
right. And the converse holds if mod A is abelian.

(2) If the indecomposable nonprojective modules in mod™A are finite dimensional
(in particular, if A is locally left bounded), then mod™A has almost split se-
quences on the left. And the converse holds if mod A is abelian.

4.8.4. EXAMPLE. (1) Consider A = kQ/J, where @ is the quiver

arl
Ve N
6—=5—d 3}‘2/005

and J = (a7, Bv,%). Then, A is locally eventually multiserial. By Lemmas 4.3.2
and 4.6.5, mod A and mod™A are abelian. Since A is locally left bounded but
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not locally right bounded, by Theorem 4.8.3, mod A has almost split sequences on
the left but not on the right. And by Theorem 4.8.1(1), mod™ has almost split
sequences on the left. We claim that it also has almost split sequences on the right.

Indeed let A" = kQ" and A" = (kQ")/(63), where Q' and Q" are the full sub-
quivers of @) generated by the vertices ¢ > 3 and by the vertices j with 0 < j < 3,
respectively. Then, every module M in ModA is decomposed as M = M' & M",
where M’ € ModA” and M"” € ModA”. Thus, if M is an infinite dimensional in-
decomposable module in mod ™A, then M € mod A’, and hence, M = I; for some
i > 3. By Theorem 4.8.1(2), mod ™/ has almost split sequences on the right.

(2) Consider A = kQ/J, where @ is the quiver

as @ a9 @ aq o ap 4&; a1 —>=QaQ_92 —>Qa_3
B

Tﬁs TBQ Tﬁl i i \L

b3 ba by 1 1 C2

and J = (aaq, Bar,a;f; | i > 1). We claim that neither mod™ nor mod ™/ has
almost split sequences on either side. As seen in Example 4.6.6, mod ' and mod ™4
are abelian. Since A is not left locally bounded, by Theorem 4.8.1(1), mod*A
does not have almost split sequences on the left. On the other hand, let M be
the submodule of I,, such that I,, /M = S,. Then M is an infinite dimensional
indecomposable noninjective module in mod™A. By Theorem 4.8.1(2), mod™*A does
not have almost split sequences on the right. Similarly, we see from Theorem 4.8.3
that mod ™A does not have almost split sequences on either side.

To conclude the paper, we study when mod? has almost split sequences.

4.8.5. THEOREM. Let A = kQ/R be a locally semiprimary algebra, where Q is a

locally finite quiver and J is a relation ideal in kQ).

(1) If the indecomposable noninjective modules in mod™A are finite dimensional,
then mod®A has almost split sequences on the right.

(2) If the indecomposable nonprojective modules in mod ™A are finite dimensional,
then mod®A has almost split sequences on the left.

(3) In each of the above two situations, the almost split sequences in mod are
almost split sequences in Mod A.

Proof. We shall only consider the case where all indecomposable noninjective mo-
dules in mod A are finite dimensional. Let M € mod® be indecomposable and not
ext-projective. By Lemma 4.6.2, M € mod™ is not projective, and by Theorem
4.7.1, Mod A has an almost split sequence 0 ™™™ N M 0 with
TM € mod™A. Since TM € modb/l, this is an almost split sequence in mod . Thus,
Statements (1) and (3) hold in this case. The proof of the theorem is completed.

4.8.6. REMARK. In case 4 is a finite dimensional algebra, Theorem 4.8.5(3) is known
to some specialists.

By Lemma 4.6.3 and Theorem 4.8.5, we have immediately the following result.

4.8.7. COROLLARY. Let A = kQ/R be a locally semiprimary algebra, where Q is
a locally finite quiver and J is a relation ideal in kQ. If A is locally (left, right)
bounded, then mod has almost split sequences (on the left, on the right).

4.8.8. REMARK. Let A = kQ/J be finite dimensional, where @ is a ﬁ{lite quiver and
J is a relation ideal in kQ containing (kQ*)" for some n > 2. Let A = kQ/J such
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that there exists a quiver-covering ¢ : Q — Q; see [11, (4.1)] and J is the pre-image
of J under the k-linearly induced map ¢’ : kQ — kQ. Then, ¢’ induces a covering
¥ :A — A as defined in [14, (3.1)]. Tt is easy to check that A is locally semiprimary
and locally bounded. By Corollary 4.8.7, mod?1 has almost split sequences, and
by Theorem 4.8.5, the almost split sequences in mod®/ are almost split in Mod A.

4.8.9. ExaMmpPLE. Consider A = kQ/J, where @ is the quiver

B_vrC1~ 0
as ag—= a1<: >b1 ! bo bs
v Re2¢

and J = (Ba, ya,nd, (n). Clearly, A is neither locally left bounded nor locally right
bounded. As seen in Example 4.8.4(1), the infinite dimensional indecomposable
modules in mod /A are the injective modules I,, with ¢ > 1, and the infinite di-
mensional indecomposable modules in mod ™A are the projective modules Py, with
j > 1. By Theorem 4.8.5, mod’ has almost split sequences. Observe that mod
has neither enough projective objects nor enough injective objects.
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